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Abstract 

Let G = (V, E)  be a graph and T _  V be a node set. We call an edge set S a Steiner tree for T 
if S connects all pairs of nodes in T. In this paper we address the following problem, which we 
call the weighted Steiner tree packing problem. Given a graph G = (V, E) with edge weights w e, 
edge capacities c e, e ~ E, and node sets /'1 . . . . .  T u, find edge sets S~ . . . . .  S N such that each S k is 
a Steiner tree for T k, at most c e of these edge sets use edge e for each e ~ E, and the sum of the 
weights of the edge sets is minimal. Our motivation for studying this problem arises from a 
routing problem in VLSI-design, where given sets of points have to be connected by wires. We 
consider the Steiner tree packing problem from a polyhedral point of view and define an 
associated polyhedron, called the Steiner tree packing polyhedron. The goal of this paper is to 
(partially) describe this polyhedron by means of inequalities. It turns out that, under mild 
assumptions, each inequality that defines a facet for the (single) Steiner tree polyhedron can be 
lifted to a facet-defining inequality for the Steiner tree packing polyhedron. The main emphasis of 
this paper lies on the presentation of so-called joint inequalities that are valid and facet-defining 
for this polyhedron. Inequalities of this kind involve at least two Steiner trees. The classes of 
inequalities we have found form the basis of a branch & cut algorithm. This algorithm is described 
in our companion paper (in this issue). 
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1. Introduct ion 

G i v e n  a g raph  G = (V,  E )  and a node  set T__C_ V, we call  an edge  set S C E  a S t e i ne r  

tree f o r  T if, for  each  pair  of  nodes  u, v ~ T, S con ta ins  a [u ,  v]-path .  In this  p a p e r  we 

inves t iga te  the fo l l owing  p r o b l e m  that  we call the S te iner  tree p a c k i n g  p r o b l e m .  G i v e n  

an und i rec ted  graph G = (V,  E )  with  edge  capac i t ies  c e ~ N for  all e ~ E and  a list of  
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node sets ~,I/'= {Tt . . . . .  Tx}, N ~ ~ ,  find Steiner trees S k for T k, k = 1 . . . . .  N such that 

each edge e E E is contained in at most c,, of the edge sets S~ . . . .  , S x. Every collection 

of Steiner trees S~ . . . . .  S v  with this property is called a Steiner tree packing. If a 

weighting of the edges is given in addition and a (with respect to this weighting) 

minimal Steiner tree packing must be found, we call this the weighted Steiner tree 

packin ~_,, problem. 

This problem has important applications in the layout of electronic circuits. One of  

the major tasks in VLSl-design is the so-called routing problem. Roughly speaking, this 

problem can be stated as follows. Given an area (typically a rectangle with some 

"'forbidden zones")  and a list of point sets (so-called nets). The routing problem is to 

connect (route) the points of each net by wires on the area such that certain technical 

side constraints are satisfied and some objective function is minimized. The precise 

formulation of the routing problem depends on die used technology and the given design 

rules. Many variants of the routing problem, however, can be modelled as weighted 

Steiner tree packing problems (see also [9] for an excellent treatment of this subject). In 

a companion paper [3] we are going to discuss such modelling issues and the relation 

between the routing and the Steiner tree packing problem in detail. 

In this paper we consider the Steiner tree packing problem from a polyhedral point of  

view. We define a polyhedron whose vertices are in a one-to-one correspondence to the 
Steiner tree packings in the graph. The goal of the paper is to investigate this 

polyhedron, i.e., we try to describe it (partially) by means of equations and inequalities. 

The classes of  inequalities we have found form the basis of  a branch & cut algorithm for 

the (weighted) Steiner tree packing problem. This algorithm, the associated separation 
routines and computational results are described in our companion paper [3]. 

This paper is organized as follows. In Section 2 we list some graph theoretic concepts 
and notation and give a formal definition of the (weighted) Steiner tree packing problem. 

In Section 3 we introduce the Steiner tree packing polyhedron and investigate its trivial 
facet-defining inequalities. In Section 4 we address the question how facet-defining 

inequalities change if the underlying graph is modified by operations such as edge 
deletion or node contraction. In section 5 we show that under certain conditions each 
facet-defining inequality for the Steiner tree polyhedron can be lifted to a facet-defining 

inequality for the packing polyhedron. Finally. we present several classes of  so-called 

joint facets in Section 6. Inequalities of this kind involve at least two Steiner trees. 

2. Definitions and notation 

In this section we describe the problem that will be considered in this paper formally. 

We first sketch some graph theoretic notation. 

We denote graphs by G - ( V .  E), where V is the node set and E the edge set. All 

graphs we consider are undirected and finite. Fox a given edge set F c E, we denote by 
V ( F )  all nodes that are incident to an ed,,e in F. Given two node sets U. W c V, we 

denote by [U : 14,' ] the set of edges in G with one endnode in U and the other in W. For a 
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node set W, we also use E(W) instead of [ W : W ] .  A set of  node sets V I . . . . .  V v c V, 

p > 2, is called a partition of V if all sets V~ are nonempty, the node sets are mutually 

disjoint and the union of  these sets is V. (Note that we use " c " to denote strict set 

theoretic containment.) If V~ . . . . .  Vt, is a partition of  V then 6(V~ . . . . .  Vp) denotes the 

set of edges in G whose end nodes are in different sets. For W c V, W 4: r we write 

6(W) instead of 6(W, V \ W )  and call this set the cut induced by W. If W = {v}, we 

abbreviate /~({v}) by ~3(v). For an edge set F,  we define NF(V) = ] (~(v) f") F ]  to be the 

degree of  v in the subgraph (V, F )  of G. 

We call a sequence of nodes and edges K =  (v 0, e I, u~ e 2 . . . . .  v / - i ,  et, us), where 

each edge e~ is incident with the nodes v i_ ~ and v~ for i = 1 . . . . .  I, and where the edges 

and nodes are pairwise disjoint (except possibly v 0 and v~), a path (or a [v 0, vj]-path), 
if v 0 ~ vt, and a cycle, if v 0 = v~ and l >~ 2. Each edge that connects two nodes of a 

cycle (path) K and that is not in K is called a diagonal of K. We say that two edges uv 
and u' v' cross with re,spect to K if they appear in the sequence u, u', u, v' or u, v', v, u' 

by walking along the cycle (path). Similarly, we call two sets of diagonals F~ and F 2 
cross free if, for all e~ e F t  and e 2 e F 2, e~ and e 2 do not cross. Otherwise, F 1 and F 2 

are crossing. For our purposes it is convenient to consider a path P or a cycle C, 

respectively, as a subset of the edge set. We call an edge set B a tree if (V(B),  B) is 

connected and contains no cycle. The leaves of B are the nodes that are incident to 

exactly one edge of  B. 

Finally,  we call a graph G a complete rectangular h X b grid graph, if it can be 

embedded in the plane by h horizontal lines and b vertical lines such that the nodes of 

V are represented by the intersections of the lines and the edges are represented by the 

connections of the intersetions. A column J (row J) of a complete rectangular h X b grid 

graph is a subset of  the edge set that has cardinality h -  1 ( b -  1) and whose edges 

correspond to the same vertical (horizontal) lines. 

Defini t ion 2.1. Let G = (V, E)  be a graph and Tc_ V a node set of  G. An edge set S is 

called a Steiner treeJbr T, if the subgraph (V(S),  S) contains a path from s to t for all 

pairs of  nodes s, t E T, s 4: t. 

Definition 2.1 differs from the terminology most frequently used in the literature. A 

Steiner tree is usually supposed to be a tree. For our purposes, however,  Definition 2.1 

simplifies notation and is more convenient for the polyhedral investigations in the 

following. A Steiner tree that is a tree whose leaves are terminals is called edge-minimal. 
Using the above notation we define the Steiner tree packing problem as follows. 

P r o b l e m  2.2 (The steiner tree packing problem). 

Instance: A graph G = (V, E)  with positive, integer capacities c e ~ ~ ,  e E E. A list 

of node sets ~/k'= {T~ . . . . .  Z,~}, N >~ 1, with T~ c_ V for all k = 1 . . . . .  N. 

Problem: Find edge sets S~ . . . . .  S x c_ E such that 

(i) Sk is a Steiner tree in G for T k for all k = 1 . . . . .  N, 

(ii) ~ ' - i  [SkA{e}l  ~ c e  for all e ~ E .  
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In the application of  Problem 2.2 we have in mind it is usual to call the list of node 

sets ot" a net list. We follow this custom. The number of N denotes the cardinality of  

the net list. Any element T k e,,,t'" is called a set qf terminals or a net and nodes t E T k 

are called te,v~inals. Instead of net Z~. we will often simply say net k. 

For notational reasons it is convenient to order the sets S k. Thus, we call an N-tuple 

(S I . . . . .  S~)  oi-" edge sets a Steiner tree packing or packing of'Steiner trees if the sets 

S[ . . . . .  S. v form a solution of Problem 2.2. A Steiner tree packing (S~ . . . . .  S v) is called 

edge-minimal, if each S, is edge-minimal.  

We will also consider the following weighted variant of the Steiner tree packing 

problem. 

P rob lem 2.3 (The weighted Steiner tree packing problem). 

Instance: A graph G = (V, E) with positive, integer capacities c e E ~ and non,nega- 

tive weights % E ~ + ,  e ~ E .  A net list .,4"= {T~ . . . . .  Tv}, N>> ] with Tkc_V for all 

k = l  . . . . .  N. 

Problem: Find edge sets S~ . . . .  , S v c E such that 

(i) (S~ . . . . .  S:v) is a Steiner tree packing, 

(ii) Z~'_ i Y .~  s~ % is minimal. 

In the following we will refer to an instance of  the weighted Steiner tree packing 

problem by (G, ~,1-', c, w) and to an instance of the Steiner tree packing problem by 

(G. J .  c). 
It is not surprising that Problem 2.2 and Problem 2.3 are . / /~ or A/aJ-hard, 

respectively, even in special cases. For example,  the following variants are hard. 

If we restrict Problem 2.3 to N = 1 and c'~ = 1, /'or all e ~ E, we obtain the problem 

of finding a minimal Steiner tree in G. This problem is o,4r~-hard even if G is restricted 

to be planar or a grid graph [6,1]. Furthermore, it is JS,,-a-complete to decide whether 

there exists a feasible solution for Problem 2.2. Results here are due to Kramer  and van 

Leeuwen [8], who proved that the problem of finding N edge-disjoint  paths is Ji,,@- 

complete. Similarly, it was shown in [7] that it is ,/K.'5<complete to decide whether a 

packing of two Steiner trees exists. 

We close this section with some further definitions and notation frequently used 

throughout this paper. 
Let G = (V, E) be a graph and T a set of terminals. We call an edge e a Steiner 

bridge with respect to T, if every Steiner tree for T in G contains e. For a Steiner tree S 

for T in G, we define 

T ' ( S ) : =  E ( d s ( t ) - l ) +  y', ( d s . ( u ) - 2 ) ,  (2.1)  
t~  7 v ~  V'\T 

dx(t,)> 2 

It is easy to see that if S is an edge-minimal Steiner tree, the following eqnation holds: 

T ( S ) =  I r l - 2 .  

Let S be an edge-minimal Steiner tree for ir in G and let uu ~ S be an edge of S. If 

u and v are no: leaves of S, then there exist edge sets Sj, S 2 c S, S~ ~ S_~ = 0 such that 
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S = S 1 U S 2 O {uv} with u ~ V(S1), v ~ V(S  2) and (V(Si),  Si), i = 1, 2 are connected. 

We call S~ U S 2 U {uv} an edge-disjoint dissection of  S. If one of the end nodes of the 

edge uv, say u, is a leaf of S, we also call S~ u S 2 U {uv} an edge-disjoint dissection of 

S, where S~ = ~ and S z = S \ { u v } .  It is particularly convenient in this case to set 

V( & ) := u and write u ~ V( S~ ). 

To make our unavoidably complicated notation a little less clumsy we slightly abuse 

standard notation and introduce the following technically useful operations on N-tuples 

of edge sets. Let P = ( F  I . . . . .  F x), N >I 1, be an N-tuple of edge sets and e ~ E, F __ E. 

We define 

P \ k e  := (F,  . . . . .  F k \ { e  } . . . . .  FN) ; 

P U h e  : =  ( F  1 . . . . .  F k U {e} . . . . .  FN); 

P X e  := (F IX{  e } . . . . .  F N \ {  e}); 

P U e := (F,  U {e} . . . . .  e,v U {e } ) ;  
N 

e e P  ** e e  U F~; 
k ~ l  

N 

P c  F UF  F. 
k = l  

If we have a Steiner tree packing P = (S~ . . . . .  S N) it is sometimes convenient to denote 

the kth element S k of the N-tuple by Pk. We call a net list J = {T~ . . . . .  T~,} disjoint, if 

T~n T j = ~  for all i , j ~  {1 . . . . .  N},  i ~ j. 

To avoid the discussion of (trivial) special cases we assume from now on that every 

terminal set of a net list / / h a s  at least cardinality two and that N >~ 1. 

3. The Steiner tree packing polyhedron:  some basic results 

In this section we introduce the polyhedron we are going to study. We assume the 

reader to be familiar with polyhedral theory, see, for instance [11]. 

Suppose we are given a Steiner tree packing problem by a graph G = (V, E) with 

edge capacities c,, ~ N, e E E, and a net list ./// = {T I . . . . .  Tu}. 

Vectors are considered as column vectors unless otherwise specified. The superscript 

" T "  denotes transposition. We denote by N e the vector space where the components of 

each vector are indexed by the elements of E, i.e., x =  (x, ,) , ,~e for x ~  [R e. For an 

edge set F c _ E  we define the incidence vector X F ~ e  of F by setting X, F = I ,  if 

e E F ,  and X, ,r=0,  otherwise. For an edge set F c _ E  and a vector x ~  E e, we will 

often abbreviate ~2,,~ FX~ by x (F) .  

In addition, we will consider in this paper the N.  I E I -  dimensional vector space 

[RE x . �9 �9 • [RE. We denote this vector space by [R.,~e. The components of a vector 

x ~ N  ; x E  are indexed by x~ for k ~ { l  . . . . .  N}, e ~ E .  For a vector x ~ [ R  r •  and 

k E { l  . . . . .  N} we denote by x * ~ R  e the vector (x~), ,~e.  Instead of x = 
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( ( x I ) T  . . . .  ( x N ) T ) T  (~ ~ . r x E  we often write x =  ( x '  . . . . .  x N) if the meaning of the 

symbols is clear from the context. We define the support  o f  a vector  a r [~~x e in E by 

supp(a)  := {e e EI af #: 0 for some k e {1 . . . . .  N}}. For a subset E' c_ E and a vector 

k for all k 1 . . . . .  N a ~ I~ ~4'''a we define the vector a l L" EtR '~ xL' by ( a l  E')~ := G, = 

and e ~ E'. Finally, for a subset S of a vector space, we denote by dim(S) the 

dimension of S and by d i f f (S ) :=  {x - 3' Ix,  v ~ S} the dif ference set  q f S .  

We define now the Steiner  tree paeking po lyhedron  by 

STP(G,  ..1, c) := cony{( X s,, . . . . .  ~ s , )  ~ ' X E  I 

( i )  S k is a Steiner tree for T k in G for k =  ] . . . . .  N;  

(ii) E"  } , = l [ S k N { e } [  < ~ G . , f o r a l l e ~ E  . (3.1)  

If N = 1 and v =  ]l, i.e., c~. = 1 for all e ~ E, we also refer to STP(G, ..1,", c) as the 

Steiner tree polyhedron.  We call the vector ( X s', . . . .  X s,*) the incMence uector o f  a 

Steiner tree packing P = ( S r . . . . .  S v).  We will often abreviate the incidence vector of a 

Steiner tree packing P by X P. STP(G, . ~ .  c) is the convex hull of the incidence 

vectors of Steiner tree packings. 

Alternatively. the Steiner tree packing polyhedron can be formulated as the convex 

hull of the solution set of  an integer program as follows. Consider the following system 

of inequalities: 

.k (i) E ae > 1, 
e c  6(~4 ' ) 

N 
.k (ii) E % ~ G, 

k = l  

/, 
( i i i )  0~<%~< 1, 

{0, 1}, (iv) x,, 

for all W c V, W n f,. ~ ~, ( V \  W ) r3 Tk-~ f~, 

k = l  . . . . .  N. 

for all e ~ /7 .  

for all e E E,  k =  1 . . . . .  N .  

for all c' E E,  k =  1 . . . . .  N. 

(3.2)  

Obviously,  each incidence vector of a Sterner tree packing satisfies (3.2)( i )-( iv)  and vice 

versa, each vector x E iR ; •  E satisfying (3.2)( i ) - ( iv)  is the incidence vector of a Steiner 

tree packing. Thus, 

STP( G, .4". c) = conv{x ~ ~ , . x  ,Cjx satisfies ( 3 . 2 ) ( i ) - ( i v ) } .  (3.3)  

holds. The inequalities (3.2)0) are the so-called Stciner  cut inequalities.  The  inequalities 

(3.2)(ii) are called the capacin., i tmqualities and the ones in (3.2)(iii) the trivial 

inequalities.  The  weighted Steiner tree packing problem can be solved - in principle - 

via the following linear program: 

N 

rain ~ w'lx ~ 
k=, (3.4)  

x e STP( G,  , ,r  c ) .  
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In order to apply linear progra~rn'ning techniques, a " 'good"  description of  the Steiner 

tree packing polyhedron by means of equations and inequalities is indespensable. The 

aim of our paper is to study STP(G, ..4/, c) and to describe this polyhedron partially by 

valid and facet-defining inequalities. 

In the remainder of  this section we investigate the dimension of the Steiner tree 

packing polyhedron and characterize the conditions under which the trivial and the 

capacity inequalities are facet-defining. Let us first consider the dimension problem. 

Problem 3.1 (Dimension problem of  the Steiner tree packing polyhe&on).  

Instance: A graph G = (V,  E) with edge capacities c,~ �9 [~, e �9 E, a net list JU = 

{T I . . . . .  T v} with T L . . . . .  7-'v c V and a nonnegative number l. 

Ptvblem: Is the dimension of STP(G, ,,,7. c) at least l? 

As we have mentioned above, the decision problem, "Does  there exist a Steiner tree 

packing for a given instance (G, A'L c)?" ,  is A ~-comple te  [7,8]. Therefore, Problem 

3.1 is also A/3 -comp le t e  even for the case / =  0. 

R e m a r k  3.2. The dimension problem 3.1 is o/F~-complete. 

This result does not give much hope for a successful study of Steiner tree packing 
polyhedra of general instances (G, o,7, c). Fig. 1 shows some examples and the 

corresponding dimensions. The affine hull of the polytope of Fig. l(b) is given by 

x~4 = 0, x24 = 1; that of the polytope of Fie.~ l (d )by  x12 = 1, ]t'f2 = 0,  ~.123 = 0,  X23 = 1, 
for instance. The dimension jumps appear rather erratic. 

We have decided to study the Steiner tree packing polyhedron for special problem 

instances for which the dimension can be determined easily and to look for facet-deft- 

ning inequalities for these special instances. Clearly, such an approach is only sensible if 
the results can be carried over (at least partially) to practically interesting instances as 

they occur, for example, in the design of electronic circuits. 
It has named out that an instance (G. . /7 ,  c), where the graph G is complete, the net 

list .///'= {T l . . . . .  T~.} is disjoint and the capacities are equal to one ( c =  ]]_), is an 

appropriate case. The following lemma shows that the Steiner tree packing polyhedron is 
full-dimensional in this case. 

L e m m a  3.3. Let G = (V,  E) be the complete graph with node set V, I V I >~ 3, and edge 

capacities c c = 1, e �9 E. Fur#lermore let , / / =  {T~ . . . . .  TN} be a disjoint net list with 

T~ . . . . .  Tx G V. Then, 

dim(STP(G,  o,4", c))  = N.  I EI .  

Proof.  Let a be a vector with ATx = 0 for all x �9 diff(STP(G, ./7, c)). We have to 

show that A~ = 0 for all e �9 E ~md k �9 { 1 . . . . .  N}. Let e �9 E be an arbitrary edge with 

end nodes u and u. We choose Steiner trees S k, k �9 {1 . . . . .  N}, as follows. If e �9 E(Tt) ,  

set S t = [ t :  T~] for some t �9 V \ { u ,  u}. Such a node t exists since I V L > 3, Otherwise, 
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�9 �9 �9 �9 

. 

dim(STP) = 12 dim(STP) ; 8 

(a) (b) 

�9 �9 �9 

dim(STP) = -1 dim(STP) = 2 

(c)  (d)  

Fig. 1. (a)-(d) show some examples and the dimension of the corresponding polyhedron. The two terminal 
sets are drawn ,as rectangles or cycles respectively (T~ = {1,2}, T2 = (3, 4} or T 2 = {2, 3} respectively) and STP 
abbreviates STP(G.../V, ]! ). (a) The polyhedron is full dimensional. (b) Deleting the edge with end nodes 1 
and 2 decreases the dimension by 4. (c) If additionally the edge connecting nodes 3 and 4 is deleted, there 
even does not exist any feasible solution. (d) An example in which the underlying graph is complete but the 
corresponding polyhedron is not full dimensional. 

set Sa. = E(Tk). Since  A/" is a d is jo in t  net  list, P = (S,  . . . . .  S N) def ines  a pack ing  o f  

Ste iner  trees with  e f ~ P .  Thus ,  A ~ = A T ( x P U ~ - X P ) = 0 .  [] 

In the next  sec t ion  we will  p rove  some l if t ing resul ts .  T h e s e  t h e o r e m s  imp ly  that  

resul ts  for  the special  ins tance  desc r ibed  in L e m m a  3.3 can  be (par t ia l ly)  ca r r i ed  ove r  to 

any p r o b l e m  ins tance .  So, it s eems  reasonab le  to s tudy this  special  case.  

Le t  us close this  sec t ion  wi th  the charac te r i za t ion  of  those  cond i t ions  u n d e r  w h i c h  the 

trivial and the capaci ty  inequal i t i es  are face t -def in ing .  W e  will concen t r a t e  here  on  the 

case N >/2 .  The  case  N = I was  so lved  in [5]. 

The  p r o o f  is fair ly s tandard  and  we s imply  state the result .  

T h e o r e m  3.4. Let G =  (V, E) be the complete graph with node set V and edge 

capacities c, E ~ ,  e ~ E. Furthermore, let v,r {T 1 . . . . .  TN} , N / >  2, be a disjoint net 

list with T~ . . . . .  T\, c V. Let e ~ E be an arbitrary edge. Then, the following statements 

hold. 

(i) For all k ~ {1 . . . . .  N}, the inequality x~ >! 0 defines a facet  o f  S T P ( G ,  ~1/', c ) i f  

and only if I V ] >1 5 or e q~ E( T~.). 
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(ii) For all k ~ {1 . . . . .  N}, the inequality x~ <~ 1 defines a facet of  STP(G, ./V, c) if 

and only if c e ~ 2. 
(iii) The inequality 

N 

k = l  

defines a facet of  STP(G, ./V, c) if and only if  c~, ~ N -  1. 

4. Manipulating facet-defining inequalities 

In this section we address the following question. Suppose we have a valid or 
facet-defining ineqality aTx > a of the Steiner tree packing polyhedron of some graph 

and suppose we manipulate the underlying graph using operations such as node splitting 
or addition, deletion or contraction of an edge, how do we have to modify the inequality 
aTx >I a such that the resulting inequality is valid or defines a facet of the Steiner tree 
packing polyhedron of the new graph? 

To be formally precise we should distinguish between incidence vectors, capacity 
vectors, net lists etc. taken with respect to the old and new graph. This formalism would 
make our notation even more clumsy. Thus, we have decided to drop the distinguishing 
super or subscripts and hope that it is clear from the context with respect to which of the 
two used graphs incidence vectors, inequalities etc. are considered. 

Lemma  4.1 (Deleting an edge). Let (G, A <, c) be an instance of  the Steiner tree 
packing problem. Let aT X >~ cg be a valid inequality of  STP(G, ./K, c) and suppose 
f E E is deleted from G. Then aV x >>. ce is a valid inequality of  S T P ( G \ f ,  JV, c) where 
ak e = a*~i .for all e E E \ { f } ,  k ~  {1 . . . . .  N} (where G \ f  denotes the graph that is 
obtained by deleting edge f ) .  

Proof. This observation follows from the fact that every Steiner tree packing of 
( G \ f ,  .A r, c) is also a Steiner tree packing of (G, ./Y, c). [] 

Unfortunately, a facet-defining inequality for STP(G, JY, c) is not always facet-defi- 
ning for S T P ( G \ f ,  ,4/', c) as the following example shows. 

Example 4.2. Consider the instance drawn in Fig. l(a). It is easily checked that the 
inequality xl32 + x5 3~ + x~4 >/ 1 defines a facet for STP(G, {T I, T2}, ]l). By deleting edge 
{ 1, 2}, we obtain the picture shown in Fig. l(b). However, the above inequality does not 
define a facet for S T P ( G \ f ,  {T I, T2}, ~.), since it is a positive linear combination of the 

2 >~ 0 and the equation x24 = 1 inequalities x~3 t> 0, x13 

The following is a typical sequential lifting result. 
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L e m m a  4.3 (Adding an edge). Let (G, ..4", c) be an instance of  the Steiner tree packing 

polyhedron. Let ,['~ E with c f= I and /~'r.:. >7 o~ t)e a facet-deJTning inequalio, o f  

S T P ( G \ f . . / I / ' ,  c). Then. ar x >~ ~ dcJ~nes a )acet for  STP(G, .,b", c) with a~ = ~ for  
all e ~ E \ { f } .  k ~ {1 . . . . .  N} and a~ = c~-  min{a rxs ' ' r [  P is a packing o f  Steiner 

trees fiJr (G, <4". c ) w i t h f ~  P~} for  all k = 1 . . . . . .  \L 

L e m m a  4.4 (Splitting a node). Let (G, . I., c) be an instance ~Zf the Steiner tree packing 

polyhedron. Let f e E  with c /= i and let Drx>~ c~ be a valid inequality o f  

S T P ( G / f .  ~,t/ c) (note that G / f  denotes the graph that is obtained by shrinking edge 

f ) .  Then, aT.r)c~ defines a valid inequaliD; for  STP(G, </', c) with a~ = ~ for all 

e r E \ { f } ,  k E {1 . . . . .  N} and a.~ = 0 for all k-= 1 . . . . .  N. [] 

Proof.  If STP(G. ,.I,. c) = r there is nothing to show. Otherwise, let P be a Steiner 

tree packing for (G, .4", c). Obviously. P \ f  is a solution for ( G / f ,  ,I", c). Thus, 
aTX P >1 3rXP'r>~ c~, since a~ = 0 for all k = 1 . . . . .  N. This implies that aVx~> c~ is a 

valid inequality for (G . . / t "  c). 

Unfortunately, again not every facet-defining inequality for S T P ( G / f ,  ,A/, c) defines 
a facet for STP(G.. , /s ,  c). Even worse. STP(G, .4". c) may be empty, although 

S T P ( G / f ,  .A", c) is not. 

Example  4.5. Consider the graph G' in Fig. 2(a) and the graph G in Fig. 2(b), with 
T i = {1, 4, 5, 7} and T, = {2, 3, 6}. Let G' - G/{3 ,  3'}. Obviously, there does not exist 

a 

�9 �9 

�9 �9 

. . . .  

Fig. 2. 



M. GrOtschel et aL / Mathematical Programming 72 (1996) 101-123 111 

(a) �9 �9 

(b) 
�9 �9 

Fig. 3. 

any Steiner tree packing for (G, {T,, T2}, ~) and STP(G, {T t, T~_}, ? )  = f). However, 

STP(G',  {T l, T2}, ~_) is a full-dimensional polytope. 

Finally, let us consider the reverse operation of Lemma 4.4, i.e., the contraction of an 
edge. In this case a valid inequality aVx > e~ for STP(G, ~/V, c) is not always valid for 

STP(G/ f .  A/', c). This remains tnle even in the case when a) = 0 for all k = 1 . . . . .  N. 

Example 4.6. Consider the graph G in Fig. 3(a) and the graph G' in Fig. 3(b) with 
.i +_r~7+ ~ 1 is T I = {1, 9} and T 2 = {2, 10}. Let G' = G/{3 ,  6}. Obviously, x~v +-~ss ~ x~s > 

a valid inequality for STP(G, {TI, T2}, ]1_), but this does not hold for 

STP(G',  {T L, T2}, ] ) .  

5. Lifting facets f rom Steiner tree polyhedra  to Steiner tree packing polyhedra  

In this section we will make an important observation, namely, that, under mild 
assumptions, all nontrivial facets of the (single) Steiner tree polyhedron can be lifted to 
the Steiner tree packing polyhedron. This implies that, in order to obtain a complete 
characterization of some Steiner tree packing polyhedron STP(G, ~f/', c), for all nets of 

the net list, all individual Steiner tree polyhedra STP(G,  {T}, c), T ~  S ' ,  must be known 
completely. 

We begin this investigation by stating a trivial lemma. 

L e m m a  5.1. Let G = (V, E) denote a comwcted graph that does not contain a Steiner 

bridge with respect to T c V .  Let arx>~ c~ be a facet-defining inequality o f  
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STP(G, {T}, ] ) .  Then, either aT x >~ c~ is an inequal i~  o f  theJbrm - x l  > - 1 for  some 

edge e ~ E or a e > 0 holds f o r  all e ~ E. 

It is somewhat surprising that, for the Steiner tree packing polyhedron, even if it is 

full-dimensional,  a similar statement is no longer true. in [10] the interested reader can 

find an example of a facet-defining inequality with positive and negative coefficients. 

L e m m a  5.2. Let G =  (V, E)  be the complete graph on ,rode set V and let J F =  

{T I . . . . .  7~v}, N ~> 2, be a disjoint net list. Furthermore,  let aTx >/ cz be a nontrivial 

facet-def ining inequaliO, o f  STP(G,  {Tl}, ]]_) with a E R E a >10. Then the fo l lowing two 

statements are true. 

(i) For  every edge e ~ E there exists a Steiner tree packing P f o r  (G,  ~4r, ~_) with 

e q~ P and aVx e, = c~. 

(ii) For  every edge-minimal Steiner tree S 1 for  T 1 with aT)( s' = cr there exist edge 

sets S 2 . . . . .  S x such that (S  l . . . . .  S N) defines a Steiner tree packing for  (G,  ~/lr, ]~). 

A proof of this lemma is given in the Appendix.  The two lemmas enable us to prove 

the main result of this section. 

T h e o r e m  5.3. Let G = (V,  E)  be the complete graph with node set V and A / =  

{T I . . . . .  T.,v}, N >t 2, a disjoint net list. Let ~rx  > / ~ ,  ~ ~ [~E, be a nontrivial facet-defi- 

ning inequal iw f o r  STP(G, {TI}, ~ ). Then, a r x  > c~ defines a face t  o f  STP(G,  ,/If, ]1), 

where a ~ ~r215 denotes the ~ector with al,. = ac a~ = 0 f o r  all k = 2 . . . . .  N,  e E E. 

Proof .  Since aTx > C~ defines a nontrivial facet for STP(G, {Tt}, ]]_) Lemma 5.1 implies 

a > 0. Therefore, Lemma 5.2 can be applied. 

The inequality aVx >1 c~ is surely valid. Let b r x  > [3 be a facet-defining inequality 

for STP(G, ./lP, 12) with F~ := { x ~  S T P ( G ,  A/,  ~_)1 a V x =  a} c F  b := {x 

STP(G,  J ,  12)] bVx =/3} .  Statement (i) of Lemma 5.2 implies that for every edge 

e ~ E there exists a Steiner tree packing P with e ~ P and X e ~ Fo" Therefore, b~ = 0 

for all k = 2 . . . . .  N and all e ~ E. Since -dVx > o~ defines a facet for STP(G, {Ti}, 11) 

and a >  0, there exist edge-minimal Steiner trees S I . . . . .  SI el for T~, such that 

X sl . . . . .  X sl'~' are affinely independent and hlX sl = cr for i = 1 . . . . .  I E l .  From Lemma 

5.2 part (ii) follows that every S I can be extended to a Steiner tree packing p i with 

P[ = Sf. So, we can conclude that arx p' = c~ and bVx e' = / 3  for i = 1 . . . . .  I E l .  Since 

b,/~ = 0 for all k = 2 . . . . .  N and all e ~ E, we obtain (b l )Txe '  = /3. Due to the choice of  

S I . . . . .  SI el it follows that there exists A > 0 such that b~ = Aa~ = AaJ~ for all e ~ E. 

Thus, we have shown that b and a are identical up to multiplication with a scalar. This 

completes the proof. [] 

R e m a r k  5.4. The trivial facets of STP(G. {T~}, ~)  do not necessarily define facets of 

STP(G, ../V, 1]_). As an example let us consider the instance of  Fig. l(a). From Theorem 

3.8 we know that neither x12 >/0 nor any of the inequalities x~ ~ I defines a facet of  



M. Grfitschel et al. / Mathematical Programming 72 (1996) 101-123 113 

STP(G, JF, ]I). On the other hand, each of these inequalities defines a facet for 

STP(G, {TI}, ]l) (see [2]). 

6. Joint facets 

In this section we consider inequalities that combine two or more nets. We will 

proceed in the following way. First, we describe each inequality. All inequalities we are 

going to consider are of  the form aTx > a ,  a > 0. The coefficients of some of  the edges 

will turn out to be zero for all nets. We call these edges zero edges and the graph 

induced by the zero edges the zero graph. We will use the structure of the zero graph to 

name the inequalities. This has the following reasons. The zero graph is structured in 

such a way that there exists no Steiner tree packing for the nets involved in this graph. 

Therefore, each feasible solution must use edges whose coefficients are different from 

zero. This means that each inequality is in some sense (but not necessarily uniquely) 
determined by the zero graph. 

We will always define the inequalities for an arbitrary instance without guaranteeing 

that the inequality is also valid for the corresponding polyhedron. In the subsequent 

theorem we characterize the instances for which the inequality defines a facet of the 

corresponding polyhedron. In addition, edges get value zero for some single nets (we 

typically denote these sets by F~ . . . . .  Fv). These edge sets F~ . . . . .  F x nmst usually 
satisfy very technical restrictions in order that the inequality defines a facet. The results 

can often be generalized for example, by modifying the net list or by adding a node. Due 

to the rich variety of possibilities we typically only sketch the ideas and hint at possible 

extensions. In order to remain within the scope of  the paper we have also decided, to 
concentrate on the validity of the corresponding inequalities at the expense of  giving 

detailed proofs that the inequalities are facet-defining. In particular, to prove that the 
corresponding inequalities are facet-defining requires essentially the same scheme. We 

illustrate this scheme on one sample. For specific proofs of the remaining statements we 
refer the interested reader to [10]. 

6.1. Alternating cycle inequalities 

Definition 6.1. Let G = (V, E) be a graph and _/F = {T~, T 2} a net list. We call a cycle 

F an alternating cycle with respect to T~, T 2, if F _c [T~ : T 2] and V ( F )  n T l A T 2 = 
(see Fig. 4). Moreover, let F L _CE(T 2) and F~ c E ( T ~ )  be two sets of  diagonals of the 
alternating cycle F with respect to T~, T 2. The inequality 

( XE\ (FU F,), x E \ ( F  u Fz)) T): >~ �89  [ -- 1 

is called an alternating cycle inequality. 

It is not difficult to see that the basic form of an alternating cycle inequality, i.e., 
F~ = F2 = ~, is valid for STP(G, ~r ][), but in general, it is not facet-defining. The sets 
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Wl 

T2 

F 

Fi  

F2 

[] 

O 

Fig. 4. 

F~ and F 2 are used to strengthen the basic form: in fact, choosing them appropriately we 

can obtain facet-defining inequalities. 

The sets of diagonals F I _c E(7 2 ) and F 2 c_ E(T~) are called maximal  cross fi'ee with 

respect  to F,  if F~ and F, are cross free, and each diagonal e I e E ( T ~ ) \ F  2 crosses F~ 

and each diagonal e 2 �9 E ( ~ ) \ F ~  crosses F, (see Fig. 4). Then, the following theorem 

holds. 

Theorem 6.2. Let  G = (V,  E)  be the complete  graph with node set  V and let 

~ , I ' ={T  1, T,_} be a di,sjoint net list with T I U T ~ = V  and ITI I = t T,_I = I ,  1>~2. 

Fur thermore ,  let F be an alternating cycle with respect  to T I, T 2 with V ( F )  = V and 

F~ _c E(7 2 ), F: c_ E(7~ ). Then the alternating cycle inequali ty  

( X I:'\(F U F'), XE \(FU Fz)) q'x ~ I - -  1 

de~nes  a , facet  off STP(G, A~, 7]) i f  and only i f  F 1 attd F 2 are  max imal  cross f ree .  

The corresponding proof can be found in the Appendix. A consequence of  the proof 

is that the alternating cycle inequality is valid if and only if F~ and F 2 a r e  cross free. 
Let us now focus on some extensions of the alternating cycle inequalities. 

First, we consider the case where parallel edges are added to the complete graph. The 

coefficients of the new edges that are not parallel to an edge of the alternating cycle F 
obtain the value of the coefficients of the "'original edge".  The coefficients of the edges 

that are parallel to an edge of F obtain the value I. 

Theorem 6.3. Let  G = (V,  E)  be a graph that contains the comple te  graph on node set  

V as a subgraph and let o4"= {Ti, T:} be a disjoint  net list with T I U T~ = V and 

IT1 I = IT: I = 1, 1 > 2. Furthermore,  let F be an alternating O, cle with respect  to T l, 

with V( F ) = V and F l c E ( ~ ) ,  F 2 ~ E( Tj ). Then the al ternating cycle inequali ty  

( X  E\ ( '~ ' JF ' ) ,  xE\( '~ 'u '~ 'z))T_v>~/ - 1 

de, f ine a f a c e t  o f  STP(G, ,r ~)  i.f and only i f  F I and F 2 are  max imal  cross  free .  

The proof of Theorem 6.3 is very similiar to that of Theorem 6.2, so we omit it here. 

A complete proof can be found in [10]. 
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Next, let us consider the case where an additional node z is added to the complete 

graph in Theorem 6.2. We address the question how the coefficients of the edges that 

are incident to tbe extra node z must be chosen to obtain a facet-defining inequality for 

the corresponding Steiner tree packing polyhedron. 

Suppose we have given a complete graph G = (V U {:.}, E) and a net list J =  {T L, T~_} 

such that T~ n V, T 2 n V is a partition of V with [ T I n V I = I T2 n V ] = �89 V [. Note 
that we do not require ~,,f" to be disjoint. Furthermore. let F be an alternating cycle with 

respect to T~,T  2 with V ( F ) = V  and let F ~ C _ E ( V A T  2) and F 2 c _ E ( V N T  l) be 

maximal cross free. 
Suppose c~ ~ N J •  is a vector such that a[ E(v~ = ( X E(V)\(FO F,'), Xe(vlX(Fu F,)) 

and the other coefficients are yet undetermined. It turns out that there are many ways to 

specify the coefficients such that the resulting inequality c~Tx >~ c~ is facet-defining for 

STP(G, .///', ~.). In fact, the coefficients a~, e E 6 (z )  can be independently chosen from 
the following list of alternatives for each net k. 

Definition 6.4. (possible choices for the new coefficients by adding an additional node). 

Let k r  with ~ = l ,  if k = 2 ,  and k - 2 ,  if k =  I. 

(1) If  z is a terminal of net k (z  e T~), all coefficients obtain value 1, that is 

af = 1, for all e E 6(z).  

(2) If z is not a terminal of net k (z  ~ T~.) there are the following possibilities. 
(i) ~ f - - - ( ] V [ - Z ) / l V l ,  foral l  e E a ( z ) .  

(ii) c ~ - = 0 ,  fo rone  teT-k;  ak~ = l , f o r a l l  e E 6 ( z ) \ { z t } .  

(iii) ~ , = 0 ,  for one t e T i ;  a~ , ,=0 ,  for all t ' e T ?  with t t ' ~F~;  a f =  1, for all 

remaining edges e e 6(z).  

Theorem 6.5. Let G = (VU { z}, E) be the complete graph with node set V U {z} and 

let J V = { T I ,  T2} be a net list such that T I A V , T  2N V is a partition of  V with 
[ T l n V I = ] T2 O V I = l, l >~ 2. Furthermore let F be an alternating cycle with respect 

to T I, T 2 with V ( F ) =  V and let F 1 c:-E(T 2 n V),  F 2 C_ E(T  l n V)  be maximal cross 
.tree. Let ~ E N .~xe  be a vector such that ~] a(.) satisfies one of  the alternatives of  
Definition 6.4 and ~ 1 E \  8( z) = ( X F'(v)\r Ft), X E(V)\(FU F,)). Finally, let oq = ]{z} 

A T  k l f o r k =  1,2. Then, 

~T_v>~I-- 1 +0~1 +C~2 

defines a facet  o f  STP(G, ..4/', 2). 

We give a rough idea of tile proof. The proof of validity can be reduced to that of 

Theorem 6.2, i.e., for an arbitrary Steiner tree packing P it can be shown that there 
exists a Steiner tree packing P '  with ~X X P' ~< ~T X P and I a ( z )  O P~ ] = % for k = 1,2;  

this implies the validity. To show that the inequality is also facet-defining it remains to 
fix the new coefficients. This can easily be done, see [10]. Obviously, in the same 

manner we can add an arbitrary number of additional nodes Zl . . . . .  zc to the complete 
graph G = (V, E) of Theorem 6.2. For each of the nodes zi we can independently 
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choose the coefficients of  the edges in [ z~ :V]  according to Definition 6.4. The 

coefficients of the edges that connect two different nodes zs and z i can be determined 

by applying Lemma 4.3. 

6,2. Grid inequalities 

Definition 6.6. Let G = (V, E) be a graph and A/"= {T t, T 2} be a net list. Furthermore, 

let G = (V, /~) be a subgraph of G such that G is a complete rectangular h X 2 grid 

graph with h > 3. Assume that the nodes of V are numbered such that 12 = {(i, j )]  i = 

1 . . . . .  h, j = 1, 2}. Moreover, let (1, 1), (h, 2) ~ T I and (1, 2), (h, 1) E T 2. We call the 

inequality 

X E\E" xE\s  1 

a h X 2 grid inequality. 

If we consider in the following a complete rectangular h • 2 grid graph, which is a 

subgraph of a given graph G = (V, E), we always assume for the ease of  notation that 

the node set V is numbered such that the nodes of  the grid graph have a numbering as 

assumed in Definition 6.6. 

Theorem 6.7. Let G = (17, /~) be a complete rectangular h X 2 grid graph with h >! 3. 

Let JI and J2 be the two columns of  G. Let r {Tl, T2} be a net list where 

T l = {(1, 1), (h, 2)} and T 2 = {(l, 2), (h, 1)}. Furthermore, let G = (V, E) be a graph 

with V G V ,  E G E  such that  [ V ( J t ) : V ( J 2 )  ] is a cu t  in G. Se t  F:= /~  and let 

Fi, F 2 c E \  F. Then, the inequality 

(X E\(FUFt), X E\(FU F2))Tx~ 1 

is validJbr STP(G, r ][) if and only i f  for  all u, v ~ V(F);  u 4= v there does not exist 

a path from u to v in (V, F k) for  k = 1, 2 (see Fig. 5). 

Proof.  The validity of  the inequality is easy to see. There obviously does not exist a 
Steiner tree packing in (V(F) ,  F),  since all nodes of V ( F )  have degree at most three 

O 

[] 

Fig. 5. 

T 1 [ ]  

T 2 0  
F 

F 1 . . . . . . . .  

F2 
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(with respect to F )  and the terminal nodes have degree two (with respect to F) .  Since in 

addition, for every u, v ~ V(F) ,  u 4= v there does not exist a path from u to v in 

(V, F k) for k = 1, 2, the inequality is valid. On the other hand, if there exist nodes 

u, v ~ V(F) ,  u ~ v and a path from u to v in (V, F k) for some k E {1, 2}, one can 

easily construct a Steiner tree packing violating the inequality. [] 

We also worked out necessary and sufficient conditions such that the inequality in 

Theorem 6.7 is facet-defining (see [2,10]). In Theorem 6.7 the underlying graph G needs 

not  be complete.  In the following we give a formulation for the complete graph. 

T h e o r e m  6.8. Let G = (V, 

an edge set such that (V, 

h>13. Let ~4/={TI ,  T2} 
{(1, 2), (h,  1)}. Set F := E'  

Then, the inequality 

E) be the complete graph with node set V and let E' c E be 

E \ E ' )  is a complete rectangular h • 2 grid graph with 

be the net list, where T I = { ( l ,  1 ) , (h ,  2)} and T 2 =  

and let Fl, F 2 c E \  F. Finally, set k := 3 - k for  k = 1, 2. 

( ~I(E\(FU FI) ' ~.E\(FU F2))Tx~ l 

is validJbr STP(G,  J//', : )  if and only i f  F~ and F 2 satisfy the following properties (see 

Fig. 6). 

(i) V k c_o~-k := {[(i, 7~), (i + 1, k ) ] l i  = 1 . . . . .  h - 1} for  k = 1, 2. 

(ii) For all [(ik, 7~), (i t + l , k ) ] ~ F  k, k =  1 , 2  holds i b 4: i 2. 

Proof .  First, we prove that (i) and (ii) are sufficient. Let  P = (S  I, S 2) be an arbitrary 
Steiner tree packing. Without  loss of  generality, S~ and S 2 are paths. Suppose that 
aVx e = 0. For the same reason as in the proof  of  Theorem 6.7 there does not exist a 

Steiner tree packing in (V, F).  This implies that ( S ~ n F ~ ) U ( S 2 n F 2 ) 4 = ~ J .  Let 

[(i k, 7~), (i  k + 1, k)] ~ (S I C'/F I) w (S 2 n F 2) such that i k is minimal. We consider the 
case k = 1 (the case k = 2 can be shown analogously).  Obviously,  Jk C S~ for k = l ,  2, 

where Jk := {[(i, k), (i + 1, k)]l i =  1 . . . . .  i~ - 1}. Since [(i k, 70, (i t + l, k)] ~ S, and 
S~ is a path, we obtain that either [(ij ,  1), (i~, 2)], [(i 2 + 1, 1), (i :  + 1, 2)] ~ S: or 

[(il ,  1), (il -t- 1, 1)], [(il,  2), (i I -I- 1, 2)] E S I. In the first case set W =  {(i, j ) l i  = 

1 . . . . .  i~ - 1, j = 1, 2} U U i~ r 2), (i + 1, 2)]}, where I = {i ~ {i~ . . . . .  h} I[(i, 2), (i 
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+ 1, 1 ) ] f f F  I A S ,  and [ ( i ' . 2 ) , ( i ' +  1, 1 ) ] E F ~ r ~ S  I for all i ' = i  I . . . . .  i -  1}. In the 

second case set W =  {(i, j ) ] i =  1 . . . . .  i~, j =  1, 2}. Property (i) and (ii) imply that 

( 6 ( W ) A ( F U F x ) ) \ & = O .  Since ( I . 2 ) ~ W  ,and (h, I ) ~ V \ W ,  it follows that 

( a ? ) T x S :  /> 1, a contradiction. 

It can be checked that the two conditions (i) and (ii) are also necessary. [] 

If we add the condition "F~ and F,  are maximal with respect to (i) and ( i i )"  in 

Theorem 6.8, we obtain that these three conditions are necessary and sufficient for the 

grid inequality to be facet-defining ([ 10]). 

6.3. Critical cur inequalities 

in this subsection we will describe a quite " s m a l l "  class of valid inequalities. 

Nevertheless, they turn out to be very helpful in solving practical problems. 

Definit ion 6.9, Let G = (V, E)  be a graph with edge capacities c~ ~ N, e ~ E. More- 

over, Iet o~r . . . . .  7~v} be a net list. For a node set W _c V we define S ( W ) : =  {k E 

{1 . . . . .  N}IT~N W 4:~, T ~ . N ( V \ W ) ~  gJ}. 
(a) We call a cut induced by a node set W critical for (G, A/,  c), if s(W):= c(6(W)) 
- I s ( w ) l  ~ I. 

(b) If V~, V~. V 3 is a partition of V such that ~3(V I) is a critical cut and if T~ n V l = 

and T t n V 4= {~ for i = 2, 3, we call the inequality 

: >_. 1 

a critical cut inequalio, with respect to Tj. (See Fig. 7.) 

The critical cut inequality is valid for STP(G, ,./IC c) for. suppose not, there exists a 

Steiner tree packing (S~ . . . . .  S.v) with ] S I n #(VI)] > 2. This implies that 0 ~< c(a(V I) 
\ S ~ ) -  ]S(V~)] r c(#(V~)) - 2 -  [S(Vj)I  4 - l, since 1 r S(V~) and 6(V~) is critical, 

a contradiction. 

' e l  

Fig. 7, Consider the partition V t, V 2 , V,.. Suppose the capacities of the edges are equal to one. Then 6 (V  t) is a 
crilical cut. The critical cut h~equality says that the net depicted by black rectangles inust use at least one of the 
edges of [V z :Vs]. 



M. Gr&sch el et al. / Mathematical  Programming 72 ( 1996 ) 101 - 123 119 

It turns out that under certain condtions this inequality is also facet-defining. Such 

details are reported in [2,10]. 

7. Conclusions 

Research in polyhedral combinatorics in the past years concentrated on easily 

describable "p r ima l"  problems such as the matching, the traveling salesman, the 

spanning tree or the stable set problem. Very little work has been done on "dua l "  

problems like the edge or node colouring or packing problems. One of the reasons for 

this is certainly that the latter problems may give rise to integer programming models 

with an exponential number of rows ,and columns, that they often combine the 

difficulties of various subproblems and that additional subtleties creep in by considering 

graph structures, capacities etc. jointly. The technicalities involved require enormous 

mathematical machinery and seem insurmountable in the general case. 

We have encountered the Steiner tree packing problem in practice and considered it 

worthwhile to engage in a study of Steiner tree packing polytopes in order to get some 

experience in the investigation of packing problems from this point of view. As can be 
seen from the results of  this paper, all expected difficulties turned up. The dimension of 

the Steiner tree packing polyhedron is hard to determine. Thus one has to resort to a 

" 'handy"  but representative special case. The difficulties of the individual Steiner tree 

polyhedrons are inherited by the packing polytope. Finding rich classes of  valid joint 

inequalities and describing them in an understandable manner is a considerable chal- 
lenge; characterizing the facet-defining inequalities in these classes leads to tremendous 

technical difficulties. To keep this paper within acceptable space limits we have given 

only a few complete proofs and restricted ourselves to the presentation of a few classes 

of joint facets, namely those that have been used m [3]. Further classes of facet-defining 

inequalities will be presented in a forthcoming paper, see [4]. 
The most important objective of our research project, however, was to see whether 

the machinery of polyhedral combinatorics can help solve practical instances of Steiner 
tree packing problems. Indeed, it can - to some extent. This topic will be discussed in 
our companion paper [3]. 

Appendix 

Proof of L e m m a  5.2. We start by proving (i). Let e ~ E and let S~ be an edge-minimal 
Steiner tree with aT)( s, = o: and e ~ S~. Such a Steiner tree S~ does exist, becanse 

aVx >/ ce is a nontrivial facet-defining inequality with a > 0. Since S~ is edge-minimal, it 
follows from (2,1) that 

T ( s , )  = IT, L-2.  (*)  

We set S k = ( [ T , : T k ] t O E ( T * ) ) \ ( S , t O { e } )  for k = 2  . . . . .  N. By l(k) we denote the 
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number of (connected) components in ( V ( S  t )  U T, ,  S , ) .  Consider any t E T I. If e 
N " [ t T k o ]  for some k 0 e (2 . . . . .  N) we obtain d s ( t ) >  s  1 ) -  1; otherwise we 

have ds,(t) >/~.~'=2(l(k) - 1). This is true. because otherwise two components of some 

net k could be connected via t. We get 

t ~ k = 2  

N 

Yi.(:(k)-l)-Ir, I-1 
k = 2  

N 

> I T ,  - l ,  it" , Y _ _ , ( / ( k ) - l ) > ~ 2 .  
k = 2  

As a result, there exists at most one net k, with I (k~)  = 2. If there does not exist such a 

net k k, then (i) is already shown. We extend S~:, by the unused edges in E ( T t )  and set 

S~r = St~ U ( E ( T i ) \ ( S  t U (e})). If ( V ( S t  ) U Tt,,  S t , )  is connected, we are finished. 

Otherwise let (V~, E~) and (V 2, E 2) denote the two (connected) components with 

]V~ I ~< ]~72 I. Note that tEV~ or t e V 2  for all t e T ~ ,  since otherwise S l would 

contain a cycle. We distinguish the following two cases. 

(1) e ~ [ V  I 'V2].  Here, I V I I =  1. Otherwise S ! would contain a cycle, which 

contradicts the fact that S t is edge-minimal. For {v}= Vj we obtain d s ( v ) >  
IT l [ +[Tk= l - l ,  and so T ( s j ) >  IT~ I+IL, 1 - 1  - 2 >  IT~ ] - 1 ,  which contradicts 

(*).  Therefore, 

(2) e E [V I - V2]. Again, we have to distinguish two subcases. 
(a) IT, l <  I v l - 3 .  If [Tk, [ = 2 ,  there exists a node v ~ i T k U T  1, since [ T ~ I <  

[V [ - 3 .  Then, St, U [v 'Tk~]  defines a Steiner tree for Tk, (note that by construction 

[v : T~] A S t = ~ for all k 4= 1. k I and, since S I is edge-minimal and contains no cycle, 
we have [v" ~ ]  r S t = fJ as well). So, the remaining case is [Tk, I >/3. This however 

implies that IV I [ + I V2 [ > 5 holds. Therefore. [Vi ] = 1, otherwise S~ would contain a 

cycle. Let { v} = VI. Then T ( s  I ) > d s ( v )  - 2 = ( I T~, I - 1) + ] T I [ - 2 - 1 >1 ] T 1 I - 1, 
which contradicts ( * ). 

(b) ]Ttl  = l V I - 2 .  Since Jl/" is disjoint, we know that N = 2 ,  IT21 = 2  (say 
T 2 = (t.  t'} and T~ = {t~ . . . . .  t!r ' i}). This case is inconvenient in the following sense. We 

can not show statement (i) for any Steiner tree S t being defined similarly to above. For 
example for S~ = [t : T~] and e = tr' there does not exist a Steiner tree packing with 
e ~ P. In ~his case we prove the statement indirectly. Suppose, the statement 

(5.2.1) "For  each Steiner tree packing P with aax ~, = o~, edge e is an element of  
p "  

is correct. Let us first consider the case ]V~ ] = 1. Without loss of generality we can 

assume that V~ = {t}. 

First, suppose e = tt'. Then, S t = [ t '  T I ]. Due to the assumption (5.2.1) we know 

(5.2.2) a,, <a,, ,~ forall  i , j ~ { 1  . . . . .  ]T~ ]}, i4=j .  
Since a T x >  oe defines a nontrivial facet with a >/0, there exists an edge-minimal 
Steiner tree S'~ for T t with a ~  , s~ = o~, e ~ S'~ and S] ~ E(T~) 4: ~, (suppose, there does 

not exist such a S'~; due to the properties of  aVx >t c~ there exists an edge-minimal 
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Steiner tree S for T I with aT)( s =  C~ and [ S N E ( T ~ ) I  > 0; the assumption implies that 

e ~  S; thus, there exist i, j with t ' t  i, t i t i ~  S; since aT)( s =  a and t j t ~  S we obtain 

a,,,, <~ arj ,  which contradicts (5.2.2)). W.l.o.g. let t~t 2 ~ S'~. T h e  assumption (5.2.1) lets 

us conclude that tt L E S' l or t' t 1 ~ S' I and tt~_ ~ S] or r' t 2 ~ S' 1. If  tt I ~ S'~, then tt 2 ~s S' I , 
and due to ate, < at,,,  _, St = S] \ { t i t  2} U {tt 2} is a Steiner tree for T I with aT)( s' < or, a 

contradiction. Analogously, it can be shown that tt 2 fE S'~. Hence, t' t 2 ~ S' t and t' r~ ~ S'~, 

which is a contradiction to the property that S'~ is edge-minimal. 

Now suppose e = tt i for some i ~ {1 . . . . .  1Tj [}; without loss of generality say i = 1. 

Then, S I = I t :  T~ \ t  t ] U {tt', t't~}. Assumption (5.2.1) implies that a,,: < a,~,, and art, + 
at ,  ' < a,~t.  Since a V x ~  ce defines a nontrivial facet with a >~ 0, there exists an 

edge-minimial Steiner tree S'~ for T~ with aT)( s' = oe and t~t 2 ~ S'~. Due to assumption 

(5.2.1) we can conclude that tt' ~ S'~ or ttt ~ S]. Both alternatives however lead to a 

contradiction, tt' ~ S'~ due to a,t 2 < at:,, and a,,,, < are,,, and tt~ ~ S'~ due t oa , , ,  < a~2,. 
Finally, the case [ VI] >/2 must be investigated. Here we know that [ V~ [ = 2 and 

IV2[ = 2 (especially [ T ~ [ =  2), otherwise S~ would contain a cycle. Without loss of 

generality let I21 = {t, t l} and 12 2 = {t', t2}. Since S 1 is edge-minimal, only the case 

e = t t t 2 remains to be considered. Then, S~ = {t~ r', t' t, tt2}. Assumption (5.2.1) implies, 
a,,, + a,,, < a,,,, and ar, ' + a,,, < a,,,. Since a r x  >i ce defines a nontrivial facet with 

a i> 0, there exists an edge-minimal Steiner tree S'~ for T~ with aT)( s' = o~ and t ' t  2 E S' t. 

Due to (5.2.1) we can conclude that S'l = {t2t ' ,  f t ,  tt~}. Since a,,~ < act, and a,,,, < a,.t, 
hold, we obtain the contradiction aT)( s' < arx  s; = c~. 

Summing up it may be said that all cases in (b) lead to a contradiction. Therefore, the 

assumption (5.2.1) does not hold. 
Therefore we can conclude that there exists a Steiner tree packing with the properties 

in statement (i). 
Statement (ii) can be shown similarily. Since " e  ~ P "  is not required any more, we 

obtain T'(S~)~> ]T~ [, if y u,=2(l(k)_ 1)>/2,  and only case (1) has to be considered. 
This completes the proof. [] 

P roof  of  Theorem 6.2. Set E~ = E \ ( F  U F,), k = 1, 2, and a := ( X ~', X ~ ) .  First, we 
prove that aSx  >1 1 -  1 is valid if F~ and F 2 are cross free. It suffices to show that for 

every packing of  Steiner tress (S~, $2), [(S~ ~ E~) U (S 2 ~ E~)] >7 1 - 1 holds (note that 

c =  ~.). 
Let (S~, S z) be any Steiner tree packing. Without loss of  generality, S~ and S_~ are 

edge-minimal. Set T I := {t ~ T~ [/3(t) ~ F c S~} and T~ := {t ~ T 2 [ 3(t)  f~ F _ S~}. Since 

S I and 5'2 are edge-minimal and I F I  = 2 t ,  we have that IT I I + I T ~ I  ~ < l - l .  This 
implies that T~ \ T I and T z \ T~ are nonempty. Therefore, at least I TI I + 1 7~ I edges 

e ~ S ~ E ~ U S : ~ E z  are necessary to connect T I with T ~ \ T  I and T~ with T~\T~. 

Consider the remaining terminals T 1 \ T  I and T z \ T '  2. Set k i := K ( ( V ( S i ) ,  S i \ F i ) )  for 
i = 1, 2, where n (G)  denotes the number of components of  graph G. Since F~ and F2 

are cross free, we obtain k I + k 2 ~< l + 1. Thus, 

a T ( x  s' , X s~-) >1 ( IZl  I + IT~ I) + ( I T , \ T I I + I T 2 \ T ~  I - ( k ~  "1- k2) ) 
/> I:r~ I+  l:r~ I - ( ~  +~2)  > /~ -  I. 
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Let us now outl ine the p roo f  that aTx > / - -  1 defines a facet of S T P ( G ,  JK, ~_). 

Suppose  b r x  > / 3  is a facet -def in ing inequali ty of STP(G,  ,.~/', ]1) such that F ,  := {x 

STP(G,  .,4/" ]J-)l aTx = l - -  1} __. F : =  { x e  STP(G,  , f  ~ ) l  b r x  = /3} .  In the fo l lowing 

we show that b is a mul t ip le  of  o. 

In the first two steps we show' that for any coeff ic ient  aZ! = 0, k ~ {1 2} there exists  a 
r k 0 Steiner free packing P with a~x = / I and e ~ P. This implies  b~, = . 

(1)b~*, = 0 f o r  e e F ,  k =  1 ,2 .  C h o o s e S  I = F \ { c } a n d  S , = [ t T e ] ,  t e T "  2 . Further-  

more set 5" I = S L tO {e}. Then P = (S  I, S , )  and P ' =  (S'~. S , )  are Steiner  tree packings  

with )c e- x P E F , ,  and 0 = b ' r ( x  v', X s : ) - b r ( x S ~ ,  ,V s:) =b~. A n a l o e o u s l y  we obtain 

b2=O. 
e 

(2[) b ~ =  0 for e E F~, k = 1, 2. Choose  S I = F and S, = [ t :  7`2], t e  T~. Fur thermore  

set S'j = S, U{e}. Then P = (S  !. S , )  and P ' =  (S' I. S~) are Steiner  tree packings  with 

,u P, X p' e F and 0 = br( )( 5;. X s':) _ bS( )~ ,,, )(~_,) = b~!. Ana logous ly  we obtain b~ = 

0. 

Next,  we prove that the coeff ic ients  of edges that connect  terminals  of the same net 

are equal.  Typ ica l ly  this can be done by construct ing two Steiner  trees inside the 

subgraph induced by the cor responding  terminal set that differ  only in two edges.  

(3) b,!=b~; for e, e ' e E ( T a ) ,  k =  1 ,2 .  Let e = z c v  with u, v~7"1.  Set S 2 = F  and 

S~ = [v" T~]. Let e' e [ u  T~] \{e}  and S'~ = S~\{e}  tO {e'}. Then P = (S  I, S , )  and P '  = 
(5"1.5 , )  are Steiner  tree packings  with Xr,  X t " ~ F ,  and O=bT(xs: : ,  Xs'-) - 

bT( X s' ,  X s:)  = b<!.- b<l,, for all e, e' ~ 6(u) .  u E T~. Ana logous ly  we obtain b~ = b~. 

In the remainder  of  the p roof  set k := 1, if k = 2, and } := 2, if k = 1. In steps (4) 

zmd (5) we fix the remaining  coeff ic ients  of  one net. To this end we use the structure of  

the zero graph, the propert ies  fulf i l led by F~ and F:  and the fact proved in (3). 

(4) be ~=b,.~; for e ' E E ( T ~ ) ,  e @ [ T  a . T , ] ,  k =  1 ,2 .  Let e = u w  with u ~ T  I, w ~  

and u ~ T  I such that u w ~ F .  Choose  S , = F \ 8 ( v ) ,  S ~ = [ u T  I ] a n d  S ] = S  l \ {uv} tO 
{uw} tO{vw}. Then P =  ( & ,  S_~) and P ' =  (S '  I, & )  are Steiner  tree pack ings  with 

,' s.:) s, s~ b I 1 I b I I /~P, xP'EF~a and 0 =  b T ( x  ~ . X - b T ( x  , ,V - ) =  ,,,,. + b ~ , . -  b , ,~= .... - b  ..... be-  

cause b t = 0 (see (1)). This to.oether with (3) proves  the statement.  Ana logous ly  we 

obtain b(~ = @ 

(5) bi~ = b~, for e ~ E(T-~)\F, .  e' ~ E(7),). k = 1 .2 .  Let e = uu ~- E ( T 2 ) \ F  ~. Since 

F~ and F 2 are maximal  cross free. there exists  an edge u._,u 2 ~- F 2 which crosses  e. Let  

u - ,  u + ~ 7 "  I such that u - u ,  v u §  and uu crosses u c '+. Choose  S I = [ u -  "T t] and 

S 2 = F .  Fur thermore  set S' 1 = S  l \ { u - v  + } U { u - u ,  uv, vu +} and S' 2 = S  2 \ { u - u ,  vv +} 
tO {u2v2}. Then P =  (S~, S 2) ~md P ' =  (S],  ,%) are Steiner  tree packings  with X e, 
X e' e F ,  and 0 = br (  ,u xs : )  _ bT( X.s;, A,s":) = ha, , , ' -  b]~,. This together  with (3) 

proves the statement.  Ana logous ly  we obtain b] = @. 
It remains  to be shown that the coeff icients  of  different  nets are equal .  This  is 

typical ly  done by construct ing two Steiner  tree packings;  in the first solut ion the Steiner  

tree for net 1 uses only zero edges,  whereas  in the second solut ion zero edges  are only 

used by, net 2. 

(6) b~,=b~, for e e E ( T I ) ,  e ' e E ( T , ) .  Let e = u v ~ E ( T  I) and e ' = w x e E ( T 2 ) .  

Choose  S I = [ u : T I ] ,  S 2 = F ,  S ] = F  and S ' a = [ w E ( T 2 ) ] .  Then P = ( S  I, $2) ,and 
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P'  = ( S '  L, S' 2) are Steiner tree packings with X P, X P ~F , ,  and 0 =  b S ( y  s' ,  xS~) - 

bT( X 's'', X s:) = E i e  r:\{,}bi2,,,- E i ~  r,\{,,}bi I, = (1 - 1)- b~-,,-  ( / -  1 ) .  * �9 " b,,,, because of  

(3 ) .  S o  we obtain b t = b 2 
e c"  �9 

(1) - (6)  imply that b is a multiple of a. 

It remains to be shown that F~ and F,  are maximal cross free if aTX > l -- 1 defines 

a facet of STP(G, ,///'. ? ) .  

First, we show that F n and F 2 have to be cross free. Suppose, F~ and F 2 are not 

cross free. Then, there exist two crossing diagonals e~ = u~v~ ~ F~ and e 2 ~- t t2v 2 ~ F 2, 

Let u~-. v~ ~ T] such that u~-u l, vlv 7 ~ F and ulv I crosses uTv~(. Choose S I = 

[u~ : T 1 ] \ { u T v ~ } U { u ~ u , .  u lv , ,  v i va}  and S 2 = F \ { u i - u  L, ulv +}U{u2v2} .  Then, 
(S~, S 2) is a Steiner tree packing with aT( X s', X s t )  = l - 2 ,  a contradiction. 

Finally, we show that F t and F 2 are maximal cross free. Suppose, this is not the 

case. Let F' I c E ( T  2) and F' 2 c E ( T  t) such that F 1 to F 2 c F I U F~ and F I and F~ are 
maximal cross free. Due to part 1 of  this proof ( X  e\~FuF') ,  xE\ (FUF;J)T~.  " ~  . > 1 l - 1  

defines a facet of STP(G, ./~, ]_). Summing up this facet-defining inequality together 

with the valid inequalities x I, >_- 0 for all e ~ F '  I \ F  l and x~ >/0 for all e ~ F'2\F~ - we 

obtain a t x / > l - l .  Thus, a T x > / l - -  1 does not define a facet of STP(G, . /~ ' ,  ~_), a 

contradiction. 
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