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This paper gives characterizations of optimal solutions to the nondifferentiable convex semi-
infinite programming problem, which involve the notion of Lagrangian saddlepoint. With the
aim of giving the necessary conditions for optimality, local and global constraint qualifications
are established. These constraint qualifications are based on the property of Farkas—-Minkowski,
which plays an important role in relation to certain systems obtained by linearizing the feasible
set. It 1s proved that Slater’s qualification implies those qualifications.
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1. Introduction

If R" is taken as domain, the general Semi-Infinite Programming problem (SIP)
takes the form:

Inf  (x)
(P)
s.t. filx)=s0, teT,

where x € R", and T is an infinite set.
A possible approach to the SIP would be to associate (P) with some finite
programming problem:

Inf  ¢(x)

. . (P)
s.t. filx)=0, teTcT, T finite
so that (P) and (f’) have the same optimal value,
With this aim, Pshenichnyi [20] replaces (P) by:
Inf ¢ix) -
(P)
s.t. fx)=s0

where f(x) = supierfi(x).

Since f, in general, is nondifferentiable although the functions f,, t € T, are convex
and differentiable, the optimality conditions for (f’) involve the subdifferential of
f(x), which has been characterized in [22].
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In [3], establishment of the direct association (P)e>(P) is achieved using a
Helly-type theorem demonstrated by Klee [18], which is applied to certain families
of open convex sets. It should be pointed out that the optimality conditions are
given after (P) has been reduced to a finite (f’), for which the theory of finite
optimality is used.

Second-order optimality conditions have been deduced in [12] and in [4], while
in [19] higher-order conditions are established by extension of the m -order abstract
variational theory, introduced in [13].

A different approach to the convex SIP is shown in Ben-Tal, Kerzner and Zlobec
[2], where, under the assumption of differentiability of all the functions, necessary
and suflicient optimality conditions are obtained which do not assume constraint
qualifications, but nonetheless with the additional requirement that the constraints
fulfil the so-called ‘uniform mean value property’.

Borwein in [5], using Helly's theorem for families of compact convex sets and
observing certain conditions of regularity, obtains a finitely constrained subpro-
gramme (P) with the same optimal value. His particular approach, based on the
convexity of level sets, permits him to extend the validity of his results to problems
in which the functions involved are, in general, quasi-convex and those which
intervene in the constraints of subprogramme (P) are strictly quasi-convex. We can
obtain a Lagrangian condition only when all of the functions of (P), including the
objective function, are convex and v (P), the optimal value of (P), is finite:

There exist n points ¢, i=1, 2,...,n, in T, and nonnegative scalars A;, i =1,
2,...,n,such that
o) =inf{u(o)+ ¥ As,w|xer] 1)
i=1

(always assuming that the domain of all the functions is R").

Jeroslow, in [15], establishes a necessary and sufficient condition for which (1)
is verified for a convex SIP, with v (P) finite and for any objective function, in which
case we can say that the system of constraints {f,(x) <0, t € T} satisfies the uniform
convex duality, This can be accomplished through a reductionist procedure by
which the uniform convex duality is related to the uniform duality of certain linear
representations. It is proved in [7] that the uniform duality is verified if, and only
if, the system of constraints possesses the Farkas—-Minkowski (F-M) property, which
has been studied and characterized in that paper as well as in [11].

Another interesting contribution to the field of Lagrangian duality in SIP can be
found in [17], through the approximation of (P) using finite subprogrammes and
by application of the recession theory. The technique utilized here coincides with
that used by the same author in extending the Clark-Duffin theorem to the
semi-infinite case [16].
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On the other hand, in [23] the convex SIP is modelled as a problem of abstract
convex programming, which yields conditions of optimality from a strengthened
optimality test, extending the results in [24].

In this paper, optimality conditions are presented for convex SIP which involve
the notion of the standard Lagrangian saddlepoint. Local and global constraint
qualifications are also established, which show the transcendence of the F-M
property for certain linearized systems. This fact is also brought to light in [7] and
in [15], in relation to uniform duality.

The structure of this paper is as follows: Section 2 introduces the notation used,
as well as certain preliminary results.

Section 3 includes a characterization of the Lagrangian saddle points for
nondifferentiable convex SIP. Two constraint qualifications are established, one
local, called Lagrangian regularity, and one an extension of Slater’s qualification.
It is demonstrated that Slater’s qualification implies Lagrangian regularity of all
the feasible points.

In Section 4 a global constraint qualification is introduced, which is implied by
Slater’s qualification. We give a linearization of the feasible set § through the
subgradients of the functions f, which vanish at some point of the boundary of §.
Thus, this type of representation, due to its clear geometrical meaning, seems
preferable to other possible types.

In relation to the importance of the F-M property in the linearization of a convex
SIP, our main conclusion is that the Slater’s qualification is too restrictive for SIP,
as previously conjectured in [2]. In Section 4, and in Theorem 3.2 of [15], it is
shown that Slater’s qualification yields canonically closed linear systems, and the
F-M property is more general. These ideas concern different possibilities as to the
attempt to utilize the topological characteristics of (P) in its dependence with 7.
Along these lines we might also mention the uniform mean value property of [2].

2. Notation and preliminary results

Let {f,, t€ T} be a family of finite convex functions in R", where the index set T
is infinite. We consider the system of convex inequalities in R": {f,(x)=<0,re T}.

Let § be the set of solutions of the system. The system is consistent if § #@.
Two systems are called equivalent if they have the same solutions.

We shall consider elements of the set R}’ defined as

R :={A: T>R.|A, =0, for all t except for a finite number}

Given a nonempty set C <R", (C) denotes the convex hull of C; K(C) the
convex cone generated by C; cl C the closure of C; int C the interior of C'; and
C* is the dual cone of C.

The null vector in R" will be denoted by 0,
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Let {a,x <B,tc T} be a linear infinite system in R". The relation a'x <g is a
consequence relation of the given system if every solution to it satisfies this relation.
Now we recall some known results, which are used below.

Lemma 2.1 (Lemma 14.1 in [9]). a'x <0 is a consequence relation of the system
{a;x<0,teT}if,and only if,accl K{a, T}

Lemma 2.2 (Lemma 14.2 in [9]). a'x < B is a consequence relation of the consistent
system {ax <B, te T} if, and only if, the relation a'x + Bt <0 is a consequence of
the system

ax+pr=<0, teT,
r=0.

Theorem 2.3. a'x < f is a consequence relation of the consistent system {a.x < B, t €
T} if, and only if,

[sleardlg e[V}

Proof. a’'x < is a consequence relation of the given system if, and only if,

o L) oo o]0

The result follows by applying Lemma 2.1.

Similar versions of the last result, which constitutes a generalization of the
nonhomogeneous Farkas theorem, can be found in [10] and [11].

We recall that a consistent system {a;x <, ¢ € T'} satisfies the Farkas-Minkowski
property if every consequence relation of the system is a consequence of a finite
subsystem.

The system {a,x <, t € T} is canonically closed (CC) if the following conditions
hold:

(i) there is an algebraic interior point, i.e. for some x" e R", a;x" <@, forallre T.

(ii) the set

{[B‘]’ ! }
f
is compact.

Theorem 2.4 (in [11]). The consistent system {ax <B,t€ T} satisfies the F-M
property if, and only If,

o) eems V]

is closed.
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The F-M property guarantees that the corresponding system yields uniform LP
duality [7].

Corollary 2.4.1 (in [11)). The system {a;x <0, t ¢ T} satisfies the F-M property if,
and only if, K{a, t € T} is closed.

Corollary 2.4.2. If the consistent system {a,x < B, t € T} satisfies one of the following
conditions, then it is a F-M system :

(i) K{[a'],teT} is closed.
B:
(ii) The system is canonically closed.

For a straightforward proof derived from Theorem 2.4, see [11]. The condition
(ii) is due to Duffin and Karlovitz [8].

3. Optimality conditions related to Lagrangian saddlepoints

Consider the convex SIP:
min  ¢(x) (P)
where § == {x e R"|f,(x)=<0forall t€ T}. Here 4 and f, t € T, are convex functions
in R”, not necessarily differentiable.
We will associate the standard Lagrangian function to problem (P):

T, A=)+ Y Afilx),  xeR', A=QA)ereR
te T
(see e.g. [6]).

It can be easily proved that if (x, A) is a saddlepoint of ¥, then ¥ is an optimal
solution of (P). Moreover the complementarity condition is valid, i.e. f,(£)<0
implies X, =0. In order to get a saddlepoint from an optimal solution, we have to
assume that the constraints satisty some additional conditions.

We denote by dh(x) the subdifferential of the convex function A4 in x.

Let T(x) = {t e T|f.(¥) =0} be the set of active constraints,

The following proposition characterizes the existence of saddlepoints that involve
a given £, and it constitutes an infinite dimensional version of Theorem 28.3 of [21].

Lemma 3.1. Given ¥ e R, there will exist a Lagrangian saddlepoint associated with
Zif, and only if, €S, and (A)ie1is) € RS exists so that

Oneoy(X)+ Y A ofi(x).

1eTIX)
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Proof. Suppose that (£, A), with Ae R\’ is a Lagrangian saddlepoint. Since £ is

an optimal solution of (P), x € §.
Moreover, x is a global minimum of the convex function ¢ +3 ., A/f: and so

onea(w ) X,ﬁ)(f)=a¢(f>+ Y A AflX).
1eT(E) teT(x)

Conversely, since 0, € 0 (£)+ Y. (s, A« 8f,(X), and if we define A, =0, re T(x),
we have y(x)+Y, A filx)= ¢ (), for all x e R".
As €S, Y, A fi(%)<0forany A € R\, then (%, A) is a saddlepoint of ¥.

When T(x) #0, we define
B(%) = {u|u, cof (x),te TEx)}= U af.(x).

1=Tix)

It can be easily proved, from the convexity of the subdifferential set, that the
condition

()n € a‘//(f) + Z X: afl(f), (/_\r)/e 6 € R!:rlf))
te T(X)
is equivalent to the existence of some & € oy (x) such that —i € K{B(x)}.
Remember the notion of the cone of tangents to § at x (see [1]):

TS, %) ={z]|z =£im“/\;<(xk — %), where A, >0, x* €S and ’!im x* =Xk

T(S, &) is a closed convex cone, since § is a convex set, and verifies

TS, 5)=c{Alx—x):xeS,A>0}=cl K(§—x).
Lemma 3.2. Ifx €8S, then T(S, %)< B(X)*.

Proof. f,(x*)=f,()+u,(x* —%) holds for u, caf (). If te T(X) and x* €S, then
0=f(x")=u/(x"—%). For Ay >0, ui{A(x* —%)}=<0 and, taking limits, u,z <O0.
Then z € B(X)*.

Remark. The previous inclusion can be strict, as the following example proves.

Example:
0 ifx=<),

n=1,f¢(x):: {x’ if x>0, [ET:=[2,3].

For =0, T(S, 0)=]—00, 0] and B(0)* = ]—00, +o0[.

Definition 3.3. A point ¥ € § is said to be a Lagrangian regular point if
(i) T(S,x)=R" when T(x)=0,
(ii-a) B(x)*<=T(S, %) }

(ii-b) K{B(£)} is closed when T'(x) #0.
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The condition (ii-a) is an extension, to the nondifferentiable semi-infinite case,
of Guignard’s qualification, the weakest in a large set of qualifications in nonlinear
programming (see [1]).

The condition (ii-b) is necessary and sufficient in that the system, in ¥, {u'x <
0, u € B(x)} verifies the F-M property. For T finite and differentiable functions,
(ii-b) holds since K{B(x)} is a polyhedral cone.

The following result constitutes a necessary optimality condition.

Lemma 3.4. Let X be an optimum of the convex SIP. If x is a Lagrangian regular
point, A€ R\ will exist such that (%, M) is a saddlepoint of .

Proof. Since & is an optimal solution, and from Pshenichnyi’s condition
({20, p. 56]), there is a subgradient @ € 8¢ (x) such that

—ae{KS -V ={K(S—)¥F=T(, i)*

If T(x)=0,a=0,€cdpx).
If T(x)#0, —i € B(X)** =K{B(x)}.
In both cases Lemma 3.1 can be applied.

Before generalizing the Slater qualification for the convex SIP, we shall analyse
the relationship between the algebraic and topologic interior of the level sets of a
convex function.

Lemma 3.5. Let f(x) be a convex function in R", §, = {x eR"
{x e R"|f(x)=0}. Then S, #9 implies int § =S,

flx)<0}and S =

Proof. By continuity S, <intS. Given y €int S and x"€ S, if y #x" we take z € S
such that y belongs to the interior of the segment between x” and z. As f(x*)<0
and f(z) =0, we have f(y) <0, by convexity.

Remark. The last result also holds if f(x) is a strictly quasi-convex upper semicon-
tinuous function.

Definition 3.6. Slater’s qualification for convex SIP is:
(i) T<R™ is a compact set,
(ii) fi(x) is a continuous function of (t, x) in T X R", and
(iii) there is a point x such that f,(x") <0, for all re T.

Applying theorem 10.7 of [21], condition (ii), for a convex SIP verifying (i),
could be replaced by: f(-, x) is a continuous function in ¢ for each x e R".

From [5, p. 304], the conjunction of (i) and (ii) allows us to reestablish (iii) in
such a way that we claim that every n -+ 1 inequalities of the form f,(x) <0 have
common solutions.
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We need a preliminary lemma, for Theorem 3.8, which constitutes an extension
of Gordan’s Alternative Theorem.

Lemma3.7. Leta, e R forallte T. If {a, t € T}) is a closed set, then the equivalence
holds between the negation of proposition (1) and proposition (I1),

{a;x <0,te T}is consistent, (M

0,e{a,teT}h. (I1)

Proof. We can suppose that a, # 0, for all t € T. Otherwise, the result is trivial.
First, we show that (II) implies the negation of (I). Let us suppose that x is a
solution of the system considered in (I). By hypothesis, 0, € {{a, t € T}), thenA ¢ R,
Y.erA = Llissuch that 0, =%, _rAa. In thiscase 0=0,5 =), .+ A,(a,X)<0.
Let us prove that the negation of (1) implies (II). If 0, {{a,, t € T}), we can apply
the strict separation theorem: there is some vector ¢ € R", ¢ # 0,, such that ¢'a <0
for all a e {{a,, t € T}). Then ¢'a, <0 for all 1 € T, hence c¢ is a solution of the system

in (I).

The assumption that ({a,, 1 € T'}) is a closed set cannot be eliminated, as we show
in the following example.

Let a, = (cost,sint), T :=[—im 3x[. It is clear that (I} and (II) fail simul-
taneously, {{a,, 1 € T}) not being closed.

Theorem 3.8. Under the assumption that Slater’s qualification for convex SIP is
satisfied, all feasible points will be Lagrangian regular points.

Proof. LetxeS, S = {x eR"|f,(x)=<0forall t € T}. We define f(x) := max,crfi(x).

We shall assume first T(x)=0. By Lemma 3.5 int S ={x |f(x)<0}. We have
f(x)<0,thenfeint S and K(§—x)=R"=T(S, ).

Now let us assume T(x)#@. Under assumptions (i} and (i) of Slater’s
qualification, we know that B(x) =\, p, 0f.(X) is a compact set and (B(X))=
Af (%) (see [14, p. 201-204]).

T (i) # 0 does not preclude 0, € (B(%)) (e.g. min. {x |x><0}). Under the assump-
tion (iii) of Slater’s qualification we have f(x°)<0=f(f), and x is not a global
minimum of f(x). Consequently 0,&df(x)=(B(x)), and this fact implies that
K{B(x)}=K{(B(x)} is a closed cone (see [21, p. 79)).

Take B(x)" ={z|u'z <0,uecB(x)}. Since 0,£(B(x)), (B(¥)) being a closed
set, and applying Lemma 3.7, this implies that B(¥)” #@. We can apply Lemma
3.5 to the support function of B(%): int B(X)*=B(x)”.

Take z eint B(%)¥, i.e. u'z <0, for all ueB(x) and also u'z <0 for all uc
(B(%)y=0af(x). Since f'(x;z)=max,cs) 4'z, where f'(x;z) is the directional
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derivative of function f, then f'(x; z) <0, and § >0 exists such that f(¥ +Az)<0,
for all A, 0<A <§, i.e. ¥+AzeS with A€]0,8[ and z e T(S,x). We conclude
that B(f)* = cl{int B(X)*}< T(S, x).

As a consequence of the conjunction of Theorem 3.8 and Lemma 3.4 we have
that Slater’s qualification for convex SIP guarantees that the optimal points permit
us to obtain Lagrangian saddlepoints.

4. Global constraint qualification; Farkas—-Minkowski linearization

For the convex SIP we establish a global constraint qualification, alternative to
the local condition of Lagrangian regular point required in Section 3 at every
optimal solution x¥ to get the necessary optimality condition. In fact, Slater’s
qualification involves the set of all constraints and the qualification proposed in
this Section is implied by that.

Definition 4.1. We associate with the nondifferentiable convex SIP the following
system of linear inequalities:

{ux=su'v—fily), (, vV e TXR", uedfily)l (2)

Obviously, for convexity, the set of solutions of the system (2) is &, the feasible
set of the SIP. Consequently the system above is a linear representation of the
constraints of the convex SIP.

Definition 4.2, ‘Farkas-Minkowski qualification’. The constraints of the convex
SIP satisfy the Farkas-Minkowski qualification if the equivalent linear system (2)
is a Farkas—Minkowski system.

In the following we verify the character of qualification of the established
condition (see also [11]), and we analyse its relationship with that of Slater, without
requiring differentiability.

Theorem 4.3. If X is an optimum point of a convex SIP which satisfies the
Farkas-Minkowski qualification, then some Ae R\ will exist such that (%, ) is a
Lagrangian saddlepoint.

Proof. Since x is an optimal solution of the problem: Min. (x) on S, there is
some i € dy{x) such that 7'(x —x)=0, for all x € §.

If =0, we let A,=0, for all reT. If i #0, we have —i'x <—i'x, which
is a consequent relation of system (2) and, if (2) has the property of F-M, there
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will be parameters A; >0,i=1,2,...,q;u;€df. (y:),i =1,2,...,q;u =0, such that

4 a
g ~gx=—d'x+ia'x =¥ Ny +uile —y)]-pw < X AL (x)
- i=1

i—=1

for all x e R".
For x = %, as A; >0, we shall have ¢; € T(). Consequently

(x)+

I ™

Kf (D =w® = U+ ¥ Kfilo)

i=1 i=1

for all x eR".
WeletA, = A, ift=r,and A, =0if t #¢,i=1,2,...,q;then (¥, A} is a saddlepoint
of ¥.

In the proof of our main result, Theorem 4.5, which establishes the relationship
between Slater and Farkas-Minkowski qualifications, we need a preliminary lemma,
proved in [11], in which §” denotes the set of boundary points of S.

Lemma 4.4. Let S © R" be a closed convex set and {c,x <8, t € T} a svstem such that
(1) every point of S is a solution to it
(1) thereisa xS such that c'x" <68, te T; and
(IIT) given any y € 8", there is some t € T such that ¢|y = 8,
Then S={xeR"|cx=<8,reT}.

We now state the main result in this section, in which the finite nature of the
Slater’s qualification is shown. From this result the significance of the F-M property
arises.

Theorem 4.5. [f the convex SIP, S being bounded, satisfies the Slater qualification,
then it will satisfy the Farkas—Minkowski qualification.

Proof. We recall that f(x) = max,.rf,(x) and S"={y e §|f(y) = O}.
The system

{u'x<u'y,yeS" ueaf(y) (3)

constitutes a linear representation of S. We shall see that the assumptions of Lemma
4.4 hold:
(I) every point of S is a solution of (3);
(ID x"is an algebraic interior point of (3); and
(I1I) given y € S®, there are relations of the system (3) which are satisfied with
equality.



M. A. Lépez, E. Vercher /| Optimality in convex semi-infinite programming 317

We shall prove that the system (3) is canonically closed, and, consequently,
of Farkas-Minkowski. Take the set

A= {[ulfy]/y eS® u eaf(y)}.

We must prove that A is compact.
We know that 9f(S°®) := yesv @f(y) is compact (see [21, p. 237]). We shall
consider a sequence in A,

[ Ui ] k=1,2,...,

’
UrYk

such that
. Uk U
lim [ , ] = [ ]
koo LUy «@

Obviously lim ,« u; =« and therefore u € 8f(Sb).

Moreover, lim .. 1y, = . Since {y, } < S there will be a subsequence {y,} such
that im; e yi, =y € S°. Therefore, @ = lim;. Urye, =u'y.

On the other hand, we know that the graph of 8f on R" xR" is a closed set and
hence u € 8f(y) (see [21, p. 233)).

We conclude that A is closed. As a consequence of the Schwarz inequality this
set is bounded. Take v ‘= max,curs [u]| and 1 = max,.s |ly|. The norm of the
vectors of A will be bounded above by (¢v(v + n))uz_

We conclude that system (3) has the F-M property, which is equivalent to saying

ca[T])-sf(a-[7])

is a closed cone. Now, in our assumptions, u € 6f(y) if and only if u € (U,ETW) afly))
where T(y)={te T|f,(y) =0} and therefore

(ac[TD=(a0[])
A= {[;fyj'/y €S uedfily) e T(y)}.

Consequently, the equivalent system to (3),

where

{ux<u'y: yeSt uedfily),re Ty, (3)
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has the (F-M) property, and then so has system (2), since it is obtained by the
addition of consequent relations to an F-M system.

Under the Slater qualification we can always associate a Lagrangian saddlepoint
with the optimum x:

{(a) If S is bounded, we can apply Theorem 4.5.

(b) If § is not bounded, we define a new problem by the addition of the constraint
glx) = xx —2x'T+Z'% —p =<0, with p >|% —x".

The new problem satisfies all the conditions of the Theorem 4.5. Then, there
are some A€ R’ and g =0 such that

YEE T AAE) —up” <Y <Y+ L Afilx)+aglx)

forall A =(A)er€RY ", allw =0 and all x e R".

As g(x)=<0 is not active in £ and if we take u =0, we conclude that (%, A) is
a saddlepoint for the original SIP.

Theorem 4.3 continues to be valid for the case in which the F-M property is
demanded only for any linearization of the set of solutions S, {ax <g,, p<c P},
which verifies the following property:

For every p € P there exists 1, € T such that a,x —8,<f, (x), for all xeR".  (4)

Any such linear system constitutes a particular case of the positive derivant
introduced in [15]. Naturally, systems (2) and (3) verify property (4) in relation
with the convex SIP.

According to this possible reformulation, the F-M qualification is quite weak,
almost constituting a necessary and sufficient condition in which an optimal point
will always yield a saddlepoint, whatever the objective function. Within this order
of ideas, if the original system of constraints exhibits uniform convex duality (in
which case it becomes evident that every optimum yields a saddlepoint, by applying
characterization Theorem 3.1 of [15] and Theorem 2.2 of [7]), we can conclude
that it is possible to associate a linear positive derivant, which constitutes an F-M
system (apply Corollary 2.4.2(i)), to the original system of constraints.
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