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Both conjugate gradient and quasi-Newton methods are quite successful at minimizing smooth 
nonlinear functions of several variables, and each has its advantages. In particular, conjugate 
gradient methods require much less storage to implement than a quasi-Newton code and therefore 
find application when storage limitations occur. They are, however, slower, so there have recently 
been attempts to combine CG and QN algorithms so as to obtain an algorithm with good 
convergence properties and low storage requirements. One such method is the code CONMIN 
clue to Shanno and Phua; it has proven quite successful but it has one limitation. It has no middle 
ground, in that it either operates as a quasi-Newton code using O(n ~) storage locations, or as a 
conjugate gradient code using 7n locations, but it cannot take advantage of the not unusual 
situation where more than 7n locations are available, but a quasi-Newton code requires an 
excessive amount of storage. 

In this paper we present a way of looking at conjugate gradient algorithms which was in fact 
given by Shanno and Phua but which we carry further, emphasize and clarify. This applies in 
particular to Beale's 3-term recurrence relation. Using this point of view, we develop a new 
combined CG-QN algorithm which can use whatever storage is available; CONMIN occurs as 
a special case. We present numerical results to demonstrate that the new algorithm is never 
worse than CONMIN and that it is almost always better if even a small amount of extra storage 
is provided. 

Key wards: Minimization, Conjugate Gradient, Quasi-Newton, Variable Storage, Reduced 
Storage. 

O. Introduction 

T h e  p u r p o s e  of  th i s  p a p e r  is to  p r e s e n t  a n e w  c o n j u g a t e  g r a d i e n t  a l g o r i t h m  fo r  

m i n i m i z a t i o n  of  a s m o o t h  f u n c t i o n  f ( x ) ,  w h e r e  x = (Xl . . . . .  x , )  x. A m a i n  o b j e c t i v e  

of  t h e  a l g o r i t h m  is to  a l l o w  t h e  use  of  a v a r i a b l e  a m o u n t  of  s t o r a g e ,  a c c o r d i n g  to 

a v a i l a b i l i t y ,  in s u c h  a w ay  t h a t  m o r e  s t o r a g e  will  m e a n  i m p r o v e d  p e r f o r m a n c e .  It  

is i n t e n d e d  to  p u b l i s h  an  i m p l e m e n t a t i o n  of  t he  a l g o r i t h m  s e p a r a t e l y .  A s e c o n d  

p u r p o s e  of  t h i s  p a p e r  is to  e m p h a s i z e  a p o i n t  of  v i ew  of  c o n j u g a t e  g r a d i e n t  a l g o r i t h m s  

t h a t  h a s  b e e n  m a d e  in [3].  

T o  m o t i v a t e  t h e  s t a t e d  o b j e c t i v e ,  r eca l l  t h a t  c o n j u g a t e  g r a d i e n t  a l g o r i t h m s  h a v e  

o n e  m a i n  a d v a n t a g e :  t h e y  r e q u i r e  o n l y  s o m e  s m a l l  m u l t i p l e  of  n l o c a t i o n s  of  s t o r a g e  

fo r  t h e i r  i m p l e m e n t a t i o n .  C u r r e n t l y ,  t h e r e  a re  s u c c e s s f u l  c o n j u g a t e  g r a d i e n t  
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algorithms readily available f rom software sources, but there is one feature that 

these generally lack, namely,  the ability to use available space. To  see why this is 
relevant, consider a problem which is large enough that one  is not able to provide 

the O(n 2) locations needed to use a quas i -Newton algorithm. Take,  for example,  

n = 500 on a medium size machine.  In this case, one might still expect to be able 

to provide working storage in the order  of some modera te  multiple of n, say 10n 

or 20n. The current  algorithms, at least those available as software,  each use a 

fixed amount  of storage,  typically 4n or 7n, and are not able to make full use of 

the space actually available. 

There  have been earlier a t tempts  to write variable s torage codes, see e.g. [1], 

[7] and [8] and some numerical  results based on varying the storage were quite 

encouraging [8]. Here we will describe an algori thm which can effectively use 

whatever  space is available. It is related to one given by Shanno [12], but ou t  

derivation will be a bit different and is intended to emphasize  a particular point  of 

view of conjugate  gradients,  as already ment ioned.  Both our  algori thm and Shanno ' s  

also have the feature that they are not dependent  on the use of highly accurate 

line searches. Numerical  results will be presented to demons t ra te  that the use of 
additional space can aid per formance  and indeed we think we successfully substanti-  

ate our claim that our  algori thm does indeed meet  its objective.  

I. Preliminaries 

We let a small letter, e.g. v, deno te  a column vector, so v a is always a row; these 

are also used for indices. Greek  letters denote  a scalar; capitals are used for matrices. 
We use 'H" generically for a quas i -Newton update  matrix. The  algori thm proceeds  

from a given point xo by construct ing directions dt,  d z , . . ,  and setting xi = xi ~ + c~di 

for suitable cei. We will write s i = x i - x i  ~ and, with gi=-g(xi)=--Vf(xi), also yi = 

gi - gi - i. 
It is now firmly established (see e.g. [2, 7]) that conjugate  gradient  (CG) directions 

have close ties with BFGS quas i -Newton updates.  Here the connect ion will be of 

fundamenta l  importance,  so we will introduce the BFGS update  forthwith;  thus, 

given H, we write ~ 

H* = U(H,  i) 
where 

(1) 

siy[[H+Hyis~rv Jr I { 1 + y VHi yi] ~ T  (2) U ( H , i ) = - H  
si Yi ~ /  si yi" 

Familiarity with quas i -Newton algori thms will be assumed. 
r A = For  a quadrat ic  function, s a y / ' ( x ) = ~ x  x +bVx, we recall that Asi  y;. Also, 

the directions d~, d2 . . . .  are conjugate  (with respect to A)  if d [ A d / = 0  for i : / .  

t This is most easily read as H* is Update of H at ith step'. 
H* U (H, i) 



A. Buckley, A. LeNir / ON-like variabh, storage conjugate gradients 157 

Since s~ = o~d~, the conjugacy relation can be written as y]di  = 0 for i # / .  When we 
write subsequently of the 'quadratic case', it will be naturally assumed that line 
searches are exact. 

2. Preconditioning, Beale restarts and updating 

In this section we will demonstrate  how the preconditioned CG algorithm can 
be written in a quasi-Newton like manner,  and we will explain how this gives a 
particular way of viewing CG algorithms. We will also show that the Beale restart 
algorithm is actually a preconditioned CG algorithm, so that it can be viewed 
similarly. 

The CG algorithm is now commonly written with a preconditioner H. It is 
assumed that H is positive definite and then, given xo, one computes d~ = - H g o  
and iterates with 

xi = xi 1 + a id .  (3a) 

g "li "H y i 
/ 3 , -  d~ry , (3b) 

di + l = - H g ,  +/3idi. (3c) 

When f is quadratic, it is well known (especially when H = I )  that/3i may be written 
alternately as 

gTt4gi g?Hw 
- -  o r  /3i = - �9 /3i gTi-jHgi-I  glY-lHgi-I  

For our purposes, the given form (3b) is the most useful, as will become clear in 
what follows. We choose it as well because it ensures, with no assumption of an 
exact line search or quadratic behavior, that yVd~ i = 0. 

When H = L  Perry [10] observed that (3c) can be written in an alternate form. 
Not surprisingly, one may do tile same for any H. Thus we recall that o~di = si, 
substitute (3b), and observe that (3c) can be written as 

d,+l = -  H "T - g i = - - O i g i .  (4) 
Si Yi 

Equation (4) emphasizes that a conjugate gradient search direction can be computed 
from an equation which is of the same form as that used to compute a quasi-Newton 
direction. It also demonstrates,  in part, why CG algorithms have difficulty with the 
line search subproblem: the matrix O, is not positive definite and it is in fact singular. 

Before examining Oi in more detail, let us consider Beale's recurrence relation 
for generating conjugate directions. As before, we have x~ =x~ 1 +o~,d~, but dl is 
now arbitrary (actually, d~ must be downhill, whereas for the ordinary conjugate 
gradient algorithm it is required that d~ = - H g o ) .  For what will follow, we change 
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the indexing and let d, be the given direction2; at the start  dr =-d~ and r = 1. The  
Beale recurrence  can then be wri t ten as 

Xi = Xi - l + oQdi, i ~ r ,  

i ~>r, 

( 5 a )  

(5b) 

g lr lrl y , 
,~, = O, , ~  - d ~ y ,  ' i > r ,  (5c) 

di ~l = -12lgi +13idi +Kid,, i >Jr. (5d) 

Obse rve  that  Beale ' s  recurrence  is normal ly  wri t ten wi thout  the posit ive definite 
preconditioner/-]r but its inclusion causes no compl ica t ion and we will refer  to it later. 

There  are two ways that  (5d) may  be rewri t ten using (5b) and (5c). First, one 
may write 

Sr Yr 

s~v ~ H \  
di+l = -  151 T g i=--Oigg,  i > r .  

sryr  

These  equat ions  once again serve to indicate the quas i -Newton  like form of Beale ' s  
equat ions ,  but for our  purposes  they are not the most  useful. Ins tead we write 

�9 v/_7/ 
d r ~  = - ( H - s ; y f y ,  ) g r  = Hrgr, (6a) 

T " 
s,yr H'~ 

di+, = - I2I - ~ j g~ + flid, = -Hr g i  + flid~, i > r. (6b) 

U p o n  first examinat ion ,  compar ing  (6b) to (3c), the fo rmulae  (6) appea r  to define 
a sequence  of p recondi t ioned  con juga te  gradient  s teps with p recondi t ioner  H ,  
Howeve r ,  for that  to be true, the fo rmula  for fl~ in (6b) should be 

T 
g i H ,  yi 

f l i -  ,--;W-, (7) 
di yi 

whereas  it is in fact given, according to (5b), as 

gLqy, 
/3~- T .  (8) 

d i  yi 

As has been the case in the past, we will consider  two forms of a conjugate  gradient  
a lgor i thm to be equivalent  if they genera te  the same points  when applied with 

2 The restart direction has commonly been written as d,, but here we have chosen to write it as d. 
so that one may read d, as drestart. 
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exact line searches to a quadratic. In this case, 

= _;r,( . 
T Y i = g i H y i - ( g i & )  s~y~ ~ g i  H~i~ g iHryi g H Sr 14 T "  T T "  

Sr Yr 

SO the formulae in (7) and (8) are the same. Hence Beale's recurrence is another 
way of writing a preconditioned CG algorithm. Indeed we will henceforth restrict 
our  attention primarily to preconditioned CG algorithms with the understanding 
that our discussion includes Beale's method. 

Our discussion now returns to the matrix O~ introduced by Perry and to Shanno's 
idea of what we call the 'padding' of Oi. But it is best that we begin with some 
discussion. Consider the quasi-Newton update formula (1). In the standard quasi- 
Newton method, a search direction is computed as di+l = - H * g i .  In this computa- 
tion, there are a number of terms which disappear in the quadratic case, namely 
those with the term s]Yg, which is 0. Since a quasi-Newton algorithm effectively 
replaces/" with a local quadratic approximation, one might therefore suggest that 
quasi-Newton updates should be modified by explicitly removing all terms in H *  
ending in 's/', but we believe that such a suggestion would not be well-received for 
it relies far too heavily on the behaviour of a quadratic model and the inherent 
assumption of exact line searches. It is our contention, in the context of conjugate 
gradient methods, that the same reasoning applies and that any such terms should 
not be eliminated. However,  we suggest that precisely what has taken place, in an 
implicit way, ever since the introduction of conjugate gradient methods for minimiz- 
ation in 1963 [5], is that the 'si' terms have been removed. 

Consider the formulae (3) with H = I so that Oi in (4) is given by 

T 
Oi  = I si)' i T �9 

Si Yi 

Perry [10] suggested modifying this matrix and wrote 

T T 
Sly i + SiS i 

Qi = I T 
Si Yi 

(~i is not symmetric, but ylr(~i--s T. Shanno [12] later modified and expanded this 
approach and, with further 'padding', wrote 

T siYi + y l s ;  "r [ T T + Y i  Yi~ SiSi 
H i = I  v +~1 ~ - -  - w - .  (9) 

si Yi si y J  si Yi 

A major problem with (~i as introduced by Perry is that it fails to satisfy the secant 
equation (i.e. (~iyi # &). What Shanno saw is that further padding is essential, and 
from (9) it is clear that Hi is symmetric and H~y: = s:. Furthermore,  if an exact line 
search is used, the formulae di+l -- -Oig i  and d~+l = -Higl  generate identical direc- 
tions. This supports our contention that some '&' terms have been implicitly and 
unknowingly dropped in CG methods. Also observe, as Shanno did, that Hi is 
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actually a quasi-Newton update matrix, namely 

Hi = U(I, i), 

of the fixed identity matrix. 
For the preconditioned CG algorithm, the same steps can be followed. Pad, or 

resurrect if you like, the matrix O~ in (4) to get 

s,y:n +ny,,: :l+ymm,,  ,,,T H i = H  T + ~ J s~ y~ sTy~ / s:y," 

Clearly H~ = U(H, i) and, replacing (3c) by d ~  = - H ~ g ,  we see that a precondi- 

tioned conjugate gradient algorithm should be interpreted as a quasi-Newton 

algorithm in which a fixed matrix H is updated at each step. 
In the particular case of Beale's recurrence, we noted that it has the preconditioner 

H~ so that H~ = U(H~,i). Furthermore, the formula for H~ may be padded in an 

identical fashion, whence 

T 
Sr yr 

becomes 

H~ = H  - 
r �9 �9 T + V V/~Vr] T 

s'ry~H +Hy,s~ ~- 1 ~ ,  s,S~"~ = U ( / 7 ' r ) ' y r  

Thus we will write Beale's recurrence as 

with 

d r ~  i = -High,., i, i/> 1, (10a) 

Hi = u t H ,  r), 

H~=U(HI, r+ i -1 ) ,  i > 1 .  

(10b) 

10c) 

3. Multiple updates: The VSCG algorithm 

The preceding discussion has left one point open: how should the preconditioner 

H be constructed? Here we will present a strategy based on successive updating 
with a quasi-Newton formula which will result in a straightforward manner in a 

CG algorithm which can use a variable amount of storage. Furthermore, the 

algorithm will reduce to Shanno's 'memoryless quasi-Newton algorithm' in one 

instance. Details of the algorithm will be left to the next section. 
Suppose that we begin at xr, which we will term a restart point, and suppose that 

xr was reached along a descent direction dr from xr 1 in such a way that srrv, > 0. 

Algorithm VSCG then consists of two parts, as follows. 
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ON-par t :  Choose a positive definite matrix Ho. Iterate for i = 1, 2 . . . . .  m: 

H i = U ( H ~  ~ , r + i -  1), ( l l a )  

d~ ~i = -Hig,+i-l ,  (1 lb) 

Xr+i ~ X r + i  1 +(Y.r+idr+i. 

CG-par t :  From the point xr .... reached by the QN-part ,  and using the fixed matrix 
H,,, as preconditioner,  iterate for i = m + 1, m + 2 . . . .  : 

He = U(H,,~, r + i -  1), (12a) 

d ~ i  =-Hig~+i  1, (12b) 

Xr.ti =Xr+i 1 +~ 

As can be seen, the algorithm VSCG is essentially very simple. The two parts 
differ only in the definition of Hi: for the first m steps, Hi is an update of the 
previous matrix Hi ~; subsequently, it is an update of a fixed matrix H,n. Thus 
the QN-par t  can be viewed as constructing an appropriate precondit ioner Hm, and 
the CG-par t  is the implementat ion of a preconditioned conjugate gradient algorithm 
in the form described in Section 2. The choice of Ho is left to the next section. 
The significance of m and storage of HI  . . . . .  H,,~ will be given soon. 

For simplicity in the presentation, we will in certain instances assume r = 1; 
indeed in the implementat ion of the algorithm, each restart point is defined to be 
xj. The eqs. (11) and (12) are then a bit simpler, and we will sometimes use them 
in this form: 

and 

H i = U ( H i  1, i) or H i = U ( H , , . , i )  

di~l = - S i g i .  

Algorithm VSCG has some important  properties. First, one may ensure that 
each Hi is positive definite by ensuring that sl.ryi > 0 ;  this is a well known property 

of BFGS updates. It is then clear from (11 b) and (12b) that all directions are descent 
directions. Therefore,  in contrast to other CG algorithms, it is easy to obtain a 
downhill direction at each step, for the condition sVyi > 0 is easy to ensure. When 
f is quadratic, finite termination is obtained, provided n steps are taken from xr 
without restarting. This follows immediately from a theorem given in Buckley [2]. 
Of course, this s tatement  is only true if each line search is exact, whereas, in the 
algorithm as implemented,  not all line searches will be exact, so finite termination 
is actually lost. This is not a weakness of the method, for, as in quasi-Newton 
methods, insistence on finite termination for quadratics will degrade performance 
on general 1'~ Our  numerical results in Section 6 concerning quadratic interpolation 
will support  this claim. 
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Now consider how Hi  . . . . .  Hm can be stored. One  way has been discussed in 

[1], and we will repeat  it here for completeness  since the details are a bit different. 

Notice that the matrices Hi are not themselves needed;  only products  of the form 
Hiv for v ~ N" are required.  Consider  therefore the equat ion derived from ( l l a )  
and (12a): 

Hit '  = Hqt~ 1 + ~ - -  si 
rh J zl i 

H q U  - -  ('l"iSi - -  [..s 

_ _  - -  ~l i 

(13) 

T slrv, and = H,~yi. Here  H ,  is either Hi 1 or  H,,, according where v~ = y'i H~y~, r/i = ui 

to whether  H~ is defined by ! l l a t  or (12a); i.e. q = i - 1  or  q = m .  The iteration 
(11) or (12) requires computa t ion  of Hiv with v =g~. This is done  using (13) by 
comput ing  primarily 

l i) H,~gi; 
(ii) ui = Hqyi, vi = ylrui and r/i = s ty / ;  and 

(iii) u~g~, s-fg~, cr~si and/xiu,. 

In (i) and (ii), computa t ion  of Hqgi or H,y,  is s t raightforward by applying (13) 
recursively. For example,  

i = ! L ~j .  i J 7"/i ; 

= Hov - ~ {otis ~ +~/ui}. 
i - I  

Provided we have stored ,/, rti, u / a n d  s i for.l' = 1 . . . . .  q, this can easily be computed ,  

with the main work done  in forming u[v,  s~v, o'~sj and ~ u i '  the operat ion count  

for calculating Hqv is q (4n), ignoring Hov. 
Thus, for one iteration, the opera t ion counts are: 

(i) ui = H, ffi: 4qn ; 
T slrvi" 2n ; (ii) vi = ui yi and r/i = 

(iii) Hqgi: 4qn ; 
(iv) u~rgi, slrgi, o'isi and ~iu~: 4n ; 

hence the total is either ( 8 i - 2 ) n  or (8m +6)n.  Provided m << n, this is in either 

case only a modera te  multiple of n. R e m e m b e r  that, when q = i - 1, we must also 

save v~, r/~, si and u~ for the next step; when q = m they are discarded. The  total 
storage needed for H ,  . . . . .  H,,, is then m (2n + 2) locations. Note  that an alternative 

to this method of handling the matrices is the product  form of Hi described by 
Noeedal [8]. 

To conclude this section, consider the special cases m = 1 and m = 2. If we choose 
rn = 1, V S C G  reduces to Shanno ' s  'memoryless  quas i -Newton algori thm'  M Q N  

which is implemented  in the program C O N M I N  [14]. When  m = 1, we have 

d~+l = - H l g ~  where H~ = U(I , r ) ;  subsequently for i >  1, d~+~ = - H ~ g ~ _ . l  where 

Hi = U(H~,  r + i - 1). This is precisely Beale 's  algori thm with H = I as direct com-  

parison with eqs. (10) shows. (At least, as before,  this is precisely Beale 's  a lgori thm 
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on quadratics with exact searches; alternately this can be viewed as a modified 
implementat ion of Beale's algorithm.) In contrast, Shanno's method of deriving 
MQN was to take the Beale recurrence and directly add the necessary padding 
terms. We believe that our approach has the advantage of a certain clarity and 
simplicity, and that it emphasizes the relationship of MQN to preconditioning. It 

also makes the extension to a variable storage algorithm easy. 
For m = 2, let us wri te/5/ in place of H1, and renumber  H2, H3 . . . .  as Ht ,  H2 . . . . .  

Then the updates of VSCG can be written as 

H = U(I, r), 

H I  = U (/5/, r + 1), 

H i = U ( H l ,  r+i )  for i > 1 .  

Comparison with (10) shows that this is in fact a preconditioned Beale restart 
algorithm, where technically the restart is at r + 1 rather than r. The step from xr 
to xr+l builds the precondi t ioner /4  for Beale's algorithm. 

4. Algorithmic details 

There is, of course, a 'giant s tep '  between the brief description of an algorithm, 
as in (11) and (12), and its implementation.  Here  we will discuss some of the points 
which we found essential to having a successful implementation.  Briefly, we will 
consider (a) when to restart, i.e. when to declare that the current point is a restart 
point and to redefine r to have the current value of i; (b) how to define H0 at the 
restart point and how to scale the search directions; and (c) how to select a line 
search subalgorithm. We will not be giving a detailed description of the code 
implementing VSCG. For readers so interested, the authors plan to publish the 
algorithm separately. However ,  in Section 6 we will give some numerical results 
concerned with the choice of strategy. 

The question of finding a dynamic criterion for restarting was first considered 
by Powell [11], where he was dealing with the Beale recurrence in the form (5) 
with H = I. He suggested that r be reset to i when, at x,, 

T 

gi gi ~ (14a) Ti ~-- T 
g i - l g i  l 

was significantly different than 0, say when Ir~l>p, where typically O would be 0.2. 
v 

This test accomplished two things. First, in the quadratic case g~ gi i would always 
be zero, no restarts would take place, and finite termination could occur. Thus, a 
measurable departure from 0 for r~ would indicate strong local nonquadratic 
behaviour and hence would be indicative of a need for restarting. Second, as Powell 
observed, when using Beale 's  recurrence in the nonquadratic case, convergence 
can occur to a point at which the gradient is nonzero. This would cause r~ to be 
near 1, which would force a restart and presumably avoid the false convergence. 
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For the algorithm VSCG, a similar criterion is suggested. For the preconditioned 
CG algorithm (3) with preconditioner H, ,  as in (12), the ratio (14a) becomes 

glrH,,,g, l 
"5i - gT ~H,,gi 1" (14b) 

Therefore  an obvious suggestion is to restart when ffi[ >p .  On the other hand, for 
quadrat ic/ '  and with Ho = L the results in Buckley [2] show that the algorithm (,11), 
(12) will generate the same set of points as would be generated by the simple CG 
algorithm (3) with H = L  In particular, using Theorem 1 of [2], we see that ~:i = 7-,. 
This suggests that there is no need to implement the computationally more expensive 
test with ~:i even in the nonquadratic case, in which r~ and r will be expected to be 
different. In Section 6 we will compare the effect of using restart tests based on 
the two quantities T~ and r and we will see that it is indeed sufficient to use ri. 

The scaling problem, i.e. in part the choice of Ho, was discussed by Shanno in 
conjunction with the MQN algorithm. His conclusions, appropriately interpreted, 
apply here. First, for quasi-Newton algorithms, the experience of Shanno and Phua 
[ 13] strongly favored the use of the Oren-Spedicato  scaling [9] of the BFGS update 
formula, with the proviso that the scaling is most successful if it is only applied to 
the initial update. For the algorithm MQN, Shanno treated it as a sequence of 

quasi-Newton steps (in which a fixed matrix is being updated at most steps). 
Applying their earlier conclusions, Shanno decided that the correct way to imple- 
ment MQN would be to use the Oren-Spedicato  scaled version of the BFGS update 
for the first step, and then to continue with the normal BFGS update; numerical 
evidence was presented to support the decision. Suppose we write the Oren -  

Spedicato scaled BFGS update as 

T T T . e T \  "F 
H *  H s6, H),,s, +~,  y, s s~s~ 

= Y i +  T 
Si Yi S ~; / Si Yi 

= U(y~H,  i) =- OS(H, i), 

where yi = rl,/ui and 77, and u, are as in (13). Then, using our description of MQN, 
Shanno's strategy is simply stated by requiring that 

H1 -- OS(I, r), 

H , = U ( H ~ , r + i - 1 )  for i > 1. 

Note that we have in effect replaced the choice Ho = I with Ho = 7~I. 
It is clear how to adapt this strategy to VSCG. The QN-par t  (11) consists of a 

sequence of quasi-Newton steps; the Shanno-Phua results suggest that the first of 

these in (1 la) be altered to H~ = OS(L r); the remainder  are left unchanged. The 
CG-par t  (12) can again be interpreted as a continuing sequence of quasi-Newton 
steps (based on a fixed update) so that one should not replace H~ = U ( H , , ,  i) with 
H~ = OS(H,,,, i). Alternatively, it could be argued that the Oren-Spedicato  update 
only applies to quasi-Newton algorithms and is therefore not appropriate for the 
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CG-pa r t  of the algorithm. In any event, at each restart the initial direction dr+~ 
(and it alone) is rescaled with the Oren-Spedicato  formula. 

The question of scaling the search directions other than dr+~ is still open. It is 
known that one of the failings of CG algorithms is that they have difficulty 
determining a suitable length for each direction di+ x. This occurs because they have 
no ' m e m o r y '  of previous steps. For Shanno's  MQN, all steps other than a restart 
step are CG steps. Therefore,  according to [12], Shanno scaled each subsequent 
direction using the formula Fletcher [6] introduced with his CG algorithm: 

, 2 fi  l - f i o~  ' 
t ' E i +  = - -  ". (15a) 

gi Si 

Because the updates (12) involve only the total step si and not the actual direction 
d ,  the scaling of the direction d~§ ~ amounts simply to the initial choice for c~i+~, as 
given. Alternately,  one may choose cn+l as Shanno actually did in the published 
code C O N M I N  [14]: 

T 
di+lgi  

(15b) cei. I =Cti • dlrgi 
1 

Experience showed that these worked well, both for Fletcher and for Shanno. For 
VSCG, there are both quasi-Newton and CG nonrestart steps (except when rn = 1). 
For the QN-par t ,  we proceed exactly as we would for a quasi-Newton algorithm, 
for after all, that is exactly what it is until the storage limit is reached. Therefore  
each direction d~_~ is accepted as computed by ( l lb ) .  It is not rescaled in length, 
which is reasonable since these are quasi-Newton steps, which do have 'memory" 
and hence determine a reasonable length for d, ~1. For the CG-par t ,  we proceed 
as in a CG algorithm; each search direction is computed according to (12b) and 
then an initial choice for c~+~ is made according to one of the formulae of (15). 
Results in the next section indicate that the strategies which we have chosen work 
acceptably in practice. 

Finally, we consider the line search. Essentially we have the question: since the 
algorithm is in many ways intermediate between a quasi-Newton method and a 
conjugate gradient method, which kind of search should we use? The answer is, 
not surprisingly, intermediate,  at least based on computational experience. As in 
the discussion of scaling, our answer is to some extent, but not entirely, to use a 
quasi-Newton strategy for the QN-par t  and a conjugate gradient strategy for the 
CG-par t .  

The basic point to a quasi-Newton search is that no true 'search'  is required. In 
order to keep the updates positive definite, it is necessary to ensure that sTy~ > 0 
at each step, but that is a mild restriction. An important property of quasi-Newton 

algorithms is that, near the solution, the choice c< = 1 may be taken for each step 
(with only the proviso s~y~ > 0) and that superlinear convergence results. Therefore 
the quasi-Newton strategy is generally to try c~ = 1, test the condition sTy~ > 0 at 
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the new point, accept the new point as x~ if the test is satisfied, and only apply a 

search technique when the test fails. As already stated, the QN-par t  of VSCG is 
indeed a quasi-Newton algorithm, so the value of ai is chosen essentially as 

described. (Here, as elsewhere, the actual details are a bit more involved, but those 
can be seen in the published algorithm.) 

For the CG-par t  of VSCG, more is required. It is generally acknowledged that 
a true line search is required for conjugate gradient algorithms such as (3) or (5). 
A procedure must be given which produces a point xi such that the exact line search 
criterion d~gi = 0 is qmarly'  satisfied. In particular, to ensure that the next direction 
di + L is downhill, the equation (3c) implies that xi must be chosen so that 

T H �9 diJ~lgi gi gi 1 
- - <  - ( 1 6 )  d~ ~yi gr iHg, 

Experience has shown that in fact condition (16) is not strong enough; a strengthened 
form of ( |6)  which forces the point xi to be even nearer to a local minimum along 
d~ is usually imposed. The result is that, for algorithms such as (3) or (5), the ratio 
of the number  of function evaluations to the number  of iterations is fairly large, 
say at least 2 and more typically 2.5 to 3. One point in favor of these line searches, 
though, is that the search procedure always uses some form of quadratic or cubic 
interpolation, with the result that, in the quadratic case, line searches are exact 
and finite termination is obtained. That is not true for quasi-Newton algorithms 
which often accept oe~ = 1. 

But now consider specifically the CG-par t  of VSCG. The most important point 

is to observe that the search direction d , ~  in (12b) is in the form d~+~ = - H & .  
Thus all that is needed to ensure that d~+, is downhill is that s,Vyg>0, for that 
guarantees that H,. is positive definite. As observed, that is in definite contrast to 
algorithm (3). (In fact the contrast is even greater for (5), for it may not even be 
possible to choose a~ to make d~+~ in (5d) downhill.) One might therefore be 
tempted to conclude that we may now proceed in the same way as in the QN-par t  
and accept ~i = 1 for the most part. Computat ions have shown that this does not 
work well. The reason is that the CG-par t  is not a true quasi-Newton algorithm 
(since a fixed matrix is being updated), and there are therefore no results which 
suggest that a~ = 1 is an acceptable choice, even near the solution. Our  compromise 
is to follow the same strategy as in the QN-part ,  except that ai will not be accepted 
unless at least one quadratic interpolation has taken place along that line. We have 
found this to work quite successfully, and indeed in one case, VSCG is much better 
than a quasi-Newton algorithm, a fact which we attribute to the presence of the 

forced quadratic interpolation in the CG-part .  
We would also like to make an observation on a minor point which will be 

investigated in Section 6. If one examines formulae (12), it is easily seen that the 
step with i = m + 1, i.e. the first step of the CG-par t ,  is in fact a quasi-Newton step. 

Indeed, it is not until we begin the computation of H,,, ,-2 leading to d . . . . . .  2 that we 

can detect that the CG-par t  is different from the QN-par t ,  at least as far as the 
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descript ion (11), (12) is concerned.  What  this does indicate though,  is that  one 

must  be careful about  the step along d . . . .  ~ f rom x~+,, to x . . . .  1. Should it be 

cons idered  as a quas i -Newton  step or  as a conjugate  gradient  step? As we have 
seen, that  definitely affects the line search strategy. We will discuss this point  in 

Section 6, but  let us say here that it seems quite impor tant  to view the step along 

d . . . .  +~ as a con juga te  gradient  step, especially when m is small. 

We conclude this section with a summary  of the algori thm as we feel it should 

be implemented .  Many  of the actual implementa t ion  details will be glossed over. 

Assume  m is given. As the previous paragraph  noted, the algori thm somet imes 

distinguishes be tween  being in the CG-  or QN-par t ,  and whether  a line search 

implements  a C G  or Q N  stra.tegy. One  impor tant  point  that  this description will 

not indicate explicitly i s  that  we do require that each iteration will reduce the 
funct ion value. 

1. Cold-star t .  Given xo, set H0 = I and compute  f0 = f (x , )  and g ,  = g(x.). Termin-  

ate if x~ is close enough  to a local minimum. Set i = 1 and compute  d~ = - H . g 0 .  

Note  that, since x~ is always t reated as a restart  point,  the initial step is considered 
to be the final step in the CG-par t .  Some minor  adjustments  are needed in what  

follows for the initial step. 

2. Step f rom x~_ 1 along di. 
(a) Choose  an initial value for c~i: if this is a QN-step,  set c~i = 1; otherwise 

scale the previous  value c~i l as in Sha,mo and Phua  [12, 13]. 
(b) D o  a line search along d~. The impor tant  points are: 

T (i) If this is a QN-s tep :  Check if si yi > 0  at x, ~ +e~,dg. If so, the line search 
is complete .  If not, de termine  a new value for c~i (usually by interpolat ion) and 

repeat.  

(ii) If this is not a QN-s tep :  Check if s~",'i > 0  at xi-~ +c~id,. If so, and if an 
interpolat ion has been done  at least once during this line search, then the line 

search is complete .  If so, but no interpolat ion has yet been done,  then force 

an interpolat ion and repeat .  If siT vi ~<0, then determine a new value for oei 

(usually by interpolat ion) and repeat.  

(c) Set x~ = xi-i  +~idi  and check for terminat ion.  

3. Declare  xi to be a restart point if this is in the CG-pa r t  of the algori thm and 
if either lgTgi ~] >0.21]gi ~Jl or n steps have been taken f rom the last restart point. 

4. C o m p u t e  Hi and di+~: 
T T 

(a) If this is a restart  step, then compute  Yi, vi = y~ Yi and r/i = s i  Yi, set us =y~ 

and store s~, t,i, vi and r/~ to define HL. Reset  i to 1, and compute  d2 = - H ~ g t .  
(b) If not, then set q = i -  1 if this is in the QN-par t ,  or set q = m  if this is in 

the CG-par t .  Then  compute  yi, ui =H~yi, vi =uTyi and rt, =sTyi to define Hi. If 
T this is in the QN-par t ,  store &, u~, vi and rti so as to keep Hi. Then  calculate si gi, 

u~rgi and H~gi in order  to de termine  d~ ~ = -Hi& according to (13). Increment  i 

by 1. 

5. Repea t  f rom 2. 
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5. Numerical results 

In this section and the next we wish to consider two points. First, we will give 
numerical results that show that we have met our main objective, namely, that we 
can minimize more efficiently by increasing the amount of storage available to this 
conjugate gradient routine. Then, in Section 6, we will investigate some of the 
choices one has when actually implementing the algorithm. 

We begin with some words about our testing method. All test results quoted 
here were obtained using 64-bit double precision on a VAX 11/780. Termination 

occurred with Ilgll< 10 -~ • max/ l ,  [Ix II), as in [14]. We have used the general purpose 
testing package described in [4] to produce our basic results; the tables appearing 
here are summaries of those produced by that package. For purposes of comparison, 
we have used an equivalent to Shanno's  C O N M I N  code [14]. This is partly because 
C O N M I N  can operate either as a conjugate gradient algorithm or as a quasi-Newton 
algorithm. The quasi-Newton part is robust and probably as effective as away 
unconstrained quasi-Newton code generally available; the conjugate gradient part 
is the one referred to in this paper  as MQN and it is also highly regarded. Therefore  
we feel that the C O N M I N  code provides a good up-to-date  basis for comparison. 
The results were actually produced by the code called VSCG. However,  with one 
update, VSCG produces results which are identical to those obtained from CON- 
MIN, which is what one would hope since Shanno's algorithm is a special case of 
our algorithm, as explained. In addition, VSCG has imbedded in it the same 
quasi-Newton code as is found in CONMIN.  Therefore  in what follows a reference 
to CONMIN means the equivalent code in VSCG. 

The test functions we have chosen are fully documented in [4] and are in two 
groups. We summarize the second group of them here. These are chosen because 
they are of moderate  dimension and readily available, but still not unreasonably 
expensive to use for comparative testing. We believe that this second test set is 
sufficient to be able to support  our basic claim. These test functions are 

PWSING, variable n : 

n/4 
f ( x )  = ~ [(X4j 3+10X4i  2)24:-5(X4i-l--X4i) 2 

i-1 

q-(X4i -2--2X4i 1) 4-}-  10(,X4i 3--X4i)4]. 

NONDIA, variable n: 

ti 
f(x)= 5~ [100(x~ -xE)- '~+(l-x~)-] .  

i -2  

TR~DIA, variable n: 

n 
. f(x)= 2 [i(2xi-xi ,)2]. 

i=2 
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EX'I'R()S, variable n : 

t~./ 2 
f ( X )  = ~, [ l O 0 ( x 2 i - - X ~ i - l ) 2 " q ' - ( 1 - - X 2 i - 1 ) 2 ] ,  

i - I  

CHAROS, variable n: 

fCx)= Y. [4&(x,_,-x~)2+ll-x,)2]. 
i = 2  

The constants & are available from [4] or from Toint [15]. 

To begin our evaluation of the new code, consider the results in Table 1. Here 

the test set consists of a number of standard test problems, all of rather small 
dimension. Of course, one can point out that the purpose of the algorithm which 

we are describing is to handle problems of moderate or even large size, so it does 

not seem reasonable to exhibit test results for small problems. That is true. However, 
we feel that, at the very least, the new algorithm should not be any worse than 

standard algorithms on standard problems. The results in Table 1 demonstrate that 
this is indeed the case. This table shows the results of minimizing a collection of 

problems, first with the one-update conjugate gradient code as implemented in 

VSCG, then with the m-update algorithm of this paper, where m is successively 

2, 4, 8 and 10, and finally with the quasi-Newton part of C O N M I N - V S C G .  

Because the problems are small, there are some fluctuations in the number of 
function evaluations (see FUNCS) needed to minimize a particular function in the 

set. There is however a reasonably consistent trend for that number to decrease 

as m increases. Observe that for" m = 8, VSCG is nearly as good as the QN-code, 

although for m = 10, the results become a bit poorer; however one should be 

cautious about attempting to read too much into such figures, for they really 

represent partly random variations. 

Now consider the results in Table 2. These are analogous to Table 1, except that 

the set of test functions is different. Here all of them are of moderate dimension. 

Again we observe the rather consistent improvement in performance with 

increasing m. 

Of course, we should state just what we mean when we say that the performance 

has improved. Primarily, we are looking at function evaluations, and it is the total 
of this figure for each value of m which shows most clearly the reduction in work. 

However, we should also point out that the total number of iterations (ITERS), 

the term R A T I O  (which is FUNCS/ITERS) ,  and the figures MSECS and FSECS 
in Tables 3 and 4 are also interesting. The time spent in evaluation of the functions 

is in FSECS and the total time taken for each minimization is in MSECS; times 

are in milliseconds. 

First consider Table 3 where the problems are the same small ones as in Table 

1. As m changes, there is not a lot of change in the figure MSECS, for as rn 

increases, there is a slight reduction in the number of function evaluations, but that 
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is balanced by some increase in the number  of iterations and the overhead per 
iteration, which is O ( m n )  for VSCG. Also, since n is small, the expressions O(n) 
and O(n 2) have little meaning, so the time for the QN-case is also not much 
different. But in Table 4, where n and n 2 are noticeably different, the situation 
changes. Now the overhead often dominates the time taken in evaluating the 
function. As m increases, the function count decreases. This reduces FSECS but 
has little effect on MSECS. Since the ratio F U N C S / I T E R S  is reduced steadily as 
m grows (because of how we implement the line search), the number  of iterations 
does not decrease, but is steady, or may increase slightly. Also the overhead is 
O(mn) per iteration. Thus, MSECS is also fairly steady or grows slightly. But the 
quasi-Newton results are quite different. The function count is indeed the least, 
but R A T I O  is near to 1, so ITERS is comparatively large. Therefore  there are 
many iterations, and the overhead for each is O(n 2). The result is that MSECS is 
far larger than with any of the conjugate gradient runs. The figure T I M E -  R A T I O ,  
which is MSECS/FSECS,  also emphasizes the difference. 

Thus, with VSCG we have in some sense the best of both worlds: if function 
evaluations are cheap, VSCG will do well because it has relatively small overhead;  
if function evaluations are expensive, VSCG will still do reasonably well because 
its function count is close to that of a quasi-Newton algorithm. Therefore  we feel 
that we may conclude that VSCG successfully meets the primary objective which 
we stated at the beginning of this paper. 

6. Tests on implementation strategies 

In Section 4, we discussed certain points relating to the actual implementat ion 
of the algorithm. Here we will present numerical results which demonstrate  how 

different strategies affect performance,  and we will explain how we have chosen 
the strategy which was summarized at the end of Section 4 and used to obtain the 
results of Section 5 and why we feel that our choice is justified. 

Table 5 contains a summary of a substantial number  of tests. Each line of the 
table was obtained from tables similar to Tables 1 to 4; for obvious reasons of 

space the 15 tables are not reproduced here. The entries in the tables have the 
following meanings; for ease of reference for those who might be interested, we 
use the same names here as are used for the control variables in the code. 

F1RSr 1. When this is true, the first step in the CG-par t  of the algorithm (along 
d . . . . .  1) is treated as a QN-step.  This affects the initial choice of ~i, which is either 
1 for a QN-step,  or scaled according to (15) for a CG-step.  In the ensuing discussion 
we will carefully distinguish between CG-steps and the CG-par t .  Steps after leaving 

Xr+,, are always in the CG-par t ,  but the first of these may or may not be treated 
as a CG-step.  

ALPlS I. When this is true, all steps begin with an initial choice of 1 for o~, both 
in the QN-par t  and in the CG-par t .  
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Table 1 

FUNCS/ITERS for small problems 
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function dimension m = 1 m =2 m =4 m = 8 m = 10 m =oo 
CONMIN QN 

ROSENBRK 2 64/28 63/25 46/28 44/33 47/36 44/36 
WHLS'r 3 2 49/18 37/20 31/17 29/24 32/26 40/28 
HIMM 28 2 15/6 11/6 11/7 10/7 10/7 10/7 
HIMLN 3 2 11/5 9/5 8/5 8/6 8/6 7/6 
BEAL 58 2 26/11) 26/13 21/15 16/12 17/13 15/13 
ENGVI. 1 2 20/8 20/11 14/9 15/ l l  15/11 14/13 
SC'ltMVT 3 22/10 23/11 22/14 18/13 23/19 18/15 
ENGVI. 2 3 70/33 63/32 65/32 52/36 49/36 31/27 
BARD 70 3 29/14 26/13 24/15 22/16 22/16 26/25 
CRGLVY 4 54/24 59/30 43/28 35/28 39/27 56/54 
BIGGS6 6 111/53 77/41 95/59 61/41 49/39 45/41 
BOX 663 3 25/10 33/16 35/19 36/21 37/26 40/32 
PWSING 4 97/41 68/36 55/32 46/31 58/45 41/40 

TOTAL 593/260 515/259 470/280 392/279 406/3(/7 387/337 
RATIO 2.28 1.99 1.68 1,41 1.32 1.15 

Table 2 

FUNCS/ITERS for larger problems 

function dimension m = 1 m = 2 m = 4 m = 8 m = 10 rn = oc 
CONMIN QN 

PWSING 60 60 131/62 76/41 64/36 71/45 44/33 54/52 
PWS~NG 80 80 73/36 87/47 57/33 40/31 70/54 57/56 
NONDIA 10 10 78/24 54/26 44/26 43/31 45/32 46/33 
NONDIA 20 20 72/24 46/21 48/28 43/29 41/28 44/32 
NONDIA 30 30 64/26 45/26 43/27 42/32 41/29 44/32 
TRIDIA 10 10 19/9 35/18 33/21/ 33/23 30/25 17/16 
T R I D I A  20 20 39/19 40/20 60/34 59/44 53/38 29/28 
TRID1A 30 30 61/30 63/31 75/43 63/38 67/42 37/36 
FiXTROS 10 10 61/27 62/28 46/28 44/33 47/36 44/36 
EXTRO$ 20 2[) 61/27 62/28 46/28 44/33 47/36 44/36 
EXROS 10A 10 47/17 37/20 33/19 34/23 34/21 43/30 
CHAROS 10 10 73/34 61/34 51/34 50/37 52/42 39/37 
CHAROS 25 25 103/49 106/56 70/42 63/41 61/42 55/51 

TOTAL 882/384 774/396 670/398 629/440 632/458 553/475 
RATIO 2.30 1.95 1.68 1.43 1.38 1.16 

QUADIN. In ce r t a in  ins tances ,  a l ine s e a r c h  is no t  d e e m e d  c o m p l e t e  un less  at 

leas t  o n e  i n t e r p o l a t i o n  has  t a k e n  p lace .  As  i n d i c a t e d  in S e c t i o n  4, tha t  is a s t r a t egy  

g e n e r a l l y  t h o u g h t  a p p r o p r i a t e  for  a c o n j u g a t e  g r a d i e n t  a l g o r i t h m .  H e r e  we  can 

c o n t r o l  the  l eve l  at wh ich  i n t e r p o l a t i o n s  a r e  fo rced .  If 

Q U A D I N = 0 ;  an i n t e r p o l a t i o n  is f o r c e d  for  any  C G - s t e p ,  w h e r e  the  

i den t i f i c a t i on  of  a C G - s t e p  d e p e n d s  on  FIRSr 1: 
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Table 3 

MSECS/FSECS for small problems 

function dimension m = 1 m = 2 m = 4 m = 8 m = 10 m = co 

CONMIN QN 

ROSENBRK 2 152/23 137/23 117/31 168/55 18(//23 113/31 
WHLST 3 2 90/12 90/43 74/20 109/20 121/20 74/16 
HtMM 28 2 2(//I 8/0 39/8 20/1  2(I/1 31/8 
141MEN 3 2 20/ l  20/8 31/20 27/1 31/1 20/12 
BEAL 58 2 51/31 70/12 63/8 63/12 59/1 47/16 
ENGVL 1 2 39/1 51/16 51/8 43/23 63/12 211/1 
SCHMVT 3 59/20 59/31 78/31 82/23 121/12 63/8 
ENOVL 2 3 180/43 160/63 180/51 2l 1/63 211/39 1(12/27 
BARD 70 3 117/51 78/59 109/43 121/43 121/35 109/39 
CRGt.VY 4 137/66 184/43 160/43 181.1/27 199/47 195/51 
mOGS 6 6 1164/945 852/625 1109/801 762/500 656/367 523/375 
BOX 663 3 141/133 203/152 238/168 250/141 285/148 254/168 
PWSL'40 4 227/86 156/78 188/63 199/59 301/20 141/20 

TOTAL 2395/1410 2066/1152 2438/1293 2234/965 2367/723 1691/770 
TIME-RATIO 1,70 1.79 1.89 2.32 3.27 2,2(I 

Table 4 

MSECS/FSECS for larger problems 

function dimen- rn =1 m =2 m = 4  m - 8  m =10 m =cc 
sion CONMIN QN 

PWSING 60 60 1762/441 1211/262 13(19/t64 1965/254 1609/148 8184/289 
PWS~N~ 80 80 1332/301 1809/320 1500/19l 1699/207 35(14/289 15973/207 
NOND1A 10 10 301/94 219/94 250/47 3(15/66 383/74 379/66 
NONDIA 20 2(I 383/l(/5 258/98 402/63 488/74 531/117 719/86 
NONDIA 3(I 3(1 465/188 43(I/145 578/125 727/55 781/1(15 1473/148 
TRIDIA 10 10 82/20 164/63 277/27 230/20 270/59 129/12 
TRIDIA 20 20 270/74 426/121 570/I 13 797/156 793/125 609/47 
TRIDIA 3(I 30 5911/121 691/2(t7 1063/195 1602/164 1559/223 1531/105 
EXTROS 10 10 223/78 250/39 219/43 316/74 383/31 313/35 
FXTROS 20 20 316/102 359/94 5114/I45 523/59 594/74 723/74 
EXROS 10A lt) t48/39 129/35 160/55 250/23 223/63 270/59 
CHAROS 10 10 328/145 352/137 340/102 430/86 504/78 297/63 
CtIAROS 25 25 926/355 1102/313 879/211 1141/2(17 1211/188 1680/18(I 

TOTAL 7125/2(163 7398/1926 8051/1480 10473/1445 12344/1574 32277/137l 
TIME- RATIO 3.45 3.84 5.44 7.25 7.84 23.54 

OUADIN = 1: an interpolat ion is forced for any step in the CG-part ,  so that 

FIRST I ha s  n o  e f fec t ;  

OUADIN = 2: no quadratic interpolat ions  are forced at all; and if 
QUADIN = 3: an interpolat ion is forced on every  line search,  including those  

in the QN-part .  
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Table 5 

Function evaluation totals 
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FIRST I A t . P l S  I QLIADIN H T E S T  function counts for m = 

l 2 4 8 10 TOTAL 

FALSE FALSE 1 FALSE 882 774 670 629 632 4998 row 1 
TRUE FALSE 1 FALSE 870 739 709 619 640 4983 row 2 
FALSE FALSE 1 TRUE 887 778 706 658 604 5042 row 3 
FALSE TRUE 1 FALSE 826 815 699 624 640 5025 row 4 
TRUE TRUE 1 FALSE same as row 4 

TRUE FALSE 0 FALSE 984 865 725 649 607 5467 row 6 
FALSE FALSE 0 FALSE same as row t 

FALSE FALSE 2 FALSE 1038 948 699 636 593 5494 row 8 
TRUE FALSE 2 FALSE 966 841 763 633 625 5179 row 9 
TRUE TRUE 2 FALSE 926 896 804 632 638 5270 row 10 
FALSE TRUE 2 FALSE same as row 10 

FALSE FALSE 3 FALSE 882 828 739 715 734 5458 row 12 
TRUE FALSE 3 FALSE 870 887 770 733 739 5478 row 13 
TRUE TRUE 3 FALSE 826 830 756 721 741 5342 row 14 
FALSE TRUE 3 FALSE same as row 14 

HTEST. W h e n  this is t rue ,  the  r e s t a r t  c r i t e r i o n  is based  on the  test  (14b)  us ing 

the  H - m e t r i c ;  o t h e r w i s e  it is ba sed  on  the  o r ig ina l  Powel l  t e s t  (14a).  

T O T A L .  T h e  c o l u m n s  h e a d e d  1, 2, 4, 8 and  10 con t a in  the  f u n c t i o n  e v a l u a t i o n  

to ta l s  o b t a i n e d  f r o m  tab les  s imi la r  to T a b l e s  1 to 4. T h e s e  en t r i e s  a re  s u m m e d  by 

r o w  and  the  sum pu t  in t he  c o l u m n  n a m e d  T O T A L .  Thus ,  for  e a c h  se t t ing  of  the  

p a r a m e t e r s ,  we  h a v e  a m e a s u r e  of  the  to ta l  w o r k  n e e d e d  to so lve  a r e a s o n a b l e  

b lock  of  p r o b l e m s .  

N o w  we  c o n s i d e r  the  resul t s  in T a b l e  5. W e  h a v e  i n c l u d e d  s o m e  rows  in the  

t ab le  wh ich  are  r e d u n d a n t .  T h e y  a re  t h e r e  to e m p h a s i z e  tha t  wi th  ce r t a in  se t t ings  

of  QUADIN and  AI.PIS 1, t he  p a r a m e t e r  FIRST 1 has no  effect .  T h e  de sc r i p t i ons  of  

t h e s e  v a r i a b l e s  g iven  e a r l i e r  shou ld  m a k e  it c l ea r  why  this is so, bu t  the  ex t r a  l ines 

a re  still i n c l u d e d  to a v o i d  any poss ib l e  con fus ion .  

In i t ia l ly ,  n o t e  tha t  t he  resu l t s  in t he  first five rows  a re  cons i s t en t ly  b e t t e r  than  

t hose  in t h e  r e m a i n d e r .  It is no c o i n c i d e n c e  tha t  QUADIN = 1 for  t h e  b e t t e r  resul ts .  

I n s t ead ,  it sugges t s  tha t  the  dec i s ion  r e g a r d i n g  i n t e r p o l a t i o n  in t h e  l ine s e a r c h e s  is 

i m p o r t a n t .  

N o w ,  to be  specif ic ,  let  us c o m p a r e  rows  1 and  2 of  T a b l e  5. B o t h  fo rce  a 

q u a d r a t i c  i n t e r p o l a t i o n  t h r o u g h o u t  t he  C G - p a r t ;  the  d i f f e r ence  is on ly  w h e t h e r  

o r  no t  t he  s tep  a l o n g  dr+, ,+l  beg ins  wi th  ~i = 1 o r  wi th  a sca led  va lue  a c c o r d -  

ing  to (15). It a p p e a r s  tha t  this is no t  a sens i t ive  issue,  s ince the  resul t s  a re  

s imi lar .  

Nex t ,  c o m p a r e  rows  1 a n d  3. T h e  q u e s t i o n  h e r e  is w h e t h e r  we  s h o u l d  i m p l e m e n t  

r e s t a r t s  a c c o r d i n g  to (14a)  o r  (14b).  A g a i n ,  the  d i f f e r ence  is sl ight .  T o  i m p l e m e n t  

t he  test  (14b)  is, h o w e v e r ,  a bit  m o r e  e x p e n s i v e .  It r e q u i r e s  e i t h e r  the  s t o r a g e  of  
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an additional vector or the computat ion of an additional matrix-vector  product (a 
point which is best understood by examining the code for VSCG). We chose the 

additional computation because it is most easily made optional in the code; however 
the results indicate that the extra computation gains little, so all further tests are 
done with the simpler restarting criterion (14a). 

In row 4, we consider the possibility of allowing ai to be taken initially as 1 in 

all steps. This seems to have little detrimental effect; that is perhaps because most 
of the steps taken by the algorithm belong in the QN-par t  anyway, so not many 
steps are affected. It also suggests that the mixing of the QN and CG algorithms 
in this manner results in conjugate gradient steps which are better  scaled in length 
than is normally the case. However,  it is perhaps equally true that this is simply a 
much less sensitive question than that of the interpolation. 

Let us now consider different levels of forcing the quadratic interpolation. "Fake 
rows 2 and 6. The only difference is in the action taken on the first step in the 
CG-par t ,  i.e. along d . . . . .  1. For row 2, quadratic interpolation is forced along this 

step, while for row 6 it is not forced. This seems to have a significant effect. Actually, 
for the larger values of m, the effect is less, which is perhaps what one might expect 

since more of the steps are in the QN-par t .  But performance seems to be degraded 
when m is small; in other words, for Shanno's C O N M I N  or for VSCG with not 
many more updates, it does seem important  that a quadratic interpolation be done 

on any step in the CG-part .  
Let us now look at rows 8 to 10, where no quadratic interpolation is forced 

anywhere in the algorithm. For a quasi-Newton code, one would expect this to 
have no effect, and such is indeed the case for the larger values of m .  But for small 
m, where the CG-steps form a more important part of the code, as already discussed 
in the previous paragraph, one would expect the interpolation to matter. Indeed 

it does. Clearly the degraded performance for QUADIN = 2 is primarily with m = 1, 2 
or sometimes 3. When Q U A D I N  = 2, FIRSI" 1 affects only the initial choice of o~f, 

and we see that this has far less effect. 
Finally, consider the other extreme where interpolation is forced on all steps, 

even those in the QN-part .  Once again, the initial choice of ai does not have a 
marked effect. However,  in contrast to rows to 8 to 10, when QUADIN = 3 the effect 

of the interpolation is now most pronounced for larger m. In fact, the set of function 
counts in each of the rows 12 to 14 is now much more constant. The decrease as 
tn increases noted earlier is not so great. It is well-known that the BFGS algorithm 
performs best without exact searches, and indeed with c~ taken as 1 much of the 
time. Our results here confirm that VSCG has many of the characteristics of a 
quasi-Newton method, a property which becomes more pronounced as t n  increases. 

This is very much what we had hoped for. 
The results of Section 5 were obtained with the parameter  settings used in row 

1. This seems the most appropriate for the strategy in the QN-par t  is like that of 
a quasi-Newton method,  just as the CG-par t  is treated like a conjugate gradient 
code. The value of this choice is borne out by the results of Table 5. 
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7. Conclusions 
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W e  have  desc r ibed  a new a lgor i thm for min imiza t ion  which combines  the  con ju -  

ga te  g r a d i e n t  and  q u a s i - N e w t o n  me thods .  It is based  on tak ing  a pa r t i cu la r  view 

of the  con juga t e  g rad ien t  m e t h o d  which we feel is very impor t an t .  The  a lgor i thm 

is de s igned  to have  a var iab le  s to rage  r equ i r emen t ,  and  the numer ica l  resul ts  which 

we have  p r e s e n t e d  d e m o n s t r a t e  qui te  c lear ly  that  the p e r f o r m a n c e  of the a lgor i thm 

can be expec t ed  to be d i rec t ly  r e l a t ed  to the  a m o u n t  of s to rage  avai lab le .  W e  have 

also given numer ica l  resul ts  which i l lus t ra te  that  q u a s i - N e w t o n  and con juga te  

g r a d i e n t  a lgo r i thms  requ i re  d i f ferent  s t ra tegies ,  and  that  the  cor rec t  choice  of 

s t ra tegy  is vital  if one  is to have a successful  a lgor i thm.  
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