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The algorithm described here is a variation on Karmarkar’s algorithm for linear programming.
It has several advantages over Karmarkar's original algorithm. In the first place, it applies to the
standard form of a linear programming problem and produces a monotone decreasing sequence
of values of the objective function. The minimum value of the objective function does not have
to be known in advance. Secondly, in the absence of degeneracy, the algorithm converges to an
optimal basic feasible solution with the nonbasic variables converging monotonically to zero. This
makes it possible to identify an optimal basis before the algorithm converges.
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1. The algorithm

Consider the linear programming problem
minimize ¢ 'x
subjectto Ax=b, (1.1)
x=0,

where ¢ and x are n-dimensional column vectors, b is an m-dimensional column
vector, and A is an m X n matrix of rank m. The jth column of A will be denoted
by a;. We make the assumption that (1.1) has no degenerate basic feasible solutions
and that its dual

maximize b'A

(1.2)
subjectto ATA=<c¢

has no degenerate basic solutions. This means that b cannot be written as a positive
combination of fewer than m columns of A and that at most m of the equations

c—arxa=0, i=1,...,n,

can be satisfied simultaneously. Clearly, (1.1) and (1.2) remain nondegenerate under

small perturbations in b and c. In fact, the following is true. If (1.1) is nondegenerate,

there exists a number &, > 0 such that any feasible solution of (1.1) has at least m
174
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components > g,. If (1.2) is nondegenerate, there exists a number £,> 0 such that

at most m of the inequalities

le;—aiA|<e, i=1,...,n,

can be satisfied simultaneously. Clearly, numbers ¢, and &, can be found such that

these conditions hold when b and ¢ are perturbed slightly
, ¥»)" be a feasible solution of (1.1) satisfying y,>0, i=1,..., n.

Let y=(y,...

If 0< R <1, the ellipsoid
(1.3)

Z (x —,V:) \R
i=1 y,

lies in the interior of the positive orthant in E,. To see this observe that if x;<0

for some j, then

n 2
S CRT T
i=1 y. y}

This implies that we can obtain a feasible solution of (1.1) satisfying ¢ x <c y by

solving the following problem:
minimize c¢’x
subjectto Ax=b, (1.4)

e .’2
z ( 2}’) <R2
i=1 Vi

Note that the constraint x = 0 has been replaced by (1.3), which is easier to handle
)" be a vector of Lagrange multipliers correspond-

Tosolve (1.4)let A =(A,,..., A
, V). Since y >0, D is nonsingular.

ing to the constraints Ax = b. Let D = diag(y,, ..

For any x satisfying (1.4) we have
cy—c'x={c-A"A\}(y—x)=
<|D(c—A™)| D (x-p)I<[|D(c-ATA)[R,

[D(c—ATM)]'D ' (x—y)
(1.5)

the inequalities being obtained from Schwartz’s inequality and (1.4). Equality holds
throughout (1.5) if
D(c—A"A\)=yD '(x~y) (1.6)
for some constant y, and if
ID™ (x=y)ll =R
These conditions imply that

_ID(e-A™)]
AV
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Substituting this in (1.6) gives

xX=y— M (1.7)
[D(c~A™A)|
The condition Ax= Ay = b implies that AD*(c— ATA) =0, or
A =(AD’ATY'AD’c. (1.8)
Writing (1.5) as
c'x=c"y—R|D(c—A™)| (1.9)

we see that the minimum is given by the right-hand side of (1.9) and is attained
when x and A are given by (1.7) and (1.8), respectively. This suggests an algorithm
for iteratively finding the solution of (1.1). The algorithm can be stated formally as
follows.

Algorithm. Let x°> 0 satisfying Ax"= b be given. In general, if x* is known, define
D, = diag(x}, ..., x¥)

k+1

and compute x*° >0 by the formula

. Di(c—ATA)
o k- R 1.10
A oY PR UWT (110

where

M =(ADIATY 'AD]c.
Theorem 1.1. If (1.1) has a bounded solution, the sequence {x*} defined by (1.10)
converges to a solution of (1.1) that is an extreme point of the constraint set defined
by Ax=5b, x=0.
Proof. We have seen that

X =X = R|| D (c— AT

for each k. Since the numbers ¢"x* are decreasing and bounded below, the sequence
{c"x*} converges. This implies that

lim || D (¢~ ATA) | =0.
Let £>0 be given satisfying £<g, and & <g,—see our discussion of non-
degeneracy of (1.1) and (1.2). Choose k so large that
| D.(c—ATA)| < &?
for r= k. There then exist n-m values of i for which

le;—afa|>e> ¢ (1.11)
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Assume r=k is fixed and, without loss of generality, assume that (1.11) holds for
i=m+1,...,n
For each i we have

n 1/2
xie—aii, ${ ¥ (x)) (g —ajT)\,)z} =|D,(c—ATA,)|| < €. (1.12)
1

It therefore follows from (1.11) that
xi<e fori=m+1,..., n (1.13)

Since Ax" = b and (1.1) is not degenerate, x" has at least m components > ¢, > &
It therefore follows from (1.13) that

x[>eg, i=1,...,m (1.14)
It now follows from (1.12) and the condition &,> ¢ that
le;—alA|<e i=1,...,m

This condition implies that the vectors a, ..., a,, are linearly independent if € is
sufficiently small, for it is easy to see that if these vectors were dependent, the dual
problem (2}, with ¢ slightly perturbed, would have a degenerate basic solution.

Let B denote the feasible basis (a,, ..., a.) and let x5 =(x},..., x.)". We then
have
xz—B'b=— Y x[B7'g (1.15)
i=m+1

and it follows from (1.13) that x} is very close to the basic feasible solution B~ 'b

for £ sufficiently small or, equivalently, for k sufficiently large and r= k. In this

way we can associate each of the feasible solutions x’, r= k, with a basic feasible

solution of (1.1). If z and y are extreme points of the set defined by Ax=5b, x=0,

we clearly have |z—y|>+v2¢, by our nondegeneracy assumption. Thus for &

sufficiently small x" is close to a unique extreme point of the constraint set for (1.1).
From (1.3) we see that

(xirﬂ - xf)2< R?
(x7)? ’

which means that x/*'=(1— R)x! for each i and each r. This means that if ¢ is
sufficiently small and x}> ¢,, we cannot have x/*' < ¢. Thus we see from conditions
(1.13) and (1.14) that the basic feasible solution of (1.1) associated with x” will also
be associated with x"™' for r sufficiently large. Thus conditions (1.13) and (1.14)
hold for all r sufficiently large and for some basis B, which we will continue to
assume to be B={(ay,...,a,). We will call the variables satisfying (1.13) nonbasic
variables and those satisfying {1.14) basic variables. Since £ in (1.13) can be chosen

arbitrarily small, we have

lim x;/=0 (1.16)

r>o0

for each nonbasic variable x!.
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Next we will show that the Lagrange multipliers A, converge to the simplex
multiplier (BT) 'cg as r > o, where c; is the m-dimensional vector cg = (¢, ..., Cp) "
corresponding to the basic variables.

Let 13, =diag(x7,..., x},). Then

AD*AT=Y (x)aal=BD’B™+ Y (x})’aal=BD?B"+M,

i=1 i=m
where | M,||=0(&?). This implies that
(AD?AT)'=(I1+(BD?B")"'M,)"(BD?B") ™!
—{I—(BD?B")"'M,+((BD*B")"'M,)*~- - -}(BD?B")™"
=(BD?B")™'+ M,
where || M,| = O(£?).
Let N denote the m X (n —m) matrix
N =[(xpe)’ 8, - - -5 (X0) ]
and let ¢y = (Cmrry .-, ¢n) " Then
AD?c=BD?cy+ New
and
A, =(AD?A") 'AD%c=(BD*B") 'BD?cy+e,= (BN 'czte,
where ||e,|| = O(¢e”). Since we can let £ >0 as r-> 0, we have

lim A, =(B") "¢y (1.17)
as we claimed.
Now consider the ith component of equation (1.8). We have

XH—]:XT—‘ (x:)z(ci_aTAr)
‘ YD e =AM
This shows that

xM>xl ife—aiA, <0 (1.18)

and

r+1

xM<x ife,—aia >0

{Compare this with the condition for nonbasic variables to increase in the simplex
algorithm.)

If x! is a nonbasic variable, it is impossible for ¢;—a] A, to change signs as r
increases for sufficiency large values of r. This follows from our nondegeneracy
assumption together with the fact that ¢; —a} A, cannot change signs without coming
close to zero because of (1.17). It follows from (1.16) and (1.18) that

c—arr,>0 (1.19)
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for each nonbasic variable if r is sufficiently large. This means that eventually each
nonbasic variable decreases monotonically to zero.

Let xp = B™'b. It follows from (1.15) and (1.16) that x - x5 as r -0, To complete
the proof of the theorem we will show that x5 is an optimal basic feasible solution
of (1.1). We have

cpxg=cEB 'b=b"A

where A = (B") '¢p is the limit (1.15). Thus the vectors x = (x5, 0,...,0)" and A
make the primal and dual objectives in (1.1) and (1.2) equal. Also, complementary
slackness

xT(c—A" ) =0
holds. Finally, we have

c—arix=lim(c,—alr,)=e>0
r>o0

for x; as nonbasic variable. It follows that
ATa=c;

hence A is feasible for the dual. Thus x and A satisfy the necessary and sufficient
conditions for x to be a basic feasible solution of (1.1). This completes the proof
of the theorem.

2. The rate of convergence
Theorem 2.1. Let x* denote the solution of (1.1). The sequence {x*} generated by
(1.10) satisfies

R
va—m+g;,

where {e,} is a sequence of positive numbers converging to 0 as k - 00,

C-rxk+1_C"Ix>(<s (1 _

)(CTXk—CTX*) 2.1)

Proof. From our nondegeneracy assumptions we know that x*=Ilim, . x* has
n —m components equal to 0. For simplicity, assume that x* = (x¥,..., x¥%,0,...,0).
Then

Txt = Tx*=[Dp(c— A"A)] "D (x* = x*) < | Di(c— ATA)|[(n —m +g,)'?

:%(CTxk_CTxk-H)(n_m+£k)l/2 (22)

where
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as k- co. This inequality can be written as

T k+1i

. R
T =T — (¢ Tx* ~ e Tx*) s ——(c"
Vn_m+8k

which is equivalent to (2.1).

xk—¢Tx*),

3. A practical version of the method

In applying our method to (1.1), we first add a new column a,,, to A and a
corresponding variable x, ., to x. We define

n
a,=b—7% a.
i=1

The constraints

n+}l
Ax=Y ax;=b, x=0 (3.1)
i=1
are then satisfied by the vectof x=(1,...,1) € E,.,. We add a large positive
component ¢,,,, corresponding to x,.,, to ¢
Now consider the problem

n+1
minimize Y ¢x; (3.2)
i=1

subject to (3.1). We can apply our method to this problem starting at x* = (1, ..., 1)".
If ¢, is sufficiently large, the solution of (3.2) will have x,., =0. The variables
(xy,...,x,) will then form a solution of (1.1).

It is clear from our proof of the theorem in Section 1 that the amount by which
the objective ¢'x decreases at each step of the algorithm increases if R is increased.
This suggests that at each step of the algorithm we should increase R as much as
possible subject to the condition that all variables remain nonnegative. From (1.8)
we see that x¥"'=0if ¢;—afA, >0 and

_IDile=ATA) |
R= x:((ci _a-ir)\k) ’

k+1

In order to insure that x™" >0 we choose R at the kth step by the formula

. |IDle—ATAY)]
R= min —f/——— -
i -a"Ag>0 x:“(ci_a-ir)\k)

a, (3.3)

where a is a small positive number. In our experiments we have used a =1/10.

We have seen that for k sufficiently large the nonbasic variables, those for which
¢;—a; A >0, are decreasing monotonically to zero. The choice (3.3) of R drives
these variables to zero very fast.
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Let k be chosen such that each nonbasic variable x! is less than some small
positive number ¢ for r= k. From the derivation of (1.15) we see that

1A, = (B") " eg| = O(e?)

where B is an optimal basis. Comparing this with (1.13) we see that A" is a much
more accurate estimate of the optimal dual variable than x” is of the optimal primal
variable. This suggests a stopping criterion for the algorithm. We iterate until m of
the reduced costs ¢;—a; A, are small in absolute value and the remaining n-m are
positive. To be specific, assume that for some r the numbers &, =c¢c,—a|A, ..., &, =
¢m—any, are small in absolute value and the numbers ¢, — dmiiAy - .., C, — ANA,
are positive. Solve the equations a/A=c¢, i=1,...,m for A=(B") 'cy where

B=(a,,...,a,)andcg=(c),...,cn).Lete=(g,, ..., &,)" . Then |A,—A[ =0(||e])
and therefore ¢;—a;A>0, i=m+1,...,n, if r is large enough. This means that
ATA < c If ris large enough, the numbers ¢; —aA,, i=m+1, ..., n, remain positive

as r increases. It then follows from (1.13) that x> x; = B~'b as r » 0. Since x>0
we have B7'b>0. Also

ckxg=(B"A)"B'b=b"A

It follows that B is an optimal feasible basis.

The important point to observe here is that we are not suggesting iterating the
algorithm until the sequence {x"} converges. We are suggesting that some A,,
presumably for a reasonably small value of r, be used to determine a basis B. Then
xg and A are determined from the equations Bxy = b, B'"A = cp. If xy;>0and A"TA < ¢,
B is an optimal feasible basis.

4. Acknowledgments

It has been cailed to my attention that the algorithm discussed in this paper was
discovered independently by Vanderbei, Meketon and Freedman [4], and also by
Cavalier and Soyster [1]. Our work remains of interest since it presents a different
point of view and a more complete convergence analysis than that given in [4] and
[1].

A similar algorithm has also been described in [2]. These authors show that
Karmarkar’s algorithm can be viewed as a special case of a barrier-function method
for solving nonlinear programming problems. If the barrier parameter is set to zero
in computing their Lagrange multipliers, the algorithm described in this paper is
obtained.
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