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We give a bound on the distance between an arbitrary point and the solution set of a monotone
linear complementarity problem in terms of a condition constant that depends on the problem
data only and a residual function of the violations of the complementarity problem conditions
by the point considered. When the point satisfies the linear inequalities of the complementarity
problem, the residual consists of the complementarity condition plus its square root. This latter
term is essential and without it the error bound cannot hold. We also show that another natural
residual that has been employed to bound errors for strictly monotone linear complementarity
problems fails to bound errors for the monotone case considered here.
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1. Introduction
Consider the monotone linear complementarity problem [2] of finding an x in
the n-dimensional real space R" such that

Mx+g=0, x=0, x(Mx+gq)=0, (1.1)

where M is an n X n positive semidefinite real matrix and g is in R". Suppose that
the problem has a nonempty solution set S. The question we wish to address in this
work is the following. Given an arbitrary pc;int x in R" that violates one or all three
conditions of (1.1), how close is x to S in terms of its violations of the conditions
(1.1)? More specifically we are interested in a measure of the distance between x
and § in terms of the residual vector

(=Mx—q)., (= x)+, [x(Mx +q)|) (1.2)

where ((—x).);=max{0, —x;}, i=1,..., n. Note that the residual vector vanishes if
and only if x is in the solution set S. A principal result, Theorem 2.7 below, shows
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that for each x in R” there exists an %(x) in S such that the oco-norm distance
||x — %(x)]le is bounded by a condition constant (M, q)(dependent on M and ¢
only) times a positive function of the residual vector (1.2) which vanishes if and
only if the residual vector (1.2) is zero. The condition constant 7,( M, q) plays the
same role for the monotone linear complementarity problem (1.1) as does ||A7'|
in bounding the distance ||x — X ||, between an arbitrary point x in R" and the exact
solution X =A"'b to AX = b, by the residual vector Ax—b as follows:

lx—xl <A™ | Ax~b].

Theorem 2.7 simplifies considerably to Corollary 2.8 if the point x in R” is feasible,
that s, it satisfies the first two inequalities of (1.1), in which case the error || x — %(x)||o
is bounded by 7,( M, q) times the residual x(Mx + q) + (x(Mx+ g))">. Example 2.9
shows that the term (x(Mx+ g))"? is an essential part of the residual, without which
the error ||x—x(x)||~ cannot be bounded. Theorem 2.11 and Corollary 2.12 give
bounds on the relative error || x — %(x)| ./ | X(x) ||« in terms of the condition number
(M, q) - | M || times a relative residual function.

Pang has given error bounds for nonlinear complementarity problems [8] and
linearly constrained variational inequalities [9]. When applied to the linear com-
plementarity problem (1.1), Pang’s result requires in effect [8, Lemma 2] that the
matrix M be positive definite, whereas our results merely require that M be positive
semidefinite. Although Pang’s natural residual [8, Lemma 2]

n 172
( (min{x;, Mx + q,—})z) (1.3)
i=1

is simpler than ours, we show by means of Example 2.10 that this residual cannot
be used as an error measure for the positive semidefinite case under consideration
in this paper.

A brief word about notation and some basic concepts employed. For a vector x
in the n-dimensional real space R", |x| and x, will denote the vectors in R" with
components |x|; = |x;] and (x,);’=max{x,;, 0}, i=1, ..., n, respectively. For a norm
[x|lg on R", |x|g« will denote the dual norm [3,7] on R", that is |x|z =
max - Xy, where xy denotes the scalar product ¥.;_, x,;. The generalized Cauchy-
Schwarz inequality |xy| < x|/ | ¥ a=, for x and y in R", follows immediately from
this definition of the dual norm. For 1=<p, g<oo, and 1/p+1/g=1, the p-norm
(%7, x]?)"? and the g-norm are dual norms on R" [7]. If |- |5 is a norm on R",
we shall, with a slight abuse of notation, let ||-|/z also denote the corresponding
norm on R™ for m # n. For an m X n real matrix A signified by Ae R™*", A; denotes
the ith row, A-; denotes the jth column, A;=A,.;, and A-,= A, where
I={l,...,m}and J<{1,..., n}. ||A|z denotes the matrix norm [7] subordinate
to the vector norm || - || g, that is || A]|; = max,,- | Ax|| 5. The consistency condition
|Ax|l s < | Allgllx||s follows immediately from this definition of a matrix norm. A
monotonic norm on R” is any norm ||+ || on R" such that for a, b in R", ||a| = |||
whenever |a|=<|b| or equivalently if ||a| =]|a|| [3, p 47]. The p-norm for p=1 is
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monotonic [7]. A vector of ones in any real space will be denoted by e. The identity
matrix of any order will be denoted by I The nonnegative orthant in R" will be
denoted by RI.

2. Principal results

Throughout this paper M will denote an n x n real matrix, g a point in R", (M, gq)
will denote the linear complementarity problem (1.1), and

M:=YM+M"), (2.1)
S=S(M, q)={x|Mx+qg=0, x=0}, (2.2)
S=8(M, q)={x|Mx+q=0,x=0, x(Mx+q)=0}. (2.3)

It is well known [2] that the solution set S is nonempty if and only if the feasible
set S is nonempty, provided that M is positive semidefinite. We begin with some
preliminary results,

Lemma 2.1 (Adler and Gale [1]; polyhedrality of the solution set of (M, q)). Let
M be positive semidefinite and let € S. Then

S={x|Mx+qg=0,x=0, x(2MJZ+q)+q)E<O, A:I(x—i)=0}.
Proof. (x —X)(Mx+q—(Mx+q))=(x—X)M(x—x),
Hence

x(Mx+q)=x(Mx+q)+x(Mx+q)+(x—X)M(x—%).

Since for x € §, each quantity on the right-hand side of the last equation is nonnega-
tive, it follows that

S={xeS|x(Mx+q)=0}
={x|Mx+qg=0,x20,x(Mx+g)+x(Mx+q)<0,(x—%)M(x—%)=0}
={x|Mx+qg=0,x=0, x(2Mi+q)+qX$O, I\;I(x—i) =0}.

The last equality follows from the equivalence of zMz =0 and Mz=0fora positive
semidefinite matrix, since 2 Mz, the gradient of zMz, must vanish when zMz=0. O
Lemma 2.2. Let M€ R"™*" be symmetric positive semidefinite. Then

Mx=0o Mx =0,

Proof. M'/x=0=>Mx=0=M">M"?x=0=>xM">N"*x = 0= | M"x||2=0=>

Mx=0. O
Lemmas 2.1 and 2.2 combined give the following.
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Lemma 2.3. Let M be positive semidefinite and let ¢ S. Then
S={x|Mx+qg=0, x=0, xQMz+q)+qe<0, M/*(x—%)=0}.  (2.4)

By using the polyhedral characterization (2.4) and the condition number result
for linear inequalities and equalities of either [4] or [6], we are able to obtain a
preliminary bound on the distance between any point in R” and the solution set S
of (M, q).

Proposition 2.4. Let M be positive semidefinite and let X € S. For each x in R” there
exists an X(x) in S that is independent of the choice of %, such that

1% = £(x)|loo < 75 (M, @I((~Mx — g, —x, x(2MZ + q) + g%).., M2 (x = %)) |5
where ||+ | 5 is some norm on R*"*', || -|| g« is its dual norm and
( [uM + v+ M- £25xM +q)|, =1,

(u,v,)=0
M

I
75(M, q) = sup lu, v, z, || g Rowsof| ., |corresponding |
(u,v,z,£)€ R33! M

IMx+ q
to nonzero elements of (u, v, z, &)

are lin. indep.

(2.5)
Proof. Follows by the application of Theorem 2.2’ of [6] (or the essentially equivalent
Theorem 1 of [4]) to S as defined by (2.4), and by noting from Lemma 2.1 that Msx
is constant for all xin S. []

Note that in view of Lemma 2.1 we have that M'/?% is constant for all % in S.
In addition, since for % and % in S, g(£ — x) =2£M(x— %) =0, it follows that g% is
also constant for all X in S. Thus the bound on [|x — %(x)| . of Proposition 2.4 is
independent of the choice of X in S.

We need two more lemmas before stating our principal results.

Lemma 2.5. Let xe S. Then, for each x€ R",
M (x = £)|3< x(Mx+q) +[|(=Mx - g, =x)[lg - I(%, MZ+q)] o
where |- || g is some norm on R*" and |- ||~ is its dual norm.

Proof
1M *(x = )3 = (x— X) M (x - %)
=x(Mx+g)+x(—Mx—q)+(—x)(Mx+q)
< x(Mx+q)+x(—Mx—q).+(—x).(Mx+gq)
<x(Mx+q)+[[(-Mx =g, —x)s]5- I(x, Mx+q)le-. O
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Lemma 2.6. Let X< S and let M be positive semidefinite. Then, for any xe R",
(£(Mx+q)+x(Mx+q)), < (x(Mx+q))..

Proof
(X(Mx+q)+x(MZ+q)), = (x(Mx+q)—(x— )M (x ~ X)),
< (x(Mx+q));. [

We are now ready for our principal results.

Theorem 2.7 (Absolute error bound for approximate solutions of monotone linear
complementarity problems). Let M be positive semidefinite and let S # ). For each
x in R" there exists an X(x) in S such that

= %(x) o= 7o M, @)L (x(Mx +q), ~Mx =g, —x).|»
+(x(Mx+q)+0p|(—Mx—g, —x). )] (2.6)
where T,(M, q) is defined by (2.5), || - || s is some norm on R*" and o is defined by
gs=0s(M, q)= glgignﬂf, Mx+ gz (2.7)

Proof. By [2], §# @ since S# 0. Let e S. Then by Proposition 2.4 above, for each
x in R" there exists an %(x) in § that is independent of the choice of % such that

l[x = %(x)||oo = 72 M, @)||(—Mx — g, —x, x(MX + q)
+2(Mx+q)),, MY*(x-%)]
< (M, [ (-Mx — g, —x, x(Mx +q)).. |,
+(x(Mx+q)+[(=Mx—gq, =x).[l5 - | (£, M+ q)[|5+)""’]

(by Lemmas 2.6, 2.5 and monotonicity of the 2-norm [3]). Hence taking the infimum
of the right side over all £ in S, we get

”x—f(X)”ooS (M, Q)[I|(X(Mx+q), ~Mx—g, _x)+”2
+O(Mx )+ 0| (-Mx =g, =x).[) ") O

When x is in S, Theorem 2.7 simplifies to the following.

Corollary 2.8 (Absolute error bounds for feasible approximate solutions of monotone
complementarity problems). Let M be positive semidefinite and let S #@. For each
x in S there exists an %(x) in S such that

[l = %(x)|loo =< 72 M, @)[(x(Mx + g)) + (x(Mx + g))"/?] (2.8)
where m,(M, q) is defined by (2.5).

The following example shows that the residual term (x(Mx+g¢))"? in (2.8) is
essential and cannot be dispensed with.
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Example 2.9. Suppose that
1 -1 0
M: =
[1 1]’ K [1]
so that S={0} and S={xe R*|x,=0, x,<x,}. Let
£
x(s):z[ Z]ESforOSESI.
&

Then

Ix(e)=0le =
x(e)(Mx(e)+q) 2e’+¢*

>0 ase—>0.

However,

”x(e)—O”oo _ E
x(&)(Mx(e)+g)+(x(e)(Mx(e)+q))"? 2&*+e*+(2e*+6%)"?

-»>—— as 0.
2 ¥E7

In [8, Lemma 2] Pang uses the natural residual (1.3) as an error measure for the
positive definite linear complementarity problem. It is easy to show, by considering
for each component i the two cases of x;= M;x+g; and x; < Mx+ g;, that the
residual (1.3) is equivalent to [|x — (x —(Mx +g)). ||,. The following example shows
that (1.3) cannot be used as a measure of error for the positive semidefinite case
under consideration in this work.

Example 2.10. Let

we ) ()

The unique solution of this problem is ¥ = (3). Letting x(¢) := (), we get that, for t =2,

x<x)—(x(r)—<Mx<r>+q))+=(1_(20_,) )=<?)’x(’)‘f=(t;1)‘

Hence

”x(t)_fuz -
l|x(2) = (x(£) = (Mx(£)+ q)). ||,

f—1>0 ast->oo.

Consequently, the residual (1.3) cannot be used as an error bound for the positive
semidefinite case.
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By noting that for ¥(x)e S
(=g)+ < (MX(x))+ < |MX(x)], [[(= )+ ]l < [ME(X) oo < | M ||| X (x) o

the following theorem and corollary follow directly from Theorem 2.7 and Corollary
2.8, respectively, thus giving rise to a bound on the relative error || x — X(x)||oo/ [ £(x) |
in x in terms of the condition number 7,( M, q)|| M |« and the corresponding relative
residual.

Theorem 2.11 (Relative error bound for approximate solutions of monotone linear
complementarity problems). Let M be positive semidefinite, let ¢ 20 and let S # Q.
For each x in R" there exists an X(x) in S such that

[l = %(x) ||

100l < 7(M, QM ||l [{x(Mx+q), —Mx—q, —x).|»

+(x(Mx+q)+ op(~Mx =g, =x).[s)"*V (=9l (29
where T,(M, q) is defined by (2.5) and og by (2.7).

Corollary 2.12 (Relative error bound for approximate feasible solutions of monotone
linear complementarity problems). Let M be positive semidefinite, let g 20, and let
S #@. For each x in S there exists an %(x) in S such that

ﬂx“;—()i(;]c%g (M, Q)| M ||[x(Mx+ )+ (x(Mx+g)"?1/ (= q)+] -

(2.10)

Remark 2.13. When the solution set § of (1.1) is bounded, ¢ of Theorems 2.7 and
2.11 can be bounded above by a single program as follows. S is bounded if and
only if there exists an %> 0 such that ¥ := M£+¢ >0 [5]. Hence [5] for any € S
and w= Mx + q it follows that

W= —Xw=(X~X)(W-w)=(£-X)M(X-%)=0.
Consequently,

I(x, W)y - mm W, X} S 50+ Xw < KW

1<i<

and from the definition (2.7) of o, we have that

1=i=

aw=migl|i,w||, )?‘/mm {w;, X.}. (2.11)
Xe

Hence given a monotone linear complementarity problem (1.1), one can first solve
the linear program

max {elMx+qg=es, x=ee, 1= =0}, (2.12)

n+ |
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The maximum £, achieved at (%, £), is positive if and only if S is nonempty and
bounded, in which case o is bounded above by £W/£ where w = MxX+gq.

We conclude by giving an interesting application of Corollary 2.8 to the dual
quadratic programs

min 3zQz+cz subjectto Az=b, z=0 (2.13)

max —32Qz+bu subjectto —Qz+A u<c, u=0, (2.14)
where Qe R™" is symmetric positive semidefinite, A€ R™" ce R" and be R™. If
the point (z, u)e R**™ is feasible for both (2.13) and (2.14), then there exists a
solution (Z(z, u), i(z, u)) to the dual pair (2.13)-(2.14) such that

”(Z, u)—(f(za u)a L_l(Z, u))”oo
< 7,(M, @)[(2Qz + ¢z — bu)+ (zQz + cz — bu)'/?] (2.15)

where 7,(M, q) is defined by (2.5) and

32 e} ol

Note that the linear programming case is included as the special case of Q =0. For
this case, a stronger result not involving the square root term has been given in
Theorem 4 of [4].
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