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An outer-approximation algorithm is presented for solving mixed-integer nonlinear program- 
ming problems of a particular class. Linearity of the integer (or discrete) variables, and convexity 
of the nonlinear functions involving continuous variables are the main features in the underlying 
mathematical structure. Based on principles of decomposition, outer-approximation and relaxa- 
tion, the proposed algorithm effectively exploits the structure of the problems, and consists of 
solving an alternating finite sequence of nonlinear programming subproblems and relaxed versions 
of a mixed-integer linear master program. Convergence and optimality properties of the algorithm 
are presented, as well as a general discussion on its implementation. Numerical results are reported 
for several example problems to illustrate the potential of the proposed algorithm for programs 
in the class addressed in this paper. Finally, a theoretical comparison with generalized Benders 
decomposition is presented on the lower bounds predicted by the relaxed master programs. 

KO' words: Mixed-integer nonlinear programming, outer-approximation, decomposition, cut- 
ting planes, computer-aided design. 

I. Introduction 

T h e  n o n l i n e a r  m a t h e m a t i c a l  p r o g r a m m i n g  p r o b l e m  that  is a d d r e s s e d  in this p a p e r  

i n v o l v e s  b o t h  c o n t i n u o u s  (x )  a n d  in tege r  (y)  (or  d i sc re te  va lued )  va r iab les .  T h e  

m a i n  cha rac t e r i s t i c s  de f in ing  the  u n d e r l y i n g  m a t h e m a t i c a l  s t ruc tu re  a re  l inear i ty  o f  

the  i n t ege r  va r i ab le s  a n d  c o n v e x i t y  o f  the  n o n l i n e a r  f u n c t i o n s  i n v o l v i n g  c o n t i n u o u s  

var iab les .  Th is  p a r t i c u l a r  class o f  p r o b l e m s  can  be  r e p r e s e n t e d  by the  f o l l o w i n g  

m i x e d - i n t e g e r  n o n l i n e a r  p r o g r a m m i n g  ( M I N L P )  p r o g r a m ,  

z = m i n  c r y + f  (x) 

s.t. g(x)+By<~O, (p)  

x c X c R " ,  

m y 6  U c  R+, 

w h e r e  the  n o n l i n e a r  f u n c t i o n s  f :  R "  ~ R and  those  in the  vec to r  f u n c t i o n  g :  R n ~ R p 

are  a s s u m e d  to be c o n t i n u o u s l y  d i f f e r en t i ab l e  a n d  c o n v e x  on  the  n - d i m e n s i o n a l  

c o m p a c t  p o l y h e d r a l  c o n v e x  set X = {x: x c  Rn, A~x<~ a~}; U = { y :  y 6  Y, in teger ,  
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A2y <~ a2} is a finite discrete set, for instance the non-negative integer points of some 
convex polytope, and for most applications Y corresponds to the unit hypercube 
Y={0,  1}". B, A~, A2, and c, a~, a2 are respectively matrices and vectors of  
conformable dimensions; the vectors are column vectors unless specified otherwise; 
finally, some of the rows in B may be the zero row vector, which then defines 
nonlinear constraints in only the continuous variables. 

The mathematical programming structure given by program P, with all of its 
variants (e.g. only f nonlinear, only g nonlinear), arises in several areas of  practical 
interest. The applications include the synthesis problem in chemical process design 
[ 11, 13, 25], the optimal retrofit design of batch processes [46], the scheduling of 
units in a process industry powerhouse for satisfying utility demands at minimum 
operational cost [16], the mixed-integer nonlinear programming approach to the 
marketing problem of planning the optimal positioning of a new product in a 
multiattribute space [1, 18, 34, 47], the optimal unit commitment problem in an 
electric power system [6, 32, 38], the planning of facility investments for electric 
power generation [7, 8], the problem of determining the best treatment plant 
configuration for a regional water quality control management system [24], and the 
topological optimization of structures for designing transportation networks [29, 33]. 

MINLP problems belonging to the class described by program P can be solved 
using several different well known techniques. Such procedures include the general- 
ized Benders decomposition method of Geoffrion [20, 5], the alternative dual 
approach of  Balas [2], or a branch and bound search with solution of a nonlinear 
programming (NLP) subproblem at each node of the enumeration tree (see [27, 28, 
17] for instance). Some of these methods address MINLP problems of a class more 
general than the one in this paper (e.g. nonseparability of continuous and discrete 
variables), and therefore one cannot expect that they will necessarily perform in 
the most efficient way when solving program P. Since there are no specific algorithms 
for efficiently handling MI NLP problems in the particular class defined by program 
P, it is the purpose of this paper to propose an outer-approximation algorithm that 
fully exploits the linearity of the discrete variables and the convexity of the con- 
tinuous valued functions. 

The main ideas in the proposed algorithm are as follows. Because of the linearity 
of the discrete variables, the continuous and discrete feasible spaces of program P 
can be independently characterized. Furthermore, the continuous space corresponds 
to the intersection of a finite number of compact convex regions, where each region 
is determined by a different discrete parameterization. Hence, linearity in the 
continuous variables can be introduced into the problem P ifa polyhedral representa- 
tion is provided for each of those compact convex sets. To achieve this goal, 
outer-approximation [ 19] of a convex set by intersection of its collection of support- 
ing hal f-spaces can be used. That outer-approximation will define the master program 
in the procedure as the equivalent mixed-integer linear programming (MILP) rep- 
resentation of the original MINLP program P. Because of the potentially many 
continuous points required for outer-approximation, a strategy based on relaxation 
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[19] will be implemented to build up increasingly tight relaxations of the master 
program which will select discrete combinations. The continuous points for outer- 
approximation will be given by the optimal primal solutions of convex nonlinear 
programs that represent the projection [19] of problem P onto the discrete space. 
The proposed algorithm consists then of solving an alternating finite sequence of 
nonlinear programming subproblems and relaxed versions of  a mixed-integer linear 
master program. The algorithm can also be viewed as a cutting plane method for 
solving the general convex programming problem where some of the variables are 
discrete and appear as in program P. 

From the above discussion it follows that the outer-approximation algorithm and 
the generalized Benders decomposition method of Geoitrion [20] make use of the 
same mathematical tools, namely, projection, outer-approximation and relaxation. 
The main difference between these procedures however, is the type of outer- 
approximation to define the corresponding master program. While in the outer- 
approximation algorithm the optimal primal information of the subproblems is used 
to define a mixed-integer linear master program, in the generalized Benders 
decomposition method the optimal dual information is used, such that the master 
program corresponds to an initially poorly constrained pseudo-pure integer linear 
program (i.e. a program involving only discrete variables and one artificial upper 
bound continuous variable). A detailed discussion of the relationship between the 
proposed algorithm and the generalized Benders decomposition method of Geoffrion 
[20] is given in Duran [11]. 

This paper presents the ideas underlying the proposed outer-approximation 
algorithm and its basic properties such as convergence and optimality. Implementa- 
tion considerations, mainly for efficiently solving the sequence of relaxed versions 
of  the master program, are briefly discussed. Finally, to gain insight into the algorithm 
properties and to illustrate its computational performance, numerical results are 
reported for several example problems which were also solved with the generalized 
Benders decomposition method as presented by Geoffrion [20], and a branch and 
bound procedure. Based on these results, an interesting trend that was identified is 
that the lower bounds predicted by the outer-approximation algorithm were tighter 
than the bounds predicted by generalized Benders decomposition. A theoretical 
proof  on the relation of these bounds is given for the first iteration. The complete 
analysis is given in [11] and [12]. 

2. Outer-approximation 

From a conceptual point of view, algorithms based on outer-approximation [19] 
describe the solution region of a given problem as the intersection of an infinite 
collection of  sets. The present algorithm will make use of outer-approximation based 
on characterization of convex sets (see [37, 40] for instance) through intersection 
of supporting half-spaces. The objective of the approximation will be to provide a 
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polyhedral representation of the continuous feasible space of program P. Such a 
representation will render linearity in the continuous variables, and enable to replace 
the difficult MINLP program P with a mixed-integer linear programming (MILP) 
problem. 

Since f in the objective function is convex, so is [ f - ~ z ] ,  where ~ is a scalar 
variable. Without loss of  generality, problem P can then be rewritten as the following 
program with a linear objective function: 

z = rain cTy + 

s . t .  f(x)-~<~O, (Po) 

g(x)+ By<~O, 

x c X ,  y c  U, ~[ . fL , . fu] .  

where .fL and .fu are valid finite bounds given by fL = rain{f (x): x c X}, and Ju = 
max{f  (x): x c X}. It will be assumed throughout this paper that the following 
suitable form of Slater's constraint qualification holds; namely, there exists a point 

~ c  X such that g(x) + By < 0, for each y ~ U c~ V, where 

V=  {y: g(x)+ By<~O for some xE X}. (1) 

Let F(y)  define for each y c U c~ V the associated continuous feasible space in 
program Po, 

F(y) = {x, l~: x ~ X, ~ c [ f~ . , fu] , f (x) -  I~ <~ O, g(x) + By ~O}. (2) 

Due to convexity of the functions i n f a n d  g, and to the compactness of the  polyhedral 
convex set X, F(y)  for each y ~ U c~ V is a closed convex set [37, 40]. Therefore, 
the natural polyhedral representation [37, 40] of  F(y) is given by the intersection 
of its collection of homogeneous half-spaces. By the assumed linearity of  the discrete 
variables, different y assignments lead only to different locations in the space for 
the regions F(y). Therefore, intersecting the polyhedral representations of  F(y) for 
all y c U cn V and using the differentiability property of the functions, the feasible 
region of the program Po can be defined by the following infinite set of  supporting 
half-spaces, 

O ~ f ( x ) - I ~ > ~ f ( x i ) + V f ( x ' ) i ( x - x i ) ~ t z  } 
, all x ' c  X ,  

0 >~ g(x) + By >! g(x ' )  + Vg(x)T(x - x )  + By (3) 

x e X ,  p~e[.fL,fu], y e  U. 

Here, V.f(x i) is the n-gradient vector and Vg(x *) the n xp  jacobian matrix 
evaluated at given x '  c X. The half-spaces in (3) correspond to the approximation 
of the convex functions in f and g by the pointwise maximum of the collection of 
their linear supports. Examples of outer-approximation at a finite number  of points 
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are i l lustrated in Figs. 1 and  2. In Fig. 1, H,1,  H,2,  and H21, H22, cor respond  to 
suppor t ing  half -spaces  o f  g, and g2, respectively,  at points  x, and x2. 

Ou te r - app rox ima t ion  o f  the feasible space of  p rogram P0, as defined by (3), 
renders  l ineari ty in the constraints  and object ive function of  P, and leads to the 

xg' g5 

gz 

N Z ~  "n'-" gl 

x 1 

Fig. 1. Outer-approximation (at two points) of a convex set in R 2. 

f(x) 
ul~ f(x) 

x 1 l 

Fig. 2. Outer-approximation (at four points) of a convex function in R ~. 
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following semi-infinite mixed-integer linear programming formulation, 

z =rain cTy+/x 

s.t. f (x~)+Vf(x'Ir(x-x~)-l~<~O } 
g(x )+Vg(x )V(x-x ' )+ Bv <-0 , a l lx~cX,  (Pt) 

x e X ,  /xe[ fL , fU] ,  y e  U, 

By the same outer-approximation procedure above, it can easily be shown that 
V, the set of y variables that yield non-empty continuous feasible regions, has the 
equivalent representation, 

V=-{y: g(x~)+Vg(xi)V(x-xi)+By<~O all x i e X ,  for some x c X }  (4) 

and that under this definition V is embedded in the constraint set of program Px. 
The following lemma, which can be easily proved [ 11], establishes the equivalence 

between problem P0, and the semi-infinite mixed-integer linear program P~. 

Lemma 1. Let the assumptions with respect to.functions and sets in problem Po hold, 
then problems Pt and Po are equivalent. 

3. Master program 

Although problem P1 is a mixed-integer linear programming program, it involves 
an infinite number of constraints and is in general difficult to solve. However, 
advantage can be taken of the fact that the set U c~ V is discrete and finite. That is, 
the concept of projection [19] of program P onto the discrete space can be used to 
identify selected continuous points x ~ for outer-approximations in problem P~. The 
projection of program P onto y is given by, 

z = min [ infim.um{cTy + f(x): g(x) + By<~ O} ] ~" (5) 

s.t. y ~  Uc~ V. 

It can easily be shown that this projected problem is equivalent to program P. For 
given y~ c U c~ V, the infimal value function of the "inner" problem in (5) is precisely 
the optimal value of program P for fixed y~. Further, by the assumptions in the 
problem, for each y~ E U c~ V the infimum is attained and corresponds to the optimal 
value z(y ~) of the nonlinear programming subproblem, 

z(y i) = cry ~ + min f (x)  

s.t. g(x)+By'<~O, (S(y)) 

xEX.  
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It is clear that program P is not a convex program in x and y jointly, but fixing y 
renders it so in x for S(y). Thus, the first observation is that for y; to be a candidate 
for the optimal solution to problem P, y~ must be such that S(y ~) is feasible (i.e. 
y; c U c~ V), and then the best continuous point x ~ associated with yl is the optimal 
solution of the corresponding subproblem S(y~). Secondly, according to theorems 
for characterization of integer polyhedra [22] and linear programming theory, the 
mixed-integer solution to problem Pj is such that the integer part y~ is an extreme 
point of  the convex hull of  feasible integer solutions ( C o n v ( U n  V)), and the 
continuous part is given by the boundary point (x = x ~, f(x~)) in the linear support 
to f ( x )  (3) associated with y(  Therefore, as given by projection of program P onto 
y-space, the finite set of continuous points x ~ to be considered for outer-approxima- 
tion in problem P1 are actually the optimal solutions of the subproblems S(y ~) 
defined for the finite number of all integer points y~ c U ~ V. The master program 
in its final form is then given by the following mixed-integer linear programming 
program, 

z = m i n  c ry+ ix  

s.t. f ( x ' )+Vf (x i ) - r (x -x i ) - i x~O } 
for all i e T, (M) 

g ( x  ) + V g ( x ' ) ~ ( x  - x ' )  + By <- o " 

where 

x ~ X , / z  e [fe ,  fu],  y~  U 

T = { i :  x ~ optimal solution to S(y~), all y ~  U ~  V}. (6) 

Since the feasible space of problem P is assumed nonempty and compact, finite 
optimal solutions exist for both programs P and M. The following theorem estab- 
lishes the relation between these optimal solutions. 

Theorem 1. (x*, y*) is optimal in P iff (x*, y*) is optimal in M with tx * =f (x*) .  

ProoL Assume that (x*, y*) is optimal in 19. Then, y* c Uc~ V and (x*, IX*) ~ F(y*),  

where Ix* = f ( x* ) .  Further, for (x*, y*) the infimum value is attained in the projected 
problem (5), i.e. z = cry* +f(x*) <~ cry +f(x) for all x, y. Since (x*, IX*) c F0,*) ,  
y * c  U c~ V, the outer-approximation half-spaces in (3) hold for all x i, i c T. But 
x * = x  k, k~ T, and hence (x*, ix *, y*) is feasible in program M. Therefore, since 
(x*,/z*) c F(y*),  it follows that 0 = f ( x * )  -IX*/> sup{f(x i) +Vf(xi)r(x* - x  i) - ix* :  
all i c T}. The pointwise maximum must be achieved at a boundary point (x~,f(x')), 
otherwise the result follows for the unconstrained minimum. Therefore, for y* c U 
V, x* optimal in S(y*) implies z =  cVy*+lz *, Ix* =f (x*) .  The proof  in the other 
direction is similar. [] 

Although the master program M involves outer-approximation at only a finite 
number of well defined points x i, it has the drawback that it requires predetermination 
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of the outer-approximations associated with all possible values y i c  U ca V. To 
circumvent that difficulty a strategy based on relaxation [19] can be used. The 

relaxed version of the master program to be solved at iteration k can be formulated 
as 

where 

z k = min cry  + tz, 

s.t. ( x , y ) ~ f 2  k, 

x 6 X ,  y e  U, / z~ [ fL , fu ] ,  

(M k) 

g2 k = {x, y: f (  x i) + V f (  xi)  V( x - x i) - Ix <~ O, 

g (x  i) + V g ( x i ) T ( x -  x~) + By<~ O, all i ~ T k ~ _ T}, (7) 

T k = {i: x ~ optimal solution to S(y~), i =  1 , 2 , . . . ,  k}. 

The use of  relaxation as the strategy for solving program M then implies: (i) at 
iteration k, solve the relaxed master program M k that ignores all but some of the 
constraints in M (i.e. ignores i E { T \  Tk}). (ii) If  the solution to M k, (x, yk+l), does 

not satisfy certain termination criteria, solve the subproblem S ( y  k~ i) to determine 
the continuous point x k ~-1 for outer-approximation. (iii) Construct the new relaxed 

master M k+l by intersecting the feasible space at iteration k with the set of  closed 
half-spaces associated with x k+l (i.e. T k'+l= T k U  {k+ 1} in (7) to define Ok+~). 

4. Bounding properties 

Let G and 1 V'k denote respectively the feasible spaces of  problems Po and the 
relaxed version M k of the master program M, 

G = { x , y :  x c  X,  y c  U , f ( x ) -  i~ <~O, g ( x ) +  By<~O}, (8) 

F k -- (X x U) ~ S2 k. (9) 

It then follows from (3) that for any relaxed master program M k, the corresponding 
outer-approximation set F k overestimates the feasible set G as stated in the following 
lemma [11]: 

Lemma 2. G c_ f fk .for all k >! 1. 

Therefore, according to Lemma 2, in an outer-approximation/relaxat ion strategy 
problem Po: min{cVY+/x: (x, y)E G, /x ~ [fL,fU]} will be solved via a sequence of 
approximating problems, 

Mk:  m i n { c T y + l x : ( x , y ) ~ F k ,  l z c [ f t_ , fu ]} ,  k = l , 2 , . . . ,  

where G ~ F  k ~ F  k - l c _ . . . C _ F  1. (10) 
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From the concept of  problem relaxation [19] it then follows that 

min{cry + ~: (x, y) c G, ~ ~ [fL,fU]} ~> min{cTy + P-: (x, y) c F k, 

/.z ~ [ f L , f v ] } ~  > ' ' "  >~min{cry+p~: (x,y)~F' , l~c[fL, fu]}.  (11) 

That is, the sequence of optimal objective function values z k, found as solutions to 
successive relaxed master programs M k, must be a monotone nondecreasing 
sequence of  lower bounds on the optimal value of  the original M I N L P  problem P. 
Since subproblem S(y ~) is obtained from program P by fixing y~c Uc~ V, S(y ~) is 
a restriction to P and the following also holds, 

z = min{ cXy + f ( x ) :  (x, y) ~ G} <~ z (y)  

= min{cXy ~ + f ( x ) :  x ~ X, g(x) + B) ,~ ~< 0). (12) 

That is, for any y '  ~ U c~ V the optimal objective function value-of subproblem S(y ~) 
provides a valid upper bound on the optimal value of problem P. Obviously, the 
sequence of  values z(y ~) need not be monotone nonincreasing. 

The bounding properties discussed above can be used both to enhance the 

algorithm efficiency and to provide termination conditions. In particular, without 
loss of  generality the constraint p. ~ [fL,fU] in the master program can be replaced 

by the stronger valid bounds,  

k - I  Z # z <~ cWy+p, < (13) 

where z k- t - -  min{cTy+# :  (x, y ) c  Fk-~}, and z* is the current best upper bound. 

Although the constraint Zk-~<~Cxy+l~ is redundant,  it will be considered here 
because it may act as a weak cut to avoid needless enumeration in successive relaxed 

master programs. 

5. Infeasible subproblems 

For y ~  U to be a candidate for the optimal solution to program P, y must be 
such that the y-parameterized subproblem S(y) is feasible. In other words, the 
condition y c U c~ V must hold, where by (4) V has the equivalent representation, 

V=-{y:g(xi)+Vg(xi)T(x-x ' )+By<~Oallxi6X,  f o r somex~X} .  (14) 

It should be pointed out that because of the relaxation strategy employed in the 
algorithm, as iterations proceed subsets of  the constraints in V, as given in (14), are 
being automatically generated from the outer-approximation half-spaces (3) associ- 
ated with the y ~ U c~ V that have already been tested. That is, at iteration k in the 
algorithm a relaxation V k of the set V will be present in the relaxed master program 
M k, and will be given by 

vk={y:g(xi)+Vg(xi)T(x--xi)+By<~O, al l icTk,  f o r somex6X} .  (15) 
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However, for each iteration k the set V k is an overestimation of V, and therefore 
the selection in program M k of an integer combination y leading to a feasible 
subproblem S ( y )  (i.e. y 6 V), cannot always be guaranteed. Hence, if a y c V k such 
that y ~ V is obtained as solution to a relaxed master program version M k, the 

selection of that y has to be prevented in subsequent iterations. The easiest way of 
performing this task, without altering the bounding properties in the algorithm, is 
to eliminate y ~ V by adding appropriate half-spaces to V k so as to construct the 
more constrained set V k+' to be considered in the subsequent program M k+~. The 
natural tool for testing whether or not y~ c V k is also in the set V is the y Cparametrized 
subproblem S ( y  ~) itself. When optimizing an infeasible subproblem S(y~) ,  any NLP 

algorithm will yield an associated result x~c X (e.g. minimization of constraint 
violations). Therefore, the following set of supporting half-spaces can be added to 
V k such as to define V k+l, 

f ( x i ) §  , g ( x i ) + V g ( x ' ) T ( x - - x i ) + B y < ~ O .  (16) 

It is clear that the constraints in (16) eliminate from consideration not only the 
point (x ~, y~) but other infeasible regions. However, the constraints in (16) do not 
guarantee that the y i~  V will not be selected again (i.e. y~c vk+~), since they could 
be satisfied for some x ~ x ~, x c X ,  y~ ~ V k + ~ according to 

0 < g ( x  ~) + By  ~ >1 g ( x  i) + Vg(X')T(X -- X ~) + B y  ~ <~ O. 

Hence, in order to totally eliminate y~ ~ V such that yi c V k from further consider- 
ation, an integer cut for deleting y~ must also be introduced. 

6. Algorithm 

The outer-approximation algorithm can now be formally stated, All the hypotheses 
implied in the development,  in particular the ones which ensure that P has a finite 
optimal solution, are assumed to hold. The algorithm is then as follows: 

Define for given xi~ R" 

C ( x  i) = {x, y: f ( x  i) + V f ( x i ) T ( x  -- X i ) -- I ~ <~ O, 

g ( x i )  + V g ( x ~ ) - r ( x -  x i )  + By<~ O, I~ ~ R1}. 

Step 1. Set s ~  m, lower bound z ~  upper  bound z*=+co ,  i = l .  

Select an integer combination ),to U, or y t~  U c~ V if available. 
Step2 .  Solve the yLparameterized NLP subproblem S()/) :  

z ( y  i) = em y + min f ( x )  

s.t. g ( x ) + B y i < ~ O ,  [ S ( y i ) ]  

x ~ X .  
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One o f  the fol lowing cases must  occur:  
(a) Problem S(y  ~) has a finite optimal solution (x i, z(yi)),  where z(y ~) is a valid 

upper  b o u n d  on the optimal value o f  the M I N L P  program P. 

Update  the current upper  bound  estimate: z* = min{z*, z(y~)}. 

I f z * = z ( y  i) s e t y * = y i ,  x * = x  ~. 

Set S2 g = ~2 ~-~ c~ C(xi) ,  and go to Step 3. 

(b) Problem S(y  ~) is infeasible (i.e. y ~  V) with associated result x ~. 
Derive and add to M ~ an integer cut to eliminate yi from further consideration.  
Set ~2 i = ~2 i-1 ~ C(xi).  

Step 3. Solve the current relaxed M1LP master  program M i. 

z~ = min cVy+~ 

s.t. ( x , y ) ~ g I  ~, 

Zi-'<~cVy+l~ <Z * ( M ' )  

x ~ X ,  y o U ,  ~ R  ~, 

y c (set of  integer cuts). 

One of  the following cases must occur:  

(a) Problem M ~ does not have a mixed-integer feasible solution, STOP. 

The opt imal  solution to the original M I N L P  program P is given by the current 

upper  bound  z* and the variable vectors (x*, y*). That corresponds to the optimal 

solution o f  the y*-parameter ized  NLP subproblem as defined in Step 2a. 

(b) Problem M ~ has a finite optimal solution (z ~, x, y);  z j is an element in the 
mono ton ic  sequence o f  lower bounds  on the optimal value o f  the M I N L P  program 

P;  y is a new integer combina t ion  to be tested in the algorithm. 

Set y~+~=y, and i =  i +  1 to indicate a new iteration. 

Return to Step 2. 

The above iterative procedure  indicates that the algorithm consists o f  solving an 

alternating sequence o f  nonl inear  p rogramming  subproblems S(y)  and relaxed 

mixed-integer linear master  programs M ~. It should  be noted that if all the functions 

in problem P were linear, the relaxed master  program at the first iteration would  
be identical to the original problem, and hence the above algorithm would terminate 

in at most  two iterations. For the nonl inear  case, the algorithm converges in a finite 

number  o f  steps to the optimal solution o f  problem P as shown in the next section. 

7. Convergence and optimality 

The convergence o f  the proposed  algori thm can be proved based on at least two 

different criteria. The first criterion rests on  the bounding  properties derived for the 
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procedure. The second one is standard and relies on the finiteness of  the set U of 

integer constrained variables. 
In the i-th relaxed master program M ~ (iteration i), the constraint z ~-~ <~ c r y + i x  < 

z* explicitly considers the bounding properties in the procedure (see Section 4), 
and the lack of a feasible mixed-integer solution at step 3a of the algorithm implies 
the condition cay + I~ >- z* for all of  the remaining solutions because of the monoton- 
icity of the sequence of lower bounds. That condition indicates crossing of lower 
(z ~) and upper  (z*) bounds, and thus convergence of the algorithm. The optimal 
solution (x*, y*) of program P is then given by the current best upper bound z* 
corresponding to the optimal solution x* of the y*-parameterized subproblem S(y*) .  
Optimality of  this solution can be proved if in the constraint cry  + tx < z* the equality 
is also considered. The termination criterion at step 3a of the algorithm would then 
be to Stop when a repetition of discrete variable y* is obtained. That is because in 
the next iteration the equality z ~ = cT y  * + la, * = Z* would hold with p~* - f ( x * ) .  Under 
the above termination criterion, and considering the constraint z i-~= cTy + Ix = z*, 

the relaxed program M ~ can be expressed in terms of only the last outer-approxima- 
tion, namely the one at x*, such that when solving the program 

z ~ = min cTy + ~, 

s.t. f ( x * ) + V f ( x * ) V ( x - x * ) - t ~ < ~ O ,  
[(M')*] 

g(x*) + Vg(x*)T(x - x*) + By <~ O, 

z ~ = z*, x c X, y c- U r~ (integer cuts), tz r R ~, 

the algorithm will terminate at this stage (y~+' = y*, y '  =y* ,  t < i+  1). 

Theorem 2. I f  (x*,  y*)  is optimal in the relaxed version ( M i )  * jbr  some i, i.e. (x  ~+ l, 

yg+m), then (x*, y*) is also optimal in problem P. 

Proof. Note that our assumptions on the problem ensure the existence of an optimal 
solution (x*,y*) .  Also, since x* is optimal solution to subproblem S(y*), by 
convexity the inequalities in (M~) * hold for any x e X = {x: x c R ~', A~x ~ a~}, and 
so (x*, y*) is feasible to (M~) *. Both problems S(y*)  and (M~) * satisfy the given 
form of the Slater's condition. Then, the necessary and sufficient conditions for 
(x, y*) to be optimal in (M~) * is that 3A c R ~, u ~ R p, v ~ R", such that x, p~ minimize 
L, where 

L = cTy * + tz + h I f (x* )  + V f ( x * ) T ( x  -- X*) -- tZ ] 

+ u-r[g(x *) + V g ( x * ) T ( x  -- X*) + By*] + vT[A ,x  -- as] 

and satisfy 

f ( x * ) + V f ( x * ) T ( x - x * ) - t x < ~ O ,  g ( x * ) + V g ( x * ) V ( x - x * ) + B y * < ~ O ,  

a~x*-a~<~O, A [ f ( x * ) + V f ( x * ) T ( x - - x * ) - - u ] = O ,  

u r [ g ( x * ) + V g ( x * ) ' r ( x - x * ) + B y  *] =0,  v T [ A , x * - - a , ]  =0,  

A, U, V ~ 0 .  
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From the lagrangian function minimization it then follows that 

OL OL 
- - = 0  ~ A = I ,  - - = 0  =:~ AVf(x*)+Vg(x*)u+AV~v=O. 
O/~ Ox 

Thus if x* is optimal to (Mi) *, one can set x = x* in the above optimality conditions 
and determine 

Vf(x*)  + Vg(x*)u + ATv = O, 

f (x*)  = p., g(x*)+By*<~O, Atx*-a~<~O, 

uW[g(x*)+ By*]=O, vT[A,x*--a,]=O, 

u>~O, v~O, 

that in turn imply 

L* = cTy * +f (x* )+  uT[g(x * ) + By*] + oT[A iX*--a,] = cTy * +f(x*)  

which are the optimality conditions of subproblem S(y*) with optimal solution x*, 
z*=  cTy * +f(x*) .  Hence, according to projection, (x*, y*) is the optimal solution 

of the program P, since if y r y* were optimal solution to P with z < z* that would 

imply a contradiction to the assumption that z*=  z ' ~  < z = min{cTy+f(x):  ( x , y ) c  
G}. [] 

It is clear that the number of iterations required for convergence to the optimal 

solution is dependent on the particular nature of the problem. For the class of 

programs addressed in this paper, the finiteness of the outer-approximation 

algorithm rests on the fact that the set U is a finite discrete set as given by the 

assumptions in the problem. 

Theorem 3. Assume that all of the assumptions and properties in the procedure hold, 
in particular Theorem 2 and the bounding properties implied by Lemma 2. Given that 
U is a.finite discrete set, the outer-approximation algorithm terminates in a finite number 
of iterations. 

Proof. The proof is standard and the main tools are the facts that U is finite, and 

that no y can ever be selected twice as a solution in the sequence of relaxed master 
programs at step 3 of the algorithm. If repetition of integer assignments were allowed, 

bounding properties and Theorem 2 would imply convergence to the optimal 

solution. Note that the worst performance of the algorithm would be the total 

enumeration of the integer elements in U, which is finite. [] 

8. Implementation considerations and refinements 

The definition of the master program is the main feature that differentiates the 
proposed outer-approximation algorithm from similar algorithms such as the 
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generalized Benders decomposition method. The relaxed versions of  the MILP 
master program can be expected to provide good global approximations to the 
original nonlinear program, and hence good predictions for the lower bounds. This 
could have the advantage of reducing the number of iterations to find the optimal 
solution. However, since the relaxed master programs will grow in size as iterations 

proceed, the solution of the sequence of MILP problems can become the major 
bottleneck in large-scale applications. Although efficient codes are available [41] 
for solving MILP programs, the efficiency of the algorithm can be enhanced if the 
following considerations are taken into account. Firstly, integer cuts can be derived 
and added at each iteration such as to reduce the enumeration effort when solving 
subsequent relaxed master programs M ~. Secondly, a very desirable refinement 
would be to keep the size of the programs M ~ as small as possible by using a 
constraint dropping scheme. Thirdly, the solution of the relaxed master problem 
could be prematurely terminated as soon as an integer solution is found that lies 
below the current upper  bound. The latter option is clearly trivial to implement, 
but the first two require some explanation. 

Integer cuts 

It has been shown [3] that cutting planes derived from disjunctions associated 
with binary assignments in a partial search tree, often provide better bounds than 
the LP relaxation at each node. In any enumerative procedure it is possible to 
identify partial assignments (y)p of discrete variables associated with fathomed 
nodes whose corresponding subproblems are infeasible. Therefore, if for instance 
a branch and bound method is used for the solution of the increasingly constrained 
MILP problems M i, the information on the infeasible fathomed nodes can be used 
to generate integer constraints that will eliminate those partial assignments from 

consideration when solving master versions of subsequent iterations. Other types 
of weak integer cuts that could be derived are the ones that will ensure that those 
previously considered integer combinations (for both infeasible and feasible NLP 
subproblems) cannot be encountered again. The two types of cuts described above 
may help expediting the enumeration procedure in subsequent relaxed master 
problems. For the case when the integer combination is an element of some unit 
hypercube (i.e. binary variables), the following well-known integer cut [4] will 
perform the above tasks. 

Lemma 3. Given any integer combination y '  = {y~: j = 1 . . . .  , m} ~ {0, 1}'" with index 
se t sBi={ j :  i 1}, NBi={ j :  ' 0},s.t. IB ' I+ ]NB i] theintegerconstraint y j = = In,  y j =  

Y Y.i- Y y ~ < [ B ' l - I  
j e  B' 3E NB ~ 

will be violated only by y~ and no other yk # y~. 

Remark 1. For deriving integer cuts to eliminate partial assignments, the integer 
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combina t ion  to be considered is a partial solution (y)p in a reduced integer space 
(i.e. (y )p~{0 ,  1} r, r ~ m ) .  

The above  integer cuts are easy to derive and implement.  An example o f  these 

cuts is given in Fig. 3, where cuts are derived from the infeasible nodes in an 

enumera t ion  tree. Note  that these cuts are valid because the M t L P  problems M i 

will remain infeasible at these nodes in subsequent  iterations. The generat ion o f  

integer cuts should  be in t roduced at Steps 2a and 3b of  the algorithm for eliminating 
y i ~  U c~ V and partial assignments,  respectively. 

�9 Fathomed Node 
In leger Culs 

~-o 
Y,,l "o ~ Y3Y~ Y2 Y,,, ~ o 

y4 = '1 

Y3" ( 

,~ -o /  ", , ,<.~ '2 '~ 4 o 

Yt" t 

y t=  0 

Fig. 3. Integer cuts from infeasible nodes in a search tree. 
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Additional integer cuts that could also be considered to expedite the solution of 
the relaxed master problem are cuts similar to the ones that have been proposed 
by Crowder et al. [10] and Van Roy and Wolsey [45] to tighten the constraint set 
in integer linear programming problems. 

M I L P  programs: Dropping constraints 

Provisions for keeping the size of  the relaxed master programs as small as possible 
are clearly desirable to reduce the computational effort in Step 3 of  the algorithm. 
The nature of  those provisions must be such that they will not upset the inherent 
convergence properties of  the proposed method. One alternative is to apply a 
mechanical analysis procedure to reduce or presolve each MILP problem M i prior 
to its actual solution (e.g. see [9, 26, 41]). Another possibility is to develop conditions 
for a constraint, dropping variant of  the algorithm. 

Since the proposed outer-approximation method can be regarded as a cutting 
plane procedure [31], a constraint dropping scheme could be considered based on 
the extensive and excellent work that has been done in this area for cutting plane 
algorithms that address nonlinear programs without integrality restrictions (see for 
instance [14, 42, 43, 44]). Further, since Slater's constraint qualification is assumed 
to hold for problem Po, the strategy for dropping constraints given in the central 

cutting plane algorithm of Elzinga and Moore [15] is also interesting. Precise 
conditions to drop constraints from time to time without adversely affecting conver- 
gence properties in outer-approximation methods have been reported for instance 
in Mayne et al. [353, Hogan [30], and Gonzaga and Polak [23]. 

None of the above possibilities for trying to keep the size of the relaxed master 
programs as small as possible have been implemented yet in our procedure, but 
they would certainly be worth exploring. 

9. Test problems 

Four example problems were solved to illustrate the computational performance 
of the proposed outer-approximation algorithm. The actual formulations and data, 

and a brief discussion of  the underlying physical meaning for the test problems are 
given in Appendix II. The first three problems in the set are simplified versions of  
process synthesis problems [11, 13], where the goal is to simultaneously determine 
the optimal structure and operating conditions of  a process that will meet certain 
given design specifications. The fourth example corresponds to a modest extension 
of the known [1, 18, 34, 47] M I N L P  problem formulation for determining the 
optimal positioning of a new product in a multiattribute space. Note that problem 
No. 4 is actually a maximization problem, and to have a common framework in the 
next discussion results will be reported for the equivalent minimization formulation 
(i.e. minimizing the negative of the objective function). Table 1 summarizes the 



M.A. Duran, I.E. Grossmann / Mixed-integer nonlinear programming algorithm 

Table 1 

Parameters for test problems 

323 

Problem Total number Number of Total number Number of 
No. of variables binary of constraints" nonlinear 

(n + rn ) variables ( rn ) constraints (p) 

1 6 3 6 2 
2 11 5 14 3 
3 17 8 23 4 
4 30 25 30 25 

Without including upper and lower bound.constraints for the continuous variables. 

parameters in the example problems characterizing size (i.e. number  of variables 
and constraints), and degree of complexity (i.e. number of  integer variables and 
nonlinear constraints). 

The example problems were also solved using the generalized Benders decomposi- 
tion method of Geoffrion [20] and a depth-first branch and bound procedure. It 
should be pointed out that versions without built-in refinements were used for all 
of  the above methods. The objective in solving the test problems with the other two 
methods was not to perform an extensive numerical comparison with the proposed 
outer-approximation algorithm, but rather to identify some general computational 
trends. Although the problems vary in size and complexity, the sample is small and 
does not include many of the possible variants on the mathematical structure of the 
class. Therefore, based on the results of  the present numerical experiments, no 
definite claims can be made about the superiority in time-efficiency of the proposed 
algorithm for the whole class of programs P. However, as will be mentioned later 
in the paper,  the present limited numerical results have motivated an interesting 
generalization about the quality of  the lower bounds predicted in the outer-approxi- 
mation algorithm. 

In relation to the implementation of the procedure, the example problems were 
solved using a preliminary version of the outer-approximation algorithm that does 
not include the refinements for integer cuts to eliminate partial assignments, nor 
for conditions to drop constraints in the MILP programs. The solution of the 
nonlinear programming (NLP) subproblems was obtained using the reduced 
gradient method (with a projected langrangian approach for nonlinear constraints) 
as implemented in the computer  code M I N O S / A U G M E N T E D  [36]. The mixed- 
integer linear problems, associated with relaxed master programs, were solved with 
the computer  code L I N D O  [39], which uses a depth-first branch and bound pro- 
cedure. With respect to the generalized Benders decomposition (GBD) method, it 
was implemented as originally presented by Geoffrion [20] (i.e. adding to the master 
program only one new integer cut per iteration, such cut corresponding to the most 
violated (or nearly so) constraint). The NLP subproblems and relaxed versions of 
the pseudo-pure integer master program in GBD were solved using the codes MINOS 
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and LINDO respectively. The branch and bound (BB) procedure was implemented 

in a standard fashion and a depth-first strategy was used. For solving the MINLP 
example problems with BB, at each node of the search tree the corresponding 

integrality constraints were relaxed and the resulting NLP's solved using the code 

MINOS. 

In all of the above methods, the initial guess for an integer assignment was 

obtained rounding the solution of the MINLP problems with integrality relaxation. 

The rounding was performed such as to obtain a feasible associated NLP subprob- 

lem. Relevant numerical results describing the computational performance of the 

three methods are presented in the next section. The reported CPU-times correspond 
to a DEC-20 computer system. 

10. Numerical results---Discussion 

The main parameters characterizing the numerical performance of the proposed 
algorithm and the other two methods are reported in Tables 2 to 6. As seen from 

the results in these tables, for the test problems that were solved, the outer- 

approximation algorithm proved to be more efficient than the versions of both GBD 

and BB that were used. An interesting trend in the numerical behavior of the 

algorithm can readily be identified; namely, the fact that the number of iterations 

required by the proposed algorithm was always substantially smaller than by GBD 

(roughly 60% smaller on the average). Although the solution of each relaxed master 

program in the outer-approximation algorithm required a larger computational effort 

than the solution of the corresponding master program in GBD, the total computer 

times for the respective sequence of master problems were comparable in both 

methods. However, the smaller number of iterations required by the proposed 

method implied a smaller number of nonlinear programming (NLP) subproblems 

that had to be solved. This led to savings in total computational time of roughly 

Table 2 

Results example problem No. 1 

Branch and b o u n d  Generalized Benders Proposed 
(depth first) decomposition algorithm 

iterations 8* 4 2 

CPU-time(sec): # 

NLP subproblems 21.2 7.7 3.9 
Master problems 4.9 4.3 

Total 21.2 12.6 8.2 

optimal solution 
found at iteration 7* 3 1 

* Enumerated nodes, # DEC-20. 
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Table 3 

Results example problem No. 2 

325 

Branch and bound Generalized Benders Proposed 
(depth first) decomposition algorithm 

iterations 25* 8 3 
CPU-time(sec): # 

NLP subproblems 60.2 17.3 6.2 
Master problems 11.0 9.5 

Total 60.2 28.2 15.7 

optimal solution 
found at iteration 17" 6 2 

* Enumerated nodes, # DEC-20. 

Table 4 

Results example problem No. 3; yl = {yi:j = 1 , . . . ,  8} = [1,0, 0, 1, 0, 1,0, 0] 

Branch and bound Generalized Benders Proposed 
(depth first) decomposition algorithm 

iterations 43* 10 4 
CPU-time(sec): # 

NLP subproblems 128.1 28.2 7.4 
Master problems 19.7 21.4 

Total 128.1 47.9 28.8 

optimal solution 
found at iteration 36* 9 2 

* Enumerated nodes, # DEC-20. 

Table 5 

Results example problem No. 3; starting guess: optimal binary combination 3 ,1 = y* = [0, 1, 0, 1, 0, 1, 0, 1 ] 

Branch and bound Generalized Benders Proposed 
algorithm 

39* 8 3 

117.1 21.6 5.6 
13.5 15.0 

117.1 35.1 20.6 

iterations 
C PU-time(sec): 

NLP subproblems 
Master problems 

Total 

4 0 %  o n  a v e r a g e  w i t h  r e s p e c t  to  G B D .  R e l a t i v e  to b r a n c h  a n d  b o u n d ,  t h e  c o m p u t e r  

t i m e  s a v i n g s  w i t h  t h e  p r e s e n t  a l g o r i t h m  w e r e  7 4 %  o n  ave rage .  

W i t h  t h e  o u t e r - a p p r o x i m a t i o n  a l g o r i t h m  t h e  o p t i m a l  s o l u t i o n  in t he  f o u r  e x a m p l e s  

was  f o u n d  r o u g h l y  w i t h i n  t h e  first  h a l f  o f  t h e  t o t a l  n u m b e r  o f  i t e r a t i o n s .  In  c o n t r a s t ,  
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Table 6 

Results example problem No. 4 

Branch and b o u n d  Generalized Benders Proposed 
(depth first) decomposition algorithm 

-- 355 6 iterations 
CPU-time(sec): # 

NLP subproblems 
Master problems 

Total 

optimal solution 
found at iteration 

I 

I 

239.4 32.7 
835.4 971.0 

1074.8 1003.7 

# DEC-20, :I: up to iteration 35 no optimal solution was found. 

GBD had a tendency to find the optimal solution in the last few iterations. Finally, 

as problem size and degree of complexity increased, the differences in the computa- 

tional performance of the three methods increased in favor of the proposed 

algorithm. For the fourth example problem, which involves 25 binary variables and 
25 nonlinear constraints, the outer-approximation algorithm required only 6 iter- 

ations (optimal solution found at the third iteration). In almost the same total 

computational time, GBD performed 35 iterations in which no optimal solution 
was found. 

The main difference between the outer-approximation algorithm and GBD is the 

definition of the master program. While in the former method the master is a MILP 

program, in GBD it corresponds to a pseudo-pure integer linear program. Therefore, 

the above numerical behavior was a clear indication that the proposed sequence of 

relaxed master programs provided a better global approximation than GBD to the 
original M l N LP program. Evidence to support that was given by the "good"  quality 

of the sequences of lower bounds predicted by the outer-approximation algorithm 

in all of the example problems. In Fig. 4, the progress of the solution procedure is 

shown for test problem No. 3. For that problem, the first predicted lower bound 

was -105.6 with the present procedure, and -886.8 with GBD. Further, while with 
the outer-approximation algorithm the gap between lower bounds and optimal 

objective function value (68.0) was closed in four iterations, for GBD the progress 

was slower and required 10 iterations. For the fourth test problem (minimization 

case), the first predicted lower bound was -14.1521 with the proposed algorithm 

and -55.1904 with GBD. After 35 iterations, the lower bound in GBD was -52.3904 

which represents an improvement of only 6% toward the optimal objective function 
value (-7.7891). 

11. Theoretical comparison with generalized Benders decomposition 

In tlae four examples of the previous section the lower bound predicted at each 

iteration by the outer-approximation algorithm was always substantially higher than 
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the one predicted by the GBD method, A theoretical explanation that generalizes 

the above numerical behavior for the class of  M I N L P  problems addressed in this 
paper is given in Duran's  Ph.D. thesis [11] and is also available in the technical 
report [12]. In these references convex duality theory as applied to the NLP 
subproblems was used to prove that at each iteration the lower bound predicted by 
the relaxed master program in the outer-approximation algorithm will always be 
greater than or equal to the lower bound obtained in the GBD method. This in turn 
implies that the outer-approximation algorithm always requires fewer or the same 
number of  iterations than the GBD method when applied to problem P. 

The proof  presented by Duran [11] determines first the relationship between the 
feasible spaces of  the relaxed master programs in both methods. Then the relation 
among objective cuts (supports) is established in order to show that the lower bound 
predicted by the outer-approximation method is greater or equal than the one 
predicted by GBD for a given integer value. Finally, an inductive proof  is given to 
show that the relation between the two bounds is maintained at every iteration. All 

the different cases arising from the selection of integer values that lead to feasible 
or infeasible NLP subproblems are considered. The proof given in Duran [11] is 
rather lengthy, and therefore out of  the scope of this paper. However, Appendix I 
presents a condensed proof  for the particular case when the lower bounds of the 
two methods are predicted at the first iteration, and based on any initial feasible 
integer value for the NLP subproblem. 

It should be noted that the work per iteration in the outer-approximation algorithm 
is greater than the one in GBD due to the larger size of the relaxed master program 
in the former method. Therefore, despite the theoretical result on the relation of 
the lower bounds,  no conclusions can be drawn on the computing times that are 
required by the two methods. However, the outer-approximation algorithm would 
seem to be promising in applications where the NLP subproblems are expensive to 
solve since it will often require relatively few iterations. 

12. Conclusions 

A primal decomposit ion algorithm based on outer-approximation has been pro- 
posed for efficiently solving a particular class of  mixed-integer nonlinear program- 
ming problems. Outer-approximations of the continuous feasible region in the 
program have to be performed at only a finite set of well defined points. The 
proposed procedure alternates between nonlinear programming subproblems and 

relaxed versions of a mixed-integer linear master program. A study of the bounding 
and convergence properties of  the algorithm has been presented. Conditions for an 
efficient implementation have also been discussed. The computational performance 
of the algorithm was illustrated on a set of four example problems, which were also 
solved with the generalized Benders decomposition method and a branch and bound 
procedure. In the numerical behavior of the proposed procedure, a general trend 
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was observed consist ing main ly  of a relatively small  n u m b e r  of i terations required 

for solving each test problem.  An explana t ion  to that fact was found  in the good 

qual i ty of  the sequence of lower bounds  predicted by the relaxations of the MILP  

master  program. A theoretical  exp lana t ion  that generalizes the above observat ion 

is given in [11] and [12]. In this paper  it has been given only when the lower bounds  

of the ou te r -approx imat ion  and  G B D  methods  are computed  from a feasible NLP 

subprob lem at the first i teration. The pre l iminary  results that have been obta ined 

suggest that the proposed  algori thm is promis ing  as an efficient method for solving 

M I N L P  problems be longing  to the class considered in this paper, Because of the 

small  n u m b e r  of i terat ions that is required,  the proposed method should be par- 

t icularly sui ted to M I N L P  problems where the NLP subproblems are expensive to 

solve. 
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Appendix I: On the lower bounds predicted by GBD and outer-approximation at the 
first iteration 

Theorem A. Given is an initial integer value y~ ~ U c~ V in problem F'. I f  at y~ the lower 
bounds z(~ ~A, z~ B, are computed from the relaxed master programs q/" the outer- 
approximation and G B D  methods respectively, then z ~ ~;i~ Z I �9 

Proof. Since 3 , ~  U m  V and Slater's constraint qualification is assumed to hold, 
the stationary conditions of the lagrangian of S (y  j) yield (see proof Theorem 2), 

V.f(x ' )  + V g ( x ' ) u '  + ATv'  = 0 (A1) 

where x j and u ~ ~>0, v ~ ~>0, are the optimal solution and multipliers of S(y~). 
The feasible integer space in the relaxed master program of  the outer-approxima- 

tion method is given by 

V ~ a = { y : y c U ,  t FOA() '  ) IS non-empty} 

where the feasible continuous space F~A(y),  y c VOA, is given by 

F~A(y) : {x: x e X,  g ( x ' )  + V g ( x ' ) ( x  - x ' )  + By <~ 0}. 
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I OA(Y),  the following lnequallhes It then follows that for every y c VoA, a n d e v e r y x c F  ~ . . . .  
hold, 

g ( x ' ) + V g ( x ~ ) V ( x - x ~ ) + B y ~ O ,  A~x-a~<~O. 

Since u ~, v ~, are non-negative, 

( u ' )TVg(x  ')T(x -- X') <~ --(u ~)r[g(xt) + By], 

( v')3 A, (  x -  x ' )  <~ - (  v') r[ A , x  ' - a,]. 

Multiplying (A1) by ( x - x  I) and substituting the second and third term of this 
equation by the two above inequalities yields 

( u ' ) T [ g ( x ' ) +  B y ] + ( v t ) T [ A , x  I -a ,]<~ ~T f (x ' )T (x -x ' ) .  

Since (v~)l[A1x ~ - a l l  = 0, the above inequality also implies 

zGB; x , t y ) = c X y + f ( x , ) + ( u , ) r [ g ( x , ) +  _< OA B y ] -  z, (y, x) 

= c ~y + f ( x  ' )  + V f ( x ' ) r ( x  - x ~ ) 

( ;B t  ~, where z~ tY) and zOA(y, X) are the support functions in the relaxed master programs 
of the GBD and outer-approximation methods at the first iteration [11, 12]. Since 

1 y I the above inequality holds for every x6  FoA(y) at ~ VoA, it follows that 

�9 . . , F | / ,x z~;8(v)<~minz~ x ~  OAO) 

Therefore, since V~A~_ U, 

z - 'GB"  ) Z GB  V OA z~ n=min  "l tY <~ min , ( .)~<z, = min zl~ 

Hence, given an initial feasible integer value at the first iteration, the lower bound 
predicted by the outer-approximation method is greater or equal than the lower 
bound predicted by GBD. [] 

Appendix l h  Formulations of  the test problems 

Problems 1, 2 and 3 

The first three example problems in the set are related to the problem of synthesiz- 
ing a processing system [ l l ,  13, 25]. This problem is the one of simultaneously 
determining the optimal structural and operating parameters for a process so as to 
satisfy given design specifications. The first step in the M1NLP approach to the 
synthesis problem is to propose a superstructure that has embedded the competitive 
alternative process configurations to be considered (see Fig. 1A for the third example 
problem)�9 For the formulation, a 0-1 variable (y) is associated with each process 
unit (piece of equipment) to denote its potential existence in the final optimal 
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configuration. The continuous v~/riables (x) represent process parameters such as 
flowrates of  material. The nonlinearities in the model are mainly due to intrinsic 
nonlinear input-output  performance equations for some of the process units. The 
constraints in the underlying M I N L P  program are therefore design specifications, 
topological considerations, and conservation equations around nodes and units in 
the superstructure. The objective to be minimized is usually chosen as the annual 
cost, including both investment and operating costs. Fixed-cost charge approxima- 
tions are considered for the investment cost part. See references [11, 13, 25] for a 
detailed discussion of the formulation of the problem. 

The final form of the M I N L P  formulation for the third example problem is given 

in Table 3A. To illustrate the type of results that are expected for a process synthesis 
problem, the optimal process configuration for the third example problem is shown 
in Fig. 2A. Tfiis structure corresponds to the solution: 

y* = {yj: j =  1 , . . . ,  8} = (0, 1,0, 1,0, 1,0, 1), 

x* = {xi: i = 3 , 5 ,  10, 17, 19,21,9, 14,25} 

= (0, 2, 0.46784, 0.58480, 2, 0, 0, 0.26667, 0.58480), 

and objective function z* = 68.0097. The starting guess was yJ = {y): j = 1 , . . . ,  8} = 
(1,0,0,  1,0, 1, 0, 0). 

Problem No. 4 

The fourth example problem was intended as a modest extension of the MINLP 
approach to the problem of determining the optimal positioning of a new product 
in a multiattribute space. An overview of the problem is presented next. See references 

Table 1A 

Test problem No. 1 

minimize z = 5 y t + 6 y 2 + 8 y . ~ + l O x l - 7 x 6 - 1 8 1 n ( x 2 + l ) - 1 9 . 2 1 n ( x t - x 2 + l ) + l O  

subject to 0.8 In(x2 + I)-1-0.96 In(x I - x 2 +  1)-0 .8x6 ~>0 

x 2 - x ~ O  

x 2 - LI'~,I <~ 0 

X I - - X  2 U y 2 ~ 0  

In(x2+ 1)+ 1.2 ln(x I - x 2 +  l ) - x ~ , -  Uy3>~-2 

3;~ +y2<~ 1 

yc{O, 1} 3, a<~ x<~ b, x =(x~: f = l ,2 ,  6 )c  R ~ 

aT=(O,O,O), b 1 = ( 2 , 2 , 1 ) ,  U = 2  

initial guess 3,~=(1,0,1)  

solution: y* = (O, l, O), x * = ( x ~ , x 2 , x 6 ) = ( 1 . 3 0 0 9 7 , 0 , 1 ) ,  z*=6.00972 
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Table 2A 

Test problem No. 2 

335 

minimize 

subject to 

z = 5yl + 8y2 + 6Y3 + 10y4 + 6Y5 - 10x3 - 15x5 - 15x9+ 15xll +5xl3 - 20x16 

+exp(x3 )+exp (x s / l . 2 )  -60  ln(xlt +xi3 + 1)+ 140 

--ln(xl 1 + x,3 + 1 ) <~ 0 

--x3--xs--2Xg+Xl] +2x~6~< 0 

--X3 -- X5 -- 0-75X9 + XL l + 2XI6 ~ 0 

X9--X16~O 

2x9- x~t -2x16<~0 

-0.5x~ t + x~3 <~ 0 

0-2x11 -- X13 ~ 0 

exp(x3) - Uyl <~ 1 

exp(xs/l .2)-  Uy2<~ 1 

1.25x9 - Uy 3 ~< 0 

XI1 + X I 3 - -  Uy4<~O 

-2X 9 + 2X16 -- Uy 5 <~ 0 

Yl +)h = I 

y~ + ys<~ 1 

yE{0,1}:, a<~x<~b, x = ( x j : j = 3 , 5 , 9 , 1 1 , 1 3 , 1 6 ) ~ R  6 

a l= (o ,o ,o ,o ,o ,o ) ,  b T = ( 2 , 2 , 2 , - , - , 3 ) ,  U = I 0  

initial guess yX=(1,0,0,0,0) 

solution: y* = (0, 1, 1, 1~0) 

x* = (x3, xs, xtl,  xi3, xg, xj6) = (0, 2, 0.65201, 0.32601, 1.07839, 1.07839), z* = 73.0353 

[1, 18, 34, 47] for  a d e t a i l e d  desc r ip t i on .  C o n s i d e r  a m a r k e t  wi th  a set o f  a l r e a d y  

ex i s t ing  p r o d u c t s  ( M )  (e.g. d i f fe ren t  b r a n d s  o f  p e r s o n a l  c o m p u t e r s ) ,  and  a set o f  

c o n s u m e r s  ( N ) .  A s s u m e  tha t  ex i s t ing  p r o d u c t s  can  be  loca t ed  in a m u l t i a t t r i b u t e  

space  ( d i m e n s i o n  K )  a c c o r d i n g  to c o o r d i n a t e s  6jk, j = I , . . . , M ,  k = l , . . . , K .  

A s s u m e  a lso  tha t  e a c h  c o n s u m e r  can  be  c h a r a c t e r i z e d  in t e rms  o f  an  ideal  p o i n t  

Zik, and  a set o f  a t t r i bu te  we igh t s  wik, i = 1 , . . . ,  N,  k = 1 , . . . ,  K,  bo th  r e p r e s e n t i n g  

h i s / h e r  c o n c e p t  o f  an  idea l  p r o d u c t .  Fu r the r ,  a r eg ion  ( h y p e r e l l i p s o i d )  de f in ing  

c lo senes s  to the  idea l  p o i n t  fo r  each  c o n s u m e r  can  read i ly  be  d e t e r m i n e d  in t e rms  

o f  the  ex i s t ing  p r o d u c t s .  Based  on  the  a b o v e  p r e f e r e n c e  def in i t ion ,  a c o n s u m e r  will  

o b v i o u s l y  se lec t  a p r o d u c t  w h i c h  is c loses t  to h i s / h e r  ideal  po in t .  T h e  o b j e c t i v e  in 

the  p r o b l e m  as p r e s e n t e d  a b o v e  is t hen  to o p t i m a l l y  des ign  a n e w  p r o d u c t  (Xk ,  k = 

1 , . . . ,  K )  so as to a t t rac t  the  la rges t  n u m b e r  o f  c o n s u m e r s .  T h e  s c o p e  o f  the  o p t i m a l  

p o s i t i o n i n g  p r o b l e m  can  be  e x t e n d e d  i f  d a t a  are  g iven  for  the  r e v e n u e  o f  the  f i rm 
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T a b l e  3A 

T e s t  p r o b l e m  N o .  3 

m i n i m i z e  

s u b j e c t  to 

z = 53,; + 8y  z + 6y  3 + 10y 4 + 6y  5 + 7), 6 + 43, 7 + 5y  X - 10x 3 - 15x s + 15x Io + 80x l  7 + 25x1,~ + 35x2~ 

40x9 + 15xla  - 35x2s + e x p (  x 3) + e x p ( x s / 1 . 2 )  - 65 l n ( x  I o + x j  v + 1 ) 

- 9 0 1 n ( x 1 9 +  1 ) - 8 0  In(x2~ + 1 ) +  120 

- 1 . 5  l n ( x w +  l ) - l n ( x 2 ,  + l ) - x i 4 ~ 0  

- I n ( x m + x l 7 +  1)<~0 

- x  3 - x~ + x m + 2x~ 7 + 0-8xl9  + 0-8x21 - 0-5x9 - x~a - 2x2s <~ 0 

- x~  x5+2.'g17+O.SXlo+O.8x21-2x9 x 1 4 - 2 X z s ~ O  

- 2xl7  - 0 .Sx I,~ - 0.8x21 + 2x9 + x~4 + 2x25 ~ 0 

- 0 . 8 x v ~  - 0.8x2~ + x~4 ~< 0 

- x ~ 7  + x9 + x~5 ~< 0 

- 0 . 4 x 1 9  -- 0.4X21 -I- 1.5XI4 ~ 0 

O.16Xl~)+ 0.16X21 -- 1-2-X1,~ <~ 0 

x m  - O - 8 x l 7  <~ 0 

- -X lo+  0.4Xt7 <~ 0 

e x p ( x  3 ) - U v  I~< 1 

e x p ( x s / 1 . 2 )  - / -~v2 <~ 1 

X 9 -- Uy 3 ~< 0 

0.8.x~,~ +0.8x2~  - U y  4 ~< 0 

2xt7  - 2)t-,~ - 2x25 - Uy 5 <~ 0 

XIg- -  Uy6~<0 

x21 - Uy: ~ O 

x m +  x : -  Uys<~O 

)q +Y2 = 1, y4+y~ ~ 1 

- -ya  + y 6  + y? = 0 

.t'3 - Y8 ~ 0 

y e { O ,  1} ~, a<~x<~b, x = ( x i : j = 3 , 5 , 1 0 , 1 7 , 1 9 , 2 1 , 9 , 1 4 , 2 5 ) e R  9 

a l = ( O , O , O , O , O , O , O , O , O ) ,  b 1 =  (2, 2 , 1 ,  2, 2, 2, 2 , 1 ,  3) ,  U = I O  

from the new product sales to consumer  i (ci),  as well  as a f u n c t i o n f  for representing 
the cost o f  reaching locat ions  of  the new product within an attribute space defined 

by a set o f  constraints X = {x: A x  <~ b, lb  <~ x <~ u b } .  Under this new definition o f  

the problem,  the object ive for the firm could then be the max imizat ion  of  profits. 

Thus, if a 0-1 variable (yi) is associated with each consumer  to denote  whether or 
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n o t  h e / s h e  is a t t r a c t e d  b y  t h e  n e w  p r o d u c t ,  t h e  f o r m u l a t i o n  o f  t h e  p r o b l e m  l e a d s  

to  a M I N L P  p r o g r a m  o f  t h e  c l a s s  a d d r e s s e d  in  t h i s  p a p e r .  T h e  f o r m u l a t i o n  o f  t h e  

f o u r t h  e x a m p l e  p r o b l e m  is g i v e n  in T a b l e  4 A .  T h e  d a t a  f o r  t h e  c o o r d i n a t e s  o f  e x i s t i n g  

p r o d u c t s  (6jk) a n d  i d e a l  p o i n t s  (zik),  a n d  a t t r i b u t e  w e i g h t s  (wik )  a r e  f r o m  t h e  10 

e x i s t i n g  p r o d u c t s ,  25 c o n s u m e r s ,  5 a t t r i b u t e s  p r o b l e m  in  G a v i s h  et  a l . ,  [18] .  

Table 4A 

Test problem No. 4 

maximize 

subject to 

where 

25 
z= E c~y~+f(x) 

i=1 

K--5 
w i k ( x k - z i k ) 2 - ( l - y i ) H ~ R ~ ,  i=1  . . . . .  N = 2 5  

X I - - X z + X 3 + X 4 + X 5  ~ 10 

0.6x I - 0.9x 2 - 0.5x 3 + O. 1 x 4 + x 5 ~ -0.64 

xj -x2+x3-xa+xs>~0.69  

O. 157x~ + O.05x 2 ~< 1.5 

0.25x2 + 1.05x4 -0 .3x  s ~> 4.5 

2.0~< xt <~ 4.5 

0.0<~ x2 <~ 8.0 

3.0<~ x3 ~< 9.0 

0.0<~ x4<~ 5.0 

4.0~< xs ~ < 10 

yie{0, 1}, i = 1 , . . . , N = 2 5 ,  x 6 R  5 

f (x )  = -0.6x~ + 0.9x 2 + 0.5x 3 - 0.1 x ] - x 5 

K ~ 5  } 
H=1000,  R 2= min _ ~ wik(6jk--Z,k) 2 i=1  . . . .  N = 2 5  

i /=1. , M = l l ) [ k _ l  �9 I 

cT= [1,0.2, 1,0.2,0.9,0.9, 0.1,0.8, 1,0.4, 1, 0.3, 0.1,0.3, 0.5, 0.9, 0.8,0.1, 0.9, 1, 1, 1,0.2,0.7,0.7] 

Solution: y* = [0, 0, 0, 0,0, 1, 0, 1,0, 0, 0,0,0, 0, 1,0, 1,0, 0, 1, 0, 0, 0, 0, 1] 

x* = [2.0, 7.58132, 7.95783, 3.62350, 4.0], z* = 7.78913 
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Table 5A 

Data for test problem No. 4 

339 

Ideal points (z,k) Attribute weights ( w,e~ ) 
i k = l  2 3 4 5 i k = l  2 3 4 5 

1 2.26 5.15 4.03 1,74 4.74 1 
2 5.51 9.01 3.84 1,47 9.92 2 

3 4.06 1.80 0.71 9.09 8,13 3 
4 6.30 0.11 4.08 7.29 4.24 4 

5 2.81 1.65 8.08 3.99 3.51 5 
6 4.29 9.49 2.24 9.78 1.52 6 

7 9.76 3.64 6.62 3.66 9.08 7 

8 1.37 6.99 7.19 3.03 3.39 8 
9 8.89 8.29 6.05 7.48 4.09 9 

10 7.42 4.60 0.30 0.97 8.77 10 

11 1.54 7.06 0.01 1.23 3.11 I1 

12 7.74 4 .4 .0  7.93 5.95 4.88 12 

13 9.94 5.21 8.58 0.13 4.57 13 

14 9.54 1.57 9.66 5.24 7.90 14 
15 7.46 8.81 1.67 6.47 1.81 15 

16 0.56 8.10 0.19 6.11 6.40 16 
17 3.86 6.68 6.42 7.29 4.66 17 

18 2.98 2.98 3.03 0.02 0.67 18 

19 3.61 7.62 1.79 7.80 9.81 19 
20 5.68 4.24 4.17 6.75 1.08 20 

21 5.48 3.74 3.34 6.22 7.94 21 
22 8.13 8.72 3.93 8.80 8.56 22 

23 1.37 0.54 1.55 5.56 5.85 23 

24 8.79 5.04 4.83 6.94 0.38 24 
25 2.66 4.19 6.49 8.04 1.66 25 

9.57 2.74 9.75 3.96 8.67 

8.38 3.93 5.18 5.20 7.82 

9-81 0.04 4.21 7.38 4.1l 
7_41 6.08 5.46 4.86 1.48 

9,96 9.13 2.95 8.25 3.58 
9.39 4.27 5.09 1 . 8 1  7.58 
1.88 7.20 6.65 1.74 2.86 

4.01 2.67 4,86 2.55 6.91 

4,18 1.92 2.60 7.15 2.86 
7.81 2.14 9.63 7.61 9.17 
8.96 3.47 5.49 4.73 9,43 

9.94 1.63 1.23 4.33 7.08 

0.31 5.00 0.16 2.52 3.08 
6.02 0.92 7.47 9.74 1.76 

5.06 4.52 1.89 1.22 9.05 
5,92 2.56 7.74 6.96 5.18 
6.45 1.52 0.06 5.34 8.47 

1.04 1.36 5.99 8.10 5.22 
1.40 1.35 0.59 8.58 1.21 

6.68 9.48 1.60 6.74 8.92 
1.95 0.46 2.90 1.79 0.99 

5.18 5.10 8 . 8 1  3.27 9.63 
1.47 5.71 6.95 1.42 3.49 

5.40 3.12 5.37 6.10 3.71 

6.32 0.81 6.12 6.73 7.93 

Existing products (Sjk) 
j k = l  2 3 4 5 

1 
2 

3 
4 

5 
6 
7 

8 

9 
10 

0.62 5.06 7.82 0.22 4.42 

5.2l 2,66 9.54 5,03 8.01 
5.27 7.72 7.97 3.31 6.56 

1,02 8.89 8.77 3.10 6.66 
1.26 6.80 2.30 1 , 7 5  6.65 

3.74 9.06 9.80 3.01 9.52 
4.64 7.99 6.69 5.88 8_23 

8.35 3.79 1.19 1.96 5.88 
6.44 0.I7 9.93 6.80 9.75 
6.49 1.92 0.05 4.89 6_43 


