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We give a new algorithm for solving the Fermat-Weber location problem involving mixed
gauges. This algorithm, which is derived from the partial inverse method developed by J.E.
Spingarn, simultaneously generates two sequences globally converging to a primal and a dual
solution respectively. In addition, the updating formulae are very simple; a stopping rule can be
defined though the method is not dual feasible and the entire set of optimal locations can be
obtained from the dual solution by making use of optimality conditions.

When polyhedral gauges are used, we show that the algorithm terminates in a finite number
of steps. provided that the set of optimal locations has nonempty interior and a counterexample
to finite termination is given in a case where this property is violated.

Finally, numerical results are reported and we discuss possible extensions of these results.
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1. Introduction

The famous location problem, known as the Fermat-Weber problem, is to find
a point such that the sum of weighted distances from m given points is minimized.

In the framework of Location Theory, the distances are usually derived from
norms such as ["-norms, 1< p =<+, polyhedral norms, or more generally from
gauges. For a justification to work with polyhedral norms or gauges, see for instance
[11,30,33].

In general, the choice of a gauge (or a norm) implies the use of a specific method
for solving the problem:

- in the Euclidean case, the first method was given in 1937 by Weiszfeld [31].
The convergence properties (global convergence, rate of convergence ...} of this
iterative procedure have been studied at length [17, 18,19, 21, 22]. Some improve-
ments of Weiszfeld's algorithm and various other gradient or non-gradient methods
have also been proposed [2, 3,4, 5, 23].

- in the !'-norm case, the problem can be solved by linear programming [1, 16],
(see also [15] for a selective bibliography). More generally, any problem involving
mixed polyhedral norms can be formulated as a linear program [30].

- in addition some alternative methods have been proposed. They include a dual
method [24] and a cutting plane method [25].
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In this paper, we describe a new algorithm which has the following advantages:
different gauges (polyhedral, I°, .. ) can be mixed; it generates simultaneously two
sequences globally converging to a primal and a dual solution respectively; the
update rules are very simple; a lower and an upper bound converging to the optimal
value of the objective function can be defined to give a rule for stopping the process;
the entire set of optimal locations can be obtained from the dual solution by making
use of general optimality conditions; contrary to cutting plane methods and to the
dual method given in [24] the size of the sub-problems to be solved is fixed with
iterations; the method can be viewed as a dual decomposition method which permits
the possibility to make parallel computations.

The paper is divided as follows:

—in Section 2, we give the formulation of the problem with some results on
duality, and we recall the partial inverse method on which our algorithm is based.

—in Section 3, we describe the algorithm and we give some details about the
implementation.

- in Section 4, we study the finite convergence of the algorithm when polyhedral
gauges are used.

- in Section 5, some numerical results are reported.

- finally in Section 6, we discuss some possible extensions of our algorithm.

2. Problem description and partial inverse method

The Fermat-Weber problem (in short FW) is to
Minimize Y w,y.(x—a)
xeR" asd
where o is a finite subset of m elements of R", which represents the locations of
existing facilities, x is the location of a new facility to be placed, w, is a positive
weight and vy, is a norm or more generally the gauge of a convex closed bounded
set B, (the unit ball of y,) containing zero in its interior [26].

In the sequel, R" is equipped with its usual Euclidean structure for which the
scalar product is denoted by (-, ). Let y, be the polar gauge of vy, defined by
yo(v)=Sup{(x, y), x € B,}. We shall denote by BY the unit ball associated with v5.

Let H=R"x---xR" (m times) whose elements are denoted by p=(p.)u. -

It is known [33] that the dual of FW is given by

Maximize -} w,(a,p,)
peH a

subjectto Y w,p, =0,

Ya(p)=1 for all q,

Note that it is not possible in this problem to substitute p, by —p, when non-
symmetric gauges are used.
The following theorem gives links between the primal and the dual problems.
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Theorem 2.1. We have the equivalence: x € R" is a primal solution and p e H is a dual
solution if and only if

2 waPa =0, (2.1)
PaEdYalx—a) foralla (2.2)

Although the Fermat-Weber problem has been studied for a long time, these
necessary and sufficient conditions for optimality have only recently been used in
Location Theory from a theoretical or a practical point of view. For instance, in
[11], a geometrical description of the set of optimal solutions to FW, denoted by
M, (sf), has been derived from (2.1) and (2.2). This description is of particular
interest for problems involving polyhedral gauges and will explicitly be used in
Section 4. Therefore we need to recall the following.

Let N,(p,) be the normal cone to B, at p,€R" and let ¢;=(), (a+ N, (p.)),
with pe H such that p, € B!, for each a.

Definition 2.1. A nonempty convex set € is said to be an elementary convex set if
there exists p (p, € BY, for each a) such that € =¢;.

From Theorem 2.1, it may be seen [11] that M_ () is a bounded elementary
convex set, since condition (2.2) is equivalent to the conditions:

I~
[ ]

Yolpa) =1, (2.3)

4)

(89

xea+ N, p,) forall a (

Thus the entire set M (.%/) of optimal solutions to FW can be obtained from a dual
solution, which is of interest for the decision maker.
Hence we have [11]:

Corollary 2.1. (1) M, (<) is a bounded elementary convex set ‘65 associated with
some p such that ¥, w,p, =0.

(2) Let € be an elementary convex set associated with some p such thaty, , w,p., = 0.
Then M, (L) = €; and €; is bounded.

Remark 2.1. In general an elementary convex set ¢ is not necessarily associated
with a single pe H, with p, € BY,, except if the interior of % is nonempty. However,
if € is not reduced to the singleton {a}, and if for p and § we have € = €;= %6,
then, for each a, p, and g, belong to the same exposed face of Bl.

Now making use of optimality conditions, we shall construct a primal-dual
algorithm to solve FW. The problem of finding a zero of a sum of maximal monotone
multifunctions, i.e. a problem such as (2.1), (2.2) has been underlined by J.E.
Spingarn [28] as a particular application of the method of partial inverses. Let us
recall the framework.
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Let the space H be equipped with the scalar product defined by (X, p)=
Y. Walx,, p.). The corresponding norm of H will be denoted by ||-|. Putting

A={feH i=(xx, ...,x)withxeR"},

B:{ﬁeHiz(u(IPUZO},

we obtain two complementary subspaces of H (A = B*) and conditions (2.1), (2.2)
are equivalent to:

XeA, peB and peT(X)

where T is the maximal monotone multifunction defined on H by T=[[_ T, with

T.(9)=dy.(y, —a).
Now, from Spingarn’s work [28], for x€ A and pc B we have

peT(X) ifand onlyif O T, (X+p)
where T, is the (maximal monotone) multifunction defined by its graph I:
I'={(Ra+py; PatRs), pe T(R))

2, and Z denoting the orthogonal projection of 7 onto A and B respectively. The
proximal point algorithm generating the sequence

Zea=(I+T4) '3, (2.5)

converges to a zero Z of T, which gives a solution to (2.1), (2.2) by calculating

This provides a theoretical primal-dual method for solving FW but we have to
know, as noted in [28], if procedure (2.5) can be executed in a computationally
feasible manner. This problem will be studied in the next section.

3. The primal—dual algorithm

This section is devoted to the description of an algorithm to solve FW. In addition,
we discuss some details of the implementation in relation to Location Theory and
give arational termination rule. We suppose without loss of generality that} | w, = m.

3.1. Algorithm description

A0

Starting with £°=(x",...,x") and p", (£2°=%"+p") such that ¥, w,ps =0, the
partial inverse method computes atstep k: £“"'e Aand p**'e B, (#*"' = £+ pF)
such that

fk41+ﬁk4-l:(1+ T,A)il(fk‘kﬁk) (31)
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which can also be rewritten as
fk _fk+|+ﬁk _ﬁkﬂ c TA())(\M‘ 1 +ﬁl\+l)

or equivalently from the definition of T,

xAk_xAkH_{_ﬁl\rHe T(]‘)\A _ﬁl\+l+fk~0»l).

Putting
e e N A (3.2)
fh=ph-phrie g, (3.3)
we obtain
pre T(#*) (3.4)
or equivalently
pre T +p"-p")
since
S+ ph =tk (3.5)

In other words, £* is the image of £*+ " under the proximal mapping for T. This
means that
pleay,(x*—a+pt-p*y forall a
or in other words
(x*—a+pl)—pleN,(p)r) with p/fe B} for all a.
Therefore p* is uniquely determined by

p =Projg (x* —a+ph) (3.6)

where Proj e (x) is the orthogonal projection of x onto BC. By (3.5) £* is found
as £'* =2+ p* — p* and according to (3.2), (3.3) £°"" and p**' are given by

= (2, (3.7)
P =", (3.8)

To summarize, the algorithm for solving FW is the following:
Starting point: choose

x() e R n’

p’e H suchthat ¥ w,pb=0.

a
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Step k: compute
1k _ : k k -
pu =Projg (x"—a-+p,) foralla,
x!F=x"+pk—p* forall q

1
k+l 1k
X - z wpXy ,

. 1 ,
pi=pt ==Y wypit forall a.
mp

Remark 3.1. In the general partial inverse method [28], as in the application
Ark

developed in [29], £* is computed and then p™* is determined by j’* = £* + p* - %
In our method however, we compute first p’* and then £* by (3.5).

3.2. Comments about the implementation

(a) Actually, x**' can be determined without computing ¥'*. Since p* € B we have

x* "':xk—iz w,,p;,". (3.9)
m
(b) The algorithm needs to compute the projection of points onto the unit balls
B, This problem does not present any difficulty when v! is the Euclidean norm,
but if y§ is an ["-norm, 1 < p <+, the projection cannot be explicitly obtained.
With polyhedral gauges, in dimension n > 2, the projection can be done by well
known methods for solving linearly constrainted least squares problems. However,
location problems most frequently occur in the plane. In this case, if we denote by
Ext(C) the finite set of extreme points of a polyhedral convex C, the projection of
a point x ¢ B,, onto B, is given by

e ifx—e"c N, (e") for some e”c Ext(B)),

Projge(x) = {x )

é|.)é otherwise,

where € is uniquely determined by

pe=Max{p,, p. = ((x, ) —1)/|le]|s, u. >0, e € Ext(B,)}

Il

> denoting the Euclidean norm.

(¢) In practice, we also need a rule to determine when to stop the iterations
according to a specified accuracy.

Recently, some lower and upper bounds have been developed [7, 8, 14, 20, 32]
when the Fermat-Weber problem involving I”-norms, 1 < p <+, is solved by an
iterative procedure. Unfortunately these lower bounds do not converge to the optimal
value of the objective function when non-differentiable norms are used. An advantage
of our algorithm is that a rational stopping rule can be formulated by making use
of converging lower and upper bounds.
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As we can suppose without restriction that p* # 0, putting

ak—Max{y (pu }

é\k = (l/alx)ﬁka
we obtain a dual feasible sequence {¢*} converging to the dual solution 5™, which
is the limit of the sequence {#*} (see Section 3.3). Then a lower bound m, and an
upper bound M, can be defined by

k
my = —Z wa(a’ q::)a

a

MA :Z wu‘}/u(xk - (1)
and these bounds converge to the optimal value of the objective function of FW.

3. Convergence

The general convergence of the proximal point algorithm associated with an
arbitrary maximal monotone multifunction S has been carefully studied in [27].
Consequently the proximal point algorithm applied to T, converges and allows us
to state without need of proof the theorem:

Theorem 3.1. The algorithm, described in Section (3.1), converges in the following
sense:
(1) ¥ >3%eA,
(2) p*>p eB,
) IE B = (R ) = [R5+ 5 - (R4 ),

where x™ and p~ are respectively a primal and dual solution to FW.,

Actually Rockafellar proved that, if the multifunction S is the subdifferential of
a polyhedral convex closed function, the proximal point algorithm converges in a
finite number of steps (see [27]); unfortunately, this is not the case for the multifunc-
tion T,. However, the finite convergence of our algorithm will be studied in
Section 4.

4. Finite convergence in the polyhedral case

In this section, we suppose that all the gauges vy, are polyhedral. Our aim is to
prove that, if the interior of the set of optimal solutions is nonempty, the algorithm,
previously given, converges in a finite number of steps; in other words, £**" = £~
and also p**™ = p™ for some k and every m=0.

For this, we need some lemmas using the following property of polyhedral convex

functions.
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Lemma 4.1. A polyhedral convex function f has the Diff- Max property meaning that
Sforevery x e R", there exists a neighbourhood V of x such that f (y) < af(x) forally € V.

Proof. This property has already been proved and/or used [9, 10, 12]. Here, we
give only the proof for gauges.

Let y be a polyhedral gauge. If x # 0, the subdifferential 4y(x) is (geometrically)
an exposed face of B” the polar of the unit ball associated with 7. Since ay(0) = B’
only the case x # 0 needs to be proved.

Let D(x) be the convex hull of the extreme points of B” which do not belong to
dy{(x). There exists a hyperplane G strictly separating dy(x) and D(x). As the
multifunction y - dy(y) is upper semicontinuous there exists a neighbourhood V
of x such that G separates dy(y) and D(x) for ye V. Consequently ay(y) is
necessarily included in ay(x).

Lemma 4.2. The sequences {X'"*} and {p'*} generated by the algorithm converge to
X and p respectively.
Furthermore, for all k sufficiently large, we have:

(i) xFea+ N,(pY) foralla,
(i) xTea+ N,(pk)y foralla

Proof. From equation (3.9) we deduce thatlim; ...}, wl,p:,k =0, since the sequence
{x*} converges to x™. Hence equation (3.8) gives

. k. o1; k+1 _
hm pa - hm pa =DPua
k— -+ k—-+x

and equation (3.5) gives

. k . k X
lim x.= lim x"=x™.

k> 40 k4o

Now the Diff~-Max property of the gauges y, shows that, for k sufficiently large,
we have:

P ey (xi—a) < ay.(x"—a)

which means that p’* e B® and x* —ae N,(p}).
Similarly, the conjugate of y,, denoted y%, has the Diffi—-Max property since it
too is polyhedral. Thus for k sufficiently large, we have

x—aeayk(pl)cayi(pd)
or in other words, xf —ae N,(pY).

Let us denote by € the elementary convex set which coincides (see [11]) with
the set M, () of optimal solutions to FW,
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Lemma 4.3. Let N{%6, x™) be the normal cone to 6 at x*. Then we have x* —x*"'¢

N(%, x™) for all k sufficiently large.

Proof. Let xe €=, (a+ N,(p.)). Using (3.3) and (3.5), we deduce for all a that:
Xk kT = p:‘k _p£+l
Then we have

(x*=x T x —xT) = (pi —piT x —x™)

= (Pl =i x =X+ (pr—ph, x—x™),
After multiplying each equation by w, and summing on a, we deduce that

Ot = x5, =2 = F (= p, x=x)
=Y w.(pi’ —pa,x—a) =L w.(pi—pi, x"—a).
Using Lemma 4.2, for k sufficiently large, we get ¥, w,(p’* —pX, x*—a)=0and as
x € €, we obtain
m(x"—x*"" x=x*) =Y w.(pi, x—a) - ¥ w.y.(x—a)

. k 4]
=0 since p, € B,

which completes this proof.

Now, as N(%,x™) is a closed convex cone, we easily deduce the following
corollary.

Corollary 4.1. We have x* — x> e N(€, x™) for all k sufficiently large.
Lemma 4.4. We have (£'* — %%, p"* — p™) =0 for all k sufficiently large.

Proof. Lemma 4.2 states that, for large values of k,
X;k—ae Na(pf)

and

x*—ae N,(pif)
which give, using (3.4),

(x4 —a, pa) = valxif —a)=(x* —a, p})
and

(x*—a,pi)=v.(x"~a)=(x"~a,pl).
Subtracting these equations, we obtain

(xg —x", pif = pi) =0
which means that

Ark Ax Ak AX

(X" =x",p"—-p")=0.



328 C. Michelot, O. Lefebuvre / Algorithm for the Fermar- Weber problem

Remark 4.1. It may be seen, using (3.2) and (3.3) that the equation (£'* — £, p"* —
p*)=0 can also be written as (£* —2**', 2" - %) =0,

Lemma 4.5. Let us assume that int(‘€) # §. There exists k, such that if x*=x~ for
some k =k, then the algorithm converges in a finite number of steps.

Proof. Let k; be chosen sufficiently large with respect to Lemma 4.2, Lemma 4.3
and Corollary 4.1.
Assuming that x* = x™ for some k = k,, we obtain

XX —x*"e N(%6, x©)
and
X xY e N(%, x7).

As int(%)# 0, the normal cone N(%, x*) only contains the subspace {0} (see
[13,29]), thus x*"' = x* and by induction we find that x**™ = x* for every m=0.
Then equation (3.2) gives for m=0

th+m __
Z WPy _0
a

Ak

which means that p is dual feasible.
From Lemma 4.2 we find that

xMeM(a+ N,(piEr™)).

Ark+m

Consequently, the optimality conditions are satisfied by x™ and p ; it follows

from the unicity of the dual solution (Remark 2.1) that p* “" = ™. Finally, equation
(3.8) implies that p**" = p’*"" = 5~ which terminates the proof.

Theorem 4.1. If int(€) =}, the algorithm converges in a finite number of steps.

Proof. First of all, et us assume that x™ € int(%¢). In this case, N(%€, x™)={0}. Thus
for large values of k, we have x* = x™ and the result is obtained by Lemma 4.5.

Now suppose that x™ belongs to the boundary Bd(%) of € and let us assume
that x* # x™ for al] k sufficiently large. J.E. Spingarn proved in [29] that the proximal
point algorithm with respect to a maximal monotone multifunction cannot generate
a sequence {Z*} satisfying the following properties:

(1) -z~

£}

(2) (fk_é\kil’zf‘lul_éux‘):o

(3) {I(")} is strictly increasing, where [: H >R is a linear function.

The sequence {7*} already possesses properties (1) and (2) (see Lemma 4.4 and
Remark 4.1), thus in order to prove that our assumption fails, we shall construct a
linear function which satisfies property (3).
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As int(€)# ¢ (and x™ € Bd(¥€)), there exists, [13,29], n€ N(%, x*) such that
{m, x)>0for all xe N{¥€, x™), x#0.

The elementary convex set € is the intersection of the polyhedral cones €, =
a+ N,(pZ), hence we have [26]

N(%x") =% N(%, x")

where N(%,, x”) denotes the normal cone to €, at x™. Then, n can be written as

N=Y 0. With n,e N(%€,, x™)

and a linear function /: H - R can be defined by

1(2):(7?’ 311) WIth ﬁ:(nu)ng.&\h
From relation (3.3) we obtain

W2 =128 = (3, p* " = )
:_Ew (nﬂﬁ' Ik Xk"rl)

a

k 1 k X
:_Zwu(nus'x:n _-x‘)+(7’7x +1_Xl)‘
«

But for k sufficiently large (7,,x}—x7)=<0 since x/e %, (Lemma 4.2) and
(m, x**! K1 x¥e N(%, x™) by Corollary 4.1. Hence the sequence
{1(2")} is strictly increasing and the assumption x* # x™ for all k sufficiently large
is contradicted. Thus, the finite convergence is again obtained by Lemma 4.5.

— x>0 since x

A counterexample

In R°, we consider o ={a,, a,, a;} with a,=(0; 3), a,=(-2;0), a,=(2; 0).

We take w, =1 and y, =y for each ac =/, where y is the I'-norm. The set of
primal solutions M, (/) is the singleton {X} with X =(0;0) and the set of dual
solutions is made up of the vectors

pi=(0;-1), p2=(1; ), pi=(=1;1-1)

with any choice of A €[0, 1].

Let x"=(0;1/3), pi=1(0; —1), p5=(1;3), pi=(~1;3) be the starting point. It is
easy to prove by induction that the algorithm generates the sequences x*, p}, p5,
ph given by

x*=(0; ap),

=(0; —1-284),
pr=(1; B +3),
py=(~1; B +3)
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where

and 6 €[0, 2n] is defined by cos 6 =+3/3 and sin § =V6/3.
The sequences {x"} and {p"} converge respectively to x™ and p™ defined by

x*=(0;0), pr=(0;-1), pr=(L;Y, py=(-1;3)

and the limit is not reached in a finite number of iterations.
We can see that neither the convergence of {x*} nor the convergence of { "} is
linear. However, using the relations

Qg = (ak "2[31\)/3,
Brar = (ax+Bi)/3,
we deduce that

3

skl _2,:(

;k 2»:‘

This equality means that the sequence {£*+ p*} converges at a linear rate.

5. Numerical tests

The given algorithm has been implemented in FORTRAN using a MATRA 550-CX
at the Dijon University Computing Center. Single precision arithmetic was used
throughout. The computer executes approximately 1.25 million machine instructions
per second. It uses 4 gigabytes of real main memory with approximately 400 ns
access time.

A number of test problems were solved and a selection of five (low dimension)
problems has been chosen to emphasize the behavior of tthe algorithm. Results
concerning the first four problems are summarized in Tables 1 to 4 respectively.
The times indicated in seconds do not include input/output times and the value of
£ used in the stopping rule |M, —m,|< e was fixed to 107°.

It is interesting to note that problems 1 and 3 have been solved very efficiently.
The algorithm requires few iterations due to the fact that for these problems the
convergence is finite according to Theorem 4.1.

Furthermore it is worth noting that in all cases (see Tables 1 to 4) the algorithm
generates an optimal location which lies in the relative interior of M, () even
when the starting point is an optimal location belonging to the boundary of M, ().
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Problem 1. We consider & ={a,, a-, ..., a,} with a,=(1;0), a.=(3;0), a:=(} ),
a,=1(2;3), as=(0; 1), as=(3;2) and w,=w,="---=ws=1. We choose a single
polyhedral norm ¥, the unit ball of which is a regular octagon inscribed in a circle
centered at the origin and with radius one (with respect to the Euclidean norm).

The set of optimal locations is the polygon generated by the points whose
coordinates are (3;3), (3; 2), (2;2), (2; 1) and which is uniquely determined by the
dual variables

p=02-11, ==V, p=(—14Y2 -1,
pa=(1=V2-1),  ps=(,¥2-1),  po=(-1;1-V2).
Problem 2. We consider the same data as in problem 1 where the weight w.=1is

replaced by w3:1+\/5. The set M, () is the singleton {(2; 1)} which is {not
uniquely) determined by the dual variables

p=(2/23V2/2),  pa=(1-V231),  py=(-1+V2; -1),
pa=(1-v2,-1),  pe=(1;1-v2),  po=(—v2/2; —2/2).
Problem 3. We consider & ={a,, a1, ..., a,} with a; =(0;2), a»=(0; 1), ax=1(2;3),

a,=(2;0), as=(3:2), a;=(3;1) and w,=wr=w;=w,= 1, ws=w, =5 We choose
three polyhedral norms; the octagonal norm (as in problem 1) associated with a,

Table 1
Starting point 0. 3. 0. 5. -10. 2
0. 0. 3. S. 0. 1.
Number of iterations 9 8 8 10 18 5
CPU (sec.) 0.08 0.08 0.08 0.08 0.14 0.04
Optimal location 1.80935 1.83789 1.72420 1.79514 1.73088  1.89552
1.44036 1.21137 1.91253 1.77469 1.58802  1.26965
Optimal value 9.94974 — — — — —
* Starting point in M, (/).
Table 2
Starting point 0. 3. . 5. -10. 2%
0. 0. 3. 5. 0. 1.
Number of iterations 63 53 59 63 67 53
CPU (sec.) 0.62 0.54 0.56 0.60 0.66 0.54
Optimal location 1.99999 2.00000 1.99999 1.99999 2.00000 2.00000
0.99999 1.00000 0.99999 0.99999 1.00000 1.00000

Optimal value 11.94974 — — — — —

* Starting point in M, ()
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Table 3
Starting point 0. 3 2. —20. 2.7
0. 0 0. 2 1.5
Nuinber of iterations 8 6 6 37 3
CPU (sec.) 0.08 0.06 0.08 0.30 0.04
Optimal location 0.75651 1.72839 1.79404 0.86679 1.77777
1.48756 1.25395 1.24463 1.55735 1.50000

Optimal value 8.91421 — — — _

* Starting point in M, ().

and a,, the norm defined by y(x,; x,) = 3|x,|+|x,| associated with a; and a,, the
!'-norm associated with as and as. The set M, {s{) is the polygon generated by the
points whose coordinates are (1; 1), (5; 1, (15 2), (2;2), (2: 1) and which is uniquely
determined by the dual variables

P1:(1§1_\/§)s Pz:(l;\/i_l), P}Z(—%;_l),
pa=(-231), ps=(-1;-1), pe=(=1;+1).
Problem 4. We consider the same facilities and the same norms as in problem 3

with the weights w, = w> ="+ - = w,= 1. The set M,, (%) is the segment of line defined
by the points (2; 1}, (2; 2) and which is uniquely determined by the dual variables

pi=(11-v2),  p=(V2-1),  pa=(0;-1),
pa=(0; +1), ps=(-1;-1), pe=(—1;+1).
Problem 5. We consider of ={a,, a-, ..., as} with a, =(0;0), a,=(1;0), a;=(1; 1),

a,=(0;1), as=(100; 100) and w, = w, = w; = ws = 1, ws=4. Distances are measured
by the Euclidean norm. The set M, (s} is the singleton {as}. This example is known

Table 4
Starting point 0. 3. 2. =20. 2.
0. 0. 0. 2. {.
Number of iterations 63 58 50 86 4
CPU (sec) 0.54 0.50 0.44 0.70 0.04
Optimal Jocation 2.00000 1.99999 2.00000 2.00000 2.00000
1.41690 1.44695 1.42585 1.60079 1.34325

Optimal valve 10.41421 — — — —

* Starting point in M,, ()
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to be difficult to solve because the objective function decreases very slowly along
the diagonal of R’. Qur algorithm starting from (90.; 90.) requires 1001 iterations
and 1.16 seconds of CPU time to obtain the location (100.00;99.99) whereas
Weiszfeld’s algorithm gives (97.2; 97.2) after 200 000 iterations which required 342
seconds including evaluation of lower and upper bounds of the optimal value as
defined in Wendell and Peterson [32].

A referee has informed us that the Calamai-Conn algorithm [4], starting from
the same initial point, requires only 3 iterations and considerably less time
(14.84 seconds of CPU time on an IBM-PC executing approximately 0.0064 million
instructions per second) to solve this problem. These results are not surprising since
the Calamai-Conn algorithm belongs to the class of second order methods which
are known to be very efficient near an optimal solution.

6. Concluding remarks

The algorithm described in this paper has been obtained from the partial inverse
method of J.E. Spingarn which has attracted attention because of its various applica-
tions in convex programming.

This suggests that our algorithm can be generalized for the Fermat-Weber problem
with polyhedral constraints and for the minisum multifacility location problem.
These problems of great interest in the framework of Location Theory will be studied
in separate papers.

Furthermore, the procedure for solving the Fermat-Weber problem and the
algorithm of J.E. Spingarn for finding a point in a polyhedron generate (when the
interior of the set of optimal solutions is nonempty) finite sequences which enjoy
the same properties (see Lemmas 4.2-4.4 and [29]).

In a forthcoming paper, it will be shown (under appropriate assumptions) that
the proximal point aigorithm applied to the partial inverse of a maximal monotone
multifunction T always terminates in a finite number of steps when T and T '
possess the following property:

Vx 3e&>0 suchthat T(y)c T(x) for|y—x|<e

which means that each point is a local maximum for T with respect to the inclusion
relation.
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