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We develop two efficient procedures for generating cost allocation vectors in the core of a 
minimum cost spanning tree (m.c.s.t.) game. The first procedure requires O(n") elementary 
operations to obtain each additional point in the core, where n is the number of users. The 
efficiency of the second procedure, which is a natural strengthening of the first procedure, stems 
from the special structure of minimum excess coalitions in the core of an m.c.s.t, game. This 
special structure is later used (i) to ease the computational difficulty in computing the nucleolus 
of an m.c.s.t, game, and (ii) to provide a geometric characterization for the nucleolus of an m.c.s.t. 
game. This geometric characterization implies that in an m.c,s.t, game the nucleolus is the unique 
point in the intersection of the core and the kernel. We further develop an efficient procedure 
for generating fair cost allocations which, in some instances, coincide with the nucleolus. Finally, 
we show that by employing Sterns' transfer scheme we can generate a sequence of cost vectors 
which converges to the nucleolus, 
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1. Introduction 

R e c e n t l y ,  g a m e  t h e o r y  has  b e e n  f r e q u e n t l y  used  to  m o d e l  v a r i o u s  cost  a l l oca t i on  

p r o b l e m s ,  see,  for  e x a m p l e  [2, 3, 7, 8, 12, 13, 15, 16, 2 1 , 2 3 ] ,  and  [1, 19] for  a n o n -  

a t o m i c  g a m e  f o r m u l a t i o n .  In gene ra l ,  a cost  a l l oca t i on  p r o b l e m  has the  f o l l o w i n g  

fea tu res .  T h e r e  is a set N ={1 . . . . .  n} of  users  ( c o m m u n i t i e s ,  d iv is ions  in a c o r p o r -  

a t ion ,  p roduc t s ,  etc.)  w h o  c o o p e r a t e  in the  u n d e r t a k i n g  of  a jo in t  e n t e r p r i s e  ( se rv ice  

d e p a r t m e n t ,  c ab l ev i s ion  n e t w o r k ,  e m e r g e n c y  sys tem,  t r a n s p o r t a t i o n  sys tem,  etc.) .  

T h e  q u e s t i o n  is h o w  to a l l oca t e  t he  cost  of  t he  j o in t  v e n t u r e  a m o n g  the  set  of  users  

so as to  satisfy c r i t e r i a  such  as fa i rness ,  s tabi l i ty ,  eff ic iency,  m i n i m a l  dys func t i ona l  

i n d u c e m e n t ,  etc. 

T h e  g a m e  t h e o r y  f o r m u l a t i o n  r e p r e s e n t s  t he  cost  of  u n d e r t a k i n g  a j o in t  p r o j e c t  

which  ca te rs ,  s epa ra t e ly ,  on ly  to subse ts  S c N in a cha rac t e r i s t i c  f u n c t i o n  fo rm.  

* Part of this research was done while the author was visiting the Department of Operations Research 
at Stanford University. This research was partially supported by Natural Sciences and Engineering 
Research Council Canada Grant A-4181. 

323 



324 D. Granot, G. Huberman / On the core and nucleolus qf M.C.S. 72. games 

Explicitly, for a subset S of N, let c ( S )  represent the cost of undertaking a similar 

joint venture which serves only the members of S. A cooperative game in characteris- 

tic function form is the pair (N; c). The core of the game consists of all cost allocation 

vectors x which cover the total cost of the joint project, i.e., 3~'=~ x j = c ( N ) ,  and 

for which no subset of users has an incentive to sever its cooperation with the rest 
of the users, i.e., }~ i~sx j<~c(S)  for each S c  N. 

Vectors in the core are natural candidates for 'good'  cost allocations. However, 

a game may have an empty core, and even if the core is not empty, generating 

vectors in it may be computationally very difficult. 

The class of minimum cost spanning tree games is an example of a collection of 
games which possess a nonempty core, and for which a vector in the core can be 

generated easily. Minimum cost spanning tree (m.c.s.t.) games arise in cost allocation 
problems in which the joint enterprise is a tree connecting the agents to a common 

source. They were studied by Claus and Kleitman [5], Bird [2], and by Granot and 
Huberman [8]. Megiddo [15] showed that the core of a game in which the graph 

connecting agents to a common source is a Steiner tree might be empty. Also, 

Littlechild [12] and Megiddo [16] computed the nucleolus for a special class of 

m.c.s.t, games, see also [9]. 
It was shown in [8] that a vector in the core of an m.c.s.t, game, referred to as 

the L solution, can be simply read from an associated minimum cost spanning tree 

(m.c.s.t.) graph. However, the L solution has apparent deficiencies. It discriminates 

against users which are closer to the common supplier while subsidizing the more 

distant ones, and thus cannot be oftered as a fair solution to an m.c.s.t, game. It is 

desirable therefore to further investigate the structure of the core of an m.c.s.t. 
game, with the hope of generating efficiently other vectors in it, and to consider 

other concepts of solution such as the nucleolus. In Section 2 which follows we 

formally introduce the class of m.c.s.t, games, provide necessary definitions and 

notation, and explain the deficiencies of the L solution. 

In Section 3 we show that the structure of the core of an m.c.s.t, game allows 
the development of an extremely efficient procedure for generating numerous 

additional cost allocations in the core. Each vector in the core is generated using 

O(n 2) elementary operations, where n is the number of users. In Section 4 we 

develop a second procedure for generating points in the core, which is a natural 

strengthening of the first procedure. The second procedure is rather efficient. In 

particular, if the associated m.c.s.t, graph is a chain, it produces each additional 
point by using O(n 2) elementary operations. The efficiency of the second procedure 
stems from the special structure of minimum excess coalitions in the core of an 

m.c.s.t, game (Theorem 4). This special structure is extremely helpful in our 

investigation of the nucleolus of an m.c.s.t, game. Specifically, in Section 5 we use 

Theorem 4 to ease the computational burden in calculating the nucleolus. For 
example, we show that if the associated m.c.s.t, graph is a chain, the number of 

constraints in the linear programs that are solved in Kopelowitz method [1 1] (or 

Maschler, Peleg and Shapley's method [14]) in order to produce the nucleolus of 
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an m.c.s.t, game can be reduced to the order of n 2, compared with 2" in a general 
cooperative game. 

In Section 6 we employ Theorem 4 to provide a geometric characterization for 

the nucleolus of an m.c.s.t, game. Specifically, Theorem 8 reveals that in an m.c.s.t. 
game, the nucleolus is the unique point in the core in which any pair of users which 
are adjacent in an m.c.s.t, graph is situated symmetrically with respect to its 
bargaining range. Further, we show (Corollary 3) that in an m.c.s.t, game the 
nucleolus is the unique point in the intersection of the kernel (of the grand coalition) 
and the core. 

Finally, in Section 7 we develop an efficient procedure for generating fair cost 
allocations which, in some instances, coincide with the nucleolus. We also show that 
by employing Sterns' transfer scheme [22], we can construct a sequence of cost 
vectors which converges to the nucleolus of an m.c.s.t, game. 

2. Minimum cost spanning tree games 

Our own study of minimum cost spanning tree games was motivated by the 
discussion of Claus and Kleitman [5] on criteria for allocating costs among users of 
a spanning tree network (e.g., cities which employ jointly a cablevision network). 
A definition of minimum cost spanning tree (m.c.s.t.) games and a constructive core 
nonemptiness result are provided in this section. Since our paper  deals with costs 
(as opposed to revenues), it is natural and convenient to reverse traditional 
inequalities in cooperative game theory. 

A cooperative n-person game is a pair (N; c) where N = { 1 , 2  . . . .  , n} and c is a 
real valued function on the subsets of N with c(4~)= 0. The excess of a nonempty 
coalition S c  N with respect to a vector x is ex(S, x ) = - c ( S ) - x ( S ) ,  where x ( S ) =  
Y~s  x~. The core of (N;  c) will be denoted by C(N;  c). It is a subset of I~" defined 
as C(N;  c) = { x ~ R " :  ex (N ,x )=O and ex(S,x)>-O for all S E N } .  

Consider the complete graph K,,+ t with nodes {0, 1 . . . . .  n}. Node 0 is the common 
supplier and the set N = {1,2 . . . . .  n} is the users'  set. The users are identified with 
players of the m.c.s.t, game. The entries of a symmetric matrix C =  
(cij) (i, j = 0, 1 . . . . .  n) indicate the costs of establishing edges between nodes i and 
j. For S e N ,  the graph Fs=(Vs ,  Ks) is an m.c.s.t, whose node set is Vs ={0}~S.  
The set E s c { O } u S x { O } v o S  is the edge set of Fs. Among all possible edge sets 
that will connect all nodes in Vs., the set Es has the smallest total cost, namely 
c(S) =Y~i.j~E~ % The numeral c(S) is thus determined for every S c  N. Hence the 
construction of the characteristic function of the m.c.s.t, game (N;  c). 

The tree associated with the grand coalition FN = ( VN, E,,,) induces a partial order  

> on {0} ~ N. Write i >  j if node j is on the (unique) path connecting node i and 
node 0 in FN. Under the order > each node i E N has one immediate predecessor 
p(i) and has a set (possibly empty) of immediate followers F(i). Node 0 has a 
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nonempty set of followers, F(0). Denote by Vj the set containing node j and its 
followers (i.e., V j = { j } w { i ~  N: i> j}). Also, denote the edge set E j =  

{(r, k ) c  E,,.: re  V / and k c  Vi}. Call the graph T j = ( V i ,  E i) the subtree ofF,~ rooted 
at node j. A subset S c VN will be called l~.-connected if for each i, j c S there is a 

subset of edges E c Et,, ~ (S x S) which form a path connecting i and ]. An equivalent 

definition is that S c  V.,s is F,,.-connected if it contains a smallest element and if 

i, j c  S and i> j imply {k c N :  i> k > j } c  S. 

The main known result on m.c.s.t, games is the core nonemptiness theorem, 

namely: 

Theorem 1. [8]. The vector L ( C )  ~ (I), I,_ . . . . .  t,,) is in the core of the m.c.s.t, game 

(N; c) where li = cit,(i). 

The vector L(C) will be referred to as the minimum spanning tree (m.s.t.) solution 

or the L solution. Of course, given the cost matrix C one can have more than one 
m.c.s.t. F,~ and consequently more than one m.s.t, solution. Observe that the L 

solutions can be computed without the need to compute the values of the characteris- 

tic function c(. ). They can be simply read from the various m.c.s.t, graphs associated 

with the cost matrix (cq). 
Ease of computation is a virtue of the m.s.t, solution. However, something is 

lacking with the L solution. If the grand coalition forms, each node uses its pre- 

decessor to link itself to the common supplier 0. One feels that the value of such 
a service should be reflected in a cost allocation among the users. This is not the 

case with the L solution. For instance, the leaves of FN (i.e., nodes with no followers) 

pay under L the smallest amount they would pay under any cost allocation in the 

core. This observation generalizes: for each S such that E s c  JEN, Y-~s li = c(S).  
Furthermore, N \ S  pays under L the least amount it would pay according to any 
vector in the core. Agafll, unless Y~, N,s li = c ( N \ S ) ,  the set N \ S  is using the set of 

users S in order to link themselves to the common supplier. 
This criticism of the L solution is the motivation for a search for other cost 

allocations. Preferably, they should be in the core and easy to compute. 

3. Weak demand operations 

This section presents an extremely efficient procedure which produces various 

core cost allocations. The procedure is motivated by considering opportunity costs 
of followers and transferring followers" surplus to their predecessors. The following 

example illustrates these ideas. 

Example 1. Let N = { 1 ,  2 . . . . .  6}. The m.c.s.t, is illustrated in Figure 1. Arc costs 

(the c,/s) are indicated next to the arcs. Missing arcs have infinite costs. 
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Fig. 1. The data for Example 1. The arcs of the m.c.s.t. /~-v are the solid lines. 
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In this example ,  F,~ = ({0, 1, 2, 3, 4, 5, 6}, {(0, 1), (1, 2), (2, 3), (2, 4), (2, 5), (5, 6)}) 

and k = (2, 2, 2, 2, 2, 2). If it were  not  for  node  1, the  set {2, 3, 4, 5, 6} would have 

to pay 8 ( ra the r  than 2) in o r d e r  to link itself to 0. Suppose  user  1 requ i red  that  

the surplus  of 6 be t rans fe r red  to him, at the expense  of user  2. Compl i ance  with 

this d e m a n d  results  in the cost a l locat ion  ( - 4 ,  8, 2, 2, 2, 2). Suppose  that  user  2 

picks up on the idea and observes  that  arcs (2, 3), (2, 4) and (2, 5) a re  used by its 

fo l lowers  to connect  themselves  with 0. The  edge set of the m.c.s.t, of N\{2} is 

{(0, 1), (1 ,6 ) ,  (6, 5), (6, 4), (3, 4)}, If the  set N loses the c o o p e r a t i o n  of user  2, the 

branch s tar t ing with user  3 (conta in ing only 3) will have to pay 3 (as oppose d  to 

2), the  branch roo ted  at  4 will have to pay 4 and the branch roo ted  at 5 (conta in ing 

5 and 6) will pay 5. A successful t ransfer  of the surplus  (i.e., 3 - 2 + 4 - 2 + 5  - 2  = 6) 

to user  2 ( re la t ive  to the  cost a l loca t ion  ( - 4 ,  8, 2, 2, 2, 2)) results  in the vec tor  

( - 4 ,  2, 3, 4, 5, 2). ~ When  user  5 makes  a similar  d e m a n d  on user  6 one  ends up 

with the  cost  a l locat ion  ( - 4 ,  2, 3, 4, 3, 4). It is s t r a igh t fo rward  to check that  the  

three  cost  vectors  we gene ra t ed  are  in the core  of ( N ;  c) of E xa mple  1. 

The  fol lowing formal izes  the  ideas in E x a m p l e  1. Fo r  a node  i e N cons ider  the 

m.c.s.t.  FN~ti} = ( VN\{i},  EN\{i~ ) in which the sub t rees  T~, ( k  e F ( i ) ) ,  roo t ed  at  k in 

F,v p rese rve  their  in terna l  structure,-" i.e., E k c  E,,,\{i}. For  each k c F ( i )  there  is 

one edge (r, q) e E.Nxli/such that  r e  Vk and q is on the unique path of every, node  in 

Vk to 0 in F:,:t, ~. D e n o t e  the cost  of this edge  by ck. A weak  d e m a n d  operation by 

Other cost allocations are possible in this case. For example, such an action by user 2 can result 
with the cost vectors 1-4.2.5, 4.3, 2). (-4, 2.5.3, 4, 2), (-4, 2, 3, 5, 4, 2) and (-4, 2.4, 5, 3, 2), all of 
which are in the core of Example 1. To keep the presentation within limits these cost vectors are not 
characterized and studied here. 

2 Since the T~,'s, kcF( i ) ,  are subtrees of /',,., there always exists an m.c.s.t, graph FN\li}= 
( V.,v~il., f~,.~i}) in which the subtrees T k, k c F(i), preserve their internal structure. 
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user i t ransforms a cost allocation y into the vector  wd~(y), given by: 

( v c (e) -y (Vk\{k}) ) ,  r = k , k ~ F ( i ) ,  
Ck -- e~qi~ 

wd~(Y)= y , -  ~ ( w d ~ ( y ) - y k ) ,  r=i, (1) 
k~F{i) 

Yr, otherwise, 

where c(e) is the cost associated with arc e, i.e., if e = (u, v) then c(e)= c ..... Note  
that if F(i) = & then wd'(y} = v. 

The transformation y +  wd'(y) is well defined by (1) for each y ~ W'. It satisfies 

the invariance proper ty  wd~(wd'(y))=wdJ(wd~(y)) for any i and j, with 

wd' (wd~(y)) = wd'(y) .  The invariance follows f rom the observat ion that the transfor-  

mation,  y--, wd ' (y) ,  involves transfer of costs only between i and members  of F(i) 
and leaves unchanged y(Vfi{]}), if j <  i, j >  i, or j and i are not comparable .  Thus, 
we extend the definition of a weak demand operat ion to a t ransformat ion carried 
out by a subset O, O c  N. A vector,  y, is mapped to the vector,  wd~ where 

wd~ = y. If O # 0, take any i c O to define recursively wd~ = wd~( wd ~ (y)). 
We first prove: 

Theorem 2. L e t  I'.,,. = ( V , , ,  E , ;  ) be an m . c . s . t ,  graph with an associated m.s . t ,  solution 
k For every i c N the vector wd'(L) is in the core of the associated m.c.s.t, game. 

Proof. SinceLr wd'r(L)~Y~ l i i f i~S,  itsutficestoshowthat 
vr~ s wdr(L) -  c(S) if i~S. Assume,  on the contrary,  that for some S, with i~S, 
we have that V r~ ~.s wd~(L) > c(S). Then v .~,*'.{~} wdr(L) > c(S) +~r~N,{S~,{i> wd~r(L) ' 
By definition of L and wd*(L) we have that v ~ N , v  } wd~(g) is the cost associated 

with an m.c.s.t, graph FN,,{i} = ( VN,,ti }, ENx{i})- Moreover ,  c(S) +Y~r~-N',lsuv}) wdi,(L) 
is the cost associated with a spanning tree on VN,{~}. Therefore ,  Z~,N,/~} wd~r(L) > 
c(S)+Y~NX~S~t~r ~ wd',(L) contradicts the minimality of F,v\{~}, and the proof of 

Theorem 2 follows. 

Moreover ,  

Theorem 3. For any O= N, wd~ ~ C [ ( N ;  c)]. 

Proof. See Appendix.  

Observe that since an m.c.s.t, graph over n nodes is constructed in O ( n  2) elemen- 

tary operations,  a new cost allocation vector wd~(wdS(L)) is produced from wdS(L), 
S c N, by O(n  2) e lementary operations. 

We remark that Theorem 3 cannot  be generalized to hold for an arbi t rary vector 

y in the core and an arbi t rary m.c.s.t, graph FN. lndeed,  consider the following 
example. 
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Example 2. Consider the m.c.s.t, graph shown in Figure 2. The L solution of the 
associated m.c.s.t, game is L = ( 1 , 1 , 1 , 1 , 1 ) .  It is easy to show that y =  
( - 1 , - 3 , 6 , 2 , 1 )  is in the core of the associated m.c.s.t, game, and that 
w d 4 ( ( - 1 , - 3 ,  6, 2, 1))-- ( - 1 , - 3 , 6 , - 1 , 4 ) .  But, ( - 1 , - 3 , 6 , - 1 , 4 )  is not in the core 
since c({3, 5}) = 9 < wd~(y) + wd~(y) = 6+ 4 = 10. 

5 

. . . .  2___ 

\ V ./ ,.. 
2 \'~'\ IIl~r / ! 4 

'1, \ I t / "  

0 

Fig. 2. The data for Example 2. 

However,  in the next section we will show that if FN = ( g~,/ZN) is a chain and 
y~ C[(N;  c)] then wdS(y) is in the core for any Sc_N. 

Finally, it is assumed in the definition of w&(y) that user i performs a simultaneous 
w.d.o, against the entire set, F(i), of his followers. However, one can similarly 
define a partial w.d.o, of user i against a subset/~(i),  F(i)  _c F(i), of his followers. 
In such a w.d.o, user i makes the cost associated with eu, j c  F(i)  excessively high, 
and thus forces the users in .~(i) to pay the cost incurred to them if they get the 
service from the central supplier not directly through user i. Such an action by user 
i will produce other vectors in the core. For example, in Example 1, starting from 
the vector ( - 4 ,  8, 2, 2, 2, 3) and letting user 2 perform partial weak demand oper- 
ations against various subsets of his followers one can get the vectors 
( -4 ,  7, 3, 2, 2, 3), ( -4 ,  7, 2, 3, 2, 3), ( - 4 ,  6, 2, 2, 4, 3), ( -4 ,  5, 3, 4, 2, 3), 
( - 4 ,  5, 3, 2, 4, 3) and ( - 4 ,  2, 3, 4, 5, 3), all of which are contained in the core of the 
m.c.s.t, game associated with Example 1, For more details see [10]. 

4. Strong demand operations 

We develop in this section a second procedure for generating points in the core, 
which is a natural strengthening of the first procedure presented in Section 3. The 
computational efficiency of the second procedure stems from the special structure 
of minimum excess coalitions in the core of an m.c.s.t, game (Theorem 4). This 
special structure is used later (Sections 5 and 6) to investigate the properties of the 
nucleolus of an m.c.s.t, game. 

The following example will motivate the subsequent developments. 

Example 3. Let N = { 1 ,  2, 3} and let the corresponding m.c.s.t, graph F~1.2.3~ be 
given in Figure 3 below. 
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Fig. 3. The data for Example 3. 

The L vector of the associated m.c.s.t, game is L = ( 1 ,  1, 1). Using notat ion of 

the previous section we have wd~((l ,  1, 1)) = (0, 2, 1), and wd2((O, 2, 1)) = (0, 1,2).  
However ,  it is conceivable that user 2 may require f rom user 3 to pay more  than 

2, the reason being that, while indeed it costs user 3 to join user 1 only 2, user 1 

is also being subsidized by user 2. In fact, in the cost allocation vector  (0, 2, 1) user 

1 does not pay anything, and it is user 2 who is paying the cost of delivering a 

service from the c o m m o n  supplier for both users 1 and 2. Thus, user 2 may require 
user 3 to pay such an amount  for which, if user 3 joins user 1, both users 1 and 3 

pay the cost associated with the edge set of the m.c.s.t, graph Fu,3 ~. This implies 
that user 3 must pay 3, which results with the cost vector  (0, 0, 3). It is easy to 

check that (0, 0, 3) is in the core of the m.c.s.t, game associated with Example  3. 
Moreover ,  the vector (0, 0, 3) cannot  be genera ted  by any sequence of weak demand 

operations.  

The formalization of s t rong demand operat ions  entails the following notation. 

For  subsets Rt  and R 2 of N and a cost vector  y let 

TR~.R~ = { S :  R 1 c S, R2f-I S =0},  

~R~.R:(Y) = {S: S �9 TR,m,, ex(S, y) <~ ex(R, y), R �9 TR,m,}. 

(For convenience,  if both R1 and R2 are singleton, say R~ ={i} and R 2 = { j } ,  we 

will use the notat ion T u and 5Qj(y) for Tut.{j I and 5e{i~.~j}(y).) 

W h e n  a node i c N performs a strong demand  opera t ion (s.d.o.) it receives a 
transfer zj f rom each j in its immediate follower set F(i). Explicitly, given a cost 
allocation vector  y in the core, an s.d.o, by user i is a multifunction (correspondence)  

which associates with y the set of vectors {sdi(y)} given by 

/ Exk y+zk / 
{sd~(y)} = x: x k = y i  - Z zj, k= i ,  

jcF(i) 
xk = Yk, otherwise,  

(2) 
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where z j = x j - y j ,  j e F ( i ) ,  and the xj's are the optimal values of the tj variables, 
j e  F(i),  in the following optimization problem: 

Max { 5~ tj} (3) 
j~F( i )  

s.t. ex(R, t)>~O for all R e  Tr(~).~U (Ts.F(i)xs: S c F ( i ) ) ,  

tk = Yk for k,~{i} U F( i ) ,  (4) 

t (N) = y(N).  

If y is in the core then the constraints in (4) ensure that all cost allocation vectors 
x, xe{sd~(y)}, are also contained in the core. Further,  it is evident from (3)-(4) 

that ~j~F(S) Zj = ~jr (Xi-- yj), X ~ {sd~(y)}, is the maximum total transfer that user 
i can get from F(i) without violating core constraints. 

Observe that if we impose in (4) the additional restrictions tj = yj, j e  F(i) c F(i),  
then {sd~(y)} can be considered as the collection of points in the core which may 

result f rom an s.d.o, performed by user i against only the subset F(i) \F(i)  of his 
followers. Further, if F(i) = ~) then {sd'(y)} = {y}. 

The main shortcoming of the formulation (3)-(4) of the s.d.o, is its computational 

impracticality, the linear program has many constraints. Considerable simplification 
could be achieved by identifying constraints in (4) which will never be binding. It 
turns out that F:q-connected sets play a major  role in the elimination of redundant 
constraints in (4). This will be stated formally as Proposition 1 in the sequel. In 
fact, it follows from Proposition 1 that if l'N is a chain then {sdS(y)} (which is a 
singleton set in this case) can be computed in O(n  2) elementary operations (see 
Corollary 1 below). 

Indeed, let us first consider the case where /',~ is a chain, and assume that the 
nodes of FN are  numbered 0, 1 , . . . ,  n so that 1 ~< i < j ~  n implies that i is closer 
than ]" to node 0. It follows from Proposition 1 (or Corollary 1) that an s.d.o. 
performed by user i transforms a cost vector y into a vector sd'(y), given by 

Min,=o i-~ ex({1 . . . . .  r } , y ) + c , ~ -  
e E  i ~ l  

u<~r' v ~ > i + l }  ' (5) sd}(y)  = 

i y , -  ( s d i + l ( y ) -  y,+l), 

Yi, 

where ex(O, y) = O. 

c( e ) - y( Vi+ 2) ) : 

j = i + l ,  

j = l ,  

otherwise 

It clearly follows from (5) that in order to compute sd~(y) we will consider at 
most i arcs (u, v), u ~ i - 1 ,  v/> i+  1. Therefore,  sdi(y) can be computed in O(n 2) 
elementary operations. 

To proceed with the general case we need the following definition. Given a set 
O c N, the pair P(O) = (V (O) ,  E(Q) )  is an open connected subgraph of FN induced 
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by 0 if (i) V(O)  c N, E (O) c E,v, (ii) ( V(Q)  w Q, E (O)) is the smallest connected 
subgraph of /~,r whose node set contains O, and (iii) EN\E(O) c ( VN\ V(O)) X 
(V,,,.\V(O)) (i.e. the complement of P(Q)  with respect to I'~, is a legitimate graph.) 

Note that a set O c  N can induce more than one open connected subgraph. 
Moreover,  V ( O ) ~  O need not be empty. The following is an example of open 
connected subgraphs. 

Example 4. Consider the m.c.s.t, graph shown in Figure 4. The sets ({2, 3}, {(1,2), 
(2, 3), (2, 4)}) and ({2}, {(1, 2), (2, 3), (2, 4)}) are open connected subgraphs induced 
by the nodes 1, 3 and 4. 

5 

4 2 

Fig. 4. The m.c.s.t, for Example 4. 

With each cost allocation y and an open connected subgraph P(Q)  = 

(V(O) ,  E ( Q ) ) ,  we associate the marginal excess 

mex(P( O), y) =- ~ii, i)~EcO! Cij-- Y(V(Q)).  (6) 

Also, for the subtree Tj = ( Vj, Ej) of FN rooted at j we define its marginal excess (with 
respect to the cost vector y) as mex( T(j),  y) = ~, k.,)_~ E~dkr-- Y( Vi\{ 1})" The following 
lemmas provide estimates on these marginal excesses, given that y is in the core. 

Lemma 1. If yc C(N; c) then 

mex(T(i), y) <~ O. (7) 

Proof. Since ye C(N; c) we have 

y( N\{ Vi\{i}}) ~< c( N\{ Vi\{i}}) = c( N) - 

Also (since y(N) = c(N)) we have 

c(N) - y(N\{ Vi\{i}}) = y(Vii{i}). 

The addition of (8) and (9) completes the proof. 

Z ck. (8) 
( k.r)c E i 

(9) 

Lemma 2. Let P( Q ) = (V(O) ,  E ( Q ) ) ,  0 , ( V ( O ) ,  be an open connected subgraph of 
IN induced by Q, and let E be a collection of arcs such that E C~EN =0 and 
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( VN\ V ( Q) ,  {EN\E(Q)}  w E)  is a connected graph. Then 

mex(P(Q) ,  y)<- Z Ckr (10) 
(k.r)~F 

for every y c C[(N;  c)]. 

Proof. By the connectedness of ( V N \ V ( Q ) , { E N \ E ( Q ) } u E )  and since O.~V(O) 
we have that 

c ( N \ V ( Q ) )  <~ ~ Crk+ 2 C~k. 
( r , k )~  E,~, , ' ,F(O) ( r.k b U 

Since y is in the core we have y(NI  V ( Q ) ) ~  c (N \  V(Q)) ,  which implies 

y ( N \ V ( Q ) )  <~ ~ crk+ }] crk. (11) 
( r . k ) ~ E ~ , ~ E ( O )  Ir, k l c : E  

Also, y ~ C(N;  c) implies 

y ( S )  = Y~ Crk. (12) 
( r.k )~ E.~,, 

Subtract (11) from (12) to obtain 

Y(V(Q)) ~> ~ crk- ~ c,k, 
( r , k ) e E ( C . ) )  trklc: l :5  

thus completing the proof. 

Our next target is the establishment of an effective necessary condition for a 
coalition to have minimal excess. To this end, consider a set S c N. Its complement  
N \ S  can be uniquely partitioned into maximal subsets of N\S,  each of which is 
FN-connected. This collection of sets will be denoted by ~s. For V c ~s, let E v = 
{(i,]') ~ EN: i c V or j c  V}. The /~-connectedness  of V guarantees that (V, E v) 
is an open connected subgraph of FN. 

The following theorem shows that for core members,  the minimum excess coali- 
tions in an m.c.s.t, game are few and easily identified. This theorem will be used in 
the sequel to show how the computation of cost allocations resulted from strong 
demand operations can be simplified, and to investigate the properties of the 
nucleolus of an m.c.s.t, game. 

Theorem 4. (Minimum excess coalition structure Theorem).  Let I ~  = ( VN, EN ) be 
an m.c.s.t, graph and let S, R c N be such that ~s  ~ ~R. Then ex(S, y) <~ ex(R, y) 
for any y c C[(N;  c)]. 

Proof. Let R, S c N be such that ~s  c ~n. Recall that FR = ( VR, En) is an m.c.s.t. 

with Vn = R ~ {0}. Our  proof of Theorem 4 uses Procedure I below. 
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Procedure I. 
Step O. Set W = R, E = E~ and ~ = ~e\3~s. 
Step 1, If ~ = fJ, terminate. Otherwise go to Step 2. 
Step 2. Let Q � 9  ~. If Q r Vii{j} for some subtree Tj of /~,v rooted at L go to 

Step 3. Otherwise, set W =  W w Q ,  E = E ~ E  ~ and ~ = ~ \ { Q } .  (Note that, by 
Lemma 1, e x ( W w  Q, y)<~ ex(W, y).) Go to Step 1. 

Step 3. Let F c E \E~  be the (unique) collection of arcs such that the graphs 
(VN\Q , {EN\EC ' }wF)  and ( { 0 } w W ~ O , { E w E ~  are connected. Set W =  

" W w Q ,  E = E w E  ~ and ,@=~\Q. (Note that by Lemma 2 m e x ( ( Q , E ~  
~(~,i~e % which implies that ex( W w  Q, y ) ~  ex( W, y).) Go to Step 1, 

Procedure I terminates after l~a\.@sl iterations, with ex(W, y)~< ex(R, y) and 
W = S, thus completing the proof. 

Theorem 4 leads naturally and implies immediately: 

Proposition 1. Let y~  C(N;  c) and S c  F~i~. 
(i) There exists a coalition R �9 ,cfF~,~t(y) such that N \ R  is FN-connected, 

(ii) I f  i Z Q  for some Q �9 5~ then there exists a coalition R ~ ~S./F~)\s}(Y) 
such that N \ R  is F~,,-connected. 

(iii) I f  i �9 Q for some Q �9 5~s.Ft~s(y), then there exists a coalition R c 9~ 
such that ~R has IF( i)\SI members, a nd each node j, j �9 F( i)\S, is the smallest element in 
precisely one member of ~R. 

The importance of Proposition 1 is that it limits the search for members of 
2fs.F~i,,,s(y) (and of ,9~Fti~.~o(y)) to a small group of candidates. Moreover,  these 
candidates have a well defined graphical structure which is specified in Proposition 
1. Finally, due to their strcuture, not only their identification but also the computation 
of c(R)  for R �9 ~s.F~\s(Y) (or R c 5~r.-t~.~(y)) can be efficiently done. 

Example 5, Consider the m.c.s.t, shown in Figure 5 below, and assume that a cost 
allocation vector y is in the core of the associated m.c.s.t, game. Suppose 

R ={2,4,  6, 7, 9, 12, 14, 15, 17, 18,20}e J2o.,9(Y), 

and that 

FR = (R w'{0}, { d~, d2, d3, d4, ds, de,, dT, d~, d~), di,,, di1}). 

By kemma 1, mex(P(20) ,  y)<~ 0. Further, by Lemma 2 we have: 
(i) mex(P({O, 2}), y) <~ c(d~), 

(ii) mex(P({4, 6, 7}), y) <~ c(d:O + c(d4), 
(iii) mex(P({12, 14, 15}), y) ~< c(ds)+ c(dg), 
(iv) mex(P(15,  17), y)~< c(dl,) ,  and 
(v) mex(P({2, 4, 9, 12, 18}), y)<~ c(d2)+c(ds)+c(d6)+c(dT) .  All the above 

inequalities imply that S = {1,2 . . . . .  24}\{19} e ~2o,~(Y). Observe that N\S = {19} 
is FN-connected. 
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Fig, 5. The m.c.s.t, for Example 5, 

Further, consider Example 6 below. 

Example 6. Consider the m.c.s.t, graph shown in Figure 6. 

.j .9 

~7 

~0 

Fig. 6. The m.c.s.t, for Example 6. 
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Now, let y be a cost allocation vector in the core of the associated m.c.s.t, game, 
and assume that we seek a subset Sc,~/9.j(~/.~s}(y), i.e., we seek a subset S, S~  
T~9.~o}.~s} for which ex(S, y) <~ ex(R,  y), for all R ~ T~,),1oL{s~. In view of Proposition 
1, the search for such a subset S can be confined to those subsets Q, Q ~ T{9j0},{8}, 

whose complements N \ Q  are l~,-connected. In Example 6 there are only 13 such 
subsets, which are: {9, 10}, {6, 9, 10}, {3,9, 10}, {3, 6, 9, 10}, {2, 3, 9, 10}, 
{5,6 ,9 ,10},  {3 ,5 ,6 ,9 ,10} ,  {2 ,3 ,5 ,6 ,9 ,10} ,  {1 ,2 ,3 ,9 ,10} ,  { 1 , 2 , 3 , 6 , 9 , 1 0 } ,  
{1, 2, 3, 5, 6, 9, 10},{l, 2, 3, 4, 5, 6, 9, 10}, and {1,2, 3, 4, 5, 6, 7, 9, 10}. On the other 
hand, the total number  of subsets in Ttg.~o/./s I in Example 6 is 27 = 128. 

Let us consider now the special case where FN is a chain. It follows immediately 
from Proposition 1: 

Corollary 1. If  I'N = ( VN, EN) is a chain then for every cost allocation y in C[(N;  c)] 
and for ec~ery i, i c N, sd ' (y)  given by (5) is in the core of (N;  c). 

Assume still that FN is a chain, and let R ={ij . . . . .  ik} be an ordered subset of 
elements of N, such that i i~V, for j = 1 . . . . .  k - 1 and t > j, t E R. Strong demand 
operations carried out by the users in R, performed according to the order in R, 
transforms the cost vector y to a vector stiR(y), defined recursively as s t iR(y)= 
sdik(sdR"li~(y)), where sd~  y. It follows immediately from Corollary 1 that if 
y is in the core then sdn(y)  is in the core for any subset R. However,  by contrast 
with the weak demand operation, sdn(y)  is not invariant to the order in which 
s.d.o, are carried out by members  of R. Further,  if y is in the core then 

sd~l ....... am(y) = s d l ]  ....... -I~(L), where L is the m.s.t, solution associated with F N. 

Finally, recalling Example 2. we know that if F~ is not a chain then, even if y is 
in the core, wdi(y) is not necessarily in the core. However,  by the definitions of 
sd ' (y)  and wd~(y) and from Corollary 1 it follows: 

Corollary 2. / fFN = ( V,,~, EN) is  O chain and if y is in the core then wd S ( y ) is in the 
core for any subset S c_ {1 . . . . .  n - 1}. 

5. Computing the nucleolus of an m.c.s.t, game 

The calculation of the nucleolus of a cooperative game is usually a computationally 
difficult task. An algorithm for this purpose was designed by Kopelowitz [11] and 
Maschler et al. [14]. In this section we apply the minimum excess coalition structure 
theorem (i.e., Theorem 4) to reduce significantly the computational effort involved 
in generating the nucleolus of an m.c.s.t, game. 

Before presenting the section's main result, let us recall the following definitions. 
For a cost allocation x ~ R", let O ( x ) c ~  z'' be the vector whose entries are the 
excesses ex(S, x), S c  N, arranged in an increasing order. Denoting by/> the lexico- 
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graphic order in E2,,, define the nucleolus of a game Nu(N;  c) as 

N u ( N ;  c) = { x 6 W ' :  O(x) >- O(z) for all z such that x ( N ) = z ( N ) = c ( N ) } .  

Schmeidler [20] showed that the nucleolus of (N; c) is a unique point in the kernel 

of (N; c). Moreover,  if the core of (N; c) is not empty, the nucleolus is in it. 
Kopelowitz [11] and Maschler et al. [14] have constructed an algorithm for 

computing the nucleolus of a cooperative game by solving a sequence of at most 
2" linear programs, where n is the number of players. The first linear program PI 
to be solved in this algorithm is Problem P~: 

Max{r, s.t. c( N)  = x(N) ,  r<~ c( S ) -  x( S), S c ~o}, 

where ~o = 2N\{ N, 0}. 

For j ~  1, let r i denote the optimal value of r in problem P/; 

Aj ={x: x is an optimal solution to problem Pj}; 

~ ) = { S : S ~ : 0  {i~2J ~ k } , r ~ = c ( S ) - x ( S ) f o r a l l x ~ A j } .  

At stage i, the linear programming problem to be solved is problem P~: 

Max r 

s.t. 4 = c ( S ) - x ( S ) ,  

r ~  c ( S ) - x ( S ) ,  

x ( N )  = c (N) .  

S E ~ j , j = I , 2  . . . . .  i - l ,  

s~:o IiLJ ~:j}, 
t j = l  

The nucleolus is obtained in stage t, 1 <~ t < 2", whenever A, consists of a single vector. 
The main result in this section is Theorem 5 which follows. 

Theorem 5, Let ( N ; c) be an m. c. s. t. game with an associated m. c. s. t. FN = ( VN, EN ). 
The nucleolus of (N; c) depends only on the coalitions S whose complements N \ S  
are FN-connected. 

Proof. We will show that in the sequence of linear programming problems Pi that 
are solved to produce the nucleolus, the constraints corresponding to subsets S 
whose complements N \ S  are not f'N-connected are redundant. Let z denote the 
nucleolus of the m.c.s.t, game (N; c). Assume that for some k, k ~> 1, and for some 
SeN, 

r k = C ( S ) - z ( S ) ,  SC~k, (13) 

and N \ S  is not FN-connected. Let m be the smallest integer such that Rj . . . . .  Rm 
r/i is a collection of pairwise disjoint maximal Fn-connected sets such that ~--J/=l Rj = 

N/S. Observe that m I> 2. Since the nucleolus is always contained in the core, if the 
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core is not empty, it follows from Theorem 4 that 

e x ( N \ R , ,  z) ~ ex(S ,  z) ,  i = 1 . . . . .  m. (14) 

However ,  (14) implies that the constraint corresponding to the subset N\R~ is tight 
at problem P,~,, i.e., 

r , , i ~ = c ( N t R , ) - z ( N 1 R i ) ,  i = l  . . . . .  m (15) 

and, most important,  t(i)<~ k. Therefore.  by the construction of the linear programs 
P, it follows that the system (15) is a subset of the constraint set in problem Pk. 

NOW, since z ( N \ R , )  = c ( N ) -  z(R~),  the system (15) implies that 

z ( N \ S ) =  V z ( R , ) : m . c ( N ) +  v [ r , i , - c ( N \ R ~ ) ]  
i = 1  i = 1  

or, equivalently, 

z ( S )  = ~ [ c ( N \ R ~ ) - r , , ~ , ] - ( m -  l / c ( N ) .  
t = l  

Clearly, we must have from (13) and (17) that 

m 

c ( S ) -  rk = V [ c ( N \ R i ) - r , ~ i ~ ] - ( m -  1)c(N).  
i = 1  

(16) 

(17) 

(18) 

Thus the constraint (13), which is satisfied at problem Pk, is implied by the system 
of constraints (15) which are also satisfied at problem Pk. However,  the system of 
constraints (15) correspond to subsets S whose complements N \ S  are FN-connected. 
Therefore,  (13) is redundant and the proof of Theorem 5 is complete. 

It follows from Theorem 5 that the number of constraints in the linear programs 
P, that we need to solve to produce the nucleolus of an m.c.s.t, game is much smaller 
than that in the problems Pi we need to solve to compute the nucleolus of a general 
cooperative game. In particular, if F:, is a chain, the number  of constraints in the 
first linear programming problem that has to be solved to produce the nucleolus is 

only �89 + 1), compared with 2" in a general cooperative game. 

6. A geometric characterization of the nucleolus of an m.c.s.t, game 

This section provides a geometric characterization of the nucleolus of an m.c.s.t. 
game. This geometric characterization implies that for m.c.s.t, games the intersection 
of the core and the kernel consists of a unique point, which is the nucleolus. First, 
we show: 

Theorem 6. Let (N;  c) be an m.c.s.t, game  with an associated m.c.s.t. F,~ = ( VN, EN). 
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Then, a cost allocation vector y in the core of (N;  c) is the nucleolus of (N;  c) if 
and only if 

Min{ex(S, y), S c Tq} = Min{ex(S, y), S c ~.~} (19) 

for all nodes i, j such that ( i, j )c EN. 

Proof. Clearly, if (19) is not satisfied then y is not contained in the kernel, see also 
[6, 14]. However,  the nucleolus is always contained in the kernel and thus y is not 
the nucleolus. It remains to show that if (19) holds then y is the nucleolus. 

Let _s = {0, N} and for i/> 1 let 

i-J } 
.~i(Y) = S: ex(S, y )~ex(O,  y), S, O E 2 \ j / . 2 J  ~ ~j(y) . 

Let O be an arbitrary subset in ~1(Y). By Theorems 4 and 5 we may assume that 
N\O is FN-connected. We will first use Procedure II below to show that any decrease 
in y(O) ,  with an equal increase in y(N\O) will produce a lexicographically inferior 
vector than y. Clearly, an increase in y(O) will certainly produce a lexicographically 
inferior vector to y. 

We define the following sets. 

U = { ( k , l ) : k ~ O ,  l c O ~ F ( k ) } ,  V = { k : k ~ O a n d p ( k ) ~ O } .  

(Recall that p(k) is the immediate predecessor of k in FN.) 
Procedure II. 
Step 1. If U = 0 go to Step 2. Otherwise, let (i, j) e U, and let R ~ 5~u(y). We have: 

(i) R e ~1(Y), since O ~  _~I(Y) and (19) imply that ex(O, y) = ex(R, y), 
(ii) N \ O c R ,  by Theorem 4, 

(iii) j E NIR c Vj c O, where the first inclusion follows from the definition of R, 
and the last two inclusions follow from Theorem 4. 

Observe that (i), (ii) and (iii) above imply that any decrease in y(N\R),  and an 
equal increase in y(N\O) will produce a lexicographically inferior vector to y. 

Now, if N\R = Vj let U = Ul{i, j} and go to Step 1. If, on the other hand, NIR 
is a proper  subset of Vj, let 

Un ={(k, l): k c N \R  and l c  R ~ F(k)},  

set U= U u  URI{(i,j)}, and go to Step 1. 
Step 2. If V = 0 stop. Othe(wise, let i e V and let R c 5g~.,u~ (y). We have: 

(i) R e ~:1(Y), since O e  ~:l(y) and (19) imply that ex(R, y) = ex(O, y), 
(ii) N \ O c  R, by Theorem 4. In fact, Theorem 4 implies that N \ O c  V~ c R, 

(iii) p(i)~ NIR c N\V~, where the first inclusion follows from the definition of 
R and the second inclusion follows from Theorem 4. 

Again, observe that (i), (ii) and (iii) above imply that any decrease in y(N\R),  
and an equal increase in y ( N \ O ) ,  will produce a lexicographically inferior vector 
to y. 
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Now, if N I R  = N \ V ~  let V- -  V\{i} and go to Step 2. If, on the other hand, N \ R  

is a proper  subset of N \  Vi, let 

V R = { k : k ~ N \ R a n d p ( k ) ~ R } ,  U R = { ( k ,  1 ) : k c N \ R  and I E R ~ F ( k ) } .  

(Observe that VR w UR c_{N\V~}\{p(i)} .)  Set U = UR, and V =  V u  VR\{i}, and go 
to Step 1. 

Procedure II will terminate after a finite number  of iterations with the conclusion 
that any decrease in y(Q) ,  with an equal increase in y ( N \ Q ) ,  will produce a 
lexicographically inferior vector to y. Similarly, we can show that for an arbitrary 
subset W, W e  r any decrease in y (W) ,  with an equal increase in y ( N \ W ) ,  will 
produce a lexicographically inferior vector to y, and so forth. Eventually, the 

characteristic vectors of all subsets Q whose excesses we cannot change, by a local 
change in y, without producing a lexicographically inferior vector will span N". This 
implies that any local change in the cost vector y, to produce another  cost vector 
x, will result with x being lexicographically inferior to y. However,  the nucleolus is 
an optimal solution to a linear programming problem, see e.g. [4, 17], in which 
every local optimum is also a global optimum. It follows, therefore,  that y is the 
nucleolus of the associated m.c.s.t, game, and the proof of Theorem 6 follows. 

Let X[ (N;  c)] denote the kernel, of the grand coalition, of an m.c.s.t, game. An 
immediate result that follows from Theorem 6 is: 

Corollary 3. In an m.c.s.t, game the nucleolus is the unique point in C[(N;  c)]c~ 
:Tf[(S; c)]. 

Proof.  If y is in the intersection of the kernel and the core then (19) must hold, 
see also [14]. However ,  by Theorem 6, y must be the nucleolus, which is unique, 
and the proof of Corollary 3 follows. 

An interesting geometric characterization for the intersection of the kernel and 
the core of a cooperative game was given by Maschler, Peleg and Shapley [14]. Let 
us briefly review their geometric characterization, as applied to an m.c.s.t, game, 

and relate it to Theorem 6 and Corollary 3. First we need some notation. Let x be 
in C [ ( N ;  c)]. For any pair of users i,j, i # j ,  let siq(x) = ex(S,  x),  S c  5~ij(x), and let 

8i.i = Max{6 :  x + 6u i - 6u / c C[(N;  c)]}, 

where u i represents the ith unit vector. Observe that ~i,~(x)= s~.j(x). Further,  let 
R~,j(x) be the line segment with end points 

(x - s,.~(x)u' + s / . ( x )u  j, x + s , , : ( x )u ' -  s/. ,(x)u/).  

As observed in [14], R~j(x)  can be regarded as the bargaining range between users 
i and j with respect to x, and the middle point of Ri, j(x) represents a situation in 
which both players are symmetric with respect to their bargaining range. Now, 
Theorem 3.8(a) in [14], applied to m.c.s.t, games, yields: 
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Theorem 7. Let (N;  c) be an m.c.s.t, game. I f  x c  C[(N;  c)] then x belongs to 
Y{[(N; c) ] c~ C [ (N;  c) ] if, a nd only if, for each i, j ~ N, i # j, x bisects the line segment 
Rij(x) .  

However ,  Theorem 6 and Corollary 3 imply that in an m.c.s.t, game the geometric 
characterization of Y{[(N; c)] c~ C[ (N;  c)] is much simpler, namely: 

Theorem 8 (A geometric characterization of the nucleolus of an m.c.s.t, game). 
Let (N;  c) be an m.c.s.t, game with an associated m.c.s.t, graph FN=(VN,  EN). If 
x c C [ ( N ; c ) ]  then x belongs to Y l [ (N;c)]c~C[(N;c)]  if, and only if, for each 
(i, j )~  EN, x bisects the line segment Rij(x) .  Moreover, the nucleolus is the unique 
point x in the core which bisects Ri j(x)  for each (i, j) ~ EN. 

It follows from Theorem 8 that the nucleolus of an m.c.s.t, game (N;  c), with an 
associated m.c.s.t, graph FN, is the unique cost allocation vector in the core in which 
every pair (i, j) of adjacent users in Fry (i.e. (i, j ) e  EN) is situated symmetrically 
with respect to its bargaining range. 

7. Fair cost allocations and the nucleolus 

In Section 5 we used the minimum excess coalition structure theorem to reduce 
the computational burden involved in computing the nucleolus. However,  one still 
has to solve a sequence of linear programs (albeit smaller, due to Theorem 5) in 
order to produce the nucleolus. For large n, this may be computationally prohibitive. 

Motivated by the geometric characterization of the nucleolus (Theorem 8), and 
by the strong demand operation, we develop in this section an efficient procedure 
for generating fair cost allocation vectors in the core which, in some instances, 
coincide with the nucleolus. When F~ is a chain this procedure generates a unique 
point, denoted by f (L) ,  using O(n  3) elementary operations. Further,  we are able 

to provide easy necessary and sufficient conditions for f (L )  to be the nucleolus of 
the associated m.c.s.t, game. In the event that a cost vector generated by our 

procedure does not coincide with the nucleolus, it can be improved upon by using 
Sterns'  transfer scheme [22]. In fact, we show that by using Sterns'  results we can 
generate a sequence of cost allocation vectors which converges to the nucleolus of 
an m.c.s.t, game. 

Our  procedure for generating fair cost vectors is as follows. The users start from 
the L solution 3 and act in a nondecreasing order. A user i, at his turn, requires 
from his followers F(i)  to adjust the current cost allocations of {i}w F(i)  so as to 
produce a new cost allocation vector y for which 

siq(y) = sj.,(y), j e  F(i).  (20) 

3 One  can s imilar ly  define a p rocedure  in which the users start  f rom any cost vector  in the core. 
H o w e v e r ,  T h e o r e m  9 which fol lows is val id only when  we s tar t  f rom the L so[ution. 
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Recall that in accordance with the strong demand operat ion,  each user requires 

f rom his followers to collectively pay the maximum, without  violating core restraints. 

However ,  Theorem 6 (or 8) suggests that the above approach  for  readjusting a cost 

allocation vector,  as reflected by (20), is more  appropr ia te  if we seek fair cost 

allocations. 
To fur ther  clarify the above idea consider again the m.c.s.t, game associated with 

Example  3, whose corresponding m.c.s.t, graph I;,,= is reproduced  in Figure 7. 
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Fig. 7. The data of Example 3. 

The associated L solution is L = (1, 1, 1). Readjust ing only the allocations to users 

1 and 2 results with the cost allocation vector x = (�89 1�89 1), for which Sl,2(x)= 

s2.t(x) =�89 Similarly, readjusting only the allocations to users 2 and 3 produces the 
vector  y =  (�89 3 s w " 3 _ i 3 ~, 1~), for hlch S e . 3 ( y )  = S3 , z ( Y)  = ~- It is easy to verify that  y - (~, z, 12) 
is, in fact, the nucleolus of the associated m.c.s.t, game. 

In general,  let FN = ( VN, EN) be an m.c.s.t, graph with an associated m.s.t, solution 

L. Assume first that  FN is a chain, and that the nodes in VN are ordered  so that 

1 <~ i< j~<  n if i is closer than j to 0 in F,~. For i =  1 . . . . .  n let M(i) ={1 . . . . .  i}, 

and define the vector  fM(a)(L) as follows: 

1 1 [l,-~(sd2(L)-12), j = l ,  
f~n~(C)=l  t2+~(sd~(c)-lj, - " 12), j=2,  

j>~2, 

where sd~(L) is the vector  derived from L by an s.d.o, carried out by user 1. 

The vector fMu+~, (L) is defined recursively as follows: 

f)~1~i+l) (L) = 

f~U)(L), j<~i, 
f.',~(i~ (--, I r di+l  ( itS.I( 

~+~ ~ t . ) - - ~ . L S ' - ' ~ + ~ _ ~ S  n(L ) ) - - l , +_~ ] ,  J = i + l ,  
1 i + 1  A 4 1 i )  " l,+,_+2[sdi+2(f ( L ) ) -  h+:], j = i + 2 ,  

l h j>-i+3. 
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For  simplicity of notat ion we let f(L)=fM~'-I)(L). Observe that in Example 3 
f ( L ) =  m 3 1 ~ (~, ~, :~). 

Clearly, since sd~(y) can be constructed f rom y, y c C [ ( N ;  c)], in O(n 2) elementary 

operat ions,  f(L) can be constructed using O(n  3) e lementary operations.  Moreover ,  

by Corol lary  1 and since L ~  C [ ( N ;  c)], f (L )c  C [ ( N ;  c)]. We will provide below 
easy necessary and sufficient conditions for f(L) to be the nucleolus. 

T h e o r e m  9. f(L) is the nucleolus of the associated m.c.s.t, game if and only if 

f?r ~+~ (L)~<c m, q>~i+l, p<~i-1, i = 1  . . . . .  n - 1 .  (21) 

Proof .  First observe that by the construct ion of f(L) we have that  

ex(M(i), f(L)) = s~+~,i(f(L)), i =  1 . . . . .  n -  1. (22) 

Therefore ,  by Theorem 6, f(L) is the nucleolus if, and only if, 

ex(M(i), f(L)) = si,,+,(f(L)), i =  1 . . . . .  n - 1 .  (23) 

From Theorem 4 we have that for each i there exists a subset Q~ c 5~.~+~(f(L)) of 

the form Q~=M(i )wA, ,  where A ,  is either empty or  of the form Ar = 
{ r , r + l  . . . . .  n},r>~i+2. 

Now, if (20) is satisfied for each i, then 

ex(M(i), f(L)) <<- ex(Q~, f(L)), i = 1 . . . . .  n - 1, (24) 

and (23) follows. If on the o ther  hand, for some / a n d  some fi, q, c] ~> t +  1,/~<~ f -  1, 
fM~ i ) ( t  ~ > i+~ t ~  c~ ,  then 

sr <~ ex(M(~) u {i+  1 . . . . .  n}, f (L) )  

< ex(M(fi), f(L)) = se+.4;(f(L)). (25) 

It follows f rom Theorem 6 that in this case f(L) is not  the nucleolus, and the proof  
of Theorem 9 follows. 

We will consider now the case where FN = (V~v, EN) is not necessarily a chain. 

A permutat ion o" of N will be referred to as a nondecreasing order in FN provided 

that o-(i) < o-(j) if j is not  on the unique path from i to 0 in FN. We will denote  by 

f~(L) the cost allocation vector derived from the L solution after all the users, 
following a nondecreasing order  o-, are acting as follows. If, e.g., or( i )= k and 
F(i) # O, then at stage k user i demands  from F(i) to adjust the current  allocation 
of {i}w F(i) to produce another  cost allocation vector  y for which s~4(y)= sj.i(y), 
j c F(i). Clearly, all nodes j, j r N, for which F(j) = 0 are dummy users in the above 
procedure  for modifying the cost vector. 

Different nondecreasing orders  may produce different cost allocation vectors, as 
can be seen from the following example. 

Example  7. Consider  the m.c.s.t, graph depicted in Figure 8. 
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Fig. 8. The m.c.s.t, for Example 7. 

The L solution of the associated m.c.s.t, game is L = (1, 1, 10, 1, 1). Further, there 
are essentially two nondecreasing orders, cr~ ={1,2 ,  4, 3, 5} and 0"2 ={1,4 ,  2, 3, 5} 
and it is easy to show that 

fcrl((1, 1, 10, 1, 1) )= (--41, 5~, 11, 16, 22�89 

and 

f,,,((1, 1, I0, 1, 1) )= ( -41 ,  5~, 11,16�89 

Using Theorem 6, one can easily verify that 

J~,,((1, 1, 10, 1 ,1 ) )=  ( -41 ,  5�89 11, 16,22 {) 

is, in fact, the nucleolus of the m.c.s.t, game associated with Example 7. However, 
the fact that 

f,,,((1, 1, 10, 1, 1)) = ( -41 ,  5�89 11,16�89 22) 

is not the nucleolus reveals that conditions like (21), generalized in a natural way 
to the case where FN is not a chain, can only provide necessary conditions for f,~(L) 
to be the nucleolus. Of course, Theorem 6 (or 8) always provide us with both 
necessary and sufficient conditions for any y ~ C[(N;  c)] to be the nucleolus of 
(N; c). 

If f,,(L) is not the nucleolus, for some nondecreasing order cr, it can be improved 
upon by employing Sterns' transfer scheme [22]. To show that, let us introduce the 
following notation. For i, jE N, i # j, and x ~ C[(N;  c)] let ki.j(x) = �89 - sj.i(x)), 

I (x )  = {(i, j): kij(x)<~ k,.v(x), u, y e N ,  u # v}, 

and k ( x ) =  ki.j(x) for some ( i , j )~  l ( x ) .  It follows from Theorem 6 that if x is the 
nucleolus then k ( x ) = 0 .  Now, following Sterns [22], we say that y results from x 
by a transfer of maximal  size if, and only if, y, = x, + k(x) .  yj = x ~ - k ( x ) ,  and 
y~= xr, rz~{i, j} for some (i, j ) c  I (x ) .  

From [22, Lemma 2] we have that k (x )  <~ k(y). Moreover,  we can prove, 

Theorem 10. Let { x i} be a sequence of vectors for i >10 such that x ~ ~ C[(N;  c)] and 
each x ~~ results from x ~ by a transfer of maximal  size. Then {x i} converges to the 
nucleolus of (N; c). 
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Proof. Since x~ C[ (N;  c)], and by the definition of a transfer of maximal size, 

x ~ ~ C[ (N;  c)] for i ~> 0. By Theorem 3 in [22], {x ~} converges to a point in the 

kernel. However ,  by Theorem 6, the unique point in Y{[(N; c ) ] ~  C[ (N;  c)] is the 
nucleolus, and the proof follows. 

For general cooperative games, Sterns reports that the convergence to points in 
the kernel has been satisfactory. Therefore,  in view of the availability of good 
starting points f~,(L), the above transfer scheme can be used to efficiently generate 

the nucleolus of an m.c.s.t, game. 
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Appendix 

Proof  of Theorem 3, We use induction on the cardinality ]O[ of the subset O. 
Theorem 2 asserts the result for [O] = 1, and we assume that result is valid for any 
m,c.s.t, game (N;  c) in which ]O]<~q-1 .  Now, let q be the cardinality of O. Let 
i ~ O be maximal within O with respect to the order >.  Since w d ~  is independent 
of the order in which w.d.o, are performed by members  of O we have that 
w d ~  = wdi(wd~ Let z = wd~ By the induction hypothesis z c 
C [ ( N ; c ) ] .  Let F ( i ) = { j ,  . . . . .  jr} and let ~ =(Vj , ,Ej , )  . . . . .  T~ =(Vi, ,Ej,)  be the 

subtrees of FN rooted at j~ . . . . .  j,, respectively. Let FN\~i~ be an m.c.s.t, in which 
Tj . . . . . .  ~, maintain their internal structure (see footnote 2). Let ek be the unique 
edge in FN\t~ whose one extremity is in Vj~, the other extremity in VNx~\Vj~ and 
which is on the unique path of every user in V/~ to 0 in FNxI~. Further, let ck denote 
the cost associated with ek. We will assume, for simplicity of exposition, that arc ek 
joins Tk-1 and Tk, (k = 1 . . . . .  t) in I'N,,~,~, where 7"o is the subtree of FN induced by 

By definition of the vector wd~ ( z ), we have that 2 ~  s wd~( z ) <~ ~ s z~ if i ~ S. Thus, 
in order to show that w d ' ( z )  e C [ ( N ;  c)] it suffices to show that ~ s  wd~(z)  <~ c(S)  

when i.~S. Next, we consider the m.c.s.t, game determined by the symmetric cost 
matrix (~ = (c~i) given below, 

c l  if r = i and v =Jl or r = j z  and v =  1, 

M if r = i a n d  v--jk,  k = 2  . . . . .  t, or r=jk ,  k = 2  . . . . .  t, 
and v = i, 

ck if r = j k  and v = j k _ l , k = 2  . . . . .  t, or r = j k  1 
and v =jk, k = 2  . . . . .  t, 

c,~ otherwise, 
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where M is a large enough number so that (i, jk), k = 2 . . . . .  t, is not in any m.c.s.t. 
graph associated with (g,.). The m.c.s.t, graph I~. associated with the cost matrix 
(c~i) is identical to the original m.c.s.t, graph F,: except for the following changes: 
arc (jr,, i) in FN is replaced by arc (jk-i,Jk) in E,~ for k = 2  . . . . .  t. The L solution 
to the m.c.s.t, game (N;  ~') is L(~?) = (7~ . . . . .  ~,,), where ~ =  c~ for r = j ,  . . . . .  ], and 

= l~ otherwise. Now, when the members in O\{i} employ w.d.o, in the m.c.s.t. 
graph /a N we obtain the vector z7 which, by the induction hypothesis, satisfies 
s  C[ (N;  ~)]. Since there is no j in O\{i} for which j >  i, the w.d.o, performed by 
O\{i} did not affect any rth component of the /~ vector, r>  i. Moreover, by the 
definition of the w.d.o. (given in (1)), w.d.o, performed by O\{i} in (N; c) are 
identical to those performed by O\{i} in (N;  ~). We therefore have 

: _ J c ,  for r = j k ( k = l  . . . . .  t), 
z ,  otherwise. 

By our induction assumption Z(S)<~ ( (S)  for all S c  N. Further, when i~ S ((S)~< 
c(S) since ~,,~, ~< c,,~. for all u and v such that u # i. v # i. Moreover, by the construction 
of C" and the definition of wd'(z)  we have that wd~Az) = z?~ for r #  i. Therefore, for 
any S such that i r  we have v w d ) z ) = V  s ~ < ~ ( S ) ~ c ( S ) ,  and the proof 
follows. 
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