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The algorithm described here is a variation on Karmarkar's algorithm for linear programming. 
It has several advantages over Karmarkar's original algorithm. In the first place, it applies to the 
standard form of a linear programming problem and produces a monotone decreasing sequence 
of values of the objective function. The minimum value of the objective ['unction does not have 
to be known in advance. Secondly, in the absence of degeneracy, the algorithm converges to an 
optimal basic feasible solution with the nonbasic variables converging monotonically to zero. This 
makes it possible to identify an optimal basis before the algorithm converges. 
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1. The  a l g o r i t h m  

C o n s i d e r  the  l inea r  p r o g r a m m i n g  p r o b l e m  

m i n i m i z e  crx 

sub jec t  to A x = b ,  (1.1) 

X~>0, 

whe re  c and  x are  n - d i m e n s i o n a l  c o l u m n  vec to r s ,  b is an m - d i m e n s i o n a l  c o l u m n  

vec tor ,  a n d  A is an m x n ma t r ix  o f  r ank  m. The  j t h  c o l u m n  o f  A will be  d e n o t e d  

by ay We  m a k e  the  a s s u m p t i o n  tha t  (1.1) has  no  d e g e n e r a t e  bas i c  feas ib le  so lu t i ons  

a n d  that  its d u a l  

m a x i m i z e  bVA 
(1.2) 

sub jec t  to AvA <~c 

has  no d e g e n e r a t e  bas i c  so lu t ions .  This  m e a n s  that  b c a n n o t  be  wr i t t en  as a pos i t i ve  

c o m b i n a t i o n  o f  f ewer  than  m c o l u m n s  of  A a n d  tha t  at m o s t  m o f  the  e q u a t i o n s  

ci--aVA =0,  i = l , . . . , n ,  

can be sat is f ied s i m u l t a n e o u s l y .  C lea r ly ,  (1.1) a n d  (1.2) r e m a i n  n o n d e g e n e r a t e  u n d e r  

smal l  p e r t u r b a t i o n s  in b and  c. In fact ,  the  f o l l o w i n g  is t rue.  I f  (1.1) is n o n d e g e n e r a t e ,  

the re  exists  a n u m b e r  e ~ > 0  such  that  any  feas ib le  so lu t i on  o f  (1.1) has  at least  m 
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componen t s  > el. I f  (1.2) is nondegenerate ,  there exists a number  e2> 0 such that 

at most  m of  the inequalities 

Ic , -a /VXl < ~2, i = l , . . . , n ,  

can be satisfied simultaneously.  Clearly, numbers  el and e2 can be found such that 
these condi t ions  hold when b and c are per turbed slightly. 

Let y = ( y ~ , . . . , y , ) X  be a feasible solution o f  (1.1) satisfying y i > 0 ,  i =  1 . . . .  , n. 

I f  0 <  R < 1, the ellipsoid 

--Y') ~< R 2 (1.3) 
(x, 2 

2 ~ 
i = 1  Yi 

lies in the interior of  the positive or thant  in E..  To see this observe that if Xi ~ 0 

for  some j, then 

( x , - y i )  2 > (xj _y j )2  
v2 ~> 1 > R 2. 

This implies that we can obtain a feasible solution o f  (1.1) satisfying cl"x < cry by 

solving the fol lowing problem: 

minimize c Vx 

subject to Ax  = b, (1.4) 

( X i -  y i ) 2  < :  R 2. 
i=, y{ 

Note  that the constraint  x I> 0 has been replaced by (1.3), which is easier to handle. 

To solve (1.4) let A = (A ~ , . . . ,  Am )T be a vector of  Lagrange multipliers correspond-  

ing to the constraints Ax  = b. Let D = d i a g ( y ~ , . . . ,  y ,) .  Since y > 0, D is nonsingular.  

For  any x satisfying (1.4) we have 

cTy - cTx = {c - ATA }T(y -- X) = [D(c - ATA ) ]TD- '  (X --y)  
(1.5) 

<~ ]ID(c-ATA)I[ liD ' ( x - y ) [ I  ~< IID(c-ATA)[[R, 

the inequalities being obtained from Schwartz 's  inequality and (1.4). Equality holds 

th roughout  (1.5) if 

D ( c - A T A )  = y D - ' ( x - y )  

for some constant  y, and if 

f l D - ' ( x -  y)l] = R. 

These condi t ions  imply that 

II D ( c  - ArA )ll 
Y -  

R 

(1.6) 
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Substituting this in (1.6) gives 

D 2 ( c - A T A )  
x = y - R[] D ( c  - ATA )]]" (1.7) 

The condition A x  = A y  = b implies that ADZ(c  - AvA) = 0, or 

A = ( A D 2 A T ) - I A D 2 c .  (1.8) 

Writing (1.5) as 

cTx >1 cTy -- R II O(c - ATA )ll (1.9) 

we see that the minimum is given by the right-hand side of (1.9) and is attained 
when x and A are given by (1.7) and (1.8), respectively, This suggests an algorithm 
for iteratively finding the solution of (1.1). The algorithm can be stated formally as 
follows. 

Algorithm. Let x~  0 satisfying Ax ~ b be given. In general, if x k is known, define 

Dk = d iag(x~ , . . . ,  x,k,) 

and compute xk+~>0 by the formula 

2 C m v 
xk+l=  X k R Dk(  - Ak) 

- I 1 ~ 1 1  (1.10) 

where 

A k = ( A D ] A  T) 1AD~c. 

Theorem 1.1. I f  (1.1) has a bounded solution, the sequence {x k} defined by (1.10) 
converges to a solution o f  (1.1) that is an extreme point o f  the constraint set defined 

by A x = b ,  x>~O. 

Proof. We have seen that 

cTx k+l = c T x  k - -  R [[ Dk(c - ATAk)l[ 

for each k_ Since the numbers CTX k are decreasing and bounded below, the sequence 
{cTx k} converges. This implies that 

lira ]] Dk( c -- ATAk)II = O. 
k ~ o  

Let e > 0  be given satisfying e < e t  and e < e 2 - - s e e  our discussion of non- 
degeneracy of (1.1) and (1.2). Choose k so large that 

IID~(c-ATA~)II < 2 

for r t> k. There then exist n-m values of i for which 

I c , -  aTArl > ~: > e.  (1.11) 
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Assume r ~  k is fixed and, without  loss o f  generality, assume that (1.11) holds for 

i = m + l , . . . , n .  
For each i we have 

r r 2 - a j A r ) "  = l l D r ( c - A W ~ r ) I t < e  2. (1.12) X i l C i - - a T A r ] ~  (Xj) (Cj T ~' 
L / = I  

It therefore follows from (1.11) that 

x~<e  f o r i = m + l , . . . , n .  (1.13) 

Since Ax  r = b and (1.1) is not degenerate,  x r has at least m components  > e~> e. 

It therefore follows f rom (1.13) that 

x~>e~,  i = l , . . . , m .  (1.14) 

It now follows from (1.12) and the condi t ion e~ > e that 

]ci-aX, A,l<e, i = l , . . . , m .  

This condi t ion implies that the vectors a ~ , . . . ,  a,, are linearly independent  if e is 

sufficiently small, for it is easy to see that if these vectors were dependent ,  the dual 
problem (2), with c slightly perturbed, would have a degenerate basic solution. 

Let B denote  the feasible basis ( a ~ , . . . ,  am) and let x ~ =  (x~ , . . . , x~ , )  v. We then 

have 

r U - 1  r - 1  -- x i B  ai xB b = -  v (1.15) 
i - - m + l  

and it follows from (1.13) that x~ is very close to the basic feasible solution B ~b 
for e sufficiently small or, equivalently, for k sufficiently large and r>~ k. In this 

way we can associate each of  the feasible solutions x r, r ~  > k, with a basic feasible 

solution o f  (1.1). I f  z and y are extreme points o f  the set defined by Ax = b, x >i O, 
we clearly have ]]z-y[[>,,/2et by our  nondegeneracy  assumption.  Thus for e 
sufficiently small x r is close to a unique extreme point o f  the constraint  set for (1.1). 

From (1.3) we see that 

(xT+'- xT)2< R2 ' 
(x~)  2 

which means that  x~+~>~(l-R)x~ for each i and each r. This means that if e is 

sufficiently small and xT> e~, we cannot  have x7 +~ < e. Thus we see from condit ions 

(1.13) and (1.14) that the basic feasible solution of  (1.1) associated with x ~ will also 
be associated with x r+x for r sufficiently large. Thus conditions (1.13) and (1.14) 

hold for all r sufficiently large and for some basis B, which we will continue to 

assume to be B = ( a ~ , . . . ,  am). We will call the variables satisfying (1.13) nonbasic  

variables and those satisfying (1.14) basic variables. Since e in (1.13) can be chosen 
arbitrarily small, we have 

lim x T = 0  (1.16) 

for each nonbas ic  variable x~. 
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Next we will show that the Lagrange multipliers A~ converge to the simplex 
multiplier ( B v)-  ~ cB as r ~ oo, where cB is the m- dimensional  vector cR = ( c ~ , . . . ,  C,,)T 

corresponding to the basic variables. 

Let /gr = d i a g ( x ~ , . . . ,  xT~). Then 

n 

A D 2 A  T ~ (XT)2aMT= B~)2BT + y~ , 2  x = ( x , )  a,a~ = B L ) ~ B T + M ,  
i = 1  i = m + l  

where []Mtl[ = O(e2). This implies that 

( AD2rAr)  -t = ( I  + ( BI)2rBX) - 1 M t ) - I (  BI~2rBT) -~ 

= { I  - (Bs T) - ' M ,  + ( ( B I g ~ B T ) - t M , )  2 . . . .  }(BI92~B T) ' 

= (BE)2rBT)- '+ M2 

where IIM211 = O(e2) -  
Let N denote  the m x ( n -  m) matrix 

N = [(x~,+,)2am. , , . . .  , (x~)2a,,] 

and let cN = (c , ,+l , . .  �9 c,,) T. Then 

A D ~  = Bb~c~ + N~,~ 

and 

A~ = ( A D 2  A T) ' AD2~c = ( Bs BT) - t  B~)2~cs + G = ( B T )  I CB-[- er 

where ]]GII =O(e2 )  �9 Since we can let e ~ 0  as r-~oo, we have 

lim M = (BT)- 'Cn (1.17) 
r ~ c C  

as we claimed. 
Now consider  the ith componen t  of  equat ion (1.8). We have 

(xTy(c,-  aTX~) 
xT+~=xT-R 

IID~(c-A~A~)II " 
This shows that 

x~+l > x[ i f c ~ - a T M < o  (l.18) 

and 

x[+l < x7 i f c i - a T A r > O .  

(Compare  this with the condit ion for nonbasic  variables to increase in the simplex 

algorithm.) 
I f  x[ is a nonbasic  variable, it is impossible for c i - a ~ A r  to change signs as r 

increases for sufficiency large values of  r. This follows from our  nondegeneracy  

assumption together with the fact that ci - a~Ar cannot  change signs without  coming 

close to zero because o f  (1.17). It follows from (1.16) and (1.18) that 

c, - a~Ar > 0 (l. 19) 
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for each nonbas ic  variable if r is sufficiently large. This means that eventually each 

nonbasic  variable decreases monotonica l ly  to zero. 
Let xB = B- lb .  It follows from (1.15) and (1.16) that x~ ~ xB as r--> co. To complete 

the p roo f  o f  the theorem we will show that xt~ is an optimal basic feasible solution 

o f  (1.1). We have 

e~xs  = c~B 'b = bTA 

where A =(BT)-~CB is the limit (1.15). Thus the vectors x= (xB ,  0 , . . . , 0 )  T and A 

make the primal and dual objectives in (1.1) and (1.2) equal. Also, complementary  

slackness 

x T (  C - -  ATA ) = 0 

holds. Finally,  we have 

c i -  a~A = l i m ( c i -  aTM)/> e2> 0 
r ~ O 3  

for x~ as nonbas ic  variable. It follows that 

ATA <~ c; 

hence A is feasible for the dual. Thus x and A satisfy the necessary and sufficient 

condit ions for x to be a basic feasible solution of  (1.1). This completes the proof  

o f  the theorem. 

2. The rate of  convergence 

Theorem 2.1. Let x* denote the solution o f  (1.1). The sequence {x k} generated by 

(1.1 O) satisfies 

( R ~ ( c T x k _ c X x , )  (2.1) c r x k + ~ - c ~ ' x * ~  1 ~ / n - m + e k /  

where {ek} is a sequence oflpositive numbers converging to 0 as k-> 0o. 

Proof. F rom our  nondegeneracy  assumptions we know that x * = l i m k o ~  x k has 

n - m componen t s  equal to O. For  simplicity, assume that x* = (x* . . . .  , x*,  O , . . . ,  0). 

Then 

eTx k -- cTx * = [Dk(C - -ATAk) ] rDk ' (X  k --X*) <~ II D k ( C -  ATAk)II(n - m + Ek) 1/2 

= 1 (CTXk _ c T x k ~ ) ( n  - m + ek )l/~ (2.2)  
1(  

where 
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as k ~ co. This inequal i ty  can be writ ten as 

c T x  k+l _ c T x  :~ _ ( c T x  k -- CTX *)  

which is equiva lent  to (2.1). 
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R 

~ / n - - m +  ek 
c T x  k __ c T x # ) ~  

3. A practical version of the method 

In app ly ing  our  me thod  to (1.1), we first add  a new co lumn an+, to A and a 

co r r e spond ing  var iable  x,+t  to x. We define 

a,,+l = b -  ~ a i. 
i - - I  

The const ra ints  

n + |  

A x =  ~ aixi=b,  x>~O (3.1) 
i--I 

are then satisfied by the vector  x = ( 1  . . . .  , 1 ) ' r6  E,,+1. We add  a large posi t ive 

componen t  c,+~, co r r e spond ing  to x,,+~, to c. 

Now cons ider  the p r o b l e m  

n + l  

minimize  Y~ cixi (3.2) 
i = 1  

subject  to (3.1). We can app ly  our  method  to this p rob lem star t ing at x ~ = (1 . . . .  ,1 )  r. 

I f  c,+~ is sufficiently large, the so lu t ion  o f  (3.2) will  have x,,+l =0 .  The var iables  

( x ~ , . . . , x , )  will then form a solut ion of  (1.1). 

It is c lear  from our  p r o o f  of  the theorem in Sect ion  1 that  the amoun t  by which 

the object ive  cTx decreases  at each step o f  the a lgor i thm increases  if R is increased.  

This suggests that  at each step of  the a lgor i thm we should  increase  R as much as 

poss ib le  subject  to the cond i t ion  that  all var iables  remain  nonnegat ive .  From (1.8) 

we see that  x k~j = 0  if  c i - - a l i h k > O  and 

R -II Dk(c- ATAk)II 
X~, ( C, - a~A~) 

In o rde r  to insure  that  x k+~> 0 we choose  R at the kth  step by the fo rmula  

II Dk( c - ATAk)II 
R =  min xk(c  _ alvhk) c~, (3.3) 

ci - o r A  k > 0 

where a is a small  posi t ive  number .  In our  exper iments  we have used a = 1/10. 

We have seen that  for k sufficiently large the nonbas i c  var iables ,  those for which 

c~-a~'hk > 0, are decreas ing  mono ton ica l ly  to zero. The choice (3.3) of  R drives 

these var iables  to zero very fast. 
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Let  k be chosen  such that  each nonbas i c  var iable  x~ is less than some small  

posi t ive  n u m b e r  e for  r ~  > k. F rom the de r iva t ion  o f  (1.15) we see that  

f i a t -  (BT) - '  cB II = O(e  2) 

where  B is an  op t imal  basis.  C o m p a r i n g  this with (1.13) we see that  A r is a much 

more  accura te  es t imate  o f  the  op t imal  dual  var iab le  than x r is o f  the op t imal  pr imal  

var iable .  This  suggests  a s topp ing  cr i ter ion for  the a lgor i thm.  We i terate until m o f  

the r e d u c e d  costs  c i -  aTAr are small  in abso lu te  value  and the remain ing  n-m are 

posi t ive.  To be specific,  assume that  for some r the numbers  e~ = c~ - a T A ~ , . . . ,  e , ,  = 
T T _ aTAr c , , - a  ..... are smal l  in abso lu te  value and  the numbers  Cm+ 1 --a,,,+tA,,..., c,, 

are  posi t ive.  Solve the  equat ions  a]A = c ,  i =  1 , . . . ,  m for A = ( B V ) - l c s  where 

B = ( a ,  . . . .  , a m ) a n d c s = ( c , , . . . , c , , , ) . L e t e = ( e , , . . . , e , , ) T .  Y h e n l l a r - A l l = O ( l l e l l )  

and there fore  c~--aVA > 0, i = m + 1 . . . .  , n, if  r is large enough.  This means  that  

ATA <~ c. I f  r is large enough ,  the numbers  ci - a f a r ,  i = m + 1 . . . . .  n, remain  posi t ive 

as r increases .  It then fol lows from (1.13) that  x~--> xu = B -~ b as r ~ co. Since x~ > 0 

we have B - ~ b > O .  Also 

c T x B  = ( B T A  )T B -1 b = bVA. 

It fol lows that  B is an op t imal  feasible basis.  

The i m p o r t a n t  poin t  to observe  here is that  we are not suggest ing i terat ing the 

a lgor i thm unti l  the sequence  {x ~} converges.  We are suggest ing that  some At, 

p r e s u m a b l y  for  a r ea sonab ly  small  value of  r, be used to de te rmine  a basis  B. Then 

x~ and  A are  de t e rmined  f rom the equat ions  Bxt~ = b, B T A  = CB. IfxB > 0 and A rA ~< c, 

B is an op t ima l  feasible  basis.  
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in compu t ing  thei r  Lagrange  mul t ip l iers ,  the a lgor i thm descr ibed  in this p a p e r  is 

ob ta ined .  

References 

[1] T.M. Cavalier and A.L. Soyster, "Some computational experience and a modification of the Kar- 
markar algorithm," The Pennsylvania State University, ISME Working Paper 85-105, 1985. 



182 E.R. Barnes / A variation on Karmarkar's algorithm 

[2] P.E. Gill, W. Murray, M.A. Saunders, J.A. Tomlin and M.H. Wright, "On projected Newton barrier 
methods for linear programming and an equivalence to Karmarkar's projective method," Manuscript, 
Stanford University, 1985. 

[3] N. Karmarkar, "A new polynomial-time algorithm for linear programming," Proceedings of the 16th 
Annual ACM Symposium on Theory. of Computing, 1984, pp. 302-311. 

[4] R.J. Vanderbei, M.S. Meketon and B.A. Freedman, "A modification of Karmarkar's linear program- 
ming algorithm," Manuscript, AT & T Bell Laboratories, Holmdel, New Jersey, June 1985. 


