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Abstract

Let G=(V, E)be a graph and TC V be a node set. We call an edge set S a Steiner tree for T
if § connects all pairs of nodes in 7. In this paper we address the following problem, which we
call the weighted Steiner tree packing problem. Given a graph G = (V, E) with edge weights w,,
edge capacities ¢,, e € E, and node sets T, ..., T, find edge sets S;,..., S, such that each S is
a Steiner tree for T,, at most ¢, of these edge sets use edge e for each e € E, and the sum of the
weights of the edge sets is minimal. Our motivation for studying this problem arises from a
routing problem in VLSI-design, where given sets of points have to be connected by wires. We
consider the Steiner tree packing problem from a polyhedral point of view and define an
associated polyhedron, called the Steiner tree packing polyhedron. The goal of this paper is to
(partially) describe this polyhedron by means of inequalities. It tums out that, under mild
assumptions, each inequality that defines a facet for the (single) Steiner tree polyhedron can be
lifted to a facet-defining inequality for the Steiner tree packing polyhedron. The main emphasis of
this paper lies on the presentation of so-called joint inequalities that are valid and facet-defining
for this polyhedron. Inequalities of this kind involve at least two Steiner trees. The classes of
inequalities we have found form the basis of a branch & cut algorithm. This algorithm is described
in our companion paper (in this issue).
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1. Introduction

Given a graph G = (V, E) and a node set T C V, we call an edge set SCE a Steiner
tree for T if, for each pair of nodes u, v € T, S contains a [u, v]-path. In this paper we
investigaie the following problem that we call the Steiner tree packing problem. Given
an undirected graph G = (V, E) with edge capacities ¢, € N for all ¢ € E and a list of
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node sets . = (T\...., Ty}, N €N, find Steiner trees S, for 7,, k= 1...., N such that
each edge ¢ € E is contained in at most ¢, of the edge sets S,,..., Sy. Every collection
of Steiner trees S..... Sy with this property is called a Steiner tree packing. If a
weighting of the edges is given in addition and a (with respect to this weighting)
minimal Steiner tree packing must be found. we call this the weighted Steiner tree
packing problen.

This problem has important applications in the layout of electronic circuits. One of
the major tasks in VLSI-design 1s the so-called routing problem. Roughly speaking, this
problem can be stated as follows. Given an area (typically a rectangle with some
forbidden zones™) and a list of point sets (so-called nets). The routing problem is to
connect (route) the points of cach net by wires on the area such that certain technical
side constraints are satisfied and some objective function is minimized. The precise
formulation of the routing problem depends on the used technology and the given design
rules. Many variants of the routing problem, however, can be modelled as weighted
Steiner tree packing problems (see also [9] for an excellent treatment of this subject). In
a companion paper [3] we are going to discuss such modelling issues and the relation
between the routing and the Steiner tree packing problem in detail.

In this paper we consider the Steiner tree packing problem from a polyhedral point of
view. We define a polyhedron whose vertices are in a one-to-one correspondence to the
Steiner tree packings in the graph. The goal of the paper is to investigate this
polyhedron. i.e., we try to describe it (partially) by means of equations and inequalities.
The classes of inequalities we have found form the basis of a branch & cut algorithm for
the (weighted) Steiner tree packing problem. This algorithm, the associated separation
routines and computational results are described in our companion paper [3].

This paper 1s organized as follows. In Section 2 we list some graph theoretic concepts
and notation and give a formal definition of the (weighted) Steiner tree packing problem.
In Section 3 we introduce the Steiner tree packing polyhedron and investigate its trivial
facet-defining inequalities. In Section 4 we address the question how facet-defining
inequalities change if the underlying graph is modified by operations such as edge
deletion or node contraction. In section 5 we show that under certain conditions each
facet-defining inequality for the Steiner tree polyhedron can be lifted to a facet-defining
inequality for the packing polyhedron. Finally. we present several classes of so-called
joint facets in Section 6. Inequalities of this kind involve at least two Steiner trees.

2. Definitions and notation

In this section we describe the problem that will be considered in this paper formally.
We first sketch some graph theoretic notation.

We denote graphs by G = (V. E). where V is the node set and E the edge set. All
graphs we consider are undirected and finite. For a given edge set F C E, we denote by
V(F) all nodes that are incident to an edge in F. Given two node sets U. WC V, we
denote by [/: W] the set of edges in G with one endnode in U and the other in W. For a
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node set W, we also use E(W) instead of [W:W ]. A set of node sets Vi,....v,cV,
p =2, is called a partition of V if all sets V, are nonempty, the node sets are mutually
disjoint and the union of these sets is V. (Note that we use ** C ™’ to denote strict set
theoretic containment.) If V,,...,V, is a partition of V then 8(V,,....V,) denotes the
set of edges in G whose end nodes are in different sets. For WC V., W %= (}, we write
5(W) instead of 8(W, V\ W) and call this set the cut induced by W. If W= {0}, we
abbreviate 5({v}) by 6(v). For an edge set F, we define d,(v) = |8(v) N F|to be the
degree of v in the subgraph (V, F) of G.

We call a sequence of nodes and edges K= (v, ¢, v, €,5,...,v,.,, €, v,), where
each edge e, is incident with the nodes v,_, and v, for i=1,...,/, and where the edges
and nodes are pairwise disjoint (except possibly v, and v,), a path (or a [vy, v,)-path),
if vy#+ v, and a cycle, if vy=v, and /> 2. Each edge that connects two nodes of a
cycle (path) K and that is not in K is called a diagonal of K. We say that two edges uv
and u'v' cross with respect to K if they appear in the sequence u, u', v, v’ or u, v', v, '
by walking along the cycle (path). Similarly, we call two sets of diagonals F, and F,
cross free if, for all e, € F| and ¢, EF,. ¢, and ¢, do not cross. Otherwise, F; and F,
are crossing. For our purposes it is convenient to consider a path P or a cycle C,
respectively, as a subset of the edge set. We call an edge set B a tree if (V(B), B) is
connected and contains no cycle. The leaves of B are the nodes that are incident to
exactly one edge of B.

Finally, we call a graph G a complete rectangular h X b grid graph, if it can be
embedded in the plane by # horizontal lines and b vertical lines such that the nodes of
V are represented by the intersections of the lines and the edges are represented by the
connections of the intersetions. A column J (row J) of a complete rectangular 7 X b grid
graph is a subset of the edge set that has cardinality #— 1 (b — 1) and whose edges
correspond to the same vertical (horizontal) lines.

Definition 2.1. Let G = (V, E) be a graph and T C V a node set of G. An edge set S is
called a Steiner tree for T, if the subgraph (V(S), S) contains a path from s to 7 for all
pairs of nodes 5, t €T, s# 1.

Definition 2.1 differs from the terminology most frequently used in the literature. A
Steiner tree is usually supposed to be a tree. For our purposes, however, Definition 2.1
simplifies notation and is more convenient for the polyhedral investigations in the
following. A Steiner tree that is a tree whose leaves are terminals is called edge-minimal.

Using the above notation we define the Steiner tree packing problem as follows.

Problem 2.2 (The steiner tree packing problem).
Instance: A graph G = (V, E) with positive, integer capacities ¢, €N, e € E. A list
of node sets .4 ={T,....T\}, N> L, with T,CV forall k=1,....N.
Problem: Find edge sets S|,..., S, CE such that
(i) S, is a Steiner tree in G for T, forall k=1.... N,
() XL IS,n{ell <c, forall e€E.
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In the application of Problem 2.2 we have in mind it is usual to call the list of node
sets .#" a ner list. We follow this custom. The number of N denotes the cardinality of
the net list. Any element 7, € .#" is called a sef of terminals or a ner and nodes € T,
are called rerminalfs. Instead of net T, we will often simply say ner k.

For notational reasons it is convenient to order the sets §,. Thus, we call an N-tuple
(S,.....Sy) of edge sets a Steiner rree packing or packing of Steiner trees if the sets
Spaeen Sy form a solution of Problem 2.2. A Steiner tree packing (S,,...,S,) is called
edge-minimal, if each S, is edge-minimal.

We will also consider the following weighted variant of the Steiner tree packing
problem.

Problem 2.3 (The weighted Steiner tree packing problem).
Instance: A graph G = (V. E) with positive. integer capacities ¢, € N and nonnega-

tive weights w, € R,. e €E. A net list 4 ={T,....7,}, N> 1 with T, CV for all
k=1,.... N.

Problem: Find edge sets S,.....Sy CE such that
(i (S,..... Sy) is a Steiner tree packing.

(i) L Z,cs, w, is minimal.

In the following we will refer to an instance of the weighted Steiner tree packing
problem by (G, .#", ¢, w) and to an instance of the Steiner tree packing problem by
(G, A C).

It is not surprising that Problem 2.2 and Problem 2.3 are .#%°-complete or .#.%-hard,
respectively. even in special cases. For example, the following variants are hard.

If we restrict Problem 2.3 to N =1 and ¢, = 1, for all e € E, we obtain the problem
of finding a minimal Steiner tree in G. This problem is .#.%%-hard even if G is restricted
to be planar or a grid graph [6,1]. Furthermore, it is .#%-complete to decide whether
there exists a feasible solution for Problem 2.2. Results here are due to Kramer and van
Leeuwen [8], who proved that the problem of finding N edge-disjoint paths is #%-
complete. Similarly, it was shown in [7] that it is .#.%-complete to decide whether a
packing of two Steiner trees exists.

We close this section with some further definitions and notation frequently used
throughout this paper.

Let G=(V, E) be a graph and T a set of terminals. We call an edge e a Sreiner
bridge with respect 1o T, if every Steiner tree for T in G contains e. For a Steiner tree S
for T in G, we define

T(S)= X (d(n) -1+ ¥ (ds(v) —2). (2.1)
=N ve V\T
dd)>2

It is easy to see that if S is an edge-minimal Steiner tree, the following equation holds:
T(Sy=1TI-2.

Let S be an edge-minimal Steiner tree for 7 in G and let uv € S be an edge of S. If

u and v are not leaves of S, then there exist edge sets S, S, C S, §, NS, =@ such that
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S=5US, U{u} with u € V(S)), 1 € V(S,) and (V(S)), S,), i =1, 2 are connected.
We call S, U S, U{uv} an edge-disjoint dissection of S. If one of the end nodes of the
edge uv, say u, is a leaf of S, we also call S, U S, U {uv} an edge-disjoint dissection of
S, where S, =@ and S,=S\({wv}. It is particularly convenient in this case to set
V(S,)) = u and write u e V(S,).

To make our unavoidably complicated notation a little less clumsy we slightly abuse
standard notation and introduce the following technically useful operations on N-tuples
of edge sets. Let P =(F,,..., Fy), N> 1, be an N-tuple of edge sets and e €E, F CE.
We define

P\ie=(F,.... F\{€}..... Fy);
PU,e=(F,...,F,Ufe},....Fy);

P o= (FA L6 F\Le]):
PUe=(F Ule},....,Fyu{e});

eEP = ec |JFy
k=1

If we have a Steiner tree packing P =(S,,..., Sy) it is sometimes convenient to denote
the kth element S, of the N-tuple by P,. We call a net list # = {T|,..., Ty} disjoint, if
T,NT,=@ forall i,je{l....,N}, i #].

To avoid the discussion of (trivial) special cases we assume from now on that every
terminal set of a net list .#” has at least cardinality two and that N > 1.

3. The Steiner tree packing polyhedron: seme basic results

In this section we introduce the polyhedron we are going to study. We assume the
reader to be familiar with polyhedral theory, see, for instance [11].

Suppose we are given a Steiner tree packing problem by a graph G =(V, E) with
edge capacities ¢, €N, ¢ € E, and a net list # ={T,,.... Ty}

Vectors are considered as column vectors unless otherwise specified. The superscript
T’ denotes transposition. We denote by R? the vector space where the components of
each vector are indexed by the elements of E, ie., x=(x),o, for x&€RE. For an
edge set F CE we define the incidence vector x© € R* of F by setting x/ =1, if
e€F, and y/ =0, otherwise. For an edge set FCE and a vector x € RE, we will
often abbreviate ¥, . r x, by x(F).

In addition. we will consider in this paper the N- | E |- dimensional vector space
REx - X RE We denote this vector space by R, The components of a vector
x€R"*F are indexed by x* for ke {l,...,N}. e € E. For a vector x€ R**F and
kefl,...,N} we denote by x'&R% the vector (x%),.,. Instead of x=
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(D' (MDTeR*E we often write x=(x',..., x") if the meaning of the
symbols is clear from the context. We define the support of a vector a € R"*£ in E by
supp(a) :=={e€ Ela*+ 0 for some ke {l..... N}}. For a subset E' CE and a vector
aeR*™E we define the vector al » € R* *% by (a| p)*=a* for all k=1,....,N
and ¢ € E'. Finally, for a subset S of a vector space, we denote by dim(S) the
dimension of S and by diff($) = {x — v| x, v € S} the difference set of S.

We define now the Steiner tree packing polyhedron by

STP(G. 1", ¢) = conv{(XSf ..... XS ERIRE
(i) S, is a Steiner tree for T, in G for k=1,..., N;
(ii) }:‘:’zllsm{e}r<c(..fora11eeE}. (3.1)

HFN=]and ¢c=1, ie., ¢, =1 for all e € E, we also refer to STP(G. .#". ¢) as the
Steiner tree polvhedron. We call the vector ( x5, ..., x5¥) the incidence vector of a
Steiner tree packing P=(S,,....S,). We will often abreviate the incidence vector of a
Steiner tree packing P by x’. STP(G. .#. ¢) is the convex hull of the incidence
vectors of Steiner tree packings.

Alternatively. the Steiner tree packing polyhedron can be formulated as the convex
hull of the solution set of an integer program as follows. Consider the following system
of inequalities:

(i) Y oxbx1. foral WCV, WNT, #8, (V\W)NT, #4d,
ve (W)
k=1.....N.
N
(i) Y x*<e,, forall e € E. (3.2)
k=1
(iif) O0<x, <1 forall e€ E. k=1,....N.

&
<1,
(iv) xfe{o, 1}, forall c€E, k=1,...,N.
Obviously, each incidence vector of a Steiner tree packing satisfies (3.2)(1)-(iv) and vice
versa, each vector x € R-"* satisfying (3.2)(i)-(iv) is the incidence vector of a Steiner
tree packing. Thus,

STP(G. .. ¢) = conv{x € R* % x satisfies (3.2)(i)~(iv)}. (3.3)

holds. The inequalities (3.2)(i} are the so-called Steiner cut inequalities. The inequalities
(3.2)ii) are called the capaciry inequalities and the ones in (3.2)(iD) the wivial
inequalities. The weighted Steiner tree packing problem can be solved — in principle —
via the following linear program:

N
min Y, wix
Rt (3.4)

x€STP(G. 4, c).
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In order to apply linear programming techniques, a “‘good’’ description of the Steiner
tree packing polyhedron by means of equations and inequalities is indespensable. The
aim of our paper is to study STP(G, /#, ¢) and to describe this polyhedron partially by
valid and facet-defining inequalities.

In the remainder of this section we investigate the dimension of the Steiner tree
packing polyhedron and characterize the conditions under which the trivial and the
capacity inequalities are facet-defining. Let us first consider the dimension problem.

Problem 3.1 ( Dimension problem of the Steiner tree packing polvhedron).

Instance: A graph G = (V. E) with edge capacities ¢, €N, e € E, a net list 4 =
{T,.....Ty} with T|,..., T, C V and a nonnegative number /.

Problem: 1s the dimension of STP(G, .#". ¢) at least [?

As we have mentioned above, the decision problem, “*Does there exist a Steiner tree
packing for a given instance (G, .#". ¢)?7’, is .#'P-complete [7,8]. Therefore, Problem
3.1 is also .#&P-complete even for the case /= 0.

Remark 3.2. The dimension problem 3.1 is .#%-complete.

This result does not give much hope for a successful study of Steiner tree packing
polyhedra of general instances (G, .#, ¢). Fig. 1 shows some examples and the
corresponding dimensions. The affine hull of the polytope of Fig. 1(b) is given by
x}; =0, xi, = 1: that of the polytope of Fig. 1{d) by x|, =1, x3, =0, x}, =0, x3, =1,
for instance. The dimension jumps appear rather erratic.

We have decided to study the Steiner tree packing polyhedron for special problem
instances for which the dimension can be determined easily and to look for facet-defi-
ning inequalities for these special instances. Clearly, such an approach is only sensible if
the results can be carried over (at least partially) to practically interesting instances as
they occur, for example, in the design of electronic circuits.

It has turned out that an instance (G, .#. ¢), where the graph G is complete, the net
list #={T,,...,T,} is disjoint and the capacities are equal to one {(c= 1), is an
appropriate case. The following lemma shows that the Steiner tree packing polyhedron is
full-dimensional in this case.

Lemma 3.3. Let G =(V, E) be the complete graph with node set V, |V | = 3, and edge
capacities ¢, =1, e € E. Furthenmore let " =1{T,,..., Ty} be a disjoint net list with
T,.....T, CV. Then,

dim(STP(G, 4. ¢)) =N - | E|.

Proof. Let A be a vector with ATx =0 for all x €& diff(STP(G, ¥, ¢)). We have to
show that A* =0 forall e€ E and ke {l,..., N}. Let e € E be an arbitrary edge with
end nodes « and v. We choose Steiner trees S,. k€ {1,..., N}, as follows. If e € E(T,),
set S, =[7:T,] for some r € V\ {x. v}. Such a node 1 exists since |V | > 3. Otherwise.
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dim(STP) = 12 dim(STP) =8
(a) ®)
[ ]
A@ )
4 ]
dim(STP) = -1 dim(STP) =2
(c) (d)

Fig. 1. (a)-(d) show some examples and the dimension of the corresponding polyhedron. The two terminal
sets are drawn as rectangles or cycles respectively (7, ={1, 2}, 7, = (3, 4} or T, = {2, 3} respectively) and STP
abbreviates STP(G, .47, 1). (a) The polyhedron is full dimensional. (b) Deleting the edge with end nodes 1
and 2 decreases the dimension by 4. (¢} If additionally the edge connecting nodes 3 and 4 is deleted, there
even does not exist any feasible solution. (d) An example in which the underlying graph is complete but the
corresponding polyhedron is not full dimensional.

set S, = E(T,). Since . is a disjoint net list, P=(S,,...,Sy) defines a packing of
Steiner trees with e & P. Thus, A*=AT(x"Y+*— x")=0. D

In the next section we will prove some lifting results. These theorems imply that
results for the special instance described in Lemma 3.3 can be (partially) carried over to
any problem instance. So, it seems reasonable to study this special case.

Let us close this section with the characterization of those conditions under which the
trivial and the capacity inequalities are facet-defining. We will concentrate here on the
case N > 2. The case N =1 was solved in [5].

The proof is fairly standard and we simply state the result.

Theorem 3.4. Let G=(V, E) be the complete graph with node set V and edge
capacities ¢, €N, ¢ € E. Furthermore, let ¥ ={T,,...,T,}, N> 2, be a disjoint net
listwith Ty....,Ty CV. Let ¢ € E be an arbitrary edge. Then. the following statements
hold.

(i) Forall ke {1,..., N}, the inequality x! > 0 defines a facet of STM(G, A4, ¢) if
and only if |V |25 or e & E(T)).
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(ii) For all ke{1,..., N}, the inequality x¥ < | defines a facet of STP(G, ¥, ¢) if
and only if ¢, = 2.
(ii1) The inequality

N
Y xr<e,
k=1
defines a facet of STP(G, A, ¢) if and only if ¢, <N — 1.

4. Manipulating facet-defining inequalities

In this section we address the following question. Suppose we have a valid or
facet-defining ineqality a'x > a of the Steiner tree packing polyhedron of some graph
and suppose we manipulate the underlying graph using operations such as node splitting
or addition, deletion or contraction of an edge, how do we have to modify the inequality
a'x > a such that the resulting inequality is valid or defines a facet of the Steiner tree
packing polyhedron of the new graph?

To be formally precise we should distinguish between incidence vectors, capacity
vectors, net lists etc. taken with respect to the old and new graph. This formalism would
make our notation even more clumsy. Thus, we have decided to drop the distinguishing
super or subscripts and hope that it is clear from the context with respect to which of the
two used graphs incidence vectors, inequalities etc. are considered.

Lemma 4.1 (Deleting an edge). Let (G, /#, ¢) be an instance of the Steiner tree
packing problem. Let a' x> a be a valid inequality of STXG, #, ¢) and suppose
fE E is deleted from G. Then a' x > « is a valid inequality of STH(G\f, /4, c) where
G =da* for all e EN{f), k€{1,...,N} (where G\f denotes the graph that is
obtained by deleting edge f).

Proof. This observation follows from the fact that every Steiner tree packing of
(G\f, #, ¢) is also a Steiner tree packing of (G, 4, ¢). 0O

Unfortunately, a facet-defining inequality for STP(G, .#, ¢) is not always facet-defi-
ning for STP(G\ f, .#, ¢) as the following example shows.

Example 4.2. Consider the instance drawn in Fig. 1(a). It is easily checked that the
inequality x7; + x3; + x3, > 1 defines a facet for STP(G, {T,, T,}, 1). By deleting edge
{1, 2}, we obtain the picture shown in Fig. 1{b). However, the above inequality does not
define a facet for STH(G\ f, {7}, 7>}, 1), since it is a positive linear combination of the
inequalities x3; > 0, x{; > 0 and the equation x2,= 1.

The following is a typical sequential lifting result.
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Lemma 4.3 (Adding an edge). Let (G, 4", ¢} be an instance of the Steiner tree packing
polyhedron. Let fEE with ¢,=1 and Q"xz a be a facet-defining inequality of
STP(G\f. 4", ¢). Then. a'x > a defines a facer for STP(G, ¥, ¢) with a5 =a% for
all e€ EN{f}. kell..... N} and at=a—minla'y" | P is a packing of Steiner
trees for (G, 4. ¢) with f€ P} for all k=1....,N.

Lemma 4.4 (Splitting a node). Ler (G. .+, ¢) be an instance of the Steiner tree packing
polvhedron. Let fE€E with ¢;=1 and let a'x> « be a valid inequality of
STP(G/f., 4. ¢) Cnote that G /f denotes the graph that is obtained by shrinking edge
). Then, a"x > « defines a valid ineguality for STP(G, 47, ¢) with a* = ("z‘ for all
ee EN{f}. kefl..... NYand a;=0 forall k=1.....N. O

Proof. If STP(G. .#". ¢} =, there is nothing to show. Otherwise, let P be a Steiner
tree packing for (G. .#", ¢). Obviously. P\f is a solution for (G/f, .#", ¢). Thus,
ax® 2 d% " = «a, since @b =0 forall k=1..... N. This implies that a'
valid inequality for (G. 4", ¢).

xzalsa

Unfortunately. again not every facet-defining inequality for STP(G /f, #, ¢) defines
a facet for STP(G. .#". ¢). Even worse. STP(G, .4 ¢) may be empty, although
STP(G/f. A ¢) is not.

Example 4.5. Consider the graph G’ in Fig. 2(a) and the graph G in Fig. 2(b), with
,=1{1,4,5.7) and T, = {2, 3. 6}. Let G'= G /{3. 3'}. Obviously, there does not exist

(a)
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any Steiner tree packing for (G, {T|, T,}. 1) and STP(G, {T|, T,}, 1) = #. However,
STP(G', {T,. 75}, 1) is a full-dimensional polytope.

Finally, let us consider the reverse operation of Lemma 4.4, i.e., the contraction of an
edge. In this case a valid inequality a'x > « for STP(G, .7, ¢) is not always valid for
STP(G/f. .#, c). This remains true even in the case when aj‘l =Qforall k=1....,N.
Example 4.6. Consider the graph G in Fig. 3(a) and the graph G’ in Fig. 3(b) with
T,={1,9) and T, = {2, 10}. Let G’ = G /{3, 6}. Obviously, x}; + xlg + x5, + x5 = 1 is
a valid inequality for STP(G, {T|, T,}, 1). but this does not hold for
STP(G' {T,, T,}, 1).

5. Lifting facets from Steiner tree polyhedra to Steiner tree packing polyhedra

In this section we will make an important observation, namely, that, under mild
assumptions, all nontrivial facets of the (single) Steiner tree polyhedron can be lifted to
the Steiner tree packing polyhedron. This implies that, in order to obtain a complete
characterization of some Steiner tree packing polyhedron STP(G, .#, ¢). for all nets of
the net list, all individual Steiner tree polyhedra STP(G, {T}. ¢), T € 4, must be known
completely.

We begin this investigation by stating a trivial lemma.

Lemma 5.1. Let G = (V, E) denote a connected graph that does nor contain a Steiner
bridge with respect to TCV. Let d'x>a be a facet-defining inequality of
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STP(G, (T}, 1). Then, either a’ x > a is an inequality of the form —x! > —1 for some
edge e € E or a, > 0 holds for all e € E.

It is somewhat surprising that. for the Steiner tree packing polyhedron, even if it is
full-dimensional, a similar statement is no longer true. In [10] the interested reader can
find an example of a facet-defining inequality with positive and negative coefficients.

Lemma 5.2. Ler G=(V, E) be the complete graph on node set V and let # =
{T,,...,T,V}, N2 2, be a disjoint net list. Furthermore, let a'x= a be a nonrrivial
facer-defining inequality of STP(G. {T\}, 1) with a € R%, a= 0. Then the following nwo
statements are true.
(i) For every edge ¢ € E there exists a Steiner tree packing P for (G, A7, 1) with

e€Panda'y” = a.

(ii) For every edge-minimal Steiner tree S, for T, with a'y® = a there exist edge
sets Sy, ..., Sy such thar (S,,..., Sy ) defines a Steiner tree packing for (G. ., 1).

A proof of this lemma is given in the Appendix. The two lemmas enable us to prove
the main result of this section.

Theorem 5.3. Let G={(V, E) be the conplete graph with node set V and 4 =
{T),....Ty}. N> 2, adisjoint net list. Let@ x> «, @ € R%, be a nontrivial facet-defi-
ning inequality for STP(G, {T,}, 1). Then. a"x > a defines a facet of STP(G, 4, 1),
where a € R ™F denotes the vector with a. =a., a* =0 forall k=2,...,N, e€E.

Proof. Since @' x > « defines a nontrivial facet for STP(G, {7}, 1) Lemma 5.1 implies
a > 0. Therefore, Lemma 5.2 can be applied.

The inequality a' x> « is surely valid. Let #"x > B be a facet-defining inequality
for STP(G, .+, 1) with F, ={xe STP(G, #, 1)|a'x=0a}CF,={x€
STP(G, #, 1)| b"x = B}. Statement (i) of Lemma 5.2 implies that for every edge
¢ € E there exists a Steiner tree packing P with e & P and y” € F,. Therefore, b¥ =0
for all k=2,...,N and all ¢ €E. Since @' x > « defines a facet for STP(G, {T}}, 1)
and @>0, there exist edge-minimal Steiner trees S|,...,S|¢! for 7|, such that
x5, ... x™" are affinely independent and @'y = « for i=1,..., | E|. From Lemma
5.2 part (i) follows that every S| can be extended to a Steiner tree packing P’ with
P/ =5!. So, we can conclude that a'y” =« and b"y" =8 for i=1,..., | E|. Since
b¥=0forall k=2,...,N and all e € £, we obtain (b')Ty *" = B. Due to the choice of
Si,-.., S| it follows that there exists A > 0 such that b} = Ag@! = Aa) for all e € E.
Thus, we have shown that b and « are identical up to multiplication with a scalar. This
completes the proof. O

Remark 5.4. The trivial facets of STP(G. {T,}. 1) do not necessarily define facets of
STP(G, #, 1). As an example let us consider the instance of Fig. 1(a). From Theorem
3.8 we know that neither x|, > 0 nor any of the inequalities x, < 1 defines a facet of
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STP(G, .#, 1). On the other hand, each of these inequalities defines a facet for
STP(G, {T}, 1) (see [2]).

6. Joint facets

In this section we consider inequalities that combine two or more nets. We will
proceed in the following way. First, we describe each inequality. All inequalities we are
going to consider are of the form a'x > «, a > 0. The coefficients of some of the edges
will turn out to be zero for all nets. We call these edges zero edges and the graph
induced by the zero edges the zero graph. We will use the structure of the zero graph to
name the inequalities. This has the following reasons. The zero graph is structured in
such a way that there exists no Steiner tree packing for the nets involved in this graph.
Therefore, each feasible solution must use edges whose coefficients are different from
zero. This means that each inequality is in some sense (but not necessarily uniquely)
determined by the zero graph.

We will always define the inequalities for an arbitrary instance without guaranteeing
that the inequality is also valid for the corresponding pelyhedron. In the subsequent
theorem we characterize the instances for which the inequality defines a facet of the
corresponding polyhedron. In addition, edges get value zero for some single nets (we
typically denote these sets by F,...., F,). These edge sets F,,..., F, must usually
satisfy very technical restrictions in order that the inequality defines a facet. The results
can often be generalized for example, by modifying the net list or by adding a node. Due
to the rich variety of possibilities we typically only sketch the ideas and hint at possible
extensions. In order to remain within the scope of the paper we have also decided, to
concentrate on the validity of the corresponding inequalities at the expense of giving
detailed proofs that the inequalities are facet-defining. In particular, to prove that the
corresponding inequalities are facet-defining requires essentially the same scheme. We
illustrate this scheme on one sample. For specific proofs of the remaining statements we
refer the interested reader to [10].

6.1. Alternating cycle inequalities

Definition 6.1. Let G =(V, E) be a graph and .# = {T|, T,} a net list. We call a cycle
F an alternating cycle with respect to 7, T,, if FC[T,:T,] and V(F)NT NT,=§
(see Fig. 4). Moreover, let F, CE(T,) and F, CE(T,) be two sets of diagonals of the
alternating cycle F with respect to 7y, T,. The inequality
‘ : e T
(XE\(FUF‘)’ XI;\(FUI'Q)) x> %| Fl—l

is called an alternating cycle inequality.

It is not difficult to see that the basic form of an alternating cycle inequality, i.e.,
F,=F, =, is valid for STP(G, .#’, 1), but in general, it is not facet-defining. The sets
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Fig. 4.

F, and F, are used to strengthen the basic form: in fact, choosing them appropriately we
can obtain facet-defining inequalities.

The sets of diagonals F, C E(T,) and F, C E(T,) are called maximal cross free with
respect to F. if F, and F, are cross free, and each diagonal ¢, € E(T\)\ F, crosses F|
and each diagonal e, € E(T,)\ F, crosses F, (see Fig. 4). Then, the following theorem
holds.

Theorem 6.2. Let G={(V, E) be the complete graph with node set V and let
A4=A{T,, T.} be a disjoint ner list with T)UT,=V and |T,| =T, =1, I>2.
Furthermore. let F be an alternating cycle with respect to T,, T, with V(F) =V and
F, CE(T,), F, CE(T,)). Then the alternaring cycle inequaliry

N\ (F N (F T
(XE\(FUF,)‘ XI;\(fUF:)) X}/_l

defines a facer of STH(G, 47, 1) if and only if F| and F, are maximal cross free.

The corresponding proof can be found in the Appendix. A consequence of the proof
is that the alternating cycle inequality is valid if and only if F, and F, are cross free.
Let us now focus on some extensions of the alternating cycle inequalities.

First, we consider the case where parallel edges are added to the complete graph. The
coefficients of the new edges that are not parallel to an edge of the alternating cycle F
obtain the value of the coefficients of the *‘original edge’’. The coefficients of the edges
that are parallel to an edge of F obtain the value I.

Theorem 6.3. Ler G =(V, E) be a graph that contains the complete graph on node set
V oas a subgraph and ler 7' = {T|, Tz} be a disjoint net list with T, UT, =V and
IT, | =T, =1, 12 2. Furthermore, let F be an alternating cycle with respect 10 T, T,
with V(F) =V and F\, C E(T,), F, CE(T)). Then the alternating cycle inequality

- o FonT
EN(FUF) E\(qu:)) v>l—1

(x X
define a facet of STP(G, .+, 1) if and only if F| and F, are maximal cross free.

The proof of Theorem 6.3 is very similiar to that of Theorem 6.2, so we omit it here.
A complete proof can be found in [10].



M. Gritschel er al. / Mathematical Programming 72 (1996) 101-123 115

Next, let us consider the case where an additional node z is added to the complete
graph in Theorem 6.2. We address the question how the coefficients of the edges that
are incident to the extra node z must be chosen to obtain a facet-defining inequality for
the corresponding Steiner tree packing polyhedron.

Suppose we have given a complete graph G = (V U {z}, E) and a net list .+ = {T,. T}
such that T, NV, T, NV is a partition of V with |7, NV |=|T,NnV|=1|V|[. Note
that we do not require .#” to be disjoint. Furthermore, let F be an altenating cycle with
respect to 7,, 7, with V(F)=V and let F,CE(VNT,) and F,CE(VNT,) be
maximal cross free.

Suppose & € R *F is a vector such that al gy ,=(y X
and the other coefficients are yet undetermined. It turns out that there are many ways to
specify the coefficients such that the resulting inequality &”x > « is facet-defining for
STP(G, .#, 1). In fact, the coefficients &%, ¢ € 8(z) can be independently chosen from
the following list of alternatives for each net k.

E(VIN(FUF) E(VIN(FU Fz))

Definition 6.4. (possible choices for the new coefficients by adding an additional node).
Let ke{l,2) with k=1,if k=2, and k=2, if k=L
(1) If z is a terminal of net k (z € T,). all coefficients obtain value 1, that is
a* =1, forall e € 8(z).
(2) If z is not a terminal of net k (7 & T,) there are the following possibilities.
) a&=0vI[=-2/1V], forall ¢e€ ().
(ii) a%,=0,forone r€Ty; a* =1, for all e € 8(2)\{z}.
(i) 4%, =0, for one t€Ty; a*,=0, for all ¥ €T; with ##' € F,; a¢=1, for all
remaining edges e € 8( 7).

Theorem 6.5. Ler G=(VU{z}. E) be the complete graph with node set VU {z} and
let W={T,.T,} be a net list such that T, NV, T,NV is a partition of V with
[T\ NV I=I|T,NV| =1 122 Furthermore let F be an alternating cycle with respect
to T\, Ty, with V(F)=V and let F) CE(T,NV), F,CE(T,NV) be maximal cross
free. Let @ € RV *E be a vector such that @| 5., satisfies one of the alternatives of
Definifion 6.4 and &| E\ 8(z) = ( y BVNFVFO W EOONFU RN - Finally, let a, = |{z}
NT,| for k=1, 2. Then,

dxzl—1+a, +a

defines a facet of STP(G, ., 1).

We give a rough idea of the proof. The proof of validity can be reduced to that of
Theorem 6.2, i.e., for an arbitrary Steiner tree packing P it can be shown that there
exists a Steiner tree packing P’ with "y~ < &'y " and [8(z) NP, | =, for k=1,2;
this implies the validity. To show that the inequality is also facet-defining it remains to
fix the new coefficients. This can easily be done, see [10]. Obviously, in the same
manner we can add an arbitrary number of additional nodes z,,..., z, to the complete
graph G =(V, E) of Theorem 6.2. For each of the nodes z, we can independently
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choose the coefficients of the edges in [z;:V] according to Definition 6.4. The
coefficients of the edges that connect two different nodes z; and z; can be determined
by applying Lemma 4.3.

6.2. Grid inequalities

Definition 6.6. Let G = (V, E) be a graph and .+ = {T|, T,} be a net list. Furthermore,
let G=(V, E) be a subgraph of G such that Gisa complete rectangular 4 X 2 grid
graph with 4 > 3. Assume that the nodes of V are numbered such that V=AU, p]i=
1....,h, j=1,2}. Moreover, let (1, 1), (h, 2) € T, and (1, 2), (h, 1) € T,. We call the
inequality

(XE\lf! XE'\E)T'tZ 1

a h X2 grid inequality.

If we consider in the following a complete rectangular 4 X 2 grid graph, which is a
subgraph of a given graph G = (V, E), we always assume for the ease of notation that
the node set V is numbered such that the nodes of the grid graph have a numbering as
assumed in Definition 6.6.

Theorem 6.7. Let G = (V, E) be a complete rectangular h X 2 grid graph with h > 3.
Let J, and J, be the two columns of G. Let & ={T|, T,} be a net list where
T,={(1. 1, (h, 2)} and T, ={(1, 2), (h, DD}. Furthermore, let G=(V, E) be a graph
with VCV, ECE such that [(V(J):V(J,)] is a cur in G. Set F=E and let
F,, Fy, CEN\F. Then, the inequality

(X ENFUFD y ENEY F;))TX> ]
is valid for STP(G, #, 1) if and only if for all u, v € V(F); u # v there does not exist
a path from u to v in (V, F) for k=1, 2 (see Fig. 5).

Proof. The validity of the inequality is easy to see. There obviously does not exist a
Steiner tree packing in (V(F), F), since all nodes of V(F) have degree at most three

""""""" 0 ? 1 o
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(with respect to F) and the terminal nodes have degree two (with respect to F). Since in
addition, for every u, v € V(F), u# v there does not exist a path from u to v in
(v, F,) for k=1, 2, the inequality is valid. On the other hand, if there exist nodes
u,v€V(F), u+#v and a path from u to v in (V, F,) for some k{1, 2}, one can
easily construct a Steiner tree packing violating the inequality. O

We also worked out necessary and sufficient conditions such that the inequality in
Theorem 6.7 is facet-defining (see {2,10]). In Theorem 6.7 the underlying graph G needs
not be complete. In the following we give a formulation for the complete graph.

Theorem 6.8. Let G =(V, E) be the complete graph with node set V and let E' CE be
an edge set such that (V, E\E') is a complete rectangular h X2 grid graph with
h=3. Let #={T,Ty} be the ner list, where T,={(1,1),(h,2)} and T,=
{(1,2), (h, 1)}. Set F==E and let F,, F, C E\F. Finally, set k=3 —k for k=1, 2.
Then, the inequality

. - T
(Xk\(FU ) XE\(qu;)) x> 1

is valid for STP(G, #, 1) if and only if F, and F, satisfy the following properties ( see
Fig. 6).

() Foce, =G, G+1,0)li=1,....h— 1)} fork=1,2.

(i) Forall [(i,, ®), (i, + 1, DIEF,, k=1,2 holds i, # i,.

Proof. First, we prove that (i) and (ii) are sufficient. Let P = (S|, §,) be an arbitrary
Steiner tree packing. Without loss of generality, S, and S, are paths. Suppose that
a'y” = 0. For the same reason as in the proof of Theorem 6.7 there does not exist a
Steiner tree packing in (V, F). This implies that (S,NFIU(S,NF,)#@. Let
(G, %), (i, +1, )] (S, NF)U(S,NF,) such that i, is minimal. We consider the
case k=1 (the case k= 2 can be shown analogously). Obviously, J, C S, for k=1, 2,
where J, = {[(i, k), G+ 1, K)]li=1,...,i, — 1}. Since [(i,, k), (i, + 1, K] € S, and
S, is a path, we obtain that either [(i|, 1), (i,, 2)], [(i, + 1, 1D, (i, +1,2)]€ S, or
G, D, G+ 1, DL G, 2. G +1,D]€S,. In the first case set W={(i, j)|i=
Looiy— 1L j=1,200U, Al;,2), G+ 1, ], where I={ie{i,.....h I 2), i
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+1L,D]eF NS and [(V.2), (7 + 1, D]eF, NS, for all i'=14,,....i—1}. In the
second case set W={(i, )li=1.....i,. j= 1.2} Property (i) and (ii) imply that
(BW)N(FUF,I\S,=8. Since (1.2)eW and (h, 1) V\W, it follows that
(a’)x*: > 1, a contradiction.

It can be checked that the two conditions (i) and (ii) are also necessary. O

If we add the condition ""F, and F, are maximal with respect to (i) and (i)’ in
Theorem 6.8, we obtain that these three conditions are necessary and sufficient for the
grid inequality to be facet-defining ([10]).

6.3. Crirical cut inequalities

In this subsection we will describe a quite ““small” class of valid inequalities.
Nevertheless, they turn out to be very helpful in solving practical problems.

Definition 6.9. Let G= (V. E) be a graph with edge capacities ¢, € N, ¢ € E. More-
over, let .4 ={T|,...,T,} be a net list, For a node set W CV we define S(W):={ke
{l.....N}IT,nW=8, T Nn(V\W)=d¢).

(a) We call a cut induced by a node set W critical for (G, ., ¢), if s(W):=c(8(W))
—Sw)l < 1.

(b) If V,. V,. V; is a partition of V such that 5(V) is a critical cut and if T, NV, =

and T, NV, # @ for i =2, 3, we call the inequality
[vyviD =z

a crirical cut inequality with respect 1o T,. (See Fig. 7.)

The critical cut inequality is valid for STP(G, ., ¢) for, suppose not, there exists a
Steiner tree packing (S,,....S,) with | S, N 8(V )| > 2. This implies that 0 < c(8(V,)
\NS) = ISV <8V N =2 = [S(V)| < — L, since 1 & S(V) and 8(V,) is critical,
a contradiction.

Fig. 7. Consider the partition V. V., V.. Suppose the capacitics of the edges are equal to one. Then 8(V,) is a
critical cut. The critical cut inequality says that the net depicted by black rectangles must use at least one of the
edges of [V,: V]
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[t turns out that under certain condtions this inequality 1s also facet-defining. Such
details are reported in [2,10]).

7. Conclusions

Research in polyhedral combinatorics in the past years concentrated on easily
describable “*primal’’ problems such as the matching, the traveling salesman, the
spanning tree or the stable set problem. Very little work has been done on *‘dual”
problems like the edge or node colouring or packing problems. One of the reasons for
this is certainly that the latter problems may give rise to integer programming models
with an exponential number of rows and columns, that they often combine the
difficulties of various subproblems and that additional subtleties creep in by considering
graph structures, capacities etc. jointly. The technicalities involved require enormous
mathematical machinery and seem insurmountable in the general case.

We have encountered the Steiner tree packing problem in practice and considered it
worthwhile to engage in a study of Steiner tree packing polytopes in order to get some
experience in the investigation of packing problems from this point of view. As can be
seen from the results of this paper, all expected difficulties turned up. The dimension of
the Steiner tree packing polyhedron is hard to determine. Thus one has to resort to a
*‘handy’’ but representative special case. The difficulties of the individual Steiner tree
polyhedrons are inherited by the packing polytope. Finding rich classes of valid joint
inequalities and describing them in an understandable manner is a considerable chal-
lenge; characterizing the facet-defining inequalities in these classes leads to tremendous
technical difficulties. To keep this paper within acceptable space limits we have given
only a few complete proofs and restricted ourselves to the presentation of a few classes
of joint facets, namely those that have been used in [3]. Further classes of facet-defining
inequalities will be presented in a forthcoming paper, see [4].

The most important objective of our research project, however, was to see whether
the machinery of polyhedral combinatorics can help solve practical instances of Steiner
tree packing problems. Indeed, it can — to some extent. This topic will be discussed in
our companion paper [3].

Appendix

Proof of Lemma 5.2, We start by proving (i). Let ¢ € £ and let S, be an edge-minimal
Steiner tree with a'y¥ =« and ¢ & S,. Such a Steiner tree S, does exist, because
a' x> « is a nontrivial facet-defining inequality with a > 0. Since S, is edge-minimal, it

follows from (2.1) that
T(S,)=I1T|-2. (%)
We set S, = (T, T, JUETN\(S Ule}) for k=2,...,N. By (k) we denote the
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number of (connected) components in (V(S,)U T,, S;). Consider any t€T. If e€
[£:7, ] for some ko€ {2..... N} we obtain dy(r)> E;_,(I(k) — 1) — 1; otherwise we
have dg(1) > L{_,(/(k) = 1). This is true. because otherwise two components of some
net & could be connected via 1. We get

T(s)> ¥ ( > (1K)~ 1)~ 1

=1

R
=7 - Y (k-1 -1 1-1
k=2

>|T 1-1, if 2(/(k)~1)>2,
k=2

As a result, there exists at most one net &, with /(k,) = 2. If there does not exist such a
net k., then (i) is already shown. We extend S, by the unused edges in E(T,) and set
Si, =S WIETONS, Ulel). If (VS U Tkvl, S;) is connected, we are finished.
Otherwise let (V,, E|) and (V,. E,) denote the two (connected) components with
|V, | <|V,|. Note that r€V, or r€V, for all t€T,, since otherwise S, would
contain a cycle. We distinguish the following two cases.

(1) e¢ [V, : \73]. Here, H_/‘ | = 1. Otherwise S, would contain a cycle, which
contradicts the fact that §, is edge-minimal. For {v}=V, we obtain ds(v) >
| T, I +17,, =1, and so T(s) > |T, [ +IT, | =1=2> [T, | -1, which contradicts
(*). Therefore,

(2) e [\_/] :\72]. Again, we have to distinguish two subcases.

(@) IT, | < |VI=3.1f [T, | =2, there exists a node v&T, UT,, since |7, | <
|V | —3. Then, S, U [u:Tkl] defines a Steiner tree for 7, (note that by construction
[v: TA]] NS, =@ for all k# 1, k, and, since S, is edge-minimal and contains no cycle,
we have [v: T, 1N S, =@ as well). So, the remaining case is |7, | > 3. This however
implies that |V, | + [V, | > 5 holds. Therefore, | V, | = 1, otherwise S, would contain a
cycle. Let {v} = V. Then T(s)>dg(v) = 2=(IT, |- D+IT, [=2-1> T [-1,
which contradicts ().

() 17,1 =1V ]-2. Since .# is disjoint, we know that N=2, [7,]| =2 (say
T,={r.#}and T, ={r,.... 1, }. This case is inconvenient in the following sense. We
can not show statement (i) for any Steiner tree S, being defined similarly to above. For
example for S, =[r:T,] and e = there does not exist a Steiner tree packing with
e & P. In this case we prove the statement indirectly. Suppose, the statement

(5.2.1) “*For each Steiner tree packing P with a'y" = a, edge e is an element of

P
1s correct. Let us first consider the case I\—/, | = 1. Without loss of generality we can
assume that X_/l = {s}.

First, suppose ¢ = #'. Then, S, =[7:T,]. Due to the assumption (5.2.1) we know

(522) a, <a,, forall i,je{l,.... [T |}, i#}

Since d'x>a defines a nontrivial facet with « > 0, there exists an edge-minimal
Steiner tree S for 7, with a’y % = @, e & S} and S| N E(T,) # @, (suppose, there does
not exist such a S); due to the properties of a'x> o there exists an edge-minimal
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Steiner tree S for T, with a'y* =« and | SN E(T,)| > 0‘ the assumption implies that
¢ € S, thus, there exist i, j with r'r,, 1,1, € S, since a'y’ =« and ;1 &S we obtain
a,, < a,,. which contradicts (5.2.2)). W. Lo.g. let #,1, € ). The assumption (5.2.1) lets
us conclude that m, €8 orrt, €5 and i, €8 or r'r, € 5. If 1t, € 5], then 1, € 5,
and due to ¢, <aq,,, S, =S\{r,5,) U{,} is a Steiner tree for 7, with a’y* < «, a
contradiction. Analogously, it can be shown that #, € S|. Hence, r'r, € §| and 1'1| E §|,
which is a contradiction to the property that S| is edge-minimal.

Now suppose e = 11; for some i €{1,..., | T, |}; without loss of generality say i= 1.
Then, §, ={r:T\\r,JU{s', r'1,}. Assumption (5.2.1) implies that a,, <a,, and a,, +
as, <a,, . Since a'x> o defines a nontrivial facet with a >0, there exists an
edoe m1n1m1al Steiner tree S| for 7, with a'x* = a and #,f, € S}. Due to assumption
(5.2.1) we can conclude that ' € S| or 11, € S|. Both alternatives however lead to a
contradiction, ' € S} due to a, <a,, and a, <a,,,and #, €S| dueto a, <a,

Finally, the case IV | =2 must be mvestwated Here we know that IV | =2 and
[V, | =2 (especially |T; | =2), otherwise S, would contain a cycle. Without loss of
generality let V, ={r, 1,} and \72={r', 1,}. Since S, is edge-minimal, only the case
¢ = 1,1, remains to be considered. Then, S, = {r,r', ¢'r, 1t,}. Assumption (5.2.1) implies,
a,, +a,<a,, and a, +a,<a, . Since a"x > a defines a nontrivial facet with
a > 0. there exists an edge-minimal Steiner tree S, for 7, with a'x%' = « and ¢, € S|.
Due to (5.2.1) we can conclude that § ={z,r, 1, t,}. Since a,, <a,, and a,, <a,,
hold, we obtain the contradiction a'y ' < a'x % = «.

Sumniing up it may be said that all cases in (b) lead to a contradiction. Therefore, the
assumption (5.2.1) does not hold.

Therefore we can conclude that there exists a Steiner tree packing with the properties
in statement (i).

Statement (ii} can be shown similarily. Since **e & P’" is not required any more, we
obtain T(S)) > |T, |, if £}_,(/(k)—1)> 2, and only case (1) has to be considered.
This completes the proof. O

Proof of Theorem 6.2. Set E, = EN\(FUF,), k=1,2,and a:=( x ', x%). First, we
prove that a'x > [ — 1 is valid if F, and F, are cross free. It suffices to show that for
every packing of Steiner tress (S, Sz), (S, NE)U(S,NE,)| =!~—1holds (note that
c=1).

Let (S,, S,) be any Steiner tree packing. Without loss of generality, S, and S, are
edge-minimal. Set 7, == {t €T, [ (DN FCS,}and T5 == {r& T, | 6(1) N F C §,}. Since
S, and S, are edge-minimal and | F | =2/, we have that 7] [+ |7, | <{—1. This
implies that 7,\ 7 and T,\ 7T} are nonempty. Therefore, at least |7] | +|T; | edges
e €S NE, US,NE, are necessary to connect T, with T)\7; and 7; with T,\T5.
Consider the remaining terminals 7,\ 7} and T,\T;. Set k;:= «((V(S,), S;\ F;)) for
i=1, 2, where x(G) denotes the number of components of graph G. Since F, and F,
are cross free, we obtain &k, +k, <!+ 1. Thus,

O )2 (T T+ (TATIEAT L (h +8)
ST |+ 17, | = (k, +hy) > 1
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Let us now outline the proof that ¢'x >/~ | defines a facet of STKG, .4, 1).
Suppose b'v > B is a facet-defining inequality of STP(G. .+, 1) such that F, == {x €
STP(G. .+, D|ad"x=1—-1}CF={xeSTP(G. .+ 1) b"x= ). In the following
we show that b is a multiple of a.

In the first two steps we show that for any coefficient @' = 0. k € {1, 2} there exists a
Steiner free packing P with a"y” =/— 1 and ¢ & P. This implies 5% = 0.

() b¥=0fore€F, k=1, 2. Choose S, = F\{¢} and S, =[r:T,]. r€ T,. Further-
more set S; =S, U{e}. Then P =(S,, S5,) and P'=(5]. S,) are Steiner tree packings
with x 7. x" €F, and 0 =" x . x*) = b"(x*. x*) = b.. Analogously we obtain
b =0.

(2) bf =0for ¢e€F,, k=1,2. Choose S, = F and S. =[r:T,]. r € T,. Furthermore
set 8§, =38, U{e}. Then P=(5,.5,) and P"=(5|. S,) are Steiner tree packings with
¥ oxT€eF, and0=b"(x%. ) —b"(x". x*)=b!. Analogously we obtain b =
0.

Next. we prove that the coefficients of edges that connect terminals of the same net
are equal. Typically this can be done by constructing two Steiner trees inside the
subgraph induced by the corresponding terminal set that differ only in two edges.

(3) bE=0bt, for e. ¢ €E(T,). k=1,2. Let e=uv with w.v€T. Set S, =F and
S,=[lv:7,] Let ¢ €[u:T I\ {e} and S; =S \{c} U{c}. Then P=(S), S;) and P'=
(S,.S,) are Steiner tree packings with x”. x” €F, and 0=5"(x*5. x%)—
BT xS, x%)=b) — bl forall e, ¢ € 8(u). u € T,. Analogously we obtain b7 = b_.

In the remainder of the proof set &:= 1. if k=2, and k=2, if k= 1. In steps (4)
and (3) we fix the remaining coefficients of one net. To this end we use the structure of
the zero graph, the properties fulfilled by F, and F, and the fact proved in (3).

(8) bi=bf for ¢ €E(T,), e€[T,:T), k=1.2. Let e=uw with €T, we T,
and « € T, such that vw € F. Choose S, = F\ 8(v), S, =[u:T\Jand S, =5 \{uv} U
{uw) U {ew}). Then P=(S,,S,) and P’ =(S|.S,) are Steiner tree packings with
xP o xT€F, and0=b"( x5, x5)=b"( x5, xS =b) +b).—bl,=bl. —b,,, be-
cause b!, =0 (see (1)). This together with (3) proves the statement. Analogously we
obtain b2 = b2,

(5) b= b} for e € E(TNF,. € € E(T). k=1.2. Let e=uv & E(T,)\F,. Since
F, and F, are maximal cross free. there exists an edge u,v, € F, which crosses e. Let
u”, v €T, such that u u, vo" € F and wv crosses u v™. Choose S, =[u” :T] and
S, = F. Furthermore set S, =S \{u v"YU{u w, uv. vv*} and S, = S\ {u " u, vv*}
U{u,v,}. Then P=(S,. S,) and P’ =(S,, S,) are Steiner tree packings with x7”,
x"€F, and 0=5b"( x5, x5)=b" (x5, x*)=0b! .—b!,. This together with (3)
proves the statement. Analogously we obtain b = b7.

It remains to be shown that the coefficients of different nets are equal. This is
typically done by constructing two Steiner tree packings: in the first solution the Steiner
tree for net 1 uses only zero edges, whereas in the second solution zero edges are only
used by net 2.

(6Y bl =b} for c€E(T)), ¢ €E(T,). Let e=uv€E(T,) and ¢ = wx € E(T,).
Choose S, =[u:T,], S,=F, S\=F and S)=[w:E(T,)]. Then P=(S, S,) and

—b
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P'=(S,, S,) are Steiner tree packings with xP. x" €F, and 0=0b"( x5, ¥*) -
B (x%, x%)=L e AP = Licrbl, =U—=1D-b],~(-1) b, because of
(3). So we obtain b! = b;.

(1)-(6) imply that b is a multiple of a.

It remains to be shown that F| and F, are maximal cross free if a'x > 1 — 1 defines
a facet of STP(G, 47, 1).

First, we show that 7, and F, have to be cross free. Suppose, F, and F, are not
cross free. Then, there exist two crossing diagonals ¢, = v, € F, and ¢, = u,v, € F,.
Let u;. vy €T, such that w; u,, vyv] €F and uw, crosses u; vi. Choose §, =
Ly TIN{uT oY Uluyuy. w00} and S, = F\{uy u,, v,vf} U{u,v,}. Then,
(S,, S,) is a Steiner tree packing with a'( x*', ) =1— 2, a contradiction.

Finally, we show that /| and F, are maximal cross free. Suppose, this is not the
case. Let /| CE(T,) and F3 CE(T,) such that F,UF,CF,UF; and F, and F} are
maximal cross free. Due to part 1 of this proof ( yENFYID W ENFULNTy 51—
defines a facet of STP(G, .#, 1). Summing up this facet- defmm0 inequality together
with the valid inequalities x> 0 for all ¢ € F/\ F, and x?> 0 for all e € F;\ F, we
obtain a'x>/—1. Thus, arx [ —1 does not define a facet of STP(G, .+, 1), a
contradiction.
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