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I. Introduction 

In this paper we consider parametric cost versions of several special forms of 

linear and integer programming; that is, we examine the optimal cost curve 

f ( X ) = m i n { ( c + c * A ) x :  A x  = b, x->0}. In all of our examples the feasible set 

{x: A x  = b, x >- 0} will be bounded and non-empty so that f(A) will be finite for 
all A. The curve f(X) is obviously piece-wise linear and concave;  a natural 

measure of the complexity of a given class of such problems is the number of 

points of slope change, or b r e a k p o i n t s ,  that occur in f(A). Zadeh [10] and Murty 

[5] have shown that for arbitrary linear programs, the number of breakpoints can 

be exponential in the number of variables. We will give two examples where the 
number of breakpoints is of the order of 2 "/7', where n is the number of variables: 

we thus resolve the question of the worse case behavior in two further classes of 

problems. 
The first special case we consider is network programming. Let G = (N, ~g) be 

a network, where 24 is the set of nodes and s~ is the set of arcs. One node s will 

be designated the source and a second one t will be the sink. For each arc 

(i, j) E ~r let k~ be the capacity of (i, j), let (c~ i + c~*X) be the cost of using the arc 
at ?t, and let x~j be the flow on the arc. The lower bounds on the amount of flow 

that an arc can carry are all set at  zero. Then the problem of finding a minimum 

cost flow of value v is: 

rain ~ (cii + c*ja)x~ i 

*This research is partially supported by the Air Force Office of Scientic Research. Air Force 
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so that 

i i - - s ,  ~ (  x i j -  ~ xji = - -  i = t, 
i i) ieB(~J otherwise,  

0 -< xij -< k~j. 

Here  A(i) = {j: (i, j) ~ s~} and B(i) = {j: (j, i) E ~}.  
Since polynomial  methods of finding successive breakpoints  are known for 

parametr ic  minimum cost  flow problems and since arbitrary optimal cost curves 
may be computed  by methods which are polynomial  in the amount  of work  to 
compute  one breakpoint  and the number  of breakpoints  [ 1], it was hoped that the 
number  of breakpoints  for  minimal cost flow problems was also polynomial.  This 
would have given a polynomial  time algorithm for the (unparametrized) problem 

as follows: 

(a) find any flow of the specified value v. 
(b) find a set of costs c '  for which this flow is optimal (say c'i i = 0 when f~i# 0.). 
(c) solve the parametr ic  problem with cost c '  + (c - c'),L where c is the given 

cost. At A = l, we have the optimal answer for the (unparametrized) original 

problem. 
The result we give uses an example by Zadeh [10] of a parametr ic  right-hand 

side, minimal cost flow problem on a network with 2n + 2 nodes and O(n 2) arcs; 
there are 0(2  n) breakpoints  in g(v),  where g(v) is the minimal cost possible when 

the value of the flow is v. The dual of a minimal cost flow problem is not 
necessari ly a minimal cost  flow problem so we cannot  use this result directly for 
the parametr ic  cost problem; we can, however ,  construct  a parametr ic  cost 
problem with one fewer  breakpoint  and with no more nodes in the underlying 

graph. 
The details of this example are given in Section 1. 
The second case considered here is for 0-1 programming.  In both Mur ty ' s  and 

Zadeh 's  examples ,  the optimal solution for at least some A's has some exponen-  
tially large components ;  also unparametr ized linear programming problems,  such 
as Klee and Minty [3], which may take an exponential  number  of pivots would 
have exponential ly large components  for some feasible solutions if integrality 

were required at all basic feasible solutions. It  seems reasonable,  therefore,  to 
ask whether  the requirement  that all components  of all feasible solutions be one 

or zero limits the number  of slope changes. If  this conjecture were true, 
fur thermore,  we could draw immediate  corollaries about the complexi ty  of the 

parametr ic  cost shortest  chain, assignment,  and travelling salesman problems. 
However ,  we will give an example of a 0-1 programming problem with n 2 
variables and 2 ~ - 1 breakpoints .  This example is interesting in itself since it can 

be relaxed to a parametr ic  linear programming problem, which in turn can be 
t ransformed into an unparametr ized problem that may require an exponential  



66 Patricia J. Carstensen/ Complexity in parametric programming 

number  of pivots to solve; this 'bad '  behavior  is driven only by the cost function 
so the problem may serve as a valuable pathological example  in testing proposed 
algorithms. Fur thermore ,  a more profound examinat ion of what  drives the 'bad '  
behavior  in this case may  give insight into the complexi ty  of other parametr ic  

0-1 problems.  
The details of this example and several simple variations on it are given in 

section 2. 

1. Network programming 

In this section we show that any parametric-f low cost-minimization problem 

(that is, for a given network G, find the optimal flow for each possible value v of 
the flow) can be t ransformed into a minimum cost problem (i.e. with fixed value 
and parametr ic  costs) on a network with the same nodes as G and one more arc. 
For the sake of brevi ty,  we will call the first simply the parametr ic  value problem 

on G and the second the parametr ic  cost problem. 
For any convex function h : R ~ ~ U zc the conjugate of h is defined to be: 

h *(y*) = - min{h (y) - y* y}. 
y 

It  can be shown [6] that  h* is well defined and convex  and that h** = h. 
Geometr ical ly  h*(y*) = - b ,  where z = y*y + b is a supporting (one dimensional) 

hyperplane of {(y, z): z - h(y)}. From this it is easy to obtain: 

Lemma 1. If {y: h ( y ) <  ~} is bounded and h(y) is piece-wise linear, then h(y) has 
one more breakpoint than h*(y*). (Here we consider the endpoints of the interval 
where h(y) is finite to be breakpoints.) In fact the breakpoints of h* correspond to 

the straight line segments (flats) of h and vice versa. 

Recall that  a cut set (S; T)  of a graph G is a partition of the nodes of G into 

sets S and T so that s E S and t ~ T. Given a cut set (S; T), we define (S, T) to 
be the set of arcs f rom S to T;  that is (i , j)  E (S, T) if i is in S, j is in T and (i , j)  
is in s~. We emphasize  that (S; T) and (S, T)  are entirely different objects.  

Given the parametr ic  value problem on a graph G which has finite capacities 

k~j and costs c~j, we construct  a parametr ic  cost problem as follows: 
(1) Add one arc (s, t) with zero cost  and infinite capacity to G. This arc need 

not be the unique arc from s to t in the new graph, but the arc (s, t) always 
refers to this added one in what  follows. We will call the new graph G'.  

(2) Choose any cut set (S; T) in the original graph G and set the parametr ic  

costs in G C G'  by: 

c~j - h (i, j) E (S, T),  
ci~(X)= cij+X (i, j)  E ( T , S ) ,  

c~j otherwise.  
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(3) Require a flow from s to t of value v', where v' is the maximum flow 
possible in G. 

Lemma 2. Let g(v) be the minimum cost that a flow of (parametric) value v can 

attain on G. Let f (h)  be the minimum cost of a flow of value v' on G',  as a 

function of the cost parameter ,~. Then f = - g * ,  and therefore f has one fewer 

breakpoint than g. 

Proof. Obviously the cost of any flow x =(x~) is a linear combinat ion of 

functions linear is h so is itself linear in h. 

Since cs~ = 0 and the intercepts of the costs of all other arcs are the same as 
the cost in the parametr ic  value problem, the intercept of the cost of the flow 
(x~j) is equal to the cost in the parametr ic  value problem of xla, the restriction of 
x t o G .  

The value of the flow xlG must  equal the value of the flow from S to T;  that 
is, 

1.,'- x~, = Z x i i -  Z xi~. (1) 
(i. ] )~(S ,  T )  l i, DE(T ,  S) 

The slope of the cost of an arc is ( - 1 )  for ( i , ] )E (S ,  T) and is ( +  1) for 
(i, ]) E (T, S); otherwise it is zero. Thus the right-hand side of equation (1) is the 
negative of the slope of the cost of (x~j). Therefore  the slope of the cost of a flow 
on G'  is x~t-  v'. Thus 

f(X) = min{cost at h of the flow x} 
x 

= min {min{cost at h of the flow x 
0<:[ ,~v '  

with the value of xla equal to v}} 

= min {min{cost in the parameter ic  value problem of xla 

where the value of x[~ is v } -  vh} 

= m i n { g ( v ) -  vh} 
r 

= - g*(X). 

The final s ta tement  in L e m m a  2 follows f rom Lemma  1. 

Since the above lemma holds for all graphs G and all cuts (S; T) we 
immediately obtain: 

Theorem 1. For any n, there is a graph G, with 2n + 2 nodes, n2 + n + 2 arcs, and 

an assignment of linear cost functions to the arcs so that there are 2" + 2" 2_ 1 

breakpoints in the optimal cost curve. 
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P r o o f .  Zadeh's  [10] network has the stated number of nodes and 112+ t'/ + 1 arcs; 
there are 2"+  2 "-2 breakpoints (counting the two where the problem becomes 

infeasible) in the curve g(v) in the parametric value problem. In the con- 

struction above, we add one arc and lose one breakpoint so the theorem is 

proven. 

2.  0 - 1  P r o b l e m s  

We will first examine, as a special case of 0-1 parametric problems, the 
parametric-cost minimum-cut-set problem. In this section we will consider 

networks with some arcs and some (undirected) lines (i; j). The undirected lines 

may be considered to be pairs of arcs (i, j) and (j, i) with the same costs and with 

opposing directions. The minimum cut set problem is to find a cut (S; T) which 

minimizes 

c ( S ; T ) =  ~'~ c , j+  ~'~ cij. 
iES iES 
jET jET 

f i , j ) ~  ( i :j )~_:,:,/ 

The family of examples, one for every integer n, given in this paper will have 

negative costs on some of the arcs. The duals of minimum cut set problems are 

maximum flow problems when the costs are positive; thus the unparametrized 

versions of minimum cut set problems with c~ i >- 0 can be solved in polynomial 

time. On the other hand, the minimum cut set problem with c~ i < 0 is equivalent 

to the maximum cut set problem which is known to be NP-complete.  

Definition. Let Gn = (N,,, M,,), where .N', consists of n + 2 nodes s, t, 1, 2, 3 . . . . .  n ; 

the nodes 1,2 . . . . .  n will be called the numbered nodes, s~,, consists of lines 

between all pairs of numbered nodes, an arc from the source s to each numbered 

node, and one arc from each numbered node to the sink t. In other words, G~ is 
composed of a complete graph on n nodes, together with a source and a sink 

connected to each of these nodes. The costs on the arcs are given by: 

0 j = t ,  

cii()~) = 2J- '~ i = s, 
--  2 i§ i, j r S, t. 

The cut set problem on this network has a physical interpretation [8, 9]. Each 

numbered node represents a job which can be performed on either of two 

machines, represented by s and t. For any pair of jobs - - tha t  is, any pair of 

numbered nodes i and j - - c ~ i ( ~ )  is the fixed communications cost (or interference 
savings) of doing the jobs on different machines, c~(?~) is the variable cost of 
doing the ith job on the first machine: c,(,~) is the cost of doing it on the second 

machine. Here ?, may represent the level of the activity in the shop; we assume 
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that the cost  of  using the machine is linear in the level of  activity. If (S;  T) is an 
optimal cut at some value of A, the numbered nodes  in T should be done on the 
first machine  (i.r., on s) while those  in S should be done on the second machine 
(i.e., on t) to minimize the total cost  of  accomplishing the jobs.  

For convenience ,  we set S ' =  S - -{s}  and T ' =  T ~{t} .  

Lemma 3. F o r  a n y  m = O, 1, 2 . . . . .  2" - 1, t h e r e  is a c u t  (S, , ,  T , , )  w i t h  c o s t  

c(S,~; T,,) = mA - ~m(2" - m - 1). 

Proof. First we  give a simple formula for the cost  of  a cut. 

c ( S ;  T ) ( A ) = ~ ]  ci~(A) 
iES 
jeT 

(i,i)Es~ 

= ~ Csi-t- E t i t+ E c i j  
i ' iES' iES' 

jeT' 

iET' 

N o w  let m = ~ ' = ~ a ( j ) 2  j L, where  a ( j )  is 0 or 1. Set S ' , = { j : a ( j ) = 0 }  and 
T;,, = {j" a ( j ) =  1}. Then m = ~je.r;,, (2 i-~) is the slope of  c(S,,,; T,,,). Furthermore 

2 ~ - 1 = 2 2 i - ' =  2 T - ~ + e ~  2 ' - ' =  2 T - ' +  m 
i = l  iEs; , ,  j ;,, iEs; , ,  

SO 

T - ~ = 2 " - m -  1. 
iES;,, 
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T h e r e f o r e ,  b y  e q u a t i o n  (2), 

= ( 

= m X  - ~ ( 2 " -  m - l )m.  

T h e o r e m  2. Let  f , (&) be the op t i mum cost  attained in the m in imum cut set 

problem on G,, at )~. Then f,,O~) has 2 " -  I breakpoints.  

Proof. 

f,,()Q = m i n { c ( S , , ;  T,,,): m = 0 ,  1 . . . . .  2" - 1}. 

F o r  a n y  m = 0, 1 . . . . .  2" - 1 we exp l i c i t l y  c o m p u t e  the  ,~ for  w h i c h  (S,, ; T, ,)  is 

o p t i m a l ;  tha t  is, fo r  m ~ m '  we w a n t  to find all )~ so tha t  

c(S,,,; T,,,)(,~) < c(S,,,.; T,,,,)()~). 

By L e m m a  3, we see this  o c c u r s  w h e n  

m)~ - ~m(2" - m - 1) < m')~ - ~m'(2" - m '  - 1), 

(m - m')) t  < ~((m - m ')(2" - 1) + ( m ' +  m ) ( m ' -  m)) .  

If  m' < m, t h e n  

)t <~ (2  ~ - 1 - ( m ' +  m)) .  

Th i s  i n e q u a l i t y  is s t r o n g e s t  w h e n  m ' = m - 1  so we  h a v e  s h o w n  tha t  

c(Sm; T , , ) ( ) t ) <  c(S,. , ;  T,,,)(;O for  all m ' <  m a n d  )~ < ~(2 " - ~ -  m).  

S imi l a r ly  we  c a n  s h o w  tha t  c(S,,,; T , , ) ( A ) <  c(S,,,.; T,,,)(X) for  m ' >  m a n d  all 

)t > 2 ~ - ~ -  m - 1. 

T h u s  (S,,, ; Tn,) is the  o p t i m a l  s o l u t i o n  for  2" ~ - m - 1 < )~ < 2 "-I - m. E a c h  of  

the  2" cu t s  c o r r e s p o n d s  to a l ine s e g m e n t  of  the  c u r v e  a n d  t he r e  a re  2 " - l  

b r e a k p o i n t s .  

N o t i c e  tha t  b o t h  the  l a rges t  s lope  a n d  the  l a rges t  i n t e r c e p t  of  the  c~j()~) are 

e x p o n e n t i a l  in  the  n u m b e r  of  n o d e s .  Th i s  wil l  in  g e n e r a l  be  n e c e s s a r y .  

P r o p e r t y .  Suppose  in the parametr ic  0-1 problem 

rain ~ (c*)~ + ci)xi, 

A x ~ b ,  

x ~ = O o r  1, i = 1 , 2  . . . . .  n, 

we know that c~ and c* are integers f o r  all i and that  Ic*l < C* and Ic~l < C. Then 

the number  o f  breakpoints  can be no greater than min{(2C*  + 1)n, (4C + 2)n}. 
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Proof. There are at most  ( 2 C * +  1)n different slopes and at most  ( 2 C +  l)n 
different intercepts in the costs of feasible vectors  x. The successive slopes of 
the segments  on the optimal cost curve do not increase, so each slope may occur 

at most  once. Since only the lines with the greatest  slope and the least slope of 
all those having a given intercept can be optimal over  some interval in )~, the 

number  of breakpoints  is at most  twice the number  of intercepts.  

We now want to write the cut set problem as an explicitly 0-1 programming 

problem. 

Lemma 4. The  cut  set p rob l em  on G,, is equ iva len t  to the f o l l o w i n g  integer 

p r o g r a m m i n g  p r o b l e m  : 

n j - I  
P~: m i n ~  c i i ( A ) u i i + ~  c~ i (A)~r i+~  ci,(X)(I - ~i), 

i=2  i=1 i - I  i - 1  

�9 ri - 7r i ~ uii ~ lri + ~r i, (3) 

~r i - 7ri <- uii ~ 2 - (Tri + 1ri), (4) 

u~j, 7ri E {0 ,  1}, i = I ,  2 . . . . .  n ,  

j = 1 . 2  . . . . .  n. i < j .  

Here  c~ i is the cos t  o f  the line ( i ; j ) .  c,~ is the cos t  o f  (s. i) and  c,  is the cos t  o f  

(i, t). 

We remark  that this is not the standard formulation of the cut set problem, 

which only uses the lower inequalities in (3) and (4). We require the upper 

bounds because of the negative costs.  
Also some variables which appear  in standard formulat ions are unnecessary  

here; for example u~ is not used as u~ = 7r~. 

P r o o f  o f  Lemma 4. We give a cost-preserving one-to-one correspondence  
between the set of feasible solutions to P,. and the set of cuts of G,,. Let  
S ( w , u ) = { i :  r r i = O } U { s } ;  T(Tr, u ) = { i :  rr~= l } U { t } .  Then (S(rr,  u); T(cr, u)) 

is a cut of G,. The function (rr, u)~-)(S(Tr,  u): T(lr, u)) gives a one-to-one 
correspondence  since the values of the 7r~ can be chosen arbitrarily and since 

we can show by a trivial calculation that u is determined by 

I O 71" i = 7/'j, 

uij = r i :~ ~rj. 

The cost of the arc(s, i) contributes to c(S(Tr, u); T(rr, u)) if and only if 
i ~  T(~r, u ) - - tha t  is, ~r~ = 1 and the cost cs~(~) contributes to the object ive 
function in P,.. Similarly we can show the correspondence  of the cost  c,(;~) in 

the two problems.  
Finally suppose the line (i; j) has one end in S(~r, u) and one in T(~r, u); here i 
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and j are numbered nodes with i < j. Then r r ~  rrj so ui i = 1. Thus the cost of 
(w, u) is equal to the (S(rr, u); T(rr, u)). 

From L e m m a  4, we can easily derive: 

Theorem 3. For any n, there exists a parametric cost 0-1 programming problem 

with ~n(n - 1)+ n = !n(n + 1) variables and 2" - 1 breakpoints in the optimal cost 

function. 

We can transform P,, into a number  of other 0-1 problems,  all having the same 
(up to addition of a constant) optimal cost curve:  thus we can extend the result 
of Theorem 3 to several  other problems.  

Corollary 1. For every n, there exists a parametric cost 0-1 problem with 

~ 9 n g - 7 n )  variables, equality constraints, and 2 " - l  breakpoints in the optimal 

cost curve. 

Proof. By the addition of slack variables,  P,, can be t ransformed into a problem 
with equality constraints.  Fur thermore,  each slack variable y is an integer 
between 0 and 2, inclusive. Therefore  we may substitute two 0-1 variables y~ 
and Y2 for y. Since there are four inequalities for each of the ~n(n - 1) variables 
u~ i, we add 4(n 2 -  n) variables. The cost curve of course remains the same as we 

have only changed the description of the feasible set. 

Corollary 2. For every n, there exists a parametric cost knapsack problem with 

~(9n2-7n)  variables, an equality constraint, and 2 " - 1  breakpoints in the opti- 

mal cost curve. 

Proof. There are standard techniques- -ca l led  aggregation p rocedu re s - - fo r  com- 

bining equality constraints  in bounded integer programming problems [4]. In 
fact,  Rosenberg [7] shows that if t A ~ x -  b~ I < M for all x C I" and each equation 

A i x = bi, then 

{x ~ l" :  A x  = b, x in teger}  = { x  E I"  " ~ ,  M ~ IAi )x = ~ Mi Ibi}. 
I=l i=I 

Here  Ai  is the ith row of A. In our example ,  we may take M = 4  so no 
coefficient in the resulting knapsack problem is greater than 4 ~", m = ~(9n 2 -  7n). 

One may wonder  if the knapsack problem with inequality constraints,  positive 
weights, and positive costs in the interval between the first and the last 
breakpoints  can also have an exponential  number  of breakpoints.  (The weights 
in a knapsack problem are the coefficients of the x~ in the single constraint.) 
After  all, the inequality problem has a guaranteed e-accurate  polynomial  heuris- 
tic while the equality problem has such a heuristic only if P =  NP. Un- 
fortunately,  we can show that the inequali ty-constrained problem is no better  
than the equality constrained one. 
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For  s implici ty 's  sake,  we will write the set of  knapsack  problems descr ibed  in 

Corol lary  2 as: 

max  v ()Ox, 

st wx  = Wo, 

x i = 0 o r  1, i =  1,2 . . . . .  n. 

Not ice  the objec t ive  func t ion  is now maximized ;  this fol lows the usual  pract ice  

in the li terature on the knapsack  problem.  

Wi thou t  loss of  general i ty  we m a y  assume that  w -> 0 since if w~ < 0, we may  

replace x~ with its c o m p l e m e n t a r y  variable ( 1 - x ~ ) =  g~ and change  W0 ap- 

propriately.  

Claim. In fact,  for  eve ry  i, w~r 0. 

Proof.  If  w~ = 0 ,  the feasibil i ty of a ver tex  in I" is independent  of  its ith 

coord inan t ;  that  is, if x is a solution with a zero  in its ith coord ina te  and x'  is the 
solution obta ined  f rom x by changing  the zero  in the ith coord ina te  to a one,  

then x is feasible if and only  if x '  is. Re-examining  the problem given in 

Corol lary  2, we see that  no variable such as x~ exists. This comple tes  the p roo f  

of  the claim. 

We define two cons tan ts :  

C =  max { w . x }  
w . x < W  0 
x i=O or / 

L =  max [ m a x  { v ( X ) . x } -  min {v(h) .x}}.  
hE[ ~n, 2 n ] l w ' x ~ W o  w ' x = W  0 

Let  M = L / ( W o -  C)  and v'(,k) = v(h) + M w .  

Claim. For  the cos t  v ' (h)  and for  h ~ ( -  2", 2"), the optimal solution is a lways  in 

the hype r space  wx = Wo for  the inequal i ty-cons t ra ined  problem as well as the 

equali ty cons t ra ined  one. 

Proof.  Choose  x (~) and x ~2) feasible to {x: wx <- W0, xi = 0 or  1 for  i = 1 . . . . .  n} and 
so that  wx  ~u = Wo and wx  (2~ < Wo. Then  

v'(h)(x ~2)- x "1) = (v(h)  + M w ) ( x  ~2~- x m) 

= v(h)(x C21 - x Il~) + M w ( x  12~- x ~'~) 

<-- L + M ( C  - Wo) 

-< L - L ( C  - W0) = 0. 
( c -  wo) 

This p roves  the claim. 
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Not ice  that M w x  is a cons tan t  on the hype r space  wx -- Wo so the optimal cos t  

curve  with cos t  v ' (h)  is just  the opt imal  cos t  curve  for  v(h)  t ranslated upward  by  

some amoun t  MWo. In fact ,  since no c o m p o n e n t  of  w is zero,  we may  choose  

the multiplier M of w large enough  so that,  in addit ion,  all the c o m p o n e n t s  of  

v ' (h)  are pos i t i ve  for  h in the interval ( - 2 %  2") and so that there are still 2 "-I 

b reakpoin ts  in the opt imal  cos t  curve.  Thus  we have:  

Corol lary  3. For every n, there exists a parametr ic  cost  knapsack  problem with an 

inequality constraint,  ~(9n 2 -  7n) variables, positit, e weights, 2" - 1 breakpoints  in 

the opt imal  cost  curve in the interval ( - 2  n,2n), and with posit ive cost  c o m -  

ponents  v~(h) fo r  h E ( - 2", 2"). 

We remark  that a guaranteed  e -accura te  he u r i s t i c - - fo r  example ,  that  of  Ibarra  

and Kim [2 ] - - fo r  the unparamet r i zed  problem can be used at specific h to find an 

approx imate ly  opt imal  solution there. Put t ing together  several  of  these solutions 

would give an approx imat ion  to the optimal cos t  curve  f(A). This solut ion need not 

be concave  since the slopes of  the cos ts  of  the approx imat ions  need not  decrease  

with h. Fu r the rmore ,  we cannot  guarantee  e - accu racy  in polynomia l  t ime since 
e - accu racy  implies that  the cos t  curve  of  the approx imate  solutions lies be tween  

f (h )  and (1 - e ) f (h)  and we can choose  e small enough that  this requ i rement  forces  
approx imate  solut ion to change  at least once  for  every  slope change  in f (h) .  See Fig. 

2. There fo re  the heurist ic  would  have to be applied at least 2" t imes for  the problem 
in Corol lary  3. 

v 

Fig. 2. Here f(A)-max{e(h)'x: feasible x}. An e-accurate heuristic would give g(h), where 
(I - e)/(h) <g(h) <- f(A) and g(h) = v(h). x for some feasible x. If e is small enough,g(h) will contain at 

least as many straight line segments as f(h). 
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Conclusions 

Some interest ing ques t ions  remain.  

(1) Find a heurist ic  that  approx imates  the opt imal  cos t  curve  in the knapsack  
problem with an inequal i ty  cons t ra in t  ' fair ly well '  and ' fo r  mos t  A's, '  where  the 

phrases  in quota t ion  marks  are del iberately left vague since the definition of  the 

problem is really much  of  the quest ion.  
(2) The  problems in Sect ion 2 have 2 " -  1 breakpoints ,  and O(n 2) variables so 

the number  of  breakpoin ts  is O(2V~-'"), where  m is the number  of  variables.  Are 

there families of  0-1 problems with m variables and at least a"  breakpoints ,  for  

some a > 1? 
(3) Is there a po lynomia l  bound  on the number  of  breakpoin ts  in the opt imal  

cos t  curve  of  a parametr ic  cos t  shor tes t  chain problem,  or of  a parametr ic  cos t  

ass ignment  p rob lem?  
(4) The proper ty  fol lowing T h e o r e m  2 gives some simple condi t ions  that  

guarantee  the number  of  b reakpoin ts  is po lynomia l  in the number  of  variables.  

Wha t  o ther  (more interesting) condi t ions  can be given? 
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