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We give a bound on the distance between an arbitrary point and the solution set of a monotone 
linear complementarity problem in terms of a condition constant that depends on the problem 
data only and a residual function of the violations of the complementarity problem conditions 
by the point considered. When the point satisfies the linear inequalities of the complementarity 
problem, the residual consists of the complementarity condition plus its square root. This latter 
term is essential and without it the error bound cannot hold. We also show that another natural 
residual that has been employed to bound errors for strictly monotone linear complementarity 
problems fails to bound errors for the monotone case considered here. 

Key words: Linear complementarity problems, condition number, error bounds, convex pro- 
gramming. 

1. Introduction 

C o n s i d e r  t h e  m o n o t o n e  l i n e a r  c o m p l e m e n t a r i t y  p r o b l e m  [2]  o f  f i n d i n g  a n  x i n  

t h e  n - d i m e n s i o n a l  rea l  s p a c e  R n s u c h  t h a t  

Mx+q>~O, x ~ O ,  x ( M x + q ) = O ,  (1.1)  

w h e r e  M is a n  n x n p o s i t i v e  s e m i d e f i n i t e  rea l  m a t r i x  a n d  q is in  R" .  S u p p o s e  t h a t  

t h e  p r o b l e m  h a s  a n o n e m p t y  s o l u t i o n  se t  ~ T h e  q u e s t i o n  we  w i s h  to  a d d r e s s  in  th i s  
�9 ~ R n w o r k  is t h e  f o l l o w i n g .  G i v e n  a n  a r b i t r a r y  p o i n t  x in  t h a t  v i o l a t e s  o n e  o r  al l  t h r e e  

c o n d i t i o n s  o f  (1 .1) ,  h o w  c lo se  is x to  ~q in  t e r m s  o f  its v i o l a t i o n s  o f  t h e  c o n d i t i o n s  

(1 .1 )?  M o r e  spec i f i c a l l y  we  a re  i n t e r e s t e d  in  a m e a s u r e  o f  t h e  d i s t a n c e  b e t w e e n  x 

a n d  .q in  t e r m s  o f  t h e  r e s i d u a l  v e c t o r  

( ( - M x -  q)+, ( - x ) + ,  Ix( M x  + q)[)  (1.2) 

w h e r e  ( ( - x ) + ) i  = m a x { 0 ,  - x i } ,  i = I . . . .  , n. N o t e  t h a t  t h e  r e s i d u a l  v e c t o r  v a n i s h e s  i f  

a n d  o n l y  i f  x is in  t h e  s o l u t i o n  se t  ~q. A p r i n c i p a l  r e su l t ,  T h e o r e m  2.7 b e l o w ,  s h o w s  
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that  for each x in R ~ there exists an ~(x)  in S such that  the oo-norm distance 

IIx- (x)JIo  is b o u n d e d  by a condition constant r2(M, q) (dependen t  on M and q 
only) t imes a posit ive funct ion of  the residual vector  (1.2) which vanishes if and 
only if the residual vector  (1.2) is zero. The  condi t ion constant  %(M, q) plays the 
same role for  the mono tone  linear complementa r i ty  p rob lem (1.1) as does IIA-~[[ 
in bounding  the dis tance [ [x-x l [ ,  between an arbi trary point  x in R" and the exact 
solution ~ = A-~b to A2 = b, by the residual vector  A x - b  as follows: 

[[x-~[[  ~ HA-Ill [lAx-hi[. 

Theorem 2.7 simplifies cons iderably  to Corol lary  2.8 if the point  x in R" is feasible, 
that is, it satisfies the first two inequalities o f  ( 1.1 ), in which case the error I[ x - .~( x)[[ 
is bounded  by r2(M, q) times the residual x(Mx + q)+ (x(Mx + q))~/2. Example  2.9 
shows that  the term (x(Mx + q)) ~/2 is an essential par t  o f  the residual,  without  which 
the error [Ix-X(x)ll~ cannot  be bounded .  Theorem 2.11 and Corol lary  2.12 give 

bounds  on the relative error IIx- (x)II| in terms of  the condition number 
r2(M, q)"  [IMl[~ times a relative residual function. 

Pang has given error  bounds  for  nonl inear  complementa r i ty  p rob lems  [8] and 
linearly cons t ra ined variat ional  inequalit ies [9]. When appl ied  to the linear com- 
p lementar i ty  p rob lem (1.1), Pang's  result requires in effect [8, Lemma  2] that  the 

matrix M be posit ive definite, whereas  our  results merely  require that  M be posit ive 
semidefinite.  Al though Pang 's  natural  residual [8, L e m m a  2] 

( i~ ,  (min{xi, Mix+q;})2) '/2 (1.3) 

is s impler  than ours, we show by means of  Example  2.10 that this residual cannot  
be used as an error measure  for  the posit ive semidefinite case under  considerat ion 
in this paper .  

A brief  word about  nota t ion  and some basic concepts  employed .  For a vector  x 
in the n-d imens iona l  real space R", Ix[ and x+ will denote  the vectors in R" with 

componen t s  Ixl, :-- Ix, I and (x+)i := max{xi, 0}, i = 1 , . . . ,  n, respectively. For  a norm 

Ilxll~ on R", Ilxll~* wiU denote the dual norm [3,7]  on R ~, that  is I lxl l~:= 
maxlb%= ~ xy, where xy denotes  the scalar product  ~7=~ x~v;. The general ized C a u c h y -  

Schwarz inequali ty Ixyl <~ Hxll~- Ilyll~*, for  x and y in R ", follows immedia te ly  f rom 
this definition of  the dual  norm. For l~<p, q ~ c o ,  and U p + l / q =  1, the p -no rm 

Pl 

(~,=~ Ix, l~) '/~ and the q-norm are dual norms  on R" [7]. I f  I1' I1~ is a norm on R", 
we shall, with a slight abuse of  notat ion,  let 1[. ]]t~ also denote  the cor responding  
norm on R m for  m r n. For  an m x n real matrix A signified by A e R "• A~ denotes  
the ith row, A- j  denotes  the j th  column,  A ; : =  A ;~ ,  and A . j : = A . j ~ j ,  where 
I t { I , . . . ,  m} and J c { l  . . . .  , n}. [[Allt3 denotes  the matrix norm [7] subordinate  

to the vector  norm [1" Ht3, that  is [[a[[t3 = maxll~llo_,llax][ ~. The consistency condi t ion 
][axH~ ~< Ilallt3llxllp follows immedia te ly  f rom this definition of  a matrix norm. A 

monoton ic  norm on R"  is any norm H" 11 on R ~ such that  for a, b in R", Hall _-< []bl] 
whenever  lal lbl or equivalently if Nail = Ilia 111 [3, p47] .  The p - n o r m  for p~> 1 is 
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monotonic [7]. A vector of ones in any real space will be denoted by e. The identity 
matrix of any order will be denoted by L The nonnegative orthant in R" will be 
denoted by R~"_. 

2. Principal results 

Throughout  this paper M will denote an n x n real matrix, q a point in R n, (M, q) 
will denote the linear complementarity problem (1.1), and 

h~/:= �89 + M'r), (2.1) 

S =  S(M,  q ) :={x lMx+q>-O,x>~O},  (2.2) 

S =  S(M, q):= {x[ M x +  q >10, x >1 O, x ( M x +  q) = 0}. (2.3) 

It is well known [2] that the solution set S is nonempty if and only if the feasible 
set S is nonempty, provided that M is positive semidefinite. We begin with some 
preliminary results. 

Lemma 2.1 (Adler and Gale [1]; polyhedrality of the solution set of (M, q)). Let 
M be positive semidefinite and let Y, ~ ~ Then 

S={x[Mx+q>~O,x>~O,x (2 f4~+q)+qY~<~O, /~ / ( x -  ~) = 0}. 

Proof. (x - ~ ) ( M x +  q - ( M ~ + q ) )  = (x - ~ ) M ( x - . f ) .  

Hence 

x ( M x  + q) = ~ ( M x  + q) + x ( M $  + q) + (x - ~f)M(x - ~). 

Since for x ~ S, each quantity on the right-hand side of the last equation is nonnega- 
tive, it follows that 

S =  {x c S l x (  M x  + q) =O} 

= { x l M x + q  >10, x>~O, $ (Mx+q)+x(M~Y+q)<~O,  ( x - Y ~ ) M ( x - $ )  =0} 

= { x l M x + q > ~ O ,  x>~O, x(2f4Y~+q)+q,Y<.O, )V/(x- if) = 0}. 

The last equality follows from the equivalence of zMz = 0 and A?/z = 0 for a positive 
semidefinite matrix, since 2/~/z, the gradient of zMz, must vanish when zMz = O. [] 

Lemma 2.2. Let ~1 c R o• be ,symmetric positive semidefinite. Then 

~ x  = 0<==> ~ ' / 2 x  = O. 

Proof. IVl't2x = O ~ M l x  = O ~ f 4 u : l ~ l ' / 2 x  = O ~ x M I l / 2 f ,  l ' /2x  = 0011~' /2xl l~ = 0 o  

M' /2x=O.  [] 

Lemmas 2.1 and 2.2 combined give the following. 
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Lemma 2.3. Let M be positive semidefinite and let ~ �9 ~ Then 

S = { x l M x + q ~ O ,  x>>-O, x(2~1~+q)+q~<~O, hT/~/e(x-~) = 0}. (2.4) 

By using the polyhedral characterization (2.4) and the condition number result 
for linear inequalities and equalities of either [4] or [6], we are able to obtain a 
preliminary bound on the distance between any point in R" and the solution set 

of (M, q). 

r~(M,q)  := sup Ilu, v,z, ~lle. 
(U,D,z,~:) 6 R 3''+1 

Proposition 2.4. Let M be positive semidefinite and let ~ �9 S. For each x in R ~ there 

exists an ~(x)  in S that is independent of  the choice of  ~, such that 

I Ix-  ~(x)ll~ <~ "re(M, q ) l l ( ( - M x  - q , - x ,  x(22~/~ + q)+ qs ~11/2(x - 2))11" 

where 11. lie i s  s o m e  n o r m  o n  R 3"§ I1" lie* is its dual norm and 

IluM + v+ z M 1 / 2 - ~ ( 2 ~ f 4  + q)]l, =- 1, 

(u,v,~)>~O 

Rows of  1~iI~/2 corresponding 

1 2 ~  + q 
to nonzero elements of  (u, v, z, ~) 

are lin. indep. 

(2.5) 

Proof. Follows by the application of Theorem 2.2' of[6] (or the essentially equivalent 
Theorem 1 of [4]) to S as defined by (2.4), and by noting from Lemma 2.1 that ~/~ 

is constant for all ~ in S. 

Note that in view of  Lemma 2.1 we have that /~/~/2~ is constant for all $ in 
In addition, since for ~ and ~ in S, q ( ~ - ~ ) =  2~h~/(~-:~)=0, it follows that q~ is 
also constant for all ~ in S. Thus the bound on llx-~(x)llo~ of Proposition 2.4 is 
independent of the choice of  ~ in 

We need two more lemmas before stating our principal results. 

Lemma 2.5. Let ~ �9 ~ Then, for each x e R", 

I l M ' / 2 ( x - ~ ) } } ~ < ~ x ( M x + q ) + l l ( - M x - q , - x ) + l l e "  I1(~, M~+ q)lle* 

where I1 I1~ is some norm on R 2" and H" lie* is its dual norm. 

Proof 

11~'/2(x-~)ll~= (~-x)~(x-x) 
= x ( M x  + q) + ~ ( - M x  - q) + ( - x ) ( M ~  + q) 

<~ x ( M x  + q) + ~ ( - M x  - q)+ + (-x)+(M:~ + q) 

<~ x( Mx  + q) + I1(- Mx - q, -x)+l le  �9 I[(~, Mx + q)lie*- [] 
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Lemma 2.6. Let  Y~ E S and let M be positive semidefinite. Then, for  any x e R", 

( ~ ( M x  + q) + x ( M ~  + q))+ <~ ( x ( M x  + q))+. 

Proof 
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(X( M x  + q) + x (  M~ + q) )+ = (x (  M x  + q) - (x  - $) l~l(x  - ~))+ 

< ~ ( x ( M x + q ) ) + .  [] 

We are now ready for our principal results. 

Theorem 2.7 (Absolute error bound for approximate solutions of monotone linear 
complementarity problems). Let M be positive semidefinite and let S ~ O. For each 

x in R"  there exists an 2 ( x )  in S such that 

I Ix-  ~(x)ll~ ~ < r2( M, q)[ll(x( M x  + q), - M x  - q, -x)+l12 

+ ( x ( M x  + q )+  6r~ ]l ( - M x  - q, - x ) +  II ~),/21 (2.6) 

where r2(M, q) is defined by (2.5), II" 118 is some norm on R 2" and ~ro is defined by 

tro = trr q):= minllX, Mff+ qll~*. (2.7) 

Proof. By [2], S # 0 since S # 0. Let ff c S. Then by Proposition 2.4 above, for each 
x in R" there exists an ~(x) in S that is independent of the choice of X such that 

IIx - ~(x)11oo <~ ~2( M, q ) [ l ( - M x  - q, - x ,  x (  MX + q) 

+ ~( M x  + q) )+, f 4 ' / 2 ( x -  x)l12 

<~ r2(M, q)[ I I ( -Mx - q, - x ,  x (  M x  + q))+l12 

+ ( x ( M x  + q) + II ( - M x  - q, -x)+ll~ �9 II(~, Mx + q)I1~.) '/~] 

(by Lemmas 2.6, 2.5 and monotonicity of  the 2-norm [3]). Hence taking the infimum 
of the right side over all s in S, we get 

IIx - X ( x ) l l ~  < r2(M, q)[ll(x( M x  + q), - M x  - q, -x)+ll 2 

+ ( x ( M x + q ) + c r ~ l l ( - M x - q , - x ) + H ~ ) ~ / e ] .  [] 

When x is in S, Theorem 2.7 simplifies to the following. 

Corollary 2.8 (Absolute error bounds for feasible approximate solutions of monotone 
complementarity problems). Let  M be positive semidefinite and let S # 0. For each 

x in S there exists an s  in S such that 

IIx - g(x)lloo <<- r2(M, q ) [ ( x ( M x  + q))  + ( x ( M x  + q)),/2] (2.8) 

where r q) is defined by (2.5). 

The following example shows that the residual term ( x ( M x + q ) )  ~/2 in (2.8) is 
essential and cannot be dispensed with. 
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Example 2.9. Suppose that  

so that S={O} and S = { x c  R2lx2>~O, x 2 ~ x , } .  Let 

x ( e ) :  = ~ S f o r 0 < e < l .  E2 ~ 

Ilx(~)-oll~ 
- -  oO as  e - ~ O .  

x ( e ) ( M x ( e ) + q )  2e2q- e 4 ~  

Then 

IIx(~)-011~ 
x ( e ) ( M x ( e ) + q ) + ( x ( e ) ( M x ( e ) + q ) )  1/2 2~2-+- E4-q- (2~2 -~ ~4) I/2 

4~ 
~ - -  as e - ,  O. 

2 

However,  

In [8, Lemma 2] Pang uses the natural residual (1.3) as an error measure for the 

positive definite linear complementar i ty  problem. It is easy to show, by considering 

for each componen t  i the two cases of  xi>t M i x +  qi and xi < M i x +  q~, that the 

residual (1.3) is equivalent to 11 x - ( x  - ( M x  + q))+ 112. The following example shows 
that (1.3) cannot  be used as a measure of  error for the positive semidefinite case 

under  considerat ion in this work. 

Example 2.10. Let 

The unique solution of  this problem is ,~ = (~). Letting x ( t )  := (~), we get that, for t/> 2, 

o (t l) 

Hence 

IIx(t)-~ll2 
IIx(t) - ( x (  t) - ( M x (  t) + q))+[12 

= t - l ~ c o  as t ~ o Q  

Consequent ly ,  the residual (1.3) cannot  be used as an error bound  for the positive 

semidefinite case. 
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By noting that for if(x) ~ 

( -q )+  <~ (M2(x))+ <~ IM~(x)l, II(-q)+ll,~, <~ IlM~(x)ll~ ~< II MIl~ll2(x)lloo, 

the following theorem and corollary follow directly from Theorem 2.7 and Corollary 

2.8, respectively, thus giving rise to a bound on the relative error I Ix -  ~(x)ll| 
in x in terms of  the condition number "r2(M, q)II M I1~ and the corresponding relative 
residual. 

T h e o r e m  2.11 (Relative error bound for approximate solutions of monotone linear 
complementarity problems). Let M be positive semidefinite, let q ~ 0 and let S ~ O. 
For each x in R" there exists an 2(x)  in S such that 

I Ix- :~(x) l l~  < ~ (  M, q)llMIl~,[ll(x(Mx + q), - M x  - q, - x ) §  I1,, 

+(x(Mx+q)+o't3ll(-Mx-q, -x)+ll~W2]/ll(-q)§ (2.9) 

where r2(M, q) is defined by (2.5) and crt~ by (2.7). 

Corollary 2.12 (Relative error bound for approximate .feasible solutions of  monotone 
linear complementarity problems). Let M be positive semidefinite, let q 7~ O, and let 

S r O. For each x in S there exists an 2(x)  in S such that 

]Ix -~(x) ] l~  < ~2(M, q ) l lMl l~[x (Mx+q)+(x (Mx+q) ) ' / 2 ] / [ [ ( -q )§  
II~(x) ll~ 

(2.1o) 

Remark 2.13. When the solution set S of (1.1) is bounded, ~r~,, of  Theorems 2.7 and 
2.11 can be bounded above by a single program as follows. S is bounded if and 
only if there exists an ~ > 0  such that ~:= M s  [5]. Hence [5] for any 2 c S  

and ~ := M2 + q it follows that 

~ - ~ - ~ = ( ~  - ~ ) ( ~  - ~')  = ( ~  - 2 )  M ( ~  - 2 )  > / 0 .  

Consequently, 

I1( ~, ~)lla" mi~,/w,, x,t ~< 2 ~ + ~  ~< ~ 

and from the definition (2.7) of o-~ we have that 

~ = minll2, ~11, ~ 3~w/, ~<r/li~{ ]~i, )~i}- (2.11) 

Hence given a monotone linear complementarity problem (1.1), one can first solve 
the linear program 

max ,{e [Mx+q1>  es, x~> eE, 11> e ~>0}. (2.12) 
(x,~l,R ~ 
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The maximum ~, achieved at (~, ~), is positive if and only if S is nonempty and 
bounded, in which case cro~ is bounded above by ~ / ~  where ~ -~ M~ + q. 

We conclude by giving an interesting application of Corollary 2.8 to the dual 
quadratic programs 

min�89  subjectto Az>~b, z ~ O  (2.13) 
z 

max - � 89  subject to - Q z + A ~ u < ~  c, u ~ 0 ,  (2.14) 

where Q c  R "• is symmetric positive semidefinite, A~ R m• c~ R" and b e  R".  If 
the point (z, u)6  R "+" is feasible for both (2.13) and (2.14), then there exists a 
solution (~(z, u), a(z, u)) to the dual pair (2.13)-(2.14) such that 

II(z, u)-(e(z ,  u), c~(z, u))ll~ 

~< "r2(M , q)[(zQz + cz - bu) + (zQz + cz - bu) u2] (2.15) 

where r2(M, q) is defined by (2.5) and 

Note that the linear programming case is included as the special case of Q = 0. For 
this case, a stronger result not involving the square root term has been given in 
Theorem 4 of [4]. 
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