
Mathematical Programming 27 t 1983) 155-175
North-Holland

QN-LIKE V A R I A B L E S T O R A G E CONJUGATE GRADIENTS*

A . B U C K L E Y a n d A. L E N I R

Mathematics Department, Concordia University, Montreal, Quebec, Canada

Received 25 February 1982
Revised manuscript received 1 November 1982

Both conjugate gradient and quasi-Newton methods are quite successful at minimizing smooth
nonlinear functions of several variables, and each has its advantages. In particular, conjugate
gradient methods require much less storage to implement than a quasi-Newton code and therefore
find application when storage limitations occur. They are, however, slower, so there have recently
been attempts to combine CG and QN algorithms so as to obtain an algorithm with good
convergence properties and low storage requirements. One such method is the code CONMIN
clue to Shanno and Phua; it has proven quite successful but it has one limitation. It has no middle
ground, in that it either operates as a quasi-Newton code using O(n ~) storage locations, or as a
conjugate gradient code using 7n locations, but it cannot take advantage of the not unusual
situation where more than 7n locations are available, but a quasi-Newton code requires an
excessive amount of storage.

In this paper we present a way of looking at conjugate gradient algorithms which was in fact
given by Shanno and Phua but which we carry further, emphasize and clarify. This applies in
particular to Beale's 3-term recurrence relation. Using this point of view, we develop a new
combined CG-QN algorithm which can use whatever storage is available; CONMIN occurs as
a special case. We present numerical results to demonstrate that the new algorithm is never
worse than CONMIN and that it is almost always better if even a small amount of extra storage
is provided.

Key wards: Minimization, Conjugate Gradient, Quasi-Newton, Variable Storage, Reduced
Storage.

O. Introduction

T h e p u r p o s e of th i s p a p e r is to p r e s e n t a n e w c o n j u g a t e g r a d i e n t a l g o r i t h m fo r

m i n i m i z a t i o n of a s m o o t h f u n c t i o n f (x) , w h e r e x = (Xl x ,) x. A m a i n o b j e c t i v e

of t h e a l g o r i t h m is to a l l o w t h e use of a v a r i a b l e a m o u n t of s t o r a g e , a c c o r d i n g to

a v a i l a b i l i t y , in s u c h a w ay t h a t m o r e s t o r a g e will m e a n i m p r o v e d p e r f o r m a n c e . It

is i n t e n d e d to p u b l i s h an i m p l e m e n t a t i o n of t he a l g o r i t h m s e p a r a t e l y . A s e c o n d

p u r p o s e of t h i s p a p e r is to e m p h a s i z e a p o i n t of v i ew of c o n j u g a t e g r a d i e n t a l g o r i t h m s

t h a t h a s b e e n m a d e in [3].

T o m o t i v a t e t h e s t a t e d o b j e c t i v e , r eca l l t h a t c o n j u g a t e g r a d i e n t a l g o r i t h m s h a v e

o n e m a i n a d v a n t a g e : t h e y r e q u i r e o n l y s o m e s m a l l m u l t i p l e of n l o c a t i o n s of s t o r a g e

fo r t h e i r i m p l e m e n t a t i o n . C u r r e n t l y , t h e r e a re s u c c e s s f u l c o n j u g a t e g r a d i e n t

* The authors wish to express their appreciation for the support of the Natural Sciences and
Engineering Research Council through Operating Grant A8962 (Buckleyi and of the National Research
Council of Canada through a Postgraduate Scholarship (LeNir).

155

156 A. Buckler, A. Lel~Tr / ON-like variable storage con/ugate gradients

algorithms readily available f rom software sources, but there is one feature that

these generally lack, namely, the ability to use available space. To see why this is
relevant, consider a problem which is large enough that one is not able to provide

the O(n 2) locations needed to use a quas i -Newton algorithm. Take, for example,

n = 500 on a medium size machine. In this case, one might still expect to be able

to provide working storage in the order of some modera te multiple of n, say 10n

or 20n. The current algorithms, at least those available as software, each use a

fixed amount of storage, typically 4n or 7n, and are not able to make full use of

the space actually available.

There have been earlier a t tempts to write variable s torage codes, see e.g. [1],

[7] and [8] and some numerical results based on varying the storage were quite

encouraging [8]. Here we will describe an algori thm which can effectively use

whatever space is available. It is related to one given by Shanno [12], but ou t

derivation will be a bit different and is intended to emphasize a particular point of

view of conjugate gradients, as already ment ioned. Both our algori thm and Shanno ' s

also have the feature that they are not dependent on the use of highly accurate

line searches. Numerical results will be presented to demons t ra te that the use of
additional space can aid per formance and indeed we think we successfully substanti-

ate our claim that our algori thm does indeed meet its objective.

I. Preliminaries

We let a small letter, e.g. v, deno te a column vector, so v a is always a row; these

are also used for indices. Greek letters denote a scalar; capitals are used for matrices.
We use 'H" generically for a quas i -Newton update matrix. The algori thm proceeds

from a given point xo by construct ing directions dt, d z , . . , and setting xi = xi ~ + c~di

for suitable cei. We will write s i = x i - x i ~ and, with gi=-g(xi)=--Vf(xi), also yi =

gi - gi - i.
It is now firmly established (see e.g. [2, 7]) that conjugate gradient (CG) directions

have close ties with BFGS quas i -Newton updates. Here the connect ion will be of

fundamenta l importance, so we will introduce the BFGS update forthwith; thus,

given H, we write ~

H* = U(H, i)
where

(1)

siy[[H+Hyis~rv Jr I { 1 + y VHi yi] ~ T (2) U (H , i) = - H
si Yi ~ / si yi"

Familiarity with quas i -Newton algori thms will be assumed.
r A = For a quadrat ic function, s a y / ' (x) = ~ x x +bVx, we recall that Asi y;. Also,

the directions d~, d2 are conjugate (with respect to A) if d [A d / = 0 for i : / .

t This is most easily read as H* is Update of H at ith step'.
H* U (H, i)

A. Buckley, A. LeNir / ON-like variabh, storage conjugate gradients 157

Since s~ = o~d~, the conjugacy relation can be written as y]di = 0 for i # / . When we
write subsequently of the 'quadratic case', it will be naturally assumed that line
searches are exact.

2. Preconditioning, Beale restarts and updating

In this section we will demonstrate how the preconditioned CG algorithm can
be written in a quasi-Newton like manner, and we will explain how this gives a
particular way of viewing CG algorithms. We will also show that the Beale restart
algorithm is actually a preconditioned CG algorithm, so that it can be viewed
similarly.

The CG algorithm is now commonly written with a preconditioner H. It is
assumed that H is positive definite and then, given xo, one computes d~ = - H g o
and iterates with

xi = xi 1 + a id . (3a)

g "li "H y i
/ 3 , - d~ry , (3b)

di + l = - H g , +/3idi. (3c)

When f is quadratic, it is well known (especially when H = I) that/3i may be written
alternately as

gTt4gi g?Hw
- - o r /3i = - �9 /3i gTi-jHgi-I glY-lHgi-I

For our purposes, the given form (3b) is the most useful, as will become clear in
what follows. We choose it as well because it ensures, with no assumption of an
exact line search or quadratic behavior, that yVd~ i = 0.

When H = L Perry [10] observed that (3c) can be written in an alternate form.
Not surprisingly, one may do tile same for any H. Thus we recall that o~di = si,
substitute (3b), and observe that (3c) can be written as

d,+l = - H "T - g i = - - O i g i . (4)
Si Yi

Equation (4) emphasizes that a conjugate gradient search direction can be computed
from an equation which is of the same form as that used to compute a quasi-Newton
direction. It also demonstrates, in part, why CG algorithms have difficulty with the
line search subproblem: the matrix O, is not positive definite and it is in fact singular.

Before examining Oi in more detail, let us consider Beale's recurrence relation
for generating conjugate directions. As before, we have x~ =x~ 1 +o~,d~, but dl is
now arbitrary (actually, d~ must be downhill, whereas for the ordinary conjugate
gradient algorithm it is required that d~ = - H g o) . For what will follow, we change

158 A. Buckley, A. LeNir / QN-l ike variable storage conjugate gradients

the indexing and let d, be the given direction2; at the start dr =-d~ and r = 1. The
Beale recurrence can then be wri t ten as

Xi = Xi - l + oQdi, i ~ r ,

i ~>r,

(5 a)

(5b)

g lr lrl y ,
,~, = O, , ~ - d ~ y , ' i > r , (5c)

di ~l = -12lgi +13idi +Kid,, i >Jr. (5d)

Obse rve that Beale ' s recurrence is normal ly wri t ten wi thout the posit ive definite
preconditioner/-]r but its inclusion causes no compl ica t ion and we will refer to it later.

There are two ways that (5d) may be rewri t ten using (5b) and (5c). First, one
may write

Sr Yr

s~v ~ H \
di+l = - 151 T g i=--Oigg, i > r .

sryr

These equat ions once again serve to indicate the quas i -Newton like form of Beale ' s
equat ions , but for our purposes they are not the most useful. Ins tead we write

�9 v/_7/
d r ~ = - (H - s ; y f y ,) g r = Hrgr, (6a)

T "
s,yr H'~

di+, = - I2I - ~ j g~ + flid, = -Hr g i + flid~, i > r. (6b)

U p o n first examinat ion , compar ing (6b) to (3c), the fo rmulae (6) appea r to define
a sequence of p recondi t ioned con juga te gradient s teps with p recondi t ioner H ,
Howeve r , for that to be true, the fo rmula for fl~ in (6b) should be

T
g i H , yi

f l i - ,--;W-, (7)
di yi

whereas it is in fact given, according to (5b), as

gLqy,
/3~- T . (8)

d i yi

As has been the case in the past, we will consider two forms of a conjugate gradient
a lgor i thm to be equivalent if they genera te the same points when applied with

2 The restart direction has commonly been written as d,, but here we have chosen to write it as d.
so that one may read d, as drestart.

A. Buckley, A. LeNir / ON-like variable storage conjugate gradients 159

exact line searches to a quadratic. In this case,

= _;r,(.
T Y i = g i H y i - (g i &) s~y~ ~ g i H~i~ g iHryi g H Sr 14 T " T T "

Sr Yr

SO the formulae in (7) and (8) are the same. Hence Beale's recurrence is another
way of writing a preconditioned CG algorithm. Indeed we will henceforth restrict
our attention primarily to preconditioned CG algorithms with the understanding
that our discussion includes Beale's method.

Our discussion now returns to the matrix O~ introduced by Perry and to Shanno's
idea of what we call the 'padding' of Oi. But it is best that we begin with some
discussion. Consider the quasi-Newton update formula (1). In the standard quasi-
Newton method, a search direction is computed as di+l = - H * g i . In this computa-
tion, there are a number of terms which disappear in the quadratic case, namely
those with the term s]Yg, which is 0. Since a quasi-Newton algorithm effectively
replaces/" with a local quadratic approximation, one might therefore suggest that
quasi-Newton updates should be modified by explicitly removing all terms in H *
ending in 's/', but we believe that such a suggestion would not be well-received for
it relies far too heavily on the behaviour of a quadratic model and the inherent
assumption of exact line searches. It is our contention, in the context of conjugate
gradient methods, that the same reasoning applies and that any such terms should
not be eliminated. However, we suggest that precisely what has taken place, in an
implicit way, ever since the introduction of conjugate gradient methods for minimiz-
ation in 1963 [5], is that the 'si' terms have been removed.

Consider the formulae (3) with H = I so that Oi in (4) is given by

T
Oi = I si)' i T �9

Si Yi

Perry [10] suggested modifying this matrix and wrote

T T
Sly i + SiS i

Qi = I T
Si Yi

(~i is not symmetric, but ylr(~i--s T. Shanno [12] later modified and expanded this
approach and, with further 'padding', wrote

T siYi + y l s ; "r [T T + Y i Yi~ SiSi
H i = I v +~1 ~ - - - w - . (9)

si Yi si y J si Yi

A major problem with (~i as introduced by Perry is that it fails to satisfy the secant
equation (i.e. (~iyi # &). What Shanno saw is that further padding is essential, and
from (9) it is clear that Hi is symmetric and H~y: = s:. Furthermore, if an exact line
search is used, the formulae di+l -- -Oig i and d~+l = -Higl generate identical direc-
tions. This supports our contention that some '&' terms have been implicitly and
unknowingly dropped in CG methods. Also observe, as Shanno did, that Hi is

160 A. Buckler, A. LeNir / ON-like variable stora.~e conjugate gradients

actually a quasi-Newton update matrix, namely

Hi = U(I, i),

of the fixed identity matrix.
For the preconditioned CG algorithm, the same steps can be followed. Pad, or

resurrect if you like, the matrix O~ in (4) to get

s,y:n +ny,,: :l+ymm,, ,,,T H i = H T + ~ J s~ y~ sTy~ / s:y,"

Clearly H~ = U(H, i) and, replacing (3c) by d ~ = - H ~ g , we see that a precondi-

tioned conjugate gradient algorithm should be interpreted as a quasi-Newton

algorithm in which a fixed matrix H is updated at each step.
In the particular case of Beale's recurrence, we noted that it has the preconditioner

H~ so that H~ = U(H~,i). Furthermore, the formula for H~ may be padded in an

identical fashion, whence

T
Sr yr

becomes

H~ = H -
r �9 �9 T + V V/~Vr] T

s'ry~H +Hy,s~ ~- 1 ~ , s,S~"~ = U (/ 7 ' r) ' y r

Thus we will write Beale's recurrence as

with

d r ~ i = -High,., i, i/> 1, (10a)

Hi = u t H , r),

H~=U(HI, r+ i -1) , i > 1 .

(10b)

10c)

3. Multiple updates: The VSCG algorithm

The preceding discussion has left one point open: how should the preconditioner

H be constructed? Here we will present a strategy based on successive updating
with a quasi-Newton formula which will result in a straightforward manner in a

CG algorithm which can use a variable amount of storage. Furthermore, the

algorithm will reduce to Shanno's 'memoryless quasi-Newton algorithm' in one

instance. Details of the algorithm will be left to the next section.
Suppose that we begin at xr, which we will term a restart point, and suppose that

xr was reached along a descent direction dr from xr 1 in such a way that srrv, > 0.

Algorithm VSCG then consists of two parts, as follows.

A. Buckley, A. LeNir / ON like variable storage confugate gradients 16 I

ON-par t : Choose a positive definite matrix Ho. Iterate for i = 1, 2 m:

H i = U (H ~ ~ , r + i - 1), (l l a)

d~ ~i = -Hig,+i-l , (1 lb)

Xr+i ~ X r + i 1 +(Y.r+idr+i.

CG-par t : From the point xr reached by the QN-part , and using the fixed matrix
H,,, as preconditioner, iterate for i = m + 1, m + 2 :

He = U(H,,~, r + i - 1), (12a)

d ~ i =-Hig~+i 1, (12b)

Xr.ti =Xr+i 1 +~

As can be seen, the algorithm VSCG is essentially very simple. The two parts
differ only in the definition of Hi: for the first m steps, Hi is an update of the
previous matrix Hi ~; subsequently, it is an update of a fixed matrix H,n. Thus
the QN-par t can be viewed as constructing an appropriate precondit ioner Hm, and
the CG-par t is the implementat ion of a preconditioned conjugate gradient algorithm
in the form described in Section 2. The choice of Ho is left to the next section.
The significance of m and storage of HI H,,~ will be given soon.

For simplicity in the presentation, we will in certain instances assume r = 1;
indeed in the implementat ion of the algorithm, each restart point is defined to be
xj. The eqs. (11) and (12) are then a bit simpler, and we will sometimes use them
in this form:

and

H i = U (H i 1, i) or H i = U (H , , . , i)

di~l = - S i g i .

Algorithm VSCG has some important properties. First, one may ensure that
each Hi is positive definite by ensuring that sl.ryi > 0 ; this is a well known property

of BFGS updates. It is then clear from (11 b) and (12b) that all directions are descent
directions. Therefore, in contrast to other CG algorithms, it is easy to obtain a
downhill direction at each step, for the condition sVyi > 0 is easy to ensure. When
f is quadratic, finite termination is obtained, provided n steps are taken from xr
without restarting. This follows immediately from a theorem given in Buckley [2].
Of course, this s tatement is only true if each line search is exact, whereas, in the
algorithm as implemented, not all line searches will be exact, so finite termination
is actually lost. This is not a weakness of the method, for, as in quasi-Newton
methods, insistence on finite termination for quadratics will degrade performance
on general 1'~ Our numerical results in Section 6 concerning quadratic interpolation
will support this claim.

1 6 2 A . B u c k l e r . A . L e N i r / O N - l i k e t ,ar iable s t o m e, e c o n i u e a t e g rad i en t s

Now consider how Hi Hm can be stored. One way has been discussed in

[1], and we will repeat it here for completeness since the details are a bit different.

Notice that the matrices Hi are not themselves needed; only products of the form
Hiv for v ~ N" are required. Consider therefore the equat ion derived from (l l a)
and (12a):

Hit ' = Hqt~ 1 + ~ - - si
rh J zl i

H q U - - ('l"iSi - - [..s

_ _ - - ~l i

(13)

T slrv, and = H,~yi. Here H , is either Hi 1 or H,,, according where v~ = y'i H~y~, r/i = ui

to whether H~ is defined by ! l l a t or (12a); i.e. q = i - 1 or q = m . The iteration
(11) or (12) requires computa t ion of Hiv with v =g~. This is done using (13) by
comput ing primarily

l i) H,~gi;
(ii) ui = Hqyi, vi = ylrui and r/i = s ty / ; and

(iii) u~g~, s-fg~, cr~si and/xiu,.

In (i) and (ii), computa t ion of Hqgi or H,y, is s t raightforward by applying (13)
recursively. For example,

i = ! L ~j . i J 7"/i ;

= Hov - ~ {otis ~ +~/ui}.
i - I

Provided we have stored ,/, rti, u / a n d s i for.l' = 1 q, this can easily be computed ,

with the main work done in forming u[v, s~v, o'~sj and ~ u i ' the operat ion count

for calculating Hqv is q (4n), ignoring Hov.
Thus, for one iteration, the opera t ion counts are:

(i) ui = H, ffi: 4qn ;
T slrvi" 2n ; (ii) vi = ui yi and r/i =

(iii) Hqgi: 4qn ;
(iv) u~rgi, slrgi, o'isi and ~iu~: 4n ;

hence the total is either (8 i - 2) n or (8m +6)n. Provided m << n, this is in either

case only a modera te multiple of n. R e m e m b e r that, when q = i - 1, we must also

save v~, r/~, si and u~ for the next step; when q = m they are discarded. The total
storage needed for H , H,,, is then m (2n + 2) locations. Note that an alternative

to this method of handling the matrices is the product form of Hi described by
Noeedal [8].

To conclude this section, consider the special cases m = 1 and m = 2. If we choose
rn = 1, V S C G reduces to Shanno ' s 'memoryless quas i -Newton algori thm' M Q N

which is implemented in the program C O N M I N [14]. When m = 1, we have

d~+l = - H l g ~ where H~ = U(I , r) ; subsequently for i > 1, d~+~ = - H ~ g ~ _ . l where

Hi = U(H~, r + i - 1). This is precisely Beale 's algori thm with H = I as direct com-

parison with eqs. (10) shows. (At least, as before, this is precisely Beale 's a lgori thm

A. Buckley, A. LeNir / ON-like variable ~torage con~agate gradients 163

on quadratics with exact searches; alternately this can be viewed as a modified
implementat ion of Beale's algorithm.) In contrast, Shanno's method of deriving
MQN was to take the Beale recurrence and directly add the necessary padding
terms. We believe that our approach has the advantage of a certain clarity and
simplicity, and that it emphasizes the relationship of MQN to preconditioning. It

also makes the extension to a variable storage algorithm easy.
For m = 2, let us wri te/5/ in place of H1, and renumber H2, H3 as Ht , H2

Then the updates of VSCG can be written as

H = U(I, r),

H I = U (/5/, r + 1),

H i = U (H l , r+i) for i > 1 .

Comparison with (10) shows that this is in fact a preconditioned Beale restart
algorithm, where technically the restart is at r + 1 rather than r. The step from xr
to xr+l builds the precondi t ioner /4 for Beale's algorithm.

4. Algorithmic details

There is, of course, a 'giant s tep ' between the brief description of an algorithm,
as in (11) and (12), and its implementation. Here we will discuss some of the points
which we found essential to having a successful implementation. Briefly, we will
consider (a) when to restart, i.e. when to declare that the current point is a restart
point and to redefine r to have the current value of i; (b) how to define H0 at the
restart point and how to scale the search directions; and (c) how to select a line
search subalgorithm. We will not be giving a detailed description of the code
implementing VSCG. For readers so interested, the authors plan to publish the
algorithm separately. However , in Section 6 we will give some numerical results
concerned with the choice of strategy.

The question of finding a dynamic criterion for restarting was first considered
by Powell [11], where he was dealing with the Beale recurrence in the form (5)
with H = I. He suggested that r be reset to i when, at x,,

T

gi gi ~ (14a) Ti ~-- T
g i - l g i l

was significantly different than 0, say when Ir~l>p, where typically O would be 0.2.
v

This test accomplished two things. First, in the quadratic case g~ gi i would always
be zero, no restarts would take place, and finite termination could occur. Thus, a
measurable departure from 0 for r~ would indicate strong local nonquadratic
behaviour and hence would be indicative of a need for restarting. Second, as Powell
observed, when using Beale 's recurrence in the nonquadratic case, convergence
can occur to a point at which the gradient is nonzero. This would cause r~ to be
near 1, which would force a restart and presumably avoid the false convergence.

164 A. Buckler, A. LeNir / ON-like variable storage coniugate gradients

For the algorithm VSCG, a similar criterion is suggested. For the preconditioned
CG algorithm (3) with preconditioner H, , as in (12), the ratio (14a) becomes

glrH,,,g, l
"5i - gT ~H,,gi 1" (14b)

Therefore an obvious suggestion is to restart when ffi[>p . On the other hand, for
quadrat ic/ ' and with Ho = L the results in Buckley [2] show that the algorithm (,11),
(12) will generate the same set of points as would be generated by the simple CG
algorithm (3) with H = L In particular, using Theorem 1 of [2], we see that ~:i = 7-,.
This suggests that there is no need to implement the computationally more expensive
test with ~:i even in the nonquadratic case, in which r~ and r will be expected to be
different. In Section 6 we will compare the effect of using restart tests based on
the two quantities T~ and r and we will see that it is indeed sufficient to use ri.

The scaling problem, i.e. in part the choice of Ho, was discussed by Shanno in
conjunction with the MQN algorithm. His conclusions, appropriately interpreted,
apply here. First, for quasi-Newton algorithms, the experience of Shanno and Phua
[13] strongly favored the use of the Oren-Spedicato scaling [9] of the BFGS update
formula, with the proviso that the scaling is most successful if it is only applied to
the initial update. For the algorithm MQN, Shanno treated it as a sequence of

quasi-Newton steps (in which a fixed matrix is being updated at most steps).
Applying their earlier conclusions, Shanno decided that the correct way to imple-
ment MQN would be to use the Oren-Spedicato scaled version of the BFGS update
for the first step, and then to continue with the normal BFGS update; numerical
evidence was presented to support the decision. Suppose we write the Oren -

Spedicato scaled BFGS update as

T T T . e T \ "F
H * H s6, H),,s, +~, y, s s~s~

= Y i + T
Si Yi S ~; / Si Yi

= U(y~H, i) =- OS(H, i),

where yi = rl,/ui and 77, and u, are as in (13). Then, using our description of MQN,
Shanno's strategy is simply stated by requiring that

H1 -- OS(I, r),

H , = U (H ~ , r + i - 1) for i > 1.

Note that we have in effect replaced the choice Ho = I with Ho = 7~I.
It is clear how to adapt this strategy to VSCG. The QN-par t (11) consists of a

sequence of quasi-Newton steps; the Shanno-Phua results suggest that the first of

these in (1 la) be altered to H~ = OS(L r); the remainder are left unchanged. The
CG-par t (12) can again be interpreted as a continuing sequence of quasi-Newton
steps (based on a fixed update) so that one should not replace H~ = U (H , , , i) with
H~ = OS(H,,,, i). Alternatively, it could be argued that the Oren-Spedicato update
only applies to quasi-Newton algorithms and is therefore not appropriate for the

A. Buckler, A. LeNir / ON-like variable storage conjugate gradients 1 6 5

CG-pa r t of the algorithm. In any event, at each restart the initial direction dr+~
(and it alone) is rescaled with the Oren-Spedicato formula.

The question of scaling the search directions other than dr+~ is still open. It is
known that one of the failings of CG algorithms is that they have difficulty
determining a suitable length for each direction di+ x. This occurs because they have
no ' m e m o r y ' of previous steps. For Shanno's MQN, all steps other than a restart
step are CG steps. Therefore, according to [12], Shanno scaled each subsequent
direction using the formula Fletcher [6] introduced with his CG algorithm:

, 2 fi l - f i o~ '
t ' E i + = - - ". (15a)

gi Si

Because the updates (12) involve only the total step si and not the actual direction
d , the scaling of the direction d~§ ~ amounts simply to the initial choice for c~i+~, as
given. Alternately, one may choose cn+l as Shanno actually did in the published
code C O N M I N [14]:

T
di+lgi

(15b) cei. I =Cti • dlrgi
1

Experience showed that these worked well, both for Fletcher and for Shanno. For
VSCG, there are both quasi-Newton and CG nonrestart steps (except when rn = 1).
For the QN-par t , we proceed exactly as we would for a quasi-Newton algorithm,
for after all, that is exactly what it is until the storage limit is reached. Therefore
each direction d~_~ is accepted as computed by (l lb) . It is not rescaled in length,
which is reasonable since these are quasi-Newton steps, which do have 'memory"
and hence determine a reasonable length for d, ~1. For the CG-par t , we proceed
as in a CG algorithm; each search direction is computed according to (12b) and
then an initial choice for c~+~ is made according to one of the formulae of (15).
Results in the next section indicate that the strategies which we have chosen work
acceptably in practice.

Finally, we consider the line search. Essentially we have the question: since the
algorithm is in many ways intermediate between a quasi-Newton method and a
conjugate gradient method, which kind of search should we use? The answer is,
not surprisingly, intermediate, at least based on computational experience. As in
the discussion of scaling, our answer is to some extent, but not entirely, to use a
quasi-Newton strategy for the QN-par t and a conjugate gradient strategy for the
CG-par t .

The basic point to a quasi-Newton search is that no true 'search' is required. In
order to keep the updates positive definite, it is necessary to ensure that sTy~ > 0
at each step, but that is a mild restriction. An important property of quasi-Newton

algorithms is that, near the solution, the choice c< = 1 may be taken for each step
(with only the proviso s~y~ > 0) and that superlinear convergence results. Therefore
the quasi-Newton strategy is generally to try c~ = 1, test the condition sTy~ > 0 at

166 A, Buckler, A. LeNir / ON-like t~ariable storage confl~gate gradients

the new point, accept the new point as x~ if the test is satisfied, and only apply a

search technique when the test fails. As already stated, the QN-par t of VSCG is
indeed a quasi-Newton algorithm, so the value of ai is chosen essentially as

described. (Here, as elsewhere, the actual details are a bit more involved, but those
can be seen in the published algorithm.)

For the CG-par t of VSCG, more is required. It is generally acknowledged that
a true line search is required for conjugate gradient algorithms such as (3) or (5).
A procedure must be given which produces a point xi such that the exact line search
criterion d~gi = 0 is qmarly' satisfied. In particular, to ensure that the next direction
di + L is downhill, the equation (3c) implies that xi must be chosen so that

T H �9 diJ~lgi gi gi 1
- - < - (1 6) d~ ~yi gr iHg,

Experience has shown that in fact condition (16) is not strong enough; a strengthened
form of (|6) which forces the point xi to be even nearer to a local minimum along
d~ is usually imposed. The result is that, for algorithms such as (3) or (5), the ratio
of the number of function evaluations to the number of iterations is fairly large,
say at least 2 and more typically 2.5 to 3. One point in favor of these line searches,
though, is that the search procedure always uses some form of quadratic or cubic
interpolation, with the result that, in the quadratic case, line searches are exact
and finite termination is obtained. That is not true for quasi-Newton algorithms
which often accept oe~ = 1.

But now consider specifically the CG-par t of VSCG. The most important point

is to observe that the search direction d , ~ in (12b) is in the form d~+~ = - H & .
Thus all that is needed to ensure that d~+, is downhill is that s,Vyg>0, for that
guarantees that H,. is positive definite. As observed, that is in definite contrast to
algorithm (3). (In fact the contrast is even greater for (5), for it may not even be
possible to choose a~ to make d~+~ in (5d) downhill.) One might therefore be
tempted to conclude that we may now proceed in the same way as in the QN-par t
and accept ~i = 1 for the most part. Computat ions have shown that this does not
work well. The reason is that the CG-par t is not a true quasi-Newton algorithm
(since a fixed matrix is being updated), and there are therefore no results which
suggest that a~ = 1 is an acceptable choice, even near the solution. Our compromise
is to follow the same strategy as in the QN-part , except that ai will not be accepted
unless at least one quadratic interpolation has taken place along that line. We have
found this to work quite successfully, and indeed in one case, VSCG is much better
than a quasi-Newton algorithm, a fact which we attribute to the presence of the

forced quadratic interpolation in the CG-part .
We would also like to make an observation on a minor point which will be

investigated in Section 6. If one examines formulae (12), it is easily seen that the
step with i = m + 1, i.e. the first step of the CG-par t , is in fact a quasi-Newton step.

Indeed, it is not until we begin the computation of H,,, ,-2 leading to d 2 that we

can detect that the CG-par t is different from the QN-par t , at least as far as the

A. Buckley, A. LeNir / QN-like variable storage con/ugate gradients 1 6 7

descript ion (11), (12) is concerned. What this does indicate though, is that one

must be careful about the step along d ~ f rom x~+,, to x 1. Should it be

cons idered as a quas i -Newton step or as a conjugate gradient step? As we have
seen, that definitely affects the line search strategy. We will discuss this point in

Section 6, but let us say here that it seems quite impor tant to view the step along

d +~ as a con juga te gradient step, especially when m is small.

We conclude this section with a summary of the algori thm as we feel it should

be implemented . Many of the actual implementa t ion details will be glossed over.

Assume m is given. As the previous paragraph noted, the algori thm somet imes

distinguishes be tween being in the CG- or QN-par t , and whether a line search

implements a C G or Q N stra.tegy. One impor tant point that this description will

not indicate explicitly i s that we do require that each iteration will reduce the
funct ion value.

1. Cold-star t . Given xo, set H0 = I and compute f0 = f (x ,) and g , = g(x.). Termin-

ate if x~ is close enough to a local minimum. Set i = 1 and compute d~ = - H . g 0 .

Note that, since x~ is always t reated as a restart point, the initial step is considered
to be the final step in the CG-par t . Some minor adjustments are needed in what

follows for the initial step.

2. Step f rom x~_ 1 along di.
(a) Choose an initial value for c~i: if this is a QN-step, set c~i = 1; otherwise

scale the previous value c~i l as in Sha,mo and Phua [12, 13].
(b) D o a line search along d~. The impor tant points are:

T (i) If this is a QN-s tep : Check if si yi > 0 at x, ~ +e~,dg. If so, the line search
is complete . If not, de termine a new value for c~i (usually by interpolat ion) and

repeat.

(ii) If this is not a QN-s tep : Check if s~",'i > 0 at xi-~ +c~id,. If so, and if an
interpolat ion has been done at least once during this line search, then the line

search is complete . If so, but no interpolat ion has yet been done, then force

an interpolat ion and repeat . If siT vi ~<0, then determine a new value for oei

(usually by interpolat ion) and repeat.

(c) Set x~ = xi-i +~idi and check for terminat ion.

3. Declare xi to be a restart point if this is in the CG-pa r t of the algori thm and
if either lgTgi ~] >0.21]gi ~Jl or n steps have been taken f rom the last restart point.

4. C o m p u t e Hi and di+~:
T T

(a) If this is a restart step, then compute Yi, vi = y~ Yi and r/i = s i Yi, set us =y~

and store s~, t,i, vi and r/~ to define HL. Reset i to 1, and compute d2 = - H ~ g t .
(b) If not, then set q = i - 1 if this is in the QN-par t , or set q = m if this is in

the CG-par t . Then compute yi, ui =H~yi, vi =uTyi and rt, =sTyi to define Hi. If
T this is in the QN-par t , store &, u~, vi and rti so as to keep Hi. Then calculate si gi,

u~rgi and H~gi in order to de termine d~ ~ = -Hi& according to (13). Increment i

by 1.

5. Repea t f rom 2.

168 A. Buckley, A. LeNir / ON-like variable storage conjugate gradients

5. Numerical results

In this section and the next we wish to consider two points. First, we will give
numerical results that show that we have met our main objective, namely, that we
can minimize more efficiently by increasing the amount of storage available to this
conjugate gradient routine. Then, in Section 6, we will investigate some of the
choices one has when actually implementing the algorithm.

We begin with some words about our testing method. All test results quoted
here were obtained using 64-bit double precision on a VAX 11/780. Termination

occurred with Ilgll< 10 -~ • max/ l , [Ix II), as in [14]. We have used the general purpose
testing package described in [4] to produce our basic results; the tables appearing
here are summaries of those produced by that package. For purposes of comparison,
we have used an equivalent to Shanno's C O N M I N code [14]. This is partly because
C O N M I N can operate either as a conjugate gradient algorithm or as a quasi-Newton
algorithm. The quasi-Newton part is robust and probably as effective as away
unconstrained quasi-Newton code generally available; the conjugate gradient part
is the one referred to in this paper as MQN and it is also highly regarded. Therefore
we feel that the C O N M I N code provides a good up-to-date basis for comparison.
The results were actually produced by the code called VSCG. However, with one
update, VSCG produces results which are identical to those obtained from CON-
MIN, which is what one would hope since Shanno's algorithm is a special case of
our algorithm, as explained. In addition, VSCG has imbedded in it the same
quasi-Newton code as is found in CONMIN. Therefore in what follows a reference
to CONMIN means the equivalent code in VSCG.

The test functions we have chosen are fully documented in [4] and are in two
groups. We summarize the second group of them here. These are chosen because
they are of moderate dimension and readily available, but still not unreasonably
expensive to use for comparative testing. We believe that this second test set is
sufficient to be able to support our basic claim. These test functions are

PWSING, variable n :

n/4
f (x) = ~ [(X4j 3+10X4i 2)24:-5(X4i-l--X4i) 2

i-1

q-(X4i -2--2X4i 1) 4-}- 10(,X4i 3--X4i)4].

NONDIA, variable n:

ti
f(x)= 5~ [100(x~ -xE)- '~+(l-x~)-] .

i -2

TR~DIA, variable n:

n
. f(x)= 2 [i(2xi-xi ,)2].

i=2

A. Buckley, A. LeNir / ON-like variable storage conjugate gradients 169

EX'I'R()S, variable n :

t~./ 2
f (X) = ~, [l O 0 (x 2 i - - X ~ i - l) 2 " q ' - (1 - - X 2 i - 1) 2] ,

i - I

CHAROS, variable n:

fCx)= Y. [4&(x,_,-x~)2+ll-x,)2].
i = 2

The constants & are available from [4] or from Toint [15].

To begin our evaluation of the new code, consider the results in Table 1. Here

the test set consists of a number of standard test problems, all of rather small
dimension. Of course, one can point out that the purpose of the algorithm which

we are describing is to handle problems of moderate or even large size, so it does

not seem reasonable to exhibit test results for small problems. That is true. However,
we feel that, at the very least, the new algorithm should not be any worse than

standard algorithms on standard problems. The results in Table 1 demonstrate that
this is indeed the case. This table shows the results of minimizing a collection of

problems, first with the one-update conjugate gradient code as implemented in

VSCG, then with the m-update algorithm of this paper, where m is successively

2, 4, 8 and 10, and finally with the quasi-Newton part of C O N M I N - V S C G .

Because the problems are small, there are some fluctuations in the number of
function evaluations (see FUNCS) needed to minimize a particular function in the

set. There is however a reasonably consistent trend for that number to decrease

as m increases. Observe that for" m = 8, VSCG is nearly as good as the QN-code,

although for m = 10, the results become a bit poorer; however one should be

cautious about attempting to read too much into such figures, for they really

represent partly random variations.

Now consider the results in Table 2. These are analogous to Table 1, except that

the set of test functions is different. Here all of them are of moderate dimension.

Again we observe the rather consistent improvement in performance with

increasing m.

Of course, we should state just what we mean when we say that the performance

has improved. Primarily, we are looking at function evaluations, and it is the total
of this figure for each value of m which shows most clearly the reduction in work.

However, we should also point out that the total number of iterations (ITERS),

the term R A T I O (which is FUNCS/ITERS) , and the figures MSECS and FSECS
in Tables 3 and 4 are also interesting. The time spent in evaluation of the functions

is in FSECS and the total time taken for each minimization is in MSECS; times

are in milliseconds.

First consider Table 3 where the problems are the same small ones as in Table

1. As m changes, there is not a lot of change in the figure MSECS, for as rn

increases, there is a slight reduction in the number of function evaluations, but that

170 A. Buckley, A. LeNir / QN-like variable storage coll/ugaw gradients

is balanced by some increase in the number of iterations and the overhead per
iteration, which is O (m n) for VSCG. Also, since n is small, the expressions O(n)
and O(n 2) have little meaning, so the time for the QN-case is also not much
different. But in Table 4, where n and n 2 are noticeably different, the situation
changes. Now the overhead often dominates the time taken in evaluating the
function. As m increases, the function count decreases. This reduces FSECS but
has little effect on MSECS. Since the ratio F U N C S / I T E R S is reduced steadily as
m grows (because of how we implement the line search), the number of iterations
does not decrease, but is steady, or may increase slightly. Also the overhead is
O(mn) per iteration. Thus, MSECS is also fairly steady or grows slightly. But the
quasi-Newton results are quite different. The function count is indeed the least,
but R A T I O is near to 1, so ITERS is comparatively large. Therefore there are
many iterations, and the overhead for each is O(n 2). The result is that MSECS is
far larger than with any of the conjugate gradient runs. The figure T I M E - R A T I O ,
which is MSECS/FSECS, also emphasizes the difference.

Thus, with VSCG we have in some sense the best of both worlds: if function
evaluations are cheap, VSCG will do well because it has relatively small overhead;
if function evaluations are expensive, VSCG will still do reasonably well because
its function count is close to that of a quasi-Newton algorithm. Therefore we feel
that we may conclude that VSCG successfully meets the primary objective which
we stated at the beginning of this paper.

6. Tests on implementation strategies

In Section 4, we discussed certain points relating to the actual implementat ion
of the algorithm. Here we will present numerical results which demonstrate how

different strategies affect performance, and we will explain how we have chosen
the strategy which was summarized at the end of Section 4 and used to obtain the
results of Section 5 and why we feel that our choice is justified.

Table 5 contains a summary of a substantial number of tests. Each line of the
table was obtained from tables similar to Tables 1 to 4; for obvious reasons of

space the 15 tables are not reproduced here. The entries in the tables have the
following meanings; for ease of reference for those who might be interested, we
use the same names here as are used for the control variables in the code.

F1RSr 1. When this is true, the first step in the CG-par t of the algorithm (along
d 1) is treated as a QN-step. This affects the initial choice of ~i, which is either
1 for a QN-step, or scaled according to (15) for a CG-step. In the ensuing discussion
we will carefully distinguish between CG-steps and the CG-par t . Steps after leaving

Xr+,, are always in the CG-par t , but the first of these may or may not be treated
as a CG-step.

ALPlS I. When this is true, all steps begin with an initial choice of 1 for o~, both
in the QN-par t and in the CG-par t .

A. Buckh'y, A. LeNir / ON like variable storage coniugate gradients

Table 1

FUNCS/ITERS for small problems

171

function dimension m = 1 m =2 m =4 m = 8 m = 10 m =oo
CONMIN QN

ROSENBRK 2 64/28 63/25 46/28 44/33 47/36 44/36
WHLS'r 3 2 49/18 37/20 31/17 29/24 32/26 40/28
HIMM 28 2 15/6 11/6 11/7 10/7 10/7 10/7
HIMLN 3 2 11/5 9/5 8/5 8/6 8/6 7/6
BEAL 58 2 26/11) 26/13 21/15 16/12 17/13 15/13
ENGVI. 1 2 20/8 20/11 14/9 15/ l l 15/11 14/13
SC'ltMVT 3 22/10 23/11 22/14 18/13 23/19 18/15
ENGVI. 2 3 70/33 63/32 65/32 52/36 49/36 31/27
BARD 70 3 29/14 26/13 24/15 22/16 22/16 26/25
CRGLVY 4 54/24 59/30 43/28 35/28 39/27 56/54
BIGGS6 6 111/53 77/41 95/59 61/41 49/39 45/41
BOX 663 3 25/10 33/16 35/19 36/21 37/26 40/32
PWSING 4 97/41 68/36 55/32 46/31 58/45 41/40

TOTAL 593/260 515/259 470/280 392/279 406/3(/7 387/337
RATIO 2.28 1.99 1.68 1,41 1.32 1.15

Table 2

FUNCS/ITERS for larger problems

function dimension m = 1 m = 2 m = 4 m = 8 m = 10 rn = oc
CONMIN QN

PWSING 60 60 131/62 76/41 64/36 71/45 44/33 54/52
PWS~NG 80 80 73/36 87/47 57/33 40/31 70/54 57/56
NONDIA 10 10 78/24 54/26 44/26 43/31 45/32 46/33
NONDIA 20 20 72/24 46/21 48/28 43/29 41/28 44/32
NONDIA 30 30 64/26 45/26 43/27 42/32 41/29 44/32
TRIDIA 10 10 19/9 35/18 33/21/ 33/23 30/25 17/16
T R I D I A 20 20 39/19 40/20 60/34 59/44 53/38 29/28
TRID1A 30 30 61/30 63/31 75/43 63/38 67/42 37/36
FiXTROS 10 10 61/27 62/28 46/28 44/33 47/36 44/36
EXTRO$ 20 2[) 61/27 62/28 46/28 44/33 47/36 44/36
EXROS 10A 10 47/17 37/20 33/19 34/23 34/21 43/30
CHAROS 10 10 73/34 61/34 51/34 50/37 52/42 39/37
CHAROS 25 25 103/49 106/56 70/42 63/41 61/42 55/51

TOTAL 882/384 774/396 670/398 629/440 632/458 553/475
RATIO 2.30 1.95 1.68 1.43 1.38 1.16

QUADIN. In ce r t a in ins tances , a l ine s e a r c h is no t d e e m e d c o m p l e t e un less at

leas t o n e i n t e r p o l a t i o n has t a k e n p lace . As i n d i c a t e d in S e c t i o n 4, tha t is a s t r a t egy

g e n e r a l l y t h o u g h t a p p r o p r i a t e for a c o n j u g a t e g r a d i e n t a l g o r i t h m . H e r e we can

c o n t r o l the l eve l at wh ich i n t e r p o l a t i o n s a r e fo rced . If

Q U A D I N = 0 ; an i n t e r p o l a t i o n is f o r c e d for any C G - s t e p , w h e r e the

i den t i f i c a t i on of a C G - s t e p d e p e n d s on FIRSr 1:

172 A . Buck ler , A . LeNir / ON- l i k e e, ariahle storage coniu~are gradients

Table 3

MSECS/FSECS for small problems

function dimension m = 1 m = 2 m = 4 m = 8 m = 10 m = co

CONMIN QN

ROSENBRK 2 152/23 137/23 117/31 168/55 18(//23 113/31
WHLST 3 2 90/12 90/43 74/20 109/20 121/20 74/16
HtMM 28 2 2(//I 8/0 39/8 20/1 2(I/1 31/8
141MEN 3 2 20/ l 20/8 31/20 27/1 31/1 20/12
BEAL 58 2 51/31 70/12 63/8 63/12 59/1 47/16
ENGVL 1 2 39/1 51/16 51/8 43/23 63/12 211/1
SCHMVT 3 59/20 59/31 78/31 82/23 121/12 63/8
ENOVL 2 3 180/43 160/63 180/51 2l 1/63 211/39 1(12/27
BARD 70 3 117/51 78/59 109/43 121/43 121/35 109/39
CRGt.VY 4 137/66 184/43 160/43 181.1/27 199/47 195/51
mOGS 6 6 1164/945 852/625 1109/801 762/500 656/367 523/375
BOX 663 3 141/133 203/152 238/168 250/141 285/148 254/168
PWSL'40 4 227/86 156/78 188/63 199/59 301/20 141/20

TOTAL 2395/1410 2066/1152 2438/1293 2234/965 2367/723 1691/770
TIME-RATIO 1,70 1.79 1.89 2.32 3.27 2,2(I

Table 4

MSECS/FSECS for larger problems

function dimen- rn =1 m =2 m = 4 m - 8 m =10 m =cc
sion CONMIN QN

PWSING 60 60 1762/441 1211/262 13(19/t64 1965/254 1609/148 8184/289
PWS~N~ 80 80 1332/301 1809/320 1500/19l 1699/207 35(14/289 15973/207
NOND1A 10 10 301/94 219/94 250/47 3(15/66 383/74 379/66
NONDIA 20 2(I 383/l(/5 258/98 402/63 488/74 531/117 719/86
NONDIA 3(I 3(1 465/188 43(I/145 578/125 727/55 781/1(15 1473/148
TRIDIA 10 10 82/20 164/63 277/27 230/20 270/59 129/12
TRIDIA 20 20 270/74 426/121 570/I 13 797/156 793/125 609/47
TRIDIA 3(I 30 5911/121 691/2(t7 1063/195 1602/164 1559/223 1531/105
EXTROS 10 10 223/78 250/39 219/43 316/74 383/31 313/35
FXTROS 20 20 316/102 359/94 5114/I45 523/59 594/74 723/74
EXROS 10A lt) t48/39 129/35 160/55 250/23 223/63 270/59
CHAROS 10 10 328/145 352/137 340/102 430/86 504/78 297/63
CtIAROS 25 25 926/355 1102/313 879/211 1141/2(17 1211/188 1680/18(I

TOTAL 7125/2(163 7398/1926 8051/1480 10473/1445 12344/1574 32277/137l
TIME- RATIO 3.45 3.84 5.44 7.25 7.84 23.54

OUADIN = 1: an interpolat ion is forced for any step in the CG-part , so that

FIRST I ha s n o e f fec t ;

OUADIN = 2: no quadratic interpolat ions are forced at all; and if
QUADIN = 3: an interpolat ion is forced on every line search, including those

in the QN-part .

A. Buckley A. LeNir / ON-like t!ariable s'torage conjugate gradients

Table 5

Function evaluation totals

173

FIRST I A t . P l S I QLIADIN H T E S T function counts for m =

l 2 4 8 10 TOTAL

FALSE FALSE 1 FALSE 882 774 670 629 632 4998 row 1
TRUE FALSE 1 FALSE 870 739 709 619 640 4983 row 2
FALSE FALSE 1 TRUE 887 778 706 658 604 5042 row 3
FALSE TRUE 1 FALSE 826 815 699 624 640 5025 row 4
TRUE TRUE 1 FALSE same as row 4

TRUE FALSE 0 FALSE 984 865 725 649 607 5467 row 6
FALSE FALSE 0 FALSE same as row t

FALSE FALSE 2 FALSE 1038 948 699 636 593 5494 row 8
TRUE FALSE 2 FALSE 966 841 763 633 625 5179 row 9
TRUE TRUE 2 FALSE 926 896 804 632 638 5270 row 10
FALSE TRUE 2 FALSE same as row 10

FALSE FALSE 3 FALSE 882 828 739 715 734 5458 row 12
TRUE FALSE 3 FALSE 870 887 770 733 739 5478 row 13
TRUE TRUE 3 FALSE 826 830 756 721 741 5342 row 14
FALSE TRUE 3 FALSE same as row 14

HTEST. W h e n this is t rue , the r e s t a r t c r i t e r i o n is based on the test (14b) us ing

the H - m e t r i c ; o t h e r w i s e it is ba sed on the o r ig ina l Powel l t e s t (14a).

T O T A L . T h e c o l u m n s h e a d e d 1, 2, 4, 8 and 10 con t a in the f u n c t i o n e v a l u a t i o n

to ta l s o b t a i n e d f r o m tab les s imi la r to T a b l e s 1 to 4. T h e s e en t r i e s a re s u m m e d by

r o w and the sum pu t in t he c o l u m n n a m e d T O T A L . Thus , for e a c h se t t ing of the

p a r a m e t e r s , we h a v e a m e a s u r e of the to ta l w o r k n e e d e d to so lve a r e a s o n a b l e

b lock of p r o b l e m s .

N o w we c o n s i d e r the resul t s in T a b l e 5. W e h a v e i n c l u d e d s o m e rows in the

t ab le wh ich are r e d u n d a n t . T h e y a re t h e r e to e m p h a s i z e tha t wi th ce r t a in se t t ings

of QUADIN and AI.PIS 1, t he p a r a m e t e r FIRST 1 has no effect . T h e de sc r i p t i ons of

t h e s e v a r i a b l e s g iven e a r l i e r shou ld m a k e it c l ea r why this is so, bu t the ex t r a l ines

a re still i n c l u d e d to a v o i d any poss ib l e con fus ion .

In i t ia l ly , n o t e tha t t he resu l t s in t he first five rows a re cons i s t en t ly b e t t e r than

t hose in t h e r e m a i n d e r . It is no c o i n c i d e n c e tha t QUADIN = 1 for t h e b e t t e r resul ts .

I n s t ead , it sugges t s tha t the dec i s ion r e g a r d i n g i n t e r p o l a t i o n in t h e l ine s e a r c h e s is

i m p o r t a n t .

N o w , to be specif ic , let us c o m p a r e rows 1 and 2 of T a b l e 5. B o t h fo rce a

q u a d r a t i c i n t e r p o l a t i o n t h r o u g h o u t t he C G - p a r t ; the d i f f e r ence is on ly w h e t h e r

o r no t t he s tep a l o n g dr+, ,+l beg ins wi th ~i = 1 o r wi th a sca led va lue a c c o r d -

ing to (15). It a p p e a r s tha t this is no t a sens i t ive issue, s ince the resul t s a re

s imi lar .

Nex t , c o m p a r e rows 1 a n d 3. T h e q u e s t i o n h e r e is w h e t h e r we s h o u l d i m p l e m e n t

r e s t a r t s a c c o r d i n g to (14a) o r (14b). A g a i n , the d i f f e r ence is sl ight . T o i m p l e m e n t

t he test (14b) is, h o w e v e r , a bit m o r e e x p e n s i v e . It r e q u i r e s e i t h e r the s t o r a g e of

1 7 4 A. Buckler, A. LeNir / ON-like variable storage conjugate gradients

an additional vector or the computat ion of an additional matrix-vector product (a
point which is best understood by examining the code for VSCG). We chose the

additional computation because it is most easily made optional in the code; however
the results indicate that the extra computation gains little, so all further tests are
done with the simpler restarting criterion (14a).

In row 4, we consider the possibility of allowing ai to be taken initially as 1 in

all steps. This seems to have little detrimental effect; that is perhaps because most
of the steps taken by the algorithm belong in the QN-par t anyway, so not many
steps are affected. It also suggests that the mixing of the QN and CG algorithms
in this manner results in conjugate gradient steps which are better scaled in length
than is normally the case. However, it is perhaps equally true that this is simply a
much less sensitive question than that of the interpolation.

Let us now consider different levels of forcing the quadratic interpolation. "Fake
rows 2 and 6. The only difference is in the action taken on the first step in the
CG-par t , i.e. along d 1. For row 2, quadratic interpolation is forced along this

step, while for row 6 it is not forced. This seems to have a significant effect. Actually,
for the larger values of m, the effect is less, which is perhaps what one might expect

since more of the steps are in the QN-par t . But performance seems to be degraded
when m is small; in other words, for Shanno's C O N M I N or for VSCG with not
many more updates, it does seem important that a quadratic interpolation be done

on any step in the CG-part .
Let us now look at rows 8 to 10, where no quadratic interpolation is forced

anywhere in the algorithm. For a quasi-Newton code, one would expect this to
have no effect, and such is indeed the case for the larger values of m . But for small
m, where the CG-steps form a more important part of the code, as already discussed
in the previous paragraph, one would expect the interpolation to matter. Indeed

it does. Clearly the degraded performance for QUADIN = 2 is primarily with m = 1, 2
or sometimes 3. When Q U A D I N = 2, FIRSI" 1 affects only the initial choice of o~f,

and we see that this has far less effect.
Finally, consider the other extreme where interpolation is forced on all steps,

even those in the QN-part . Once again, the initial choice of ai does not have a
marked effect. However, in contrast to rows to 8 to 10, when QUADIN = 3 the effect

of the interpolation is now most pronounced for larger m. In fact, the set of function
counts in each of the rows 12 to 14 is now much more constant. The decrease as
tn increases noted earlier is not so great. It is well-known that the BFGS algorithm
performs best without exact searches, and indeed with c~ taken as 1 much of the
time. Our results here confirm that VSCG has many of the characteristics of a
quasi-Newton method, a property which becomes more pronounced as t n increases.

This is very much what we had hoped for.
The results of Section 5 were obtained with the parameter settings used in row

1. This seems the most appropriate for the strategy in the QN-par t is like that of
a quasi-Newton method, just as the CG-par t is treated like a conjugate gradient
code. The value of this choice is borne out by the results of Table 5.

A. Buckley, A. LeNir / ON-like variable storage confugate gradients

7. Conclusions

175

W e have desc r ibed a new a lgor i thm for min imiza t ion which combines the con ju -

ga te g r a d i e n t and q u a s i - N e w t o n me thods . It is based on tak ing a pa r t i cu la r view

of the con juga t e g rad ien t m e t h o d which we feel is very impor t an t . The a lgor i thm

is de s igned to have a var iab le s to rage r equ i r emen t , and the numer ica l resul ts which

we have p r e s e n t e d d e m o n s t r a t e qui te c lear ly that the p e r f o r m a n c e of the a lgor i thm

can be expec t ed to be d i rec t ly r e l a t ed to the a m o u n t of s to rage avai lab le . W e have

also given numer ica l resul ts which i l lus t ra te that q u a s i - N e w t o n and con juga te

g r a d i e n t a lgo r i thms requ i re d i f ferent s t ra tegies , and that the cor rec t choice of

s t ra tegy is vital if one is to have a successful a lgor i thm.

Bibliography

[1] A Buckley, "A combined conjugate gradient quasi-Newton minimization algorithm",
Mathematical Programming 15 (1978) 200-210.

[2] A. Buckley, "Extending the relationship between the conjugate gradient and BFGS algorithms",
Mathematical Programming 15 (1978) 343-348.

[3] A. Buckley, "'Conjugate gradient methods", in: M.J.D. Powell, ed., Nonlinear Optimization 1981,
Proceedings of the NA TO Advanced Research Institute on Nonlinear Optimization (Academic Press,
London, 1982)pp. 17-22.

[4] A. Buckley, "A portable package for testing minimization algorithms", in: John M. Mulvey, ed.,
Proceedings of the COAL Conference on Mathematical Programming Software, Boulder, Colorado
(Springer, New York, 1982) 226-235.

[5] R. Fletcher and C.M. Reeves. "Function minimization by conjugate gradients", Computer Journal
7 (1963) 163-168.

[6] R. Fletcher, "A FORTRAN subroutine for minimization by the method of conjugate gradients",
Report R7073, U.K.A.E.R.E., Harwe[l, England (1972).

[7] L. Nazareth, "A relationship between the BFGS and conjugate gradient algorithms and its
implications for new algorithms", SIAM Journal on Numerical Analysis 16 (1979) 794-800.

[8] J. Nocedal, "Updating quasi-Newton matrices with limited storage", Mathematics of Computation
35 (1980) 773-782.

[9] S.S. Oren and E. Spedicato, "Optimal conditioning of self-scaling variable metric algorithms",
Mathematical Programming 10 (1976) 70-90.

[10] A. Perry, "A modified conjugate gradient algorithm", Discussion paper 229, Center for Mathemati-
cal Studies in Economics and Management Science, Northwestern University (1976).

[11] M.J.D. Powell, "'Restart procedures for the conjugate gradient method", Mathematical Program-
ming 12 (1977) 241-254.

[12] D.F. Shanno, "Conjugate gradient methods with inexact searches", Mathematics of Operations
Research 3 r 1978) 244-256.

[13] D.F. Shanno and K.-H. Phua, "Numerical comparison of several variable metric algorithms",
Journal of Optimization Theory and Applications 25 (1978) 507-518.

[14] D.F. Shanno, "Remark on Algorithm 500", A C M Transactions on Mathematical Software 6 (1980)
618-622.

[15] Ph. Toint, "Some numerical results using a sparse matrix updating formula in unconstrained
optimization", Mathematics of Computation 32 (1978) 839-851.

