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We give a new algorithm for solving tile Fermat-Weber location problem involving mixed 
gauges. This algorithm, which is derived from the partial inverse method developed by J.E. 
Spingarn, simultaneously generates two sequences globally converging to a primal and a dual 
solution respectively. In addition, the updating formulae are very simple; a stopping rule can be 
defined though the method is not dual feasible and the entire set of optimal locations can be 
obtained from the dual solution by making use of optimality conditions. 

When polyhedral gauges are used, we show that the algorithm terminates in a finite number 
of steps, provided that the set of optimal locations has nonempty interior and a counlerexample 
to finite termination is given in a case where this property is violated. 

Finally, numerical results are reported and we discuss possible extensions of these resuhs. 

Key words: Location problems, Fermat-Weber problem, partial inverse method, proximal point 
algorithm, polyhedral gauges, finite convergence. 

1. Introduction 

The famous  location problem,  known as the Fe rma t -Weber  problem, is to find 

a point  such that the sum of weighted distances from m given points is minimized.  

In the framework of Location Theory, the distances are usually derived from 

norms such as /P-norms, 1 ~<p<~+~,  polyhedral  norms, or more generally from 

gauges. For  a justif ication to work with polyhedral  norms or gauges, see for instance 

[11 ,30 ,33] .  

In general,  the choice of a gauge (or a norm)  implies the use of a specific method 

for solving the problem: 

- i n  the Eucl idean case, the first method was given in 1937 by Weiszfeld [31]. 

The convergence properties (global convergence,  rate of c o n v e r g e n c e . . . )  of  this 

iterative procedure  have been  studied at length [17, 18, 19, 21, 22]. Some improve- 

ments  of Weiszfeld's a lgori thm and various other  gradient  or non-gradient  methods 

have also been proposed [2, 3, 4, 5, 23]. 

- in the / t -no rm case, the problem can be solved by l inear programming [1, 16], 

(see also [15] for a selective bibl iography).  More generally,  any problem involving 

mixed polyhedral  norms can be formulated as a l inear  program [30]. 

- in addi t ion  some alternative methods have been proposed. They include a dual 

method [24] and a cutt ing plane method [25]. 
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In this paper,  we describe a new algorithm which has the following advantages:  

different gauges (polyhedral ,  12,...) can be mixed; it generates simultaneously two 

sequences globally converging to a primal and a dual solution respectively; the 

update rules are very simple; a lower and an upper  bound  converging to the optimal 

value of  the objective function can be delined to give a rule for s topping the process; 

the entire set of  optimal locations can be obtained from the dual solution by making 

use of  general optimality condit ions;  contrary to cutting plane methods and to the 
dual method given in [24] the size of  the sub-problems to be solved is fixed with 

iterations; the method can be viewed as a dual decomposi t ion method which permits 

the possibility to make parallel computat ions.  

The paper  is divided as follows: 

- i n  Section 2, we give the formulat ion of  the problem with some results on 

duality, and we recall the partial inverse method on which our algorithm is based. 
- i n  Section 3, we describe the algorithm and we give some details about  the 

implementation.  

- in Section 4, we study the finite convergence o f  the algorithm when polyhedral  

gauges are used. 

- in Section 5, some numerical results are reported. 

- finally in Section 6, we discuss some possible extensions of  our algorithm. 

2. P r o b l e m  d e s c r i p t i o n  and  p a r t i a l  inverse  m e t h o d  

The Fermat -Weber  problem (in short FW) is to 

Minimize ~, w,/y,,(x - a) 

where ~ is a finite subset of  m elements of  R", which represents the locations of  

existing facilities, x is the location of  a new facility to be placed, w,, is a positive 
weight and y,, is a norm or more generally the gauge of  a convex closed bounded  

set B,, (the unit ball o f  y,,) containing zero in its interior [26]. 

In the sequel, [R" is equipped with its usual Euclidean structure for which the 

scalar product  is denoted by ( . , . ) .  Let y~,~, be the polar gauge of  %, defined by 
0 y,,(! ) = Sup{(x, y), x ~ B,,}. We shall denote  by B~ the unit ball associated with y~. 

Let H = R" x �9 �9 �9 x ~" (m times) whose elements are denoted by/3 = ( p,)~,=.:v. 

It is known [33] that the dual of  FW is given by 

Maximize - ~  w,(a,p, ,)  
~eH a 

subject to Z c%p~ = O, 
a 

~/~(p,,)~ 1 for all a, 

Note that it is not possible in this problem to substitute p~ by -p,, when non- 

symmetric gauges are used. 
The following theorem gives links between the primal and the dual problems. 
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We have  the equivalence:  x c ~"  is a pr imal  solution and  f i c  H is a dual  Theorem 2.1. 

solut ion i /  and  only i/" 

~ wup,, =0 ,  (2.1) 
r 

p,, c Oy,,( x - a ) .fi~r all a. (2.2) 

Al though the Fe rma t -Weber  problem has been studied for a long time, these 
necessary and sufficient condit ions for optimali ty have only recently been used in 

Locat ion Theory  from a theoretical or a practical point of  view. For instance, in 

[11], a geometrical  description o f  the set o f  optimal solutions to FW, denoted by 

M~(oq) ,  has been derived from (2.1) and (2.2). This description is of  particular 

interest for problems involving polyhedral  gauges and will explicitly be used in 

Section 4. Therefore we need to recall the following. 

Let N,, (p , , )  be the normal  cone to B~, ', at p , , c ~ "  and let ~(:~;- f ' -~ , , (a+N,, (p , , ) ) ,  

with /3 c H such that p,, c B',', for each a. 

Definition 2.1. A nonempty  convex set "~ is said to be an elementary convex set if 

there exists fi (p,, c B~,] for each a) such that ~' = ~ .  

From Theorem 2.1, it may be seen [11] that M~,,(.~4) is a bounded  elementary 

convex set, since condit ion (2.2) is equivalent to the conditions:  

y' , ' , (p, ,)~ 1, (2.3) 

x e a + N , ( p ~ , )  fora l l  a. (2.4) 

Thus the entire set M,o(.~) of  optimal solutions to FW can be obtained from a dual 
solution, which is of  interest for the decision maker. 

Hence we have [11]: 

Corollary 2.1. (I)  M,o(,~t) is a t~ounded e l emen tary  convex  set %~ associated with 

some  fi such that ~,,  w,p, ,  = O. 

(2) Le t  ~ ~ be an e l emen tary  convex  set associa ted  with some l3 such that ~,, ~o,,p, = O. 

Then M,o( .~)  = ~;~ and %-~ is bounded. 

Remark 2.1. In general an elementary convex set "(, is not necessarily associated 

with a s ingle /3c  H, with p,, c B',I, except if the interior of  ~6 is nonempty.  However,  

if ~ is not reduced to the singleton {a}, and if for/3 and c~ we have <6' = <r = %,i, 

then, for each a, p,, and q,, belong to the same exposed face of  B',',. 

Now making use of  optimality condit ions,  we shall construct a pr imal-dual  

algori thm to solve FW. The problem of  finding a zero of  a sum of  maximal monotone  

mult ifunctions,  i.e. a problem such as (2.1), (2.2) has been underl ined by J.E. 

Spingarn [28] as a part icular  application o f  the method of  partial inverses. Let us 

recall the framework.  
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Let the space H be equipped with the scalar product defined by (.~,/3)= 

~,, w~,(x,,,p,). The corresponding norm of H will be denoted by 11-11. Putting 

A ={.~�9 H,_~= (x, x , . . . ,  x) with xc[R"}, 

B=[fi~H,~w,~p,,=O},, 

we obtain two complementary subspaces of H (A = B • and conditions (2.1), (2.2) 
are equivalent to: 

.~ �9  / ) � 9  and I3�9 

where T is the maximal monotone multifunction defined on H by T=[],, T, with 

L , 0 ) )  = ~ , , , ( ) , ,  - a ) .  
Now, from Spingarn's work [28], for .,~ �9 A and/3 �9 B we have 

/~ �9 T(.'~) if and only if 0 ~ T~(.~ +/3) 

where TA is the (maximal monotone) multifunction defined by its graph F: 

F = {(-~A +/3~;/3A + .~) , /3  �9 T(.~)} 

and ~ denoting the orthogonal proiection of r onto A and B respectively. The ~A ZB . - 

proximal point algorithm generating the sequence 

Z~k,~=(l+Z~) ~$k (2.5) 

converges to a zero $ of T~ which gives a solution to (2.1), (2.2) by calculating 

.~=:~,~ and /3=YB. 

This provides a theoretical primal-dual  method for solving FW but we have to 
know, as noted in [28], if procedure (2.5) can be executed in a computationally 
feasible manner. This problem will be studied in the next section. 

3. The primal-dual algorithm 

This section is devoted to the description of an algorithm to solve FW. In addition, 
we discuss some details of the implementation in relation to Location Theory and 
give a rational termination rule. We suppose without loss of generality that Y~,, w, = m. 

3.1. Algorithm description 

Starting with s  (xO, . . . ,  x") and fi", (2'~=_f-~ ~ such that Z ,  ~o,,P~, ', =0,  the 
partial inverse method computes at step k: .~k+~ e A and/3 k+~ �9 B, (2 k+~ = )?k+J +/3k+l) 

such that 

~k~ ,+t;k+, = ( I+  T~) ,(.~k +/~) (3.1) 
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which can also be rewritten as 

~k _ ~ k . ,  +/3k _/3k+, E TA(:~k~, +/3k-,-,) 

or equivalently from the definition of  T., 

~k _~k+, +/3k ~, c T(/3k _/3k+, + :~,+,). 

Putting 

we obtain 

fi,k e r ( 2  'k) 

or equivalently 

/~,k c T(.~,, +/3k _fi,k) 

since 

323 

(3.2) 

(3.3) 

(3.4) 

.~k +~k = .,~,k +~,k. (3.5) 

In other words, .f,k is the image of  .~k +/~, under  the proximal mapping for T.. This 
means that 

p'.k ec ' )y . , (xk-a+pl;-p; ,  k) fora l l  a 

or in other words 

X k k tk tk I) 
- a + p,,) - p~,k ~ with for all N . ( p . )  p .  c B.  a. 

Therefore p~  is uniquely determined by 

p,k = Proj ~,.: (x k - a +pk)  (3.6) 

where ProjB2 (x) is the orthogonal projection of  x onto B~. By (3.5) 2~ 'k is found 
as ~,k = 2~k +ilk _fi,k and according to (3.2), (3.3) ~k+~ and/~k+~ are given by 

~.k+l = ( . f , k ) a  ' (3.7) 

/~k+~ = (/~,k)~. (3.8) 

TO summarize,  the algorithm for solving FW is the following: 
Starting point: choose 

X ~  ~ "  

O) o /~~ H such that ~v ,,po=O. 
a 
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Step k: compute  

p , k = P r o j r 3 : ; ( f f _ a + p ~ )  for all a, 

- -  rk xl,k = xl" + pJ,~ p ,  fo ra l l  a, 

r h. h , 
I11 b 

k *" l Ik L tk  p,, p,, - ~ whpl, for all a. 
t l l  b 

Remark 3.1. In the general partial inverse method [28], as in the application 

developed in [29], .~'~ is computed  and then fi'J' is determined by I'U' = .~k + f f  _ .~.,~. 

In our method however, we compute  first/'3 'k and then .~,k by (3.5). 

3.2. C o m m e n t s  abou t  the i m p l e m e n t a t i o n  

(a) Actually, x j" ' ~ can be determined without comput ing  .~,i,. Since fiJ' c B we have 

k I I ~ X k l iI, X -- ~ cohpJ, . (3.9) 
111 I~ 

(b) The algorithm needs to compute the projection of points onto the unit balls 
B~. This problem does not present any difficulty when -),", is the Euclidean norm, 
but if y~,', is an IP-norm, I < p < + ~ ,  the projection cannot be explicitly obtained. 

With polyhedral gauges, in dimension n >2 ,  the projection can be done by well 
known methods for solving linearly constrainted ]east squares problems. However, 
location problems most frequently occur in the plane. ]n this case, if we denote by 
Ext(C) the finite set of extreme points of a polyhedral convex C~ the projection of 
a point x ~' B',', onto B~, ', is given by 

I I) I) e ~ i f . v -  e'~c N , ( e  ) for some e~  E x t ( B , ) ,  

Pro j<,(x) = ( x  (t,,./]]gfl]2)~7 otherwise, 

where g' is uniquely determined by 

t.tc = Max{p.,.,/,~, = ((x, e) - 1 )/[[ e ][z, ~,. > 0, e c Ext( B,, )} 

N" ]1- ~ denot ing the Euclidean norm. 

(c) In practice, we also need a rule to determine when to stop the iterations 
according to a specified accuracy. 

Recently, some lower and upper  bounds  have been developed [7, 8, 14, 20, 32] 

when the Fermat -Weber  problem involving /; ' -norms, l < p  < +0% is solved by an 

iterative procedure.  Unfor tunate ly  these lower bounds  do not converge to the optimal 

value of  the objective function when non-differentiable norms are used. An advantage 

of  our algorithm is that a rational s topping rule can be formulated by making use 
of  converging lower and upper  bounds.  
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As we can suppose without  restriction that /3 k # 0, putting 

O~k= Max{ o, k~, Y,t  P, ) t ,  

,~ = (~/o~,,)~ ~, 

we obtain a dual feasible sequence {c~ k} converging to the dual solution/3 '~:, which 

is the limit o f  the sequence {/3 k} (see Section 3.3). Then a lower bound  mk and an 
upper  bound  Mk can be defined by 

m k = - 2  w,,(a, q~), 
a 

Mk : Z  w , Y , ( x k - a )  
a 

and these bounds  converge to the optimal value o f  the objective function of  FW. 

3.3. Convergence 

The general convergence o f  the proximal point  algorithm associated with an 

arbitrary maximal mono tone  mult i funct ion S has been carefully studied in [27]. 

Consequent ly  the proximal point  algorithm applied to Ta converges and allows us 

to state without  need of  p roof  the theorem: 

Theorem 3,1. The algorithm, described in Section (3.1), converges in the following 
seFIse : 

(1) ~k ~ . ~  c A, 

(2) t ~ - ~  c B, 

(3) I I( :~*'+ts~+')-(x-~'~:+~)l l  ~< [l(.,~ +~)- ( . ,~"+~- ' )11,  
where x '~: and/~:" are respectively a primal and dual solution to FW. 

Actually Rockafel lar  proved that, if the mult ifunction S is the subdifferential of  
a polyhedral  convex closed function, the proximal  point algorithm converges in a 

finite number  o f  steps (see [27]); unfortunately,  this is not the case for the multifunc- 

tion TA. However ,  the finite convergence of  our  algorithm will be studied in 

Section 4. 

4. Finite convergence in the polyhedral case 

In this section, we suppose  that all the gauges y,  are polyhedral.  Our aim is to 

prove that, if the interior of  the set of  optimal solutions is nonempty,  the algorithm, 
previously given, converges in a finite number  o f  steps; in other words, .~t'+'" = s ..... 

and also ilk+,, = i~.,~ for some k and every rn t> 0. 

For this, we need some lemmas using the following property of  polyhedral  convex 

functions. 



326 C. Michelot, O. Lefebvre / AIgorithm.&r the Fermat- Weber problem 

Lemma 4.1. A polyhedral convex function f has the D i f f -Max  property meaning that 
.for every x c R", there exists a neigh bourh ood V of  x such that Of(y) c i~f ( x ).for all y c V. 

Proof. This property has already been proved a n d / o r  used [9, 10, 12]. Here, we 

give only the p roof  for gauges. 

Let y be a polyhedral  gauge. If  x ~ 0, the subditierential ~y(x)  is (geometrically) 

an exposed face of  B ~ the polar  of  the unit ball associated with 7. Since aT(0) = B ~ 
only the case x ~ 0  needs to be proved. 

Let D(x )  be the convex hull of  the extreme points of  B ~ which do not belong to 

~y(x) .  There exists a hyperplane G strictly separating i~y(x) and D(x) .  As the 

mult ifunction y->i~yO') is upper  semicont inuous there exists a ne ighbourhood  V 

of  x such that G separates Oy(y) and D ( x )  for y 6  V. Consequent ly  aT(y)  is 

necessarily included in aT(x).  

Lemma 4.2. The sequences {2,k} and {/3 'k} generated by the algorithm converge to 
.~'~ and fi~ respectively. 

Furthermore, for all k sufficiently large, we have: 

( i )  ,k ~- x~ c a + N ~ , ( p a )  Jb ra l l a ,  
(ii) x ~ c a + N a ( p ' , ,  k) f o r a l l a .  

Proof. From equation (3.9) we deduce that limk ...... ~,, tr k = 0, since the sequence 
{x k} converges to x ~'. Hence equation (3.8) gives 

lira p , k :  lira p~+':p';~ 

and equation (3.5) gives 

lira x~['= lira x k = x  '~:. 

Now the Diff -Max property of  the gauges 7o shows that, for k sufficiently large, 

we have: 

p'~ c ~%, (x',, ~ - a)  ~ oya(x ' ~ -  a)  

which means that p~,g~ B ~ and x ~ - - a ~  N , (p ' k ) .  

Similarly, the conjugate o f  7o, denoted 7 " ,  has the Dif l -Max property since it 
too is polyhedral.  Thus for k sufficiently large, we have 

x,k_aci~y~o( ' k ' c -  .~ . . . . .  P,, ) OT;(P,, ) 

or in other words, x'~ k - a e N , (  p'~,:). 

Let us denote  by ~ the elementary convex set which coincides (see [11]) with 
the set M,o(s4) of  optimal solutions to FW. 
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Lemma 4.3. L e t  N (  % x ~-) be  the  n o r m a l  c o n e  to  qr a t  x ~'. T h e n  w e  h a v e  x k - x  k+~ 

N (  % x ~'') f o r  al l  k s u f f i c i e n t l y  large.  

Proof. Let x c ~ = ('],, ( a  + N, , (p~, ' ) ) .  Using (3.3) and (3.5), we deduce for all a that: 

X k _ _ x k + l  tk k + l  = p ,  - p ,  . 

Then  we have 

( X  k k + l  zc - x  , x  x ) = (  ,k ~,~ - p .  - p , ,  , x - x - " )  

p .  - p , , , x - x  ~ ' ) - "  ~ k+~ •  - p .  , x - x ~ ' ) .  

After mul t ip ly ing  each equat ion  by w .  and  summi ng  on a, we deduce that 

m ( x k  _ Xk + ._x- '. x - x  ~') = E  ,o,,(p',, ~ - p , , .  x - x " )  
a 

= Z o J . ( p ' ~ - p , ~ , , x  a ) - E o J o (  ,k - p~ - p o , X ~ - a ) .  
tl tl 

Using Lemma 4.2, for k sufficiently large, we get ~ . . . .  t p ,  - p , ,  x - a)  = 0 and as 

x ~ cg, we obta in  

m ( x  k - x k+ ', x - x "~) = Z w.( p,,,k, x - a )  - }~ t o . y . ( x  - a )  

~< 0 since p,,k ~ B~,~ 

which completes  this proof. 

Now, as N ( % x ' : ' )  is a closed convex cone,  we easily deduce the following 

corollary. 

Corollary 4.1. W e  h a v e  x k - x ~  ~ N (  % x ~'-) f o r  a l l  k s u f f i c i e n t l y  large.  

Lemma 4.4. W e  h a v e  ( 2 , k _  ~ . . . . .  k X , p -- ff~) = 0 f o r  al l  k s u f f i c i e n t l y  large.  

Proof. Lemma 4.2 states that, for large values of k, 

tk x a  - a e N a (  P . )  

and  

x " ~ - a  c N~(p' ,~) 

which give, using (3.4), 

(x', k a, p~) = ,k - 7 ~ ( x .  - a )  = ( x ' .  k - a ,  p ~ k )  

and  

( x  ~ : -  a, p'~) = yo(x ~ ' -  a) = (x ~:'- a, p~).  

Subtract ing these equat ions,  we obtain 

tk oo tk ~x~,  
x . - x  , p ~ , - p , , ) = O  

which means  that 

(~'~ - . , ~ ,  F k -  t~ ~) =0 .  
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Remark 4.1. It may be seen, using (3.2) and  (3.3) that  the equat ion (.~,k - 2 U , / 3  ' k -  

/3 ~':) = 0  can also be wri t ten as (z~ k -z~ k+~, z? k+~-$~)  =0 .  

Lemma 4.5. Let us assume that int(%~) # ft. There exists ko such that i[" xk = x ' ~  Jot 
some k >~ ko then the algorithm converges in a finite number of  steps. 

ProoL Let ko be chosen  sufficiently large with respect  to Lemma 4.2, Lemma 4.3 

and  Coro l l a ry  4.1. 

Assuming  that  x k = x '~ for some k >/ko, we obta in  

x ~ ' _ x k + '  c N ( %  x -~-) 

and 

x k + ~ - - x ~ c N ( % x ' ~ ) .  

As i n t ( ~ ' ) ~ 0 ,  the normal  cone N(%),x ~) only conta ins  the subspace  {0} (see 

[13, 29]), thus x k+~=x k and by induc t ion  we find that  x k .... = x  k for every m >~0. 

Then equa t ion  (3.2) gives for m/> 0 

y. ~o,,p',, ~ ~ ' '  = o 

which means  that /3  'k "'" is dual  feasible.  

From L e m m a  4.2 we find that  

x c ( - ' l ( a +  - , k  ...... ,~ '~ N , ( p ,  j.p. 
a 

Consequen t ly ,  the op t ima l i ty  condi t ions  are satisfied by x '~ and .,k .... p ; it fol lows 

f rom the unici ty of  the dual  solut ion (Remark  2.1) that  fi,k +.,,, = / U .  Final ly ,  equa t ion  

(3.8) impl ies  that /3  k .... =/3 'k ..... =/3 ~'- which terminates  the proof .  

Theorem 4.1. / f  int(Cr :~ fl, the algorithm converges in a.finite number of  steps. 

Proof .  First  of  all, let us assume that x " c int(%)). In this case, N(%), x ~-) ={0}. Thus  

for large values of  k, we have x k = x ~ and  the result  is ob ta ined  by  Lemma 4.5. 

Now suppose  that  x '~' be longs  to the b o u n d a r y  Bd(%)) of  %) and let us assume 

that  x k # x ~ for  all k sufficiently large. J.E. Sp ingarn  p roved  in [29] that  the p rox imal  

po in t  a lgor i thm with respect  to a maximal  m o n o t o n e  mul t i func t ion  canno t  genera te  

a sequence  {$k} sat isfying the fol lowing proper t ies :  

(1) *' . . . . . .  Z -'-'~Z , 

(2)  ( 2 k -  sk~ ' ,  2"4 ' - 2'~1 = 0, 

(3) {/($1,)} is str ictly increas ing,  where I: H - ~  R is a l inear  funct ion.  

The sequence  {2 k} a l r eady  possesses  p roper t i e s  (1) and  (2) (see Lemma 4.4 and 

Remark  4.1), thus in o rde r  to prove that  our  a s sumpt ion  fails, we shall  cons t ruct  a 

l inear  funct ion  which satisfies p roper ty  (3). 
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As i n t ( ~ ) # 0  (and x ~ c  Bd(~ ')) ,  there exists, [13,29] ,  r16 N ( ~ ,  x ~') such that  
(~/, x ) > 0  for  all x c  N ( ~ , x ~ ) ,  x ~ O .  

The e lementary  convex set ~ is the intersect ion of  the polyhedral  cones q~ = 
a + N, , (p2) ,  hence we have [26] 

N ( ~ , x ~ - ) = E  N(~- , x  '~) 
o 

where N(<~,,, x ~-) denotes  the normal  cone to ~8,, at x ~. Then,  r / can be written as 

T1 = E w,,-q~ with ~,~ e N (  % .  x '~~) 

and a l inear funct ion l : H -> I~ can be defined by 

/ (2 )=( ,} ,  $~) with ~ = ( r t , , ) ~ . +  

From relat ion (3.3) we obtain 

= - Y  , o , , ( n , , , x ' ~ - x  ~' ') 
a 

: - E  , o . ( , , , .  x'.  ~ - . x  >'') + ( , .  x ~+~ - x ' ) .  
(t 

t,k _ tk  C ' But for k sufficiently large (-q, ,x~ - x " - ) ~ < 0  since x ,  e ~,, ( L e m m a  4.2) and 

(r  I, x k+~- X ~) > 0 since x k~ ~-  x":e N(%~>, x ' )  by Corol lary  4.1. Hence the sequence 
{/(z~k)} is strictly increasing and the assumpt ion  x k ~ x:" for all k sufficiently large 
is contradicted.  Thus,  the finite convergence is again obtained by Lemma 4.5. 

A counterexample 

In ~2, we consider  M = {al ,  a2, a3} with a, = (0 ;  3), a2 = ( - 2 ;  0), as = (2; 0). 
We take con = 1 and y, = y for each a ~,ff, where y is the I ~-norm. The set o f  

pr imal  solut ions M,o(.e/) is the singleton {:~} with .~=(0;  0) and the set of  dual 
solutions is made up of  the vectors 

p~ = (0 ;  - 1 ) ,  p== (1; A), p 3 = ( - 1 ;  l - A )  

with any choice of  A e [0, 1]. 
Let x ~  (0 ;1 /3 ) ,  p'~= (0; - l  ), p~=  (1; �89 P3 = ~  ( -1 ; �89  be the starting point. It is 

easy to prove  by induct ion that the a lgori thm generates  the sequences x k, p~, p~, 
k P3 given by 

x k = (0; c~k), 

p,~ = (o;  - 1 - 2 ~ ) ,  

k 1 
p2 = (1;/3k + 2), 

k p~ = ( - l ; ~ k + ~ )  
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where 
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'~k = 3 \ T /  cos kO, 

~/2 ( ' J3~ k sin k0, 
/3k= 6 \ 3 /  

and 0 c [0, 2~r] is defined by cos 0 = ~/3/3 and sin 0 = ,J6/3. 
The sequences {x k} and {ilk} converge respectively to x ~ and/3  '~- defined by 

x:'~ = (0; 0), p• = ( 0 ; - 1 ) ,  p~:= (1; !), p ~ = ( - 1 ; ~ )  

and the limit is not  reached in a finite number  o f  iterations. 
We can see that neither the convergence o f  {x j'} nor the convergence o f  {fit,} is 

linear. However,  using the relations 

cek+, = (a~ - 2/3k)/3, 

~k+, = (,~k +~k)/3, 

we deduce that 

43 2k+ ' -2  '~ = ~ -  ~ k - U .  

This equality means that the sequence {~k +ilk} converges at a linear rate. 

5. Numerical  tests 

The given algorithm has been implemented in FORTRAN using a M A T R A  550-CX 

at the Dijon University Comput ing  Center. Single precision arithmetic was used 
throughout .  The computer  executes approximately  1.25 million machine instructions 

per second. It uses 4 gigabytes of  real main memory  with approximately  400 ns 

access time. 
A number  of  test problems were solved and a selection o f  five (low dimension) 

problems has been chosen to emphasize the behavior  of  tthe algorithm. Results 

concerning the first four problems are summarized in Tables 1 to 4 respectively. 

The times indicated in seconds do not include inpu t /ou tpu t  times and the value o f  
s used in the s topping rule ]Mk-- mk]< s was fixed to 10 _5 . 

It is interesting to note that problems 1 and 3 have been solved very efficiently. 

The algorithm requires few iterations due to the fact that for these problems the 

convergence is finite according to Theorem 4.1. 
Fur thermore it is worth noting that in all cases (see Tables 1 to 4) the algorithm 

generates an optimal location which lies in the relative interior of  M,~(M) even 

when the starting point is an optimal location belonging to the boundary  o f  M~(M). 
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Problem 1. We consider sg = {a~, a 2 , . - . ,  ac,} with a~ = (1; 0), a2=  (3; 01, a3 = (3; ~), 

a 4 = ( 2 ; 3 ) ,  a s = ( 0 ;  1), a ~ = ( 3 ; 2 )  and 01~ =w2  . . . . .  0)6 = 1. We choose  a single 
polyhedral norm y, the unit ball of  which is a regular octagon inscribed in a circle 
centered at the origin and with radius one (with respect to the Euclidean norm). 

The set o f  optimal locations is the po lygon generated by the points whose 
coordinates are (~; ~), (3; 21, (2; 2), (2; 1) and which is uniquely determined by the 
dual variables 

p ,  = ( x / 2 - 1 ;  1),  p 2 = ( 1 - x / 2 ;  1),  p ,  = ( - 1  + ~ / 2 ; - 1 ) ,  

p 4 =  ( 1 - x / 2 ; - 1 ) ,  p s =  (1;  V / 2 -  1), p6.= ( - 1 ;  1 - ~ / 2 1 .  

Problem 2. We consider the same data as in problem 1 where the weight 01~ = 1 is 
replaced by 01~=1+x/2.  The set M,,,(ar is the singleton {(2; 1)} which is (not  

uniquely) determined by the dual variables 

p,=(x/2/2;x/2/21, p2 = ( 1 - ~ / 2 ;  1), p3 = ( - 1  + , / 2 ; - 1 1 ,  

p4 = (1 - , / 5 ;  - 1 ) ,  Ps = (1; 1 - - / 2 ) ,  p6. = ( - 4 5 / 2 ;  -~ /2 /2 ) .  

Problem 3. We consider ar = {a , ,  a 2 , . . . ,  a6.} with al = (0; 2), a2 = (0; 1), a:,= (2; 3), 

a4 = (2; 0), a5 = (3; 2), a6 = (3; 1) and  o93 = 01~ = 0)3 = (-D4 ~-  l ,  60 5 = 0)6.  = ~. We choose  
three polyhedral norms ;  the oc tagona l  n o r m  (as in prob lem 1) associa ted  with at 

Table 1 

Starting point 0. 3. 0. 5. 10. 2.* 
0. 0. 3, 5. 0. 1. 

Number of  iterations 9 8 8 10 18 5 

CPU (sec.) 0.08 (Log 0.08 0.08 0.14 0.04 

Optimal location 1.80935 1.83789 1.72420 1.79514 1.73088 1.89552 
1.44036 1.21137 1.91253 1.77469 1.588{12 1.26965 

Optimal value 9.94974 . . . . .  

* Starting point in M,,,(.~41. 

Table 2 

Starting point 0. 3. 0. 5. - 10. 2.* 
0. 0. 3. 5. 0. 1. 

Number of  iterations 63 53 59 63 67 53 

CPU (sec.) 0.62 0.54 0.56 0.60 0.66 0.54 

Optimal location 1.99999 2.00000 1.99999 1.99999 2.00000 2.00000 
0.99999 1.00000 0.99999 0.99999 1.00000 1.00000 

Optimal value 11.94974 . . . . .  

* Starting point in M.,(.~,I) 
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Table 3 
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Starting point 0. 3. 2. 20. 2.* 
0. 0. 0. 2. 1.5 

Number of iterations 8 6 6 37 3 

CPU (sec.) 0.08 0.06 0.08 0.30 0.04 

Optimal location 0.75651 1.72839 1.79404 0.86679 1.77777 
1.48756 1.25395 1.24463 1.55735 1.50000 

Optimal value 8 .91421 . . . .  

* Starting point in M,o(M). 

and  i]2, the  n o r m  de f ined  by  2):{[x l+lx21 a s s o c i a t e d  wi th  a 3 and  a4, the  

l ~-norm as soc i a t ed  wi th  as and  a6. The  set M,o(M) is the  p o l y g o n  g e n e r a t e d  by the  

po in t s  w h o s e  c o o r d i n a t e s  are  (1; 1), (~; ~), (1; 2), (2; 2), (2; 1) and  wh ich  is u n i q u e l y  

d e t e r m i n e d  by the dua l  va r i ab les  

p~ = ( 1 ;  1 - x/2), p2 = (1; x/2_- 1), p3 = ( - � 8 9  

p4=(-~; 1), p5= (-1; -1),  p~=(-1; +l). 

P r o b l e m  4. We c o n s i d e r  the s a m e  faci l i t ies  and  the  s a m e  n o r m s  as in p r o b l e m  3 

wi th  the weigh ts  w~ = w2 . . . . .  w~, = 1. T h e  set  Mo,(M) is the  s e g m e n t  o f  l ine de f ined  

by the p o i n t s  (2; 1), (2; 2) and  which  is u n i q u e l y  d e t e r m i n e d  by the  dua l  va r i ab les  

p , = ( 1 ; 1 - v / 2 ) ,  p 2 = ( 1 ; x / 2 - 1 ) ,  p ) = ( 0 ; - 1 ) ,  

p 4 =  (0; +1 ) ,  p s =  (--1;  --1),  p 6 =  (--1;  +1) .  

Prob lem 5. We c o n s i d e r  .9'/= {a j ,  a 2 , . . . ,  as} with  a~ = (0; 0) ,  a2 = (1; 0) ,  a 3 =  (1; 1), 

a4 = (0; 1), as = (100; 100) and  wj = to 2 = w3 = w4 = 1, w5 = 4 .  D i s t a n c e s  are  m e a s u r e d  

by the  E u c l i d e a n  norm.  T h e  set M~o(M) is the  s ing le ton  {as}. Th is  e x a m p l e  is k n o w n  

Table 4 

Starting point 0. 3. 2. -20. 2.* 
0. 0. 0. 2. 1. 

Number of iterations 63 58 50 86 4 

CPU (sec) 0.54 0.50 0.44 0.70 0.04 

Optimal location 2.00000 1.99999 2.00000 2.00000 2.00000 
1.41690 1.44695 1.4.2585 1.60079 1.34325 

Optimal value 10.41421 . . . .  

* Starting point in M,,,(M) 
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tO be difficult to solve because the objective function decreases very slowly along 
the diagonal of R 2. Our algorithm starting from (90.; 90.) requires 1001 iterations 
and 1.16 seconds of CPU time to obtain the location (100.00;99.99) whereas 
Weiszfeld's algorithm gives (97.2; 97.2) after 200 000 iterations which required 342 
seconds including evaluation of lower and upper  bounds of the optimal value as 
defined in Wendell and Peterson [32]. 

A referee has informed us that the Ca lamai -Conn  algorithm [4], starting from 
the same initial point, requires only 3 iterations and considerably less time 
(14.84 seconds of CPU time on an IBM-PC executing approximately 0.0064 million 
instructions per second) to solve this problem. These results are not surprising since 

the Ca lamai -Conn  algorithm belongs to the class of second order methods which 
are known to be very efficient near an optimal solution. 

6. Concluding remarks 

The algorithm described in this paper  has been obtained from the partial inverse 
method of J.E. Spingarn which has attracted attention because of its various applica- 
tions in convex programming. 

This suggests that our algorithm can be generalized for the Fermat-Weber  problem 
with polyhedral constraints and for the minisum multifacility location problem. 
These problems of great interest in the framework of Location Theory will be studied 
in separate papers. 

Furthermore, the procedure for solving the Fermat-Weber  problem and the 
algorithm of J.E. Spingarn for finding a point in a polyhedron generate (when the 
interior of  the set of  optimal solutions is nonempty) finite sequences which enjoy 
the same properties (see Lemmas 4.2-4.4 and [29]). 

In a forthcoming paper,  it will be shown (under appropriate assumptions) that 
the proximal point algorithm applied to the partial inverse of a maximal monotone 
multifunction T always terminates in a finite number of  steps when T and T 
possess the following property: 

Vx = le>0  such tha t  r ( y ) c r ( x )  forlly-xll<e 

which means that each point is a local maximum for T with respect to the inclusion 
relation. 
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