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Many algorithms for linearly constrained optimization problems proceed by solving a sequence 
of subproblems. In these subproblems, the number of variables is implicitly reduced by using the 
linear constraints to express certain "basic' variables in terms of other variables. Difficulties may 
arise, however, if degeneracy is present; that is, if one or more basic variables are at lower or 
upper bounds. In this situation, arbitrarily small movements along a feasible search direction in 
the reduced problem may result in infeasibilities for basic variables in the original problem. For 
such cases, the search direction is typically discarded, a new reduced problem is formed and a 
new search direction is computed. Such a process may be extremely costly, particularly in 
large-scale optimization where degeneracy is likely and good search directions can be expensive 
to compute. This paper is concerned with a practical method for ensuring that directions that are 
computed in the reduced space are actualIy feasible in the original problem. It is based on a 
generalization of the 'maximal basis" result first introduced by Dembo and Klineewicz for large 
nonlinear network optimization problems. 
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I. Introduction 

M a n y  a l g o r i t h m s  for  l i n e a r l y - c o n s t r a i n e d  m a t h e m a t i c a l  p r o g r a m m i n g  p r o b l e m s ,  

such  as the  r e d u c e d  g r a d i e n t  a l g o r i t h m  (see,  for  e x a m p l e  [1.. 4]), p r o c e e d  by so lv ing  

a s e q u e n c e  o f  s u b p r o b l e m s  in w h i c h  the  n u m b e r  o f  va r iab les  has  been  impl i c i t l y  

r educed .  T h e s e  r e d u c e d  p r o b l e m s  are  o b t a i n e d  by us ing  the  l inea r  cons t r a in t s  to 

express  ce r t a in  va r i ab les ,  d e s i g n a t e d  as ' b a s i c ' ,  in t e rms  o f  o t h e r  va r iab les .  

Wi th in  these  s u b p r o b l e m s ,  a n e w  feas ib le  so lu t i on  is o b t a i n e d  f r o m  a p r e v i o u s  

one  by m o v i n g  a long  a c o m p u t e d  ' s ea rch  d i r ec t i on ' .  (The  m a n n e r  in wh ich  the  

sea rch  d i r e c t i o n  is c a l c u l a t e d  differs f r o m  a l g o r i t h m  to a lgo r i t hm. )  Dif f icul t ies  m a y  

ar ise ,  h o w e v e r ,  i f  d e g e n e r a c y  is p resen t ,  that  is, i f  one  o r  m o r e  bas ic  va r i ab le s  are  

at l o w e r  o r  u p p e r  b o u n d s .  In this case,  it is poss ib l e  that  an  a rb i t ra r i ly  smal l  m o v e  

a long  the  c o m p u t e d  sea rch  d i r ec t i on  in the  r e d u c e d  p r o b l e m  migh t  v io la t e  the  u p p e r  

o r  lower  b o u n d  of  o n e  or  m o r e  bas ic  va r i ab les  in the  o r ig ina l  p r o b l e m .  I f  this occurs ,  
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it may be necessary to form a new reduced problem and to then recalculate the 

search direction. Since in nonlinear optimization most of the computational effort 
may go into computing a search direction, the computation time spent in finding 
search directions that must be discarded can be significant. For small problems, this 
does not pose a difficulty because one can usually find a nondegenerate basis. This 
is not the case for larger problems where a nondegenerate basis might not exist. 

The problem of degeneracy is particularly acute in large nonlinear network 
optimization problems. In this context, Dembo and Klincewicz [4] provided a 

mechanism to avoid computing useless search directions. The purpose of this paper  
is to extend the results of [4] to general linearly-constrained problems. 

In Section 2, we introduce our notation and describe the problems of degeneracy 
more fully. Section 3 describes the concept of  a 'maximal  basis', which we propose 
as a remedy to the problems posed by degeneracy. The process of maintaining such 
a maximal basis is then outlined in Section 4. Finally, Section 5 offers some 

concluding remarks. 

2. The problem 

The linearly-constrained nonlinear programming problem can be stated as follows: 

minimize f ( x )  ( 1 ) 
x EI[~" 

subject to A x  = b, (2) 

l<~x<~u,  (3) 

where f : R " ~ R ,  A is an m x n  matrix of rank m, and u ~ R "  and I~N"  are given 

upper and lower bounds respectively. 
A common approach to solving such problems (see, for example, [1, 3, 4, 5, 8, 

9]) is as follows. Let A be partitioned into basic, superbasic and nonbasic components 
(this terminology is due to Murtagh and Saunders). That is, 

A = [ B  S N],  (4) 

where B is an m • m nonsingular matrix (i.e., a basis for the constraints A x  = b).  

The superbasic columns S correspond to those variables outside the basis whose 
values are subject to change at a given iteration, and the nonbasic columns N 
correspond to variables whose values are held fixed. Using this partition, we also 

define and partition the following column vectors: 
x =- [xB Xs xN] v = vector of current values, 
g ( x )  ~ [g~ gs gN] v = gradient of the objective function, 

P =- [P~ Ps Pr~-] r = current search direction, 
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and similarly for vectors 1 and u. In this notation, (2) becomes 

Bxs + Sxs + N X N  "= b. (5) 

Hence, the basic variables can be expressed as a function of the superbasic and 

nonbasic variables as follows: 
xB(Xs, XN) = B - I [ b -  SXs - N X N ] .  

Thus, the above problem (1), (2), (3) may be written equivalently as: 

minimize f ( x t dx s ,  x~) ,  Xs, xN) 
~S,X,N 

subject to Is <~ xB( xs, Xu ) <- us, 

IS ~ XS ~ blS~ 

I N. ~ X N ~ ld N. 

(6) 

(7) 

(8) 

(9) 

({0) 

If, in fact, the nonbasic variables Xu are held fixed and the basic variables 
expressed as in (6), then we obtain a restricted subproblem in which the objective 

function, derived from (7), can be expressed as fs (Xs) ,  a function that depends only 
upon the superbasic variables xs. The chief idea behind this is that locally (in a 
neighborhood of the current point) the problem (1), (2), (3) reduces to the following 

problem with only simple bounding constraints: 

minimize f s (xs)  (11) 
Xs 

subject to ls <<- xs <~ Us, (12) 

that is, provided none of the basic variables, xB, is at its bound. We will refer to 
problem (11), (12) as the reduced problem. 

When the basis is not degenerate, the problem (1), (2), (3), is termed 'locally 
equivalent' to the reduced problem (11) and (12). By this we mean that there exists 
a neighborhood around the current point xs such that for any point in the neighbor- 
hood, (8) remains satisfied. In this case, if we were to compute a feasible search 
direction for the superbasic variables and to move along this direction away from 
the current point, we would be assured of being able to take a nonzero step before 
encountering bounding constraints (8) or (9), provided Xs is not at a bound. 

If  a basic variable is at its bound, that is, if the basis is degenerate, one does not 
simplify the problem much by eliminating the equality constraints (2) and the basic 
variables x•, since new binding inequality constraints (8) are created. In this case, 
it is possible to calculate a search direction that is feasible for the superbasic variables 
but for which an arbitrarily small movement would cause one or more bounding 
constraints (8) to be violated. Hence the reduced and original problems are no 
longer 'locally equivalent'.  However, as we will show in Section 3, it is possible to 
construct a restriction of the reduced problem that is locally equivalent to the 
corresponding restriction of (1), (2). 
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3. Reducing the problem to that encountered in LP degeneracy 

To resolve the difficulties alluded to above, we propose a generalization o f  the 

maximal basis concept  first introduced by Dembo and Klincewicz [4] in the context 

of  nonl inear  network flow problems. 

We first need some terminology. Let us call a variable 'free'  if its current value 

is not at a bound.  We will say that a column of  A is free if it corresponds to a free 
variable and is not free otherwise. 

Definition (Maximal basis). A basis is said to be maximal if there is no other basis 

with more free columns. 

In the proposi t ion below we see that finding a maximal basis is computa t ional ly  

inexpensive. 

Proposition 1. A maximal basis can always be formed using a greedy algorithm. 

To execute a greedy algorithm, first mark all the free columns of  A. Try to include 
the free columns in the basis one at a time. If  at any stage a free column is linearly 

dependent  on the columns that are already in the basis, drop it from consideration. 

When no free columns remain, use remaining nonfree columns to complete the 
basis. The resulting basis is maximal. 

Proof. Let r be the rank of  the free columns and let g be the rank of  a matrix M 
constructed by a greedy algorithm ; if g < r, then there exists a free column rejected 

by the greedy algorithm that does not lie in the smaller column space spanned by 

M, contradict ing the rejection rule. [] 

In order  to better appreciate the benefits of  a basis that is maximal,  we need to 
draw on a definition from the literature on matroids.  

Definition (Circuit). Let B be a square m-dimensional  matrix whose columns span 
~m and let y c  E"' be some arbitrary vector. A circuit is then a minimal subset of  

the columns of  B upon which y is linearly dependent .  

Proposition 2. Let B be a maximal basis and let S consist of columns corresponding 
onO, to free out-qf-basis variables. Then the circuits induced by the columns of S are 

onb, made up of free columns. 

Proof. Any free column in S is, by construction,  a linear combinat ion  o f  free basic 

columns and hence this property is inherited by the circuits formed by the columns 

of  S. []  
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Proposition 3. I f  B is a maximal basis and S contains only free columns, then the 
reduced problem ( 11 ), (12) is locally equivalent to the originalproblem ( 1 ), (2) and (3). 

Proof. Since circuits induced by S contain only columns corresponding to free 
variables, there is a neighborhood in which arbitrary perturbations in Xs induce 
feasible perturbations in xB. [] 

Remark. With a maximal basis and using only free superbasic variables one knows 
a priori that a nonzero movement  along a search direction is possible. It is possible 
at nonoptimal points (such as at a vertex) for a situation to arise in which, even 
though the basis is maximal, it may be difficult to identify feasible descent directions 
for nonbasic variables that do not induce infeasibilities in basic variables. However, 
this is analogous to a degenerate vertex situation in linear programming which can 
be resolved in a finite number  of  pivots using a standard simplex pivoting rule such 
as in [2]. 

4. Maintaining a maximal basis 

In a restriction strategy such as the one above, at any iteration there are three 
possibilities (assuming at the start of  the iteration that the basis is maximal and the 
superbasic variables are all free): 

(i) a basic variable hits a bound, or 
(ii) a superbasic variable hits a bound, or 

(iii) no variables move to a bound. 

In cases (ii) and (iii) the basis remains maximal. If, in case (ii), the superbasic set 

is updated to exclude the variable that hit its bound, then the reduced problem is 
once again locally equivalent to the original one. I f  case (i) occurs, the basis may 
no longer be maximal. To restore maximality, we replace, if possible, basic variables 
that have hit bounds by superbasic variables that are free. (This might not be possible 
if the basic variable that hits its bound is in a circuit with a superbasic variable that 
simultaneously hits its bound.) 

Identifying superbasic variables that are eligible to replace a given basic variable 
can be accomplished in a straightforward manner.  For a given basic variable, the 
superbasics that are eligible to replace it are given by the nonzero elements in the 
corresponding row of B-~S. Since most successful algorithms store B in factored 
form (e.g., B = LU where L and U are lower and upper triangular matrices), finding 
the nonzero elements in a row of B-~S can be accomplished inexpensively. Specifi- 
cally, let the j th  basic variable be the one that is to be replaced and let ej be the 
j th  unit vector. The procedure is: 

Solve B ry = ej ; 

Compute  z=SVy.  
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The nonzero elements of z then correspond to superbasic variables that are eligible 

to replace the j th basic variable. 

5. Summary and conclusions 

Consider two algorithms, identical in every respect except that one uses a maximal 

basis and the other does not. What are the relevant tradeoffs? 

For the one that uses a maximal basis, some pivoting is needed occasionally to 
restore maximality of B and to resolve situations akin to L P  degeneracy. However, 

at any iteration, if only free superbasic variables are moved, then one is assured of 
a nonzero movement along the search direction, When a nonbasic variable at a 

bound has to be moved, pivoting rules such as Bland's rule in [2] will ensure that 
a search direction is found in a finite number of steps. The algorithm that does not 

use a maximal basis must pivot when it is discovered that a given change in superbasic 

variables will result in an infeasible move for basic variables. In such cases, the 

work done to get a superbasic search direction is wasted. 
Thus the tradeoff is perhaps an extra few pivots versus some wasted effort in 

computing a search direction. For algorithms that use expensive (e.g., modified 
Newton) directions, it seems that the tradeoff would be in favor of using a maximal 

basis. 

There are a number of implementations of the maximal basis idea for the special 
case of large-scale nonlinear network flow problems [3, 4, 5]. These network 

algorithms include specialized versions of a scaled reduced gradient algorithm and 

a Newton algorithm. In the experiments reported on in [3, 4, 5] it has been found 
that the cost of maintaining a maximal basis is negligible compared to the cost of 

solving the problem, 
Finally, it is natural to ask how this idea can be used in linear programming 

algorithms. It can have no effect on the simplex method since by definition all bases 

are maximal (all out-of-basis variables are at their bounds). However, it may make 

a difference for reduced gradient algorithms for linear programming [7]. This has 

yet to be explored. 
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