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This paper gives characterizations of optimal solutions to the nondifferentiable convex semi- 
infinite programming problem, which involve the notion of Lagrangian saddlepoinL With the 
aim of giving the necessary conditions for optimality, local and global constraint qualifications 
are established. These constraint qualifications are based on the property of Farkas-Minkowski, 
which plays an important role in relation to certain systems obtained by linearizing the feasible 
set. It is proved that Slater's qualification implies those qualifications. 
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1. Introduction 

If R n is t aken  as doma in ,  the  genera l  Semi- Inf in i t e  P r o g r a m m i n g  p r o b l e m  (SIP) 

t akes  the fo rm:  

Inf ~O(x) 
(P) 

s.t. f,(x)<~O, t ~ T ,  

where  x 6 I~ n, and  T is an infinite set. 

A poss ib le  a p p r o a c h  to the SIP would  be to associa te  (P) with some  finite 

p r o g r a m m i n g  p r o b l e m :  

Inf t0(x) (P) 

s.t. f,(x)<~O, t ~ T ~ T ,  7~finite 

so that  (P) and (F') have  the  same  op t ima l  value.  

Wi th  this aim, Pshenichnyi  [20] rep laces  (P) by: 

Inf ~,(x) (~') 

s.t. f(x)<~O 

where  f (x)  := sup,~Tf,(x). 
Since f, in genera l ,  is nond i f fe ren t i ab le  a l though the funct ions  f,, t e T, are  convex 

and  d i f fe rent iab le ,  the op t ima l i ty  condi t ions  for (F') involve the subdi f fe rent ia l  of 

f (x) ,  which has been  cha rac te r i zed  in [22]. 
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In [3], establishment of the direct association (P)~--~(F') is achieved using a 
Helly-type theorem demonstrated by Klee [18], which is applied to certain families 
of open convex sets. It should be pointed out that the optimality conditions are 
given after (P) has been reduced to a finite (F'), for which the theory of finite 
optimality is used. 

Second-order optimality conditions have been deduced in [12] and in [4], while 
in [19] higher-order conditions are established by extension of the m-order abstract 
variational theory, introduced in [13]. 

A different approach to the convex SIP is shown in Ben-Tal, Kerzner and Zlobec 
[2], where, under the assumption of differentiability of all the functions, necessary 
and sufficient optimality conditions are obtained which do not assume constraint 
qualifications, but nonetheless with the additional requirement that the constraints 
fulfil the so-called 'uniform mean value property' .  

Borwein in [5], using Helly's theorem for families of compact convex sets and 
observing certain conditions of regularity, obtains a finitely constrained subpro- 
gramme (P) with the same optimal value. His particular approach, based on the 
convexity of level sets, permits him to extend the validity of his results to problems 
in which the functions involved are, in general, quasi-convex and those which 
intervene in the constraints of subprogramme (F') are strictly quasi-convex. We can 
obtain a Lagrangian condition only when all of the functions of (~'), including the 
objective function, are convex and v(P), the optimal value of (P), is finite: 

There exist n points ti, i = 1, 2, . . . ,  n, in T, and nonnegative scalars Ai, i = 1, 
2 . . . . .  n, such that 

v ( P ) = i n f { ~ ( x ) +  ~ A~,(x)lx~N"} (1) 
i=1 

(always assuming that the domain of all the functions is 1~"). 

Jeroslow, in [15], establishes a necessary and sufficient condition for which (1) 
is verified for a convex SIP, with v (P) finite and for any objective function, in which 
case we can say that the system of constraints {f,(x)~< 0, t E T} satisfies the uniform 
convex duality. This can be accomplished through a reductionist procedure by 
which the uniform convex duality is related to the uniform duality of certain linear 
representations. It is proved in [7] that the uniform duality is verified if, and only 
if, the system of constraints possesses the Farkas-Minkowski (F-M) property, which 
has been studied and characterized in that paper as well as in [11]. 

Another  interesting contribution to the field of Lagrangian duality in SIP can be 
found in [17], through the approximation of (P) using finite subprogrammes and 
by application of the recession theory. The technique utilized here coincides with 
that used by the same author in extending the Clark-Duffin theorem to the 
semi-infinite case [16]. 
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On the other hand, in [23] the convex SIP is modelled as a problem of abstract 
convex programming,  which yields conditions of optimality from a strengthened 
optimality test, extending the results in [24]. 

In this paper,  optimality conditions are presented for convex SIP which involve 
the notion of the standard Lagrangian saddlepoint. Local and global constraint 
qualifications are also established, which show the transcendence of the F - M  
proper ty  for certain linearized systems. This fact is also brought to light in [7] and 
in [15], in relation to uniform duality. 

The structure of this paper  is as follows: Section 2 introduces the notation used, 
as well as certain preliminary results. 

Section 3 includes a characterization of the Lagrangian saddle points for 
nondifferentiable convex SIP. Two constraint qualifications are established, one 
local, called Lagrangian regularity, and one an extension of Slater 's qualification. 
It is demonstra ted that Slater 's qualification implies Lagrangian regularity of all 
the feasible points. 

In Section 4 a global constraint qualification is introduced, which is implied by 
Slater 's qualification. We give a linearization of the feasible set S through the 
subgradients of the functions f, which vanish at some point of the boundary of S. 
Thus, this type of representation, due to its clear geometrical meaning, seems 
preferable to other possible types. 

In relation to the importance of the F - M  property in the linearization of a convex 
SIP, our main conclusion is that the Slater 's qualification is too restrictive for SIP, 
as previously conjectured in [2]. In Section 4, and in Theorem 3.2 of [15], it is 
shown that Slater 's qualification yields canonically closed linear systems, and the 
F - M  property is more general. These ideas concern different possibilities as to the 
a t tempt  to utilize the topological characteristics of (P) in its dependence with T. 
Along these lines we might also mention the uniform mean value property of [2]. 

2. Notation and preliminary results 

Let {[,, t ~ T} be a family of finite convex functions in [~", where the index set T 
is infinite. We consider the system of convex inequalities in R": {f, fx)<~ 0, t 6 T}. 

Let S be the set of solutions of the system. The system is consistent if S r 
Two systems are called equivalent if they have the same solutions. 

~D~i T ) We shall consider elements of the set ~ defined as 

R]I r / :=  {A : T --> ~+ I A, = 0, for all t except for a finite number} 

Given a nonempty set C c [ ~  v, (C) denotes the convex hull of C;  K ( C )  the 

convex cone generated by C;  cl C the closure of C;  int C the interior of C;  and 
C* is the dual cone of C. 

The null vector in [~" will be denoted by 0,. 
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Let {alx <~,,  t c T} be a linear infinite system in R". The relation a'x <~[3 is a 
consequence relation of the given system if every solution to it satisfies this relation. 

Now we recall some known results, which are used below. 

Lemma 2.1 (Lemma 14.1 in [9]). a'x <~0 is a consequence relation of  the system 
{a ix <~ O, t c T} if, and only if, a E cl K{a,,  t c T}. 

Lemma 2.2 (Lemma 14.2 in [9]). a'x <~[3 is a consequence relation of  the consistent 
system {alx <~,,  t ~ T} if, and only i]; the relation a'x +[3z <~ 0 is a consequence of  
the system 

alx +/3,r ~< 0, t 6 T ,  

~-~<0. 

Theorem 2.3. a 'x <~ ~ is a consequence relation of  the consistent system {a ix <~ {3~, t c 
T} if, and only if, 

Proof. a'x <~ ~ is a consequence relation of the given system if, and only if, 

[ a ,  ~ , ] [x ]~<[~ l  implies (a' ~)[~]~<0.  
0'~ 1 ] l r ]  

The result follows by applying Lemma 2.1. 

Similar versions of the last result, which constitutes a generalization of the 
nonhomogeneous Farkas theorem, can be found in [10] and [11]. 

We recall that a consistent system {a ~x ~< ~ ,  t c T} satisfies the Farkas-Minkowski 
property if every consequence relation of the system is a consequence of a finite 
subsystem. 

The system {a~x <~ ~ ,  t ~ T} is canonically closed (CC) if the following conditions 
hold: 

(i) there is an algebraic interior point, i.e. for some x o ~ N~ a ~x ~ < ~ for all t e T. 
(ii) the set 

/3i , t E  

is compact. 

Theorem 2.4 (in [11]). The consistent system {a'~x <~[3,, t 6 T} satisfies the F - M  
property if, and only if, 

is closed. 
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The F - M  property guarantees that the corresponding system yields uniform LP 

duality [7]. 

Corollary 2.4.1 (in [1 1]). The system {a[x <~ 0, t e T} satisfies the F-M property i]; 

and  only if, K{a, ,  t ~ T} is closed. 

Corollary 2.4.2. If the consistent system {a [x <~ B,, t ~ T}  satisfies one o f  the following 

conditions, then it is a F - M  system : 

{[a'l 4 (i) K ~, , t ~ is closed. 

(ii) The system is canonically closed. 

For a straightforward proof derived from Theorem 2.4, see [11]. The condition 
(ii) is due to Duffin and Karlovitz [8]. 

3. Optimality conditions related to Lagrangian saddlepoints 

Consider the convex SIP: 

rain g,(x) 
x ~ S  

(P) 

where S := {x ~ R" If,(x) -<- 0 for all t ~ T}. Here  ~b and [,, t e T, are convex functions 
in R", not necessarily differentiable. 

We will associate the standard Lagrangian function to problem (P): 

,g(x,A)=,/,(x)+ Y aa')(x), xER", a = ( a , ) , ~ r ~ +  r) 
t E T  

see e.g. [6]). 
It can be easily proved that if (.L ~.) is a saddlepoint of q~, then 2 is an optimal 

solution of (P). Moreover  the complementar i ty  condition is valid, i.e. f , ( . r  
implies ~, = 0. In order to get a saddlepoint from an optimal solution, we have to 
assume that the constraints satisfy some additional conditions. 

We denote by Oh(x) the subdifferential of the convex function h in x. 
Let T(s  := {t e T[f ,(~) = 0} be the set of active constraints. 
The following proposition characterizes the existence of saddlepoints that involve 

a given 2, and it constitutes an infinite dimensional version of Theorem 28.3 of [21]. 

Lemma  3.1. Given ~ c ~ ' ,  there will exist a Lagrangian saddlepoint associated with 

s if, and  only if, ~ ~ S, and  (~,),~ r ~  ~ ~(f(~)~ exists so that 

o,,~or E 5,,oL(~). 
tET(.~) 
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Proof .  Suppose  that  (s A), with 5 ~ ~+T~ is a Lagrangian  saddlepoint .  Since s is 

an opt imal  solut ion of (P), s c S. 
Moreover ,  s is a global m in imum of the convex function ~ + Y , , , T ~  5,ft and so 

0 , , ~ 0 ( ~ +  Z 5tr,)(X)=O'f'~x) + ~: 5,0I;(~). 
tET(.{i l E T ( J )  

Conversely ,  since 0,, ~ a ~ ( s  At Of,(s and if we define 5, = 0, t~ T(s  
we have ~(x)+~,,TS,f~(x)>~b(s for all x c R' .  

As s ~ S, Y.,~TA,])(.f) <~ 0 for any A c . . . .  then (s 5) is a saddlepoin t  of g'. 

When  T(.f) ~ 0, we define 

B(s lu,~3ft(s163 = U of,(s 
t~TiYr 

It can be easily proved,  f rom the convexi ty  of the subdifferential  set, that  the 
condit ion 

o,,~,~7.,/.~)+ E 5,/~.f;(~f), (~.,),~T,.~,~l~'f '~'' 
t ~ "l'(s l 

is equivalent  to the existence of some t~ ~ 0tfi(s such that -t~ a K{B(s  
R e m e m b e r  the notion of the cone of tangents  to S at ~ (see [1]): 

T(S,Y):={z lz=l imM(x k s xkaSand l imxk=s  

T(S, s is a closed convex cone, since S is a convex set, and verifies 

T(S,s = c l { A ( x - s  x 6S,  A > 0 } = c l K ( S - s  

L e m m a  3.2. If s 6S, then T(S,s B(s 

Proof .  f,(xk)>~f,(s163 holds for u,~Of,(s If t~ T(s and x ~ ~S,  then 
O>>-f,(x~)>~u',(x~-s For  A~ >O, ui{ak(X~--s and, taking limits, ulz<~O. 
Then  z ~B(s 

R e m a r k .  The  previous  inclusion can be strict, as the fol lowing example  proves.  

Example: 

n=l,f~(x):= ' i fx  > 0 ,  t~  T := [2, 3]. 

For  s = 0, T(S, 0) = ] -oo ,  0] and B(0)* = ] -oo ,  +00[. 

Defini t ion 3.3. A point  s ~ S is said to be a Lagrangian  regular  point  if 

(i) T(S,x)=~" when T ( s  
(ii-a) B(s T(S,s 

when T(~)  # 0. 
(ii-b) K{B(s is closed J 
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T h e  condi t ion (ii-a) is an extension,  to the nondifferent iable  semi-infinite case, 
of G u i g n a r d ' s  qualif ication,  the weakes t  in a large set of qualif ications in nonl inear  
p r o g r a m m i n g  (see [1 ]). 

T h e  condi t ion (ii-b) is necessary and sufficient in that  the system,  in s {u'x <~ 

0, u �9 B(s  verifies the F - M  proper ty .  For  T finite and different iable functions,  
(ii-b) holds since K { B  (s is a po lyhedra l  cone. 

The  fol lowing result  const i tutes  a necessary  opt imal i ty  condit ion.  

L e m m a  3.4. Let  s be an opt imum o) r the convex SIP. I f  s is a Lagrangian regular 
point, ~ �9 ~',i r~ will exist such that (s ~) is a saddlepoint o f  ~P. 

Proof. Since s is an opt imal  solution,  and f rom Pshenichnyi ' s  
([20, p. 56]), there  is a subgradien t  t~ �9 ~34~(s such that  

- a  �9 {K  (S - s  = {cl K (S - s  = T(S ,  s 

If T(s  = 0, a = 0,, �9 04,(s 
If T(s  r O, - f f  �9 B (s = K { B  (~)}. 

In both  cases L e m m a  3. l  can be applied.  

condi t ion 

Before  general iz ing the Slater qualification for the convex SIP, we shall analyse 
the re la t ionship  be tween  the a lgebraic  and topologic  interior of the level sets of a 
convex  function. 

L e m m a  3.5. Let  f ( x )  be a convex function in ~'~, So := {x �9 ~" ] f ( x ) < 0 }  and S := 
{x �9 ~" ]]"(x ) <~ 0}. Then So, ~ 0 implies int S = S~,. 

Proof. By continui ty S o c i n t  S. Given  y � 9  and x ~ � 9  if y # x  ~ we take z � 9  
such that  y belongs to the interior  of the segment  be tween  x ~ and  z. As f ( x ~  
and ]"(z) ~< 0, we have f (y  ) < 0, by convexity.  

R e m a r k .  The  last result also holds if f ( x )  is a strictly quas i -convex upper  semicon-  
t inuous function.  

Definition 3.6. Slater ' s  qualification for convex SIP is: 
(i) T c E"' is a compac t  set, 

(ii) f , (x )  is a cont inuous  funct ion of (t, x) in T x En, and 

(iii) there  is a point  x ~ such that  f , ( x ~  0, for all t � 9  T. 

Apply ing  t h e o r e m  10.7 of [21], condit ion (ii), for  a convex SIP verifying (i), 
could be replaced by: f ( . ,  x) is a cont inuous  function in t for  each x �9 R". 

F rom [5, p. 304], the conjunct ion  of (i) and (ii) allows us to reestabl ish (iii) in 
such a way that  we claim that  every  n + 1 inequalit ies of the fo rm f t ( x ) < 0  have  
c o m m o n  solutions.  
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We need a pre l iminary  lemma,  for  T h e o r e m  3.8, which const i tutes  an extension 
of G o r d a n ' s  Al te rna t ive  T h e o r e m .  

L e m m a  3.7. Let a, e ~" /'or all t ~ T. I f  ({a,, t 6 T}) is a closed set, then the equiva&nce 
holds between the negation of proposition (I) and proposition (II). 

{a~x < O, t ~ T} is consistent, (I) 

0,, c ({a,, t E T}). (II) 

Proof. We can suppose  that  a, # 0,, for all t e T. Otherwise ,  the  result  is trivial. 
First, we show that  (II) implies the negat ion of (I). Let  us suppose  that  .f is a 

ID~T~ solution of the sys tem considered  in (I). By hypothesis ,  O~ ~ ({a,, t c T}), then 3. c o~+ , 

~,~T h, = 1 is such that  0,, =~.,~rh~a,. In this case 0 = 0',,s =~..,~Th,(a;x)<O. 
Let  us p rove  that  the negat ion of (I) implies (II). If 0,  ~ ({at, t ~ T}), we can apply 

the strict separa t ion  theorem:  there  is some vector  c c N", c # 0~, such that  c'a < 0  
for all a 6 ({at, t c T}). Then  c'a~ < 0 for  all t E T, hence c is a solut ion of the sys tem 
in (I). 

The  assumpt ion  that  ({a, t 6 T}) is a closed set cannot  be e l iminated,  as we show 
in the following example .  

Let  a, := (cost ,  sin t)', 7" := [-�89 ~ ' [ .  It is clear that (I) and (II) fail s imul- 

taneously,  ({a,, t ~ T}) not being closed. 

T h e o r e m  3.8. Under the assumption that Slater's qualification for convex SIP is" 
satisfied, all.feasible points will be Lagrangian regular points. 

Proof.  Let  i ~ S, S := {x c N" [f,(x) ~< 0 for all t E T}. We  define f (x)  := max,~ Tf,(x ). 
We  shall assume first T ( i ) = 0 .  By L e m m a  3.5 i n t S = { x [ f ( x ) < O } .  W e  have 

f ( i )  < 0, then i e int S and K ( S  - ~ )  = ~" = T(S,  ~). 
Now let us assume T ( 2 ) # 0 .  Unde r  assumpt ions  (i) and (ii) of Slater ' s  

qualification, we know that  B(i)=[._],~.n~lOf,(i) is a compac t  set and ( B ( i ) ) =  

0 f ( i )  (see [14, p. 201-204]) .  
T(2) �9 0 does  not prec lude  0n ~ (B (i))  (e.g. min. {x ]x 2 ~< 0}). U n d e r  the assump-  

tion (iii) of Slater ' s  qualification we have f (x  ~ < 0  =f(J?), and i is not a global 
m i n imum of f (x) .  Consequent ly  0 , , ~ 0 f ( i ) =  (B( i ) ) ,  and this fact implies that  
K{B(2)}  = K{(B( i ) )}  is a closed cone (see [21, p. 79]). 

T a k e  B ( i f '  := {z ]u'z < 0 ,  u e B ( i ) } .  Since 0,,~(B(.~)), ( B ( i ) )  being a closed 
set, and applying L e m m a  3.7, this implies that  B(~)  ~ � 9  W e  can apply L e m m a  
3.5 to the suppor t  function of B(s  int B ( i ) *  = B ( i ) "  

T a k e  z ~ i n t B ( i ) * ,  i.e. u ' z < 0 ,  for all u s B ( 2 )  and also u ' z < 0  for all u ~  
( B ( i ) ) = 0 f ( i ) .  Since f ' ( i ;  z ) = m a x u ~ , t . ~ ) u ' z ,  where  ]"'(i; z) is the direct ional  



M. A. Ldpez, E. Vercher / Optimality in convex semi-infinite programming 315 

derivative of function f, then f'(~f; z) < 0, and ~ > 0 exists such that f (s  + Az) < 0, 
for all A, 0 < A < &  i.e. , f + A z ~ S  with AE]0 ,8 [  and z 6 T ( S , ~ ) .  We conclude 

that B(s = cl{int B(s c T(S, s 

As a consequence of the conjunction of Theorem 3.8 and Lemma 3.4 we have 
that Slater's qualification for convex SIP guarantees that the optimal points permit 
us to obtain Lagrangian saddlepoints. 

4. Global constraint qualification; Farkas-Minkowski linearization 

For the convex SIP we establish a global constraint qualification, alternative to 
the local condition of Lagrangian regular point required in Section 3 at every 
optimal solution s to get the necessary optimality condition. In fact, Slater's 
qualification involves the set of all constraints and the qualification proposed in 
this Section is implied by that. 

Definition 4.1. We associate with the nondifferentiable convex SIP the following 
system of linear inequalities: 

{u'x <~u'y-/~(y) ,  (t, y)~  T x ~", u ~ 0fAy)}. (2) 

Obviously, for convexity, the set of solutions of the system (2) is S, the feasible 
set of the SIP. Consequently the system above is a linear representation of the 
constraints of the convex SIP. 

Definition 4.2. 'Farkas-Minkowski qualification'. The constraints of the convex 
SIP satisfy the Farkas-Minkowski qualification if the equivalent linear system (2) 
is a Farkas-Minkowski system. 

In the following we verify the character of qualification of the established 
condition (see also [11]), and we analyse its relationship with that of Slater, without 
requiring differentiability. 

Theorem 4.3. I f  s is an optimum point of  a convex SIP which satisfies the 
Farkas-Minkowsk i  qualification, then some A E--~Tt ~+ will exist such that (s A) is a 

Lagrangian saddlepoint. 

Proof. Since s is an optimal solution of the problem: Min. ~O(x) on S, there is 
some ~ ~ 0~(s such that /T(x - s  0, for all x ~ S. 

If t7 = 0 , ,  we let 7tr =0 ,  for all t6  7", If ff ~(), ,  we have - t i ' x  ~<-~7's which 
is a consequent relation of system (2) and, if (2) has the property of F-M, there 
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will be parameters  Az > O, i = 1, 2 . . . . .  q ; u~ eaf,, (y~), i = 1,2 . . . . .  q ; / z  >/O, such that 

i ~ l  i = 1  

for  all x e N". 

For  x = 2?, as ~.~ > 0, we shall have t~ e T(27). Consequent ly  

q q 

~'(~)+ E XCL,(i)=6(~z)~<~,/x) + E X,{,,(x) 
i = 1  i = l  

for all x c R". 

We let X~ = X, if t = t~, and X, = 0 if t �9 t~, i = 1, 2 . . . . .  q ; then (i, X) is a saddlepoint  
of qf. 

In the proof  of our  main result, T h e o r e m  4.5, which establishes the relationship 

between Slater and Farkas -Minkowski  qualifications, we need a prel iminary lemma, 
proved in [1 1], in which S b denotes  the set of boundary  points of S. 

Lemma 4.4. L e t s  c ~" be a closed convex set and {clx ~i~,, t e T} a system such that 

(I) ever), point of  S is a solution to it; 

(II) there is a x c~e S such that c i x ' <  [5~, t c T;  and  

(III) given any y e S  h, there is some t e T such that c ly = 8,. 

Then S =  {x e ~" lc'~x <~8, t c T}. 

We now state the main result in this section, in which the finite nature of the 

Slater 's qualification is shown. F rom this re.sult the significance of the F - M  proper ty  

arises. 

Theorem 4.5. I f  the convex SIP, S being bounded, satisfies the Slater qualification, 

then it will satisfy the Farkas -Minkowsk i  qualification. 

Proof .  We recall that f ( x )  = max,~Tf , (x)  and S" = {y e S If(Y) = 0}. 
The  system 

{u'x <<-u'y, y e S  b, u e af(y)} (3) 

constitutes a linear representa t ion of S. We shall see that the assumptions of L e m m a  

4.4 hold: 
(I) every point  of S is a solution of (3); 

(II) x ~' is an algebraic interior point  of (3); and 

(III) given y e S 6, there are relations of the system (3) which are satisfied with 
equality. 
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We shall prove that the system (3) is canonically closed, and, consequent ly ,  
of Farkas -Minkowski .  Take  the set 

U b A 
We must  prove that A is compact .  

We know that Of(S b) := Uv~s~Of(y) is compac t  (see [21, p. 237]). We shall 
consider  a sequence  in A,  

[ ,-~ ], ~ = ~ , ~  . . . . .  
u kYk-J 

such that 

I k~oo L U k y k J  

Obviously  limk ~oo uk = u and therefore  u E Of(Sb). 
Moreover ,  limk ~ U ~,Yk = c~. Since {Yk } c S b there will be a subsequence {Yk,} such 

that l i m ~  Yk, = Y e S b. Therefore ,  c~ = l i m ~  u ~,,Yk, = u'y.  

On  the o ther  hand, we know that the graph of Of on N" x N" is a closed set and 

hence u ~ 0f(y) (see [21, p. 233]). 

We conclude that A is closed. As a consequence  of the Schwarz inequality this 

set is bounded .  Take  u := max,,~r Ilul[ and r/ := maxy~s~, ]]yl]. The  norm of the 

vectors of A will be bounded  above by (u(~, + rl)) 1/2. 
We conclude that system (3) has the F - M  proper ty ,  which is equivalent  to saying 

that  

K{Aw[OI"]}=K{(A~[OI"] I  } 

is a closed cone. Now, in our  assumptions,  u ~ Of(y) if and only if u ~ (U~T~y~ af,(y)) 
where  T(y)  = {t ~ T IJ')(Y) = 0} and therefore  

where 

(A [01"]) 

:= y ~ S  b, u ~0f,(y),  t~  T(y)  . 
U 'y  

Consequent ly ,  the equivalent  system to (3), 

{u'x ~< u ' y ;  y ~ S  b, u e0f , (y) ,  t c  T(y)}, 
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has the (F-M) property,  and then so has system (2), since it is obtained by the 
addition of consequent relations to an F - M  system. 

Under  the Slater qualification we can always associate a Lagrangian saddlepoint 
with the opt imum s 

(a) If S is bounded, we can apply Theorem 4.5. 
(b) If S is not bounded, we define a new problem by the addition of the constraint 

g(x) := x'x -2x'~f + s 1 6 3  - p 2  ~< 0, with p >n2 -x~ 
The new problem satisfies all the conditions of the Theorem 4.5. Then, there 

are some ~ E ~]'~ and ~ />  0 such that 

4 ' (s  Y~ X,/',(s Y~ A,L(x)+~Zg(x) 
t~T t~T 

for all 3. = (&),~T ~ ~r~,  all tz >~0 and all x 6 l~". 

As g(x)<~O is not active in ~f and if we take ~ =0 ,  we conclude that (.~, ~) is 
a saddlepoint for the original SIP. 

Theorem 4.3 continues to be valid for the case in which the F - M  property is 
demanded only for any linearization of the set of solutions S, {as',x ~</3p, p ~P}, 
which verifies the following property:  

For every p c P there exists t, ~ T such that a ~x - / 3 ,  ~<f,,(x), for all x ~ [~". (4) 

Any such linear system constitutes a particular case of the positive derivant 
introduced in [15]. Naturally, systems (2) and (3) verify property (4) in relation 
with the convex SIP. 

According to this possible reformulation, the F - M  qualification is quite weak, 
almost constituting a necessary and sufficient condition in which an optimal point 
will always yield a saddlepoint, whatever the objective function. Within this order 
of ideas, if the original system of constraints exhibits uniform convex duality (in 
which case it becomes evident that every opt imum yields a saddlepoint, by applying 
characterization Theorem 3.1 of [15] and Theorem 2.2 of [7]), we can conclude 
that it is possible to associate a linear positive derivant, which constitutes an F - M  
system (apply Corollary 2.4.2(i)), to the original system of constraints. 
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