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A nonlinear 0-1 program can be restated as a multilinear 0-1 program, which in turn is known 
to be equivalent to a linear 0-1 program with generalized covering (g.c.) inequalities. In a 
companion paper [6] we have defined a family of linear inequalities that contains more compact 
(smaller cardinality) linearizations of a multilinear 0-1 program than the one based on the g.c. 
inequalities. In this paper we analyze the dominance relations between inequalities of the above 
family. In particular, we give a criterion that can be checked in linear time, for deciding whether 
a g.c. inequality can be strengthened by extending the cover from which it was derived. We then 
describe a class of algorithms based on these results and discuss our computational experience. 
We conclude that the g.c. inequalities can be strengthened most of the time to an extent that 
increases with problem density. In particular, the algorithm using the strengthening procedure 
outperforms the one using only g.c. inequalities whenever the number of nonlinear terms per 
constraint exceeds about 12-15, and the difference in their performance grows with the number 
of such terms. 

Key words: Nonlinear 0-I Programming Algorithm, Covering Inequalities, Dominance, Compact 
Linear Equivalent, Strengthening 0-1 Inequalities. 

1. Introduction 

In  th i s  p a p e r  we d i scuss  s o l u t i o n  m e t h o d s  fo r  t h e  m u l t i l i n e a r  0 - 1  p r o g r a m m i n g  

p r o b l e m  

m a x { f n ( x )  ]fk (X) <~ bk, k E K,  x b i n a r y }  ( M L P )  

w h e r e  t he  f u n c t i o n s  fo a n d  fk, k c K,  a r e  of  t h e  g e n e r a l  f o r m  

f ( x ) =  V aj( ~.o xi). (1)  
j < N  i j 

H e r e  a n j e N,  a r e  r ea l  n u m b e r s ,  a n d  ]]  m e a n s  p r o d u c t .  A n y  n o n l i n e a r  0 - 1  p r o g r a m  

i n v o l v i n g  r e a l - v a l u e d  f u n c t i o n s  c a n  be  r e s t a t e d  in t h i s  f o r m  [14] .  

A p p l i c a t i o n s  of  n o n l i n e a r  0 - 1  p r o g r a m m i n g  s p a n  m a n y  a r e a s .  S u c h  f o r m u l a t i o n s  

h a v e  b e e n  u s e d  in m o d u l a r  d e s i g n  [7,  8]. m e d i a  s e l e c t i o n  [22], p r o j e c t  s c h e d u l i n g  
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E17], capital budgeting under uncertainty [16], cluster analysis [ 18], diagnostic testing 
[15], accounting control systems [13], production planning in flexible manufacturing 
systems [19, 20], etc. Quadratic 0-1 programming, including the quadratic assign- 
ment problem, has a host of well known uses. 

In a companion paper [6] we have introduced a new linearization of (MLP) (first 
presented in [4]), which uses only the original variables. Specifically, for a multilinear 
inequality of the form 

f ( x ) =  ~ aj( ~ xi) <~ b, (2) 
j~N \ i z C )  / 

we defined a family 3 of linear inequalities equivalent to (2) in the sense that a 
0-1 vector x satisfies (2) if and only if it satisfies every inequality of 3, and we 
identified several proper subfamilies of ~ that are also linear eqivalents of (2). The 
members of ,9 are associated with covers for (2), and the subfamily of 3 correspond- 
ing to minimal covers is the set of generalized covering inequalities (set covering 
inequalities in the original variables and their complements) shown by Granot  and 
Hammer  [12] to be equivalent to (2). Some other subsets of ~, associated with 
covers for (2) that are not minimal, give more compact linearizations, i.e., linear 
equivalents of smaller cardinality. 

In the remainder of this section we restate those results of [6] that we will need 
in the sequel. [n Section 2 we examine dominance relations between inequalities 
of 3 ,  with a view toward deriving criteria for generating linear equivalents of (2) 
as compact as possible. We first give a necessary and sufficient condition for an 
inequality of 3 to imply another one (with respect to binary vectors). We then 
show that a generalized covering inequality in 3 ,  i.e., a member of 3 associated 
with a minimal cover M for (2), can be strengthened by including into M certain 
indices j c NIM if and only if an easily verifiable condition holds. 

In Section 3 we introduce a class of algorithms for solving multilinear 0-1 
programs, based on these results. Like the earlier procedure of Granot  and Granot  
[9] (see also [10, 11]), our algorithms generate linear inequalities sequentially from 
those constraints of (MLP) violated by the current solution until such time when 
an optimal binary solution to the current linear constraint set satisfies all constraints 
of (MLP); such a solution is optimal for (MLP). However,  while the procedure of 
[9, 10, 11] uses generalized covering inequalities only, the main version of our 
algorithm generates stronger inequalities whenever they are obtainable via the 
criteria outlined above. Our algorithms use as a subroutine pivot and complement the 
0-1 (linear) programming heuristic of Balas and Martin [3]. 

Section 4 discusses our computational experience on randomly generated multi- 
linear 0-1 programs with up to 20 constraints, 50 variables, and 60 nonlinear terms 
per constraint. In particular, an algorithm that uses the results of this paper to 
generate strengthened linear inequalities is compared to one that uses only general- 
ized covering inequalities, like the procedure of [9, 10, 11]. The algorithm that uses 
only generalized covering inequalities did better on problems that had on the average 
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less than 12 nonlinear  terms per constraint,  whereas the one that  uses the 
s t rengthened inequalities did bet ter  on the problems that  had on the average 16 or  
more  nonlinear  terms per constraint.  Fur thermore ,  the difference in per formance  

tends to increase sharply with the number  of terms per constraint.  

We also present computa t ional  results concerning the use of the procedure  as a 

heuristic. Typically, the heuristic solutions obtained were (guaranteed to be) within 

3% of optimality, and for those cases in which the optimal solution was known, the 

heuristic solution was on the average within 0 .25% of the optimal integer solution. 
In  the heuristic mode,  our  algori thm is able to solve substantially larger problems 

than those noted above,  and does so in a reasonable amount  of time with practically 

acceptable accuracy bounds. 
The results of this paper  were circulated under  [-5]. 

Given a multilinear inequality (2), let 

N§ N-={jcNla l<O},  

and 

t,zN" \ i c O  i jc,% '~O/ 

For  any M c _ N ,  let Q M = U j , : M Q j ,  Q =  Q >  and q = l Q ] "  Let 4~ be the family 

of mappings r that associate to every j c N some i c Qj, and for each r E @, let 

h i ( x ) =  Y. ajx,~l,. 
jEN- 

For  any r ~ 4~-, let Or  be the range of r i.e., 

0 r  = { i c  Q ] i = r  for some j ~ N  }. 

A set M ~ N is said to be a cover for the inequality (2) if 

Y~ ] a , l > b -  ~ a,. 
ja ,'~1 j~N 

A cover M is minimal ff T is not a cover for any T c  M. 

Thus, a set M c N + is a cover  for the inequality 

f+(x)<b 

if and only if 

(2 + ) 

V aj  > b, 
j~ M 

i.e., if and only if M ~ N  is a cover for (2). We will denote  

~ = ( M c  N+IM is a cover  for (2+)}. 

For  any xi ~ {0, 1 }, the complement of xi is defined to be 2i = 1 - &. 
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The  following result (Theorem 1 1 of [6]), presented here  without proof,  is 
fundamental  in defining the family .~ of linear inequalities equivalent  to the multi- 

linear inequality (2). 

T h e o r e m  1. The vector x ~ {0, 1} q satisfies (2) if and only if it satisfies 

i ~ 0?.4 i ~ Q),~ 

for every M e ~, ~ ~ ~ - ,  where 

a~o 4= 2 a j - b ,  a Y = m i n { a ~ ?  ~, 
j,: M 

and 

1 

j.: M I i �9 O~ J 

{ ,, ,) /3~ '=mm C~o, 3~ [a~ , i~O~.  
j ~ N  ] i=i( j )  

(3).,~,~ 

Denot ing by ,9' the family of inequalities (3)M,4 for all M c ~ and ~p E q)-, Theo rem 
1 states that the multi l inear inequality (2) is equivalent  to the system of linear 
inequalities ,9. Note  that all coefficients of the inequalities of .~ are nonnegative.  

Now let M c ' ~  and g) c ~  be such that O M c ~ O ~ r  i.e., there  exists some 
i e O.u c~ Or, for which both .~ and xi have positive coefficients in (3)M.~. Then  (3)M.4 
remains essentially the same (in the sense of having the same solution set) if 

, M But then all those min{~)  1,/3~} is subtracted from cx~ '1 from /3~ and from ch). 
remaining coefficients c~} v;, j ' r  i and /3~, k r i, whose value exceeds the new right 

M , M ,, M _ min{c~iv;,/3~ }, can be replaced by (c~o) �9 Thus the presence hand side, tc~o ) = ~o 
of indices i ~ QM c~ O4 allows an immediate  (trivial) s t rengthening of the inequality 

(-3)M.~. 
For any ~ e  q)-, if M ~  ~ is such that the set M u N -  is a minimal cover  for (2), 

then the linear inequality (3)~.~ resulting from Theorem 1 can be shown (see [6, 
Theo rem  13]) to be of the form 

Fur the rmore ,  for any such set M, if M and q: are such that O.~ n O~ r  the 
inequality (4)M.~ is vacuous. Thus the only inequalities (4)s~.~ of interest  are those 
such that OM c~ O4 = 0. 

The multi l inear inequality (2) was also shown in [6] to be equivalent  to the system of 
multi l inear inequalities (each having all positive coefficients) defined by 

f+(x)+ }~_lajlx4(j> ~< b -  Y~ a i, (5)~ 
j ~ N  i t : N -  

for all ~, c q~ . Thus, replacing (2) by all inequalities (5) 4, ~ c 4>-, and then generat ing 
the sets 5~ of linear inequalities equivalent  to each inequality (5)~, results in a 
family .~ = U ~  5~ of linear inequalities which linearizes (2). In fact, we observed 
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in [6] that the previously defined family 5/is properly contained in ~ ;  namely, while 
.~- contains an inequality for every cover of (2), ~ contains an inequality only for 
every cover of (2+). 

The inequalities in f f  corresponding to minimal covers of (2) are the generalized 
covering inequalities known to be equivalent to (2). Thus all members  of ~ that 
are not generalized covering inequalities correspond to covers of (2) that are not 
minimal. 

We are now prepared to investigate the relative strength of inequalities (3)M,~ 
derived from covers M that are minimal and those that are not. 

2. Dominance relations 

An inequality A is said to dominate  an inequality B if every nonnegative x 
satisfying A also satisfies B. Further,  A strictly dominates/3,  if A dominates B and 
there exists some nonnegative s that satisfies B but not A. We shall also find it 
useful to define the following weaker notion of dominance. 

An inequality A is said to c-dominate  an inequality B it" every 0-1 point x satisfying 
A also satisfies B. Further,  A strictly c-dominates B, if A c-dominates B and there 
exists some 0-1 point satisfying B but not A. It is easily verified that an inequality 
A can c-dominate an inequality B without A dominating B, whereas the converse 
is of course false. It is also easily verified that A c-dominates B if and only if every 
cover for B is a cover for A, and A strictly c-dominates B if and only if A 
c-dominates B and there exists a cover for A that is not a cover for B. Hence the 
term c-dominance. 

We will occasionally call an inequality A stronger than B if A strictly c-dominates 
B. 

We have seen that the inequalities of the family ,~ are intimately related to covers 
for the multilinear inequality (2). In the context of linear inequalities, it is known 

[1,2] that canonical inequalities derived from minimal covers can usually be 
strengthened, and can never be weakened by extending the covers. Unfortunately 
in the case of nonlinear inequalities, only the first part of this statement is true: 
extending a minimal cover may weaken the inequality associated with it. 

Example 1. To show that extending a minimal cover can actually weaken the 
inequality derived from the cover, let 

7x2xsxe,+6x~x3x4 + 5xex4 + 2xlx3<~ 12, 

with O~ ={2, 5, 6}. O_,={1,3,4},  03 ={2, 4} and O4={1,3}.  Applying Theorem 1 
and using the minimal cover M = {2, 3, 4}, we obtain the inequality 

s163 +s  > 1. 
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Now, extending the minimal cover M to {1,2, 3, 4}, we obtain the inequality 

8g~ + 8s + 8s + 8~4 + 7~s + 72/~ ~ 8, 

which is actually weaker than (strictly c-dominated by) the first inequality. [] 
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Fortunately, the phenomenon illustrated by Example 1 can be precisely character- 
ized. Next we address the practically important question as to when an inequality 
(3)M.r where M e % can be strengthened by expanding the cover M. 

We will assume that ~ ~ q~- is given, and therefore will write (3)M for (3)M,~ and 
/3~ for fl~. From the discussion at the end of Section 1 it should be clear that the 
presence of indices i e QA~ ~ Or denoting the presence of positive coefficients for 
both x~ and $~, denotes a 'weakness' of the inequality (3)M, in that it allows for a 
trivial strengthening. We will therefore assume that M is chosen such that OM ~ O9 = 
0, and furthermore that M is expanded into a set R such that OR c~ O~ = 0 too. 

In what follows, summation over the empty set is taken to yield 0. 
First we give a necessary and sufficient condition for an inequality 

,, (3)R 
i c  0 ,~ i c  Q,~ 

to c-dominate the inequality (3)M, where M e  %0 and M =  R c_ N +. For any 0-1 
vector x with support Q ( x )  = T, the difference between the values of the right hand 
side and the left hand side of (3)~ is 

i~- ORIT i=Or l 

while the corresponding difference for (3)M is 

3 (T)M = a ~ -  Y a',71- v /3,. /.., 
i=-QM~T i~Or 

Clearly, the inequality (3)R ((3)M) is violated by x if and only if A ( T ) R > 0  

(a (T)M >0) .  
By definition, the inequality (3)~r c-dominates (3)~ if and only if ever), 0-1 vector 

x that violates (3),~ also violates (3)R. Hence (3)R c-dominates (3).~I if and only if 

A(T)R > 0  for all T_~ O such that ~1(T)M >0 .  (6) 

Condition (6) can be used to prove the following dominance property for 
inequalities of the type under discussion. 

Theorem 2. Let M ~ ~ and M c R ~_ N +. The inequality (3)~ c-dominates  (3)M if 

an only if 

(I Oj\ TI - -1)aj  < A ( T) M (7) 
J, R~:'vl 

for all T ~_ QM ~ O,p (including T = O) such that A (T )  M > O. 



2 8  E. Balas, J.B. Mazzola  / Nonlinear 0 - I  programming H 

Proof, We will show that the condition of the Theorem is equivalent to (6). From 
the definitions (see Theorem 1), 

R ~4 
ol o = o~o + ~ aj. 

jER \M 

Further, for i c OM, 

c~/R=min ao + Y a/, + ,~v aj 
j,5 R ',3,1 jz  R ', ~'Vl I ic Q/ 

and for i c QR\OM, 

{ M c~, e =min ~o + 

Thus for any T c_ O, 

(since c~) 1 <~ c~;y), 

a j, E a , / =  E 
j e R, M I i ~ Oj ) jq R \[14 [ i ~: Oj 

A ( T ) a = A ( T ) M +  ~ a j -  Y ( ~, a j )  
jqR\~-4 icQ"RIT j ~ R \ M [ i e O j  

aj. 

= A ( T ) M +  E a j -  E IOfiTlai (8) 
I E RLM j~ R\~I 

and therefore condition (6) holds if and only if (7) holds for all T_c O such that 

~ ( T ) M > 0 .  
It remains to be shown that (7) holds for all T_c O such that A(T)M > 0  if and 

only if it holds for all T c_OMwOr such that A ( T ) M > 0 .  The 'only if' part is 
obvious. To show the 'if' part, let To c_ O, To r QM w Or, be such that A (To)M > 0, 
and let T1 = Toc~ (OM W O~). Then A(To)M = A(TI )M,  and since a j >  0 for all j~  R 
a n d  T1 c To, if (7) is violated for T = T0, it is also violated for T = T~. [] 

Given a cover M, Theorem 2 can in principle be used to find an extension R of 
M (if one exists), such that the inequality (3)~ c-dominates (3)M. However,  the 
condition of Theorem 2 is in general not easy to check. We will show below that 
for the family of covers M that are minimal, the condition of Theorem 2 reduces 
to a simpler one, which can be checked in linear time. Before discussing that case, 
however, we wish to note that, unlike in the case of the sequential lifting procedures 
for linear inequalities in 0-1 variables (see, for instance, [1]), if one wishes to 
strengthen an inequality (3)M by expanding the cover M into a larger cover R with 
the required properties, this cannot always be done sequentially, i.e., by introducing 
the elements of R \ M  one at a time. This is illustrated by the following example. 

Example 2, In the inequality 

8XlX2-}- 5XlX5-~ 5XlX6-t- 4x2x3x4 + x3xs-F x4x6 ~ 12, 
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let the sets Oj, j =  1 . . . . .  6, be indexed f rom left to right. Tak ing  M = { 1 , 2 ,  3, 4}, 
we obtain  the inequali ty 

10-~1 + 1 0Jc2+ 4~3 + 4.~4+ 5~s + 5,~ ~ > 10. 

If we a t t empt  to expand  M by sett ing R = M w{5}, condit ion (7) is not met  for  

T = { 3 ,  5}. Similarly, if we set R = M u { 6 } ,  (7) is violated for T = { 4 ,  6}. Howeve r ,  
if we set R = M u {5, 6}, then (7) is satisfied for  all T such that  A (T)M > O. [] 

For  any M ~  % let C ( M ) = M w N - .  As ment ioned  earlier,  C(M) is a cover  for 
(2) if and only if M e  ~. If C(M) is a minimal  cover  for (2), M is a minimal  cover  
for  (2 + ) (but the converse  is not  necessari ly true).  

W e  now focus on the case when C(M) is a minimal  cover  for  (2). Recall  f rom 
Section 1 that  in this case aim =/3)" = ao M for all i ~ QM and j e  Q~ in (3)M,~. Fur ther ,  

if QM c~ O~ ~ 0 ,  then (3)M.~ is vacuous.  

Corollary 2.1. Let M c R c_ N +, On c~ Or = 0 ,  and let C(M) be a minimal cover for 
(2). Then the inequality 

E ~,~x,+ E ~,~,>~ (3)~ 
i~01~ i~O~ 

c-dominates (3),~ if and only if 

ie OR\QM 

Further, (3)n strictly c-dominates (3)M if and only if (9) holds and either a f  < a~ 
for some k e QM, or [31 < c~ for some I c Q~. 

Proof .  If C(M) is a minimal  cover  for (2), then since a l  u = flj = a ~  ~, V i e  0~4, j e  O,~, 
f rom the definition of A(T)M it follows that  A ( T ) M > 0  implies (OM\T)~ 
( O , , ~  T) = 0  and ~I(T)M = a  M . Fur ther ,  for any To_ Q.~4u O, ,  A ( T ) M > 0  implies 
T = OM. T h e r e f o r e  in this case 

,OfiT[aj= ~ ( ~ al), 
j~R\M ieOR~OM jeR\  liEOj 

and thus condit ion (7) of T h e o r e m  (2) becomes  

iSOR~OM jeR\Ml i~Oj  j eR \ M 

which is the same as (9). Thus  (9) is necessary and sufficient for  (3)2~ to c -domina te  
(3)M. 

Assume now that (3)R strictly c-dominates (3)M. Then there exists a 0-1 vector 
x with support O ( x )  = T that satisfies (3)M but not (3)R. Thus there exists either 

R kE QM\T such that  a R < ~o ,  or IE Q~ ~ T such that/31 < a ~ .  
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Conversely, if there exists k e OM such that c~ < ao a, then x~ 1} # defined 
by O(x ~ = Ol{k} satisfies (3)<~1 but not (3)a; and if there exists le  O~ such that 
/3t<crff, then x ' e {0 ,  1} q defined by O(x*)={l} satisfies (3)M but not (3)R. [] 

An important practical consequence of Corollary 2.1, which is used in the 
Algorithm of the next section, can be stated as follows. For M_c N +, we define 

E, (M)={ jeN+IJQ,  IO, , ]= i } ,  i =0 ,1  . . . . .  p, 

where p = maxj~ .,,,- lo f t  QMI, and denote E ( M )  = Eo(M) ~ El (M). (This set E ( M )  

is the same as the one used in [6].) 

Corollary 2.2. Let M and R be as in Corollary 2.1. f f  R_~ E(M) ,  then (3)R 
c-dominates (3)v/. 

Proof. Let R c_ E ( M )  and denote R~ = R c~ E~(M), i = O, 1. Then R = Row R~, and 

{01 for j e  R.  
I(O~XO,,.,) r GI = f o r j e  R,. 

Hence 

,'vl R V ~ a =  y a j < a ,  + V a j = ~ o  
i.z C)a ~. 0~! J~ R j jc R 

i.e., condition (9) of Corollary 2.1 is satisfied. [] 

Thus any minimal cover M c_ N + for (2 +) can safely be extended to include all 
terms in E ( M ) ,  without weakening the inequality (3)M. The computational effort 
required to identify E ( M )  and extend M to E ( M )  is linear in q. However, we can 
often go beyond E ( M ) ,  as will be clear when we restate Corollary 2.1 in slightly 
different form. 

Corollary 2.3. Let M and R be as in Corollary 2.1, and let R~=R ~ E i ( M ) ,  i= 
1 . . . . .  p. Then the inequality (3)~ c-dominates (3).vl if and only if 

~ [ ( i - 1 ) V  a , ]<  ~ a j -b .  (10) 
i = 2  j c  R,  j (  R o 

Further, (3)u strictly c-dominates (3)~t if and only if (10) holds and either 

___ a j>  b ( l l )  
i~RIk~Q 

for some k c O,~, or 

aj+ ~w a t>  b (12) 

for some I c O~. 
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Proof .  We show that  condit ions (10), (11) and (12) are  equivalent  to the condit ions 

of Corol la ry  2.1. 

For  i c OR \ QM, 

~ = V aj = V a/ (since for j ~ M, i r  Q/), 
j ~ R I M l i ~ O i  ] e R l i ~ O  i 

while 

aft= E a/- b. 
j e R  

Thus  condit ion (9) of Corol la ry  2.1 amounts  to 

ie  O/r i~Ol,:\O~,t j e R [ i ~ O j  

= = ao ). (13) Y I(OR\OM) c~ O,I aj < E a j -  b ( R 
j<R j c R  

Now R = (_JiP_o Ri, and for  jc Ri, ] (Qn\OM) c~ O/] = i, i = 0, 1 . . . . .  p. Hence  (13) 
can be wri t ten as 

Z aj+~ i a~ < Z a/+ 2 a/+ a~ - b  
]~R I i = 2  jE i j cRo  ]'oR 1 i=2 j i 

or, equivalently,  

Y~ a j - b > ~  i a, a, = ~  ( i - 1 ) X  a/ , 
j ~R  0 i = 2  J i i = 2  1 ~ i = 2  j eR i  

which is precisely (10). Thus  (10) is equivalent  to (13), hence to (9), and this p roves  
the first s ta tement .  

On the o ther  hand,  the condit ion a ~  < aRo (for some k ~ QM) of Corol la ry  2.1 
can be res ta ted as 

}~ a/< ~ a/-b 
.t~-R]k6Oj jER 

which is equivalent  to (11). Also,  the condit ion / 3 t < a o  n (for some l e  O9) can be 
writ ten as 

[a/l< }~ a/-b, 
j~-N ] / = ~ ( j )  j ~ R  

which is the same as (12). This proves  the second s ta tement .  []  

Condi t ion (10) of Corol la ry  2.3 gives the precise extent  to which a minimal  cover  
M for  (2 +) (such that  QM ~ Q ,  = 0) can be ex tended  beyond the sets Eo(M) and 
Ej (M) ,  into sets Ei(M) for i/> 2. This is extensively used in the Algor i thm descr ibed 
in Section 3. 
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In particular, replacing the inequality (2) by the set of inequalities 

f'~(x)+ ~ lajlY,,,j~<~b(=b - E_a/) ,  ~ c e P ,  (5)~ 
,tEN j c N  

we have 

Corollary 2.4. Let M be a minimal cover for (5)~ for some ~ ~ ci2-, let M c R ~ N, 
and Ri = R ~ Ei(M), i=0 ,  1 . . . . .  p. Assume R satisfies OR~N+ C~ O~ =0. Then the 
inequality 

R 

i~ Or~. :v" iE QR...,,,; 

c-dominates the generalized covering inequality 

Z L +  5~ x , ~ l  (14)M 
i~_ OM~,N ~ i~ OM~:,'- 

if and only if 

E ( i -  aj < 2 a,-/~; (15) 
i=2 ~ i JcRo 

and (14)R strictly c-dominates (14)M if and only if (15) holds and there exists k e OM 
such that 

Z a,> ~. (16) 
j c R ] k ~ . O j  

Proof. Specialize Corollary 2.3 to inequality (5)~. [] 

Again, the computational effort involved in checking whether conditions (15), 
(16) are satisfied for some R c_ N \ M  is linear in q. 

The following example illustrates the usefulness of these results for obtaining a 
more compact linear system equivalent to a nonlinear inequality (2) than the set 
of generalized covering inequalities. 

Example 3. Consider the multilinear inequality 

6XlX2X3X 4 -~- 4X t X 5 -- 3X3X4X 6 q- 2x~ X2X4X 7 4:- 2X3X4X 8 <~ 7. (17) 

This inequality is equivalent to the system defined by the six generalized covering 
inequalities 

Xl -~ -'~2"~ -~3 ~- )~4 -'1- -~5 -~- X6 ~ 1, 

)el "F )C2"+ 9~3 "/r s -1- 3~5 "4" )C8 ~ 1, 
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51 "~ 52 -{- -~3 -'}- -~ 4 -I- X6 -[- .~ 7 />1, 

51 + s 53 + 54 -'I-X 6 +58~>1, 

51 +.,~'2 + 53 + 54+-~5 + X6+ 57 + 5,,,; ~ 1, 

derived from the minimal covers {1,2, 3}, {1,2, 4}, {1,2, 5}, {1, 3, 4}, {1, 3, 5}, and 
{2, 3, 4, 5}, respectively, of the implied inequality 

6XjX2X3X4 + 4XlXs + 35o + 2XlX2X4Xv + 2X3X4X8 <~ 10. (17),p 

The last generalized covering inequality is the only redundant one. 
Letting M ={1, 2, 3}, it follows that QM ={1, 2, 3, 4, 5, 6}. Thus Eo(M) ={1, 2, 3} 

and E I ( M )  = {4, 5}. Therefore,  letting R = M w Eo(M) w Ex(M) ={1 . . . . .  5}, from 
Corollary 2.2, the inequality 

751 + 752 + 753 + 7-G + 455 + 3 X6 + 2X7 + 2 X8 ~> 7 (3) ~,, 

c-dominates inequality (3)M.,, which is the first of the above six. Since the condition 
a~ "~ < a ~  of Corollary 2.1 is satisfied for k = 6, (3)R., strictly c-dominates (3)M.r 
In fact, (3)R.~ (strictly) c-dominates all of the generalized covering inequalities and 
is thus equivalent to (17). [] 

We conclude this section by defining an alternative linearization of (2). To be 
specific, if we consider (2) to be a linear inequality in the 0-1 variables 

Yj = H xi, j ~ N 
iE 0 l 

and denote it by (2)y, then w.l.o.g, we may assume that aj > 0 for all j c  N, and that 
a~ ~ a 2 ~ ' ' '  I> a,. Then applying the results of [1, 23, we can replace (2)y by the 
equivalent set of canonical inequalities 

Z y j<- lS l -1 ,  S e ~ .  (18)s 

Here ~(S) is the extension of S, defined as 

~ ( S ) =  S u { j ~  N \ S I j <  j,}, 

with Jl = m i n s j ;  while Yg is the family of strong covers for (2)y, where a minimal 
cover S is called strong if there exists no minimal cover T #  S such that IT1 =lSI 
and ~e(S) G ~(T).  

For any given S c  Y~, rewriting (18)s in terms of x, we can linearize it using the 
above results. If we do this for every S c ~, we obtain a new linearization of (2), 
different from the one discussed earlier. Naturally, the question arises as to how 
this new linearization compares with the one discussed above. Both approaches 
were implemented and tested, and the computational results are reported in 
Section 4. 
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3. An algorithm for solving mullilinear 0-1 programs 

We now describe several variants of an algorithm for the problem (MLP) stated 
at the beginning of this paper. If the objective function fo has rational coefficients, 

then it can be linearized by introducing a new (integer) variable z (or its binary 
expansion), and amending the constraint set by one new inequality involving z and 
the nonlinear part of f0. Thus, w.l.o.g, the multilinear 0-1 program can be stated 
in the form 

Max ~ cixi, 
i~-O 

akj( l~g, Xil ~ ~O / k e K, (MLP) 
]~ Nk i 

x i = 0 o r  1, icQ,  

where the set Q is now defined as 

Q = U Qkj. 
kcK 

j~ N~ 

The algorithm that we present below, like the one by Granot  and Granot  [9] (see 
also [10], and [11]), generates some linear inequalities implied by the constraint set 
of (MLP), and solves the resulting linear 0-1 program, which is a relaxation of 
(MLP). At iteration t, let this linear 0-1 program be denoted (P,). If an optimal 
solution to (Pt) is feasible for (MLP), then it is optimal for (MLP) and we stop. 
Otherwise we generate a new set of linear inequalities implied by the constraints 
of (MLP), such that the new inequalities cut off the solution to (P,), and solve the 
linear 0-1 program (P,+~) obtained from (P,) by adding the new inequalities. Since 
at every iteration the solution to the current problem (/9,) is cut off, the algorithm 

is obviously finite. 
Our  procedure differs from that of [9, 10, 11] mainly in that we use a more 

compact linearization, based on the theory of Section 2. To be more specific, we 
start with a set covering inequality associated with a minimal cover, but then use 

Theorem 2 and its corollaries to extend the cover so as to obtain as strong an 
inequality as the conditions of the corollaries permit. 

The reason for starting with inequalities associated with minimal covers, is that 
for this class we can check in linear time whether the inequality is dominated by 
another  one and if so, generate a dominating inequality. Experience shows that the 
proportion of minimal covers that can be extended is high (90% is a typical case) 
and tends to increase with the number  of terms per constraint. Since the use of 
extended covers tends to produce smaller cardinality linear equivalents of each 
nonlinear inequality, it can also be expected to reduce the number  of iterations 
needed to solve (MLP). This is indeed the case, except for problems with few 
nonhnear  terms per constraint, as shown by the computational experience discussed 
in the next section. 
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While the procedure  outlined above is finite, it may  take many iterations. We 

found it therefore  preferable not to solve (P,) exactly at every iteration, but use a 

heuristic to find an approximate  solution. We proceed this way until, at some 

iteration t, an approximate  solution to (P,) is found to be feasible to (MLP). At  

that point we replace the heuristic by an exact algorithm. The particular heuristic 

that  we use on the sequence of linear 0-1 programs (P,) is the Pivot and Complement  
procedure  of Balas and Martin [3]. When  we switch to an exact algorithm, we use 

a branch and bound/ implic i t  enumera t ion  procedure  implemented by Clarence H. 
Martin. 

A n o t h e r  deviation from the above outline is that we found it convenient  to 

periodically remove some of the linear inequalities generated earlier. This is done  

according to a particular procedure  so as to insure that convergence is maintained. 

Finally, to facilitate the search for minimal covers and their extensions, used in 
the linearization procedure ,  we start the algori thm by ordering once and for all the 

terms of each constraint  according to decreasing absolute values of their coefficients. 

As a starting solution we use the optimal solution to the unconstra ined problem, 

i.e., x ~ defined by x7 = 1 if ci > 0 and x~i ~ = 0 otherwise. 
A flowchart of the algori thm is shown in Figure 1. 

The heart  of our procedure  is of course the generat ion of linear inequalities. The  

rules to be described below are essentially based on Corol lary  2.4. 

First, it should be stated that at every iteration we generate one linear inequality 

f rom every inequality of (MLP) violated by the current  solution x ~ except for the 

first iteration, when we generate  one linear inequality (using the cover  M = N)  f rom 

every constraint  of (MLP),  whether  violated or  not (the exception was adopted  as 

a result of computat ional  experimentat ion).  
To describe the procedure ,  let 

ai( Ho xi)<~b (2) 
j ~ N  i j 

be one of the inequalities violated by x", and let [a~]/> [a2] > "" >t ]a,,]. 
Denote  

P+(x~ = J oN+ H xi = 1  , = j c N  1-] xi , 
i ~ O.i i t  r 

with P(x () = P+(x ~ • P (x~ Recall that inequality (2) gives rise to the family of 
(all positive) inequalities 

j ~ N  + \i~Oj j c N -  j ~ N "  

where  ~o e q~ . Define 

q~ (x~ @ - I x  c~ violates (5),}. 
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( S t a r t )  

+ 
Reorder terms] 

x~ ~=~1 ifc i>0 
Set 

' [0 otherwise 

yes ~ Find optimal solution .r ~ 
to linear 0-1 program 

Generate new r ~  no 
linear inequalities 

Drop some old 
linear inequalities 

E 

Find approximate solution x c~ 
to linear 0-1 program 

l 
Fig. 1. Flowcharr of the algorithm. 

It is easy to show that  ~ - ( x  ~ r 0; in fact, the a lgor i thm outl ined below genera tes  
a mapp ing  ~0 ~ 4~ (x~ Thus,  given x ~ and the family of nonl inear  inequali t ies (5) , ,  
~0 c q~-(x ~ (corresponding to a part icular  inequali ty (2) violated by x~ our  cut 
genera t ing  algori thm consists of the following sequence  of steps: 

1. Finding a minimal  cover  M c _ P ( x  ~ and a set of ~o(j), j e M c ~ N - ,  such that  
x ~ violates the cor responding  general ized cover ing inequality. 
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2. Extending  M to a maximal  set R satisfying condit ion (15), and such that  
(R\M)c_N +. 

3. Choosing ~( j )  for  j~ N- \R in a way that  avoids as much as possible producing 
nonzero  coefficients for  c o m p l e m e n t a r y  pairs of variables,  and using it to de te rmine  

the remaining coefficients of the inequality. 
A discussion of each step follows. 
1. Le t  P(x ~ ={i~ . . . . .  i,} be o rde red  by the same rule as N, i.e., ik < ik+~, k =  

1 . . . . .  t - 1 .  Let  j~{1  . . . . .  t} be the largest integer  such that  {ij, ij+l . . . . .  i,} is a 
cover,  and let l ~ {fi j +  1 . . . . .  t} be the smallest  integer  such that M = {ij, ii+l . . . . .  i~} 
is a cover  for (2). Then,  obviously,  M is minimal.  

Next  choose q~(j) for  j ~  M r~ N -  to be the first i ~ Qj such that  x~ = 0, a choice 
consistent  with the r equ i rement  that  q~ ~ q~ (x~ For  any ~ ~ q~-(x ~) chosen in this 
way, M satisfies the r equ i rement  of Corol la ry  2.4, i.e., OMr O~ =(3, and the 
general ized covering inequali ty 

Z x,+ Y x, 1>l 

cor responding  to M is violated by x c~. 
2. Const ruc t  the extension R of M into N + as follows. As in Section 2, define 

E~(M)+={jcN+JJQj\QM[=i}, i = 0 ,  1 . . . . .  p, 

and set E(M)+=Eo(M)+wE~(M) +. First add to R the set E(M) +. Next for  
i = 2 . . . . .  p, consider the e lements  of E~(M) + in o rder  of increasing aj, and include 

into R as many  as can be included without  violating condit ion (15). If all j~ E,(M) ~ 
can be added to R, set i ~ i + 1 and repeat .  Otherwise  stop with the last e lement  of 

E~(M) ~ whose inclusion into R does not lead to a violation of (15). 
3. T o  define q~(j) for the remaining indices, i.e., for j ~  N \R, we proceed  as 

follows. Let  R be the ex tended  set resulting at the end of s tep 2 and let c ~ ,  

i ~ Q u {0}, be the cor responding  coefficient values, where  R and the c~  are  updated  
by combining  variables and their  complemen t s  whenever  such pairs occur. Since it 

is possible for  ei ther -~ or x~ (but never  for both)  to appea r  in the result ing inequali ty 
(3)R.~, we part i t ion O into Q~ ,  O~  and O~', where  Q+R-={iCQR]-~i appears  in 
(3)R.~}, OR ={i  c OR ]xg appears  in (3)R.~}, and O ~  O \ ( O ~  u Or~ ). We then choose  
r  according to the following rule: 

If Qj\QR ~0, let q~(j) be the first index in Qi\QR. 
If Q\QR =~ ,  but Oir~ O~ #~), let ~p(j) = h, where  c~ ~, = m a x { a ~ l i ~  Q~r~ O~}.  
Otherwise ,  let r  = k, where  a ~  = min~:o, a ,  ~. 

and n + Once  ~0(j) is selected, set R ~ R ~ { r  upda te  c~:~) c~o, as well as OR, 
O~  and O ~ (combining variables,  if necessary) ,  and proceed  to the next je N-\M. 
This choice is again consistent  with the requ i rement  that  q~ e 45-(x~ 

Having  genera ted  the linear inequality, we el iminate  the c o m p l e m e n t e d  variables,  
i.e., restate- the inequali ty in the original variables,  and add it to the current  l inear 

0-1 program.  
Next  we illustrate the p rocedure  on an example .  
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Example 4. Consider the multilinear inequality 

16x2x4xs-10x2x6+ lOxlX2X3+ 5xix_~-4x_~xv+4x3x5 <~ 1, (19) 

which is violated by x~ (1,1 ,1 ,  0 ,1 ,1 ,  0). We have Q1= {2, 4, 5}, Q,,={2,6}, 
Q3={1,2,3},  Q4={1,5}, Q5={5,7}, Q~,={3,5}. Further, N§  N - =  
{2, 5}, and P+(x ~ ={3, 4, 6}, P-(x") ={5}, P(x") ={3, 4, 5, 6}. 

The corresponding inequality with positive coefficients is (in general form) 

16X2XaX5+ 102~t21 + lOx~x2x3+ 5XlX5 + 42,p!s)+4X3X5 <~ 15, (20)~ 

where ~(2) and ~(5) depend on the choice of q~ E aS-(x~ 
1. We identify the minimal cover M ={3, 4, 5} for (19), which is also a minimal 

cover for (20)~. We then choose ~(5)=  7 and thus obtain 

QM ~,~,r = { 1,2, 3, 5}, Q.,,,~N- = {7}, 

Applying Theorem 1 to (20)~, we derive from the minimal cover M the generalized 
covering inequality 

21 -'}- 22 q- 23 dr" 25 "~ X7 ~ 1 (21) 

violated by x ~ 
2. We identify the sets E , (M)+={3 ,4 ,  6}, E,(M)§ and since E~(M)+=~3 

for i~>2, we have R = M u E ( M ) + = { 1 , 3 , 4 , 5 , 6 } ,  OR ={1 ,2 ,3 ,4 ,5 ,7} .  
3. For ] = 2  ( j e N - \ R ) ,  we set ~ (2 )=6 ,  since O2\OR ={6}, and update R by 

including {2}. Thus R ={1, 2, 3, 4, 5, 6}, and by applying Theorem 1 to (20)~ (with 
r = 6 and q~(5) = 7), we obtain from the extended cover R the inequality 

1521 + 2622 + 1423 + 1624 + 2525 + 10x6 + 4X7 ~" 34 

which is also violated by x ~ and which strictly c-dominates the generalized covering 
inequality (21). [] 

As mentioned earlier, we found it necessary to periodically remove inequalities 
from the linear 0-1 program in order to keep its size within manageable limits. The 
cut dropping procedure operates as follows. The set V of all inequalities generated 
during the procedure is partitioned into three subsets. V~ contains exactly one 
inequality generated at each iteration, namely the one derived from the most 
violated constraint of (MLP). Cuts in VI are never removed, as a guarantee that 
every solution to the linear 0-1 program generated during the procedure is cut off 
by at least one inequality. V2 consists of all inequalities associated with extended 
covers and not contained in V~, whereas V3 consists of the remaining inequalities 
(i.e., those associated with minimal covers that could not be extended). 

Whenever the number of inequalities in the linear 0-1 program attains a predeter- 
mined threshold value A, all inequalities in V3 not binding at the current solution 
are dropped. The subset V3 is our first preference for dropping, since it usually 
consists of the weakest inequalities of the current system. If removing the nonbinding 
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inequalities in V3 is not sufficient for accommodating all the inequalities generated 
at the current iteration, then the nonbinding inequalities in I/2 are also dropped. 
Finally, if removing all the nonbinding inequalities of 1/~ and 1/2 is still insufficient, 
we drop an appropriate number of binding inequalities in 1/3 and, if necessary, in V2. 

This completes the description of the main version of our algorithm, henceforth 
called Algorithm I. Two additional versions of the algorithm were implemented, 
which will now be briefly described. 

Algorithm II differs from Algorithm I in that it generates linear inequalities not 
directly from an inequality (2) of (MLP), but from an extended canonical inequality 
implied by (2)y, as described at the end of Section 2. The choice of the inequality 
(2), respectively (2)~,, as well as that of the minimal cover M, is the same as in 
Algorithm i. Another minimal cover C is then identified, such that ICI = IM] and 
f ( M )  _c f ( C )  (preferably, but not necessarily, C ~ M). The cut generating pro- 
cedure described above is then applied to the canonical inequality defined by 8 (M)  
and expressed in terms of x, for which M is still a minimal cover. Everything else 
is as in Algorithm I. 

Finally, Algorithm III differs from the other two versions by the fact that it derives 
only generalized covering inequalities corresponding to minimal covers without 
attempting to strengthen them by extending the covers. For this version, the choice 
of the minimal cover is done differently, namely by setting M ={i, . . . . .  ik}, where 
k is the smallest integer such that M is a cover. As a result, M (which is of course 
minimal) is of smaller cardinality than the cover selected in Algorithm I which in 
the absence of the extension procedure is preferable. The superiority of this choice 
of minimal cover for this particular algorithm was unequivocally supported in the 
computational testing. The other ingredients of Algorithm III are the same as those 
of I and II. Algorithm III may be viewed as our version of the algorithm of Granot  
and Granot  [9]; the differences from the latter (improvements in our view) having 
been adopted in order to make it comparable with Algorithms [ and II. 

Algorithm I, which for all but very sparse problems is the most efficient of the 
three procedures implemented, was also run in the heuristic mode, i.e. by removing 
all steps subsequent to the finding of a feasible solution to (MLP). The purpose of 
this exercise was to obtain information on the quality of the solutions obtainable 
by such an approach. 

4. Computational results 

The algorithms discussed above were coded in FORTRAN and tested on a series 
of randomly generated test problems, using an IBM 3081 Model K computer and 
a FORTRAN H level compiler. 

The first set of test problems consists of 30 multilinear 0-1 programs, 5 in each 
of 6 classes that differ among themselves in the number of terms per constraint. 
The number of constraints and variables (denoted by m and n respectively) is the 
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same in all of these  p rob l ems  (m = 10, n = 3 0 ) ,  and  the n u m b e r  of t e rms  per  

cons t ra in t  is r andomly  drawn from a un i form d is t r ibu t ion  on the in terva l  [3, T],  

whe re  T is shown in Tab le  1. The  cons t ra in t  coefficients akj a re  in tegers  un i formly  

d i s t r ibu ted  on [ - 5 ,  15], while the bk are in tegers  d rawn f rom a un i fo rm d is t r ibu t ion  

on (0.3Sk, 0.8Sk), where  sk =}~jaki. The  cost  funct ions  are  l inear ,  with in teger  

coefficients un i fo rmly  d i s t r ibu ted  on [1 ,20] .  Final ly ,  the n u m b e r  of var iables  pe r  

t e rm is un i fo rmly  d i s t r ibu ted  on [2, 6]. The  results  a re  shown in Tab le  1. O u r  

remain ing  55 test p rob l ems  were  gene ra t ed  in the  same m a n n e r  as the  first set, with 

the  values of rn, n and T as indica ted  in the tables.  The  test p r o b l e m s  are  avai lab le  

upon  request .  A l g o r i t h m  I was also tes ted on a set of p rob l ems  from the l i te ra ture .  

Table 1 

Number of problems solved and average CPU time (seconds) ~ 

m n T Algorithm I Algorithm II Algorithm Ill 

No. solved Time No. solved Time No. solved Time 

10 30 10 5 2.6 5 1.3 5 0.6 
10 30 20 5 {I.2 5 0.2 5 0.2 
10 30 30 5 2.8 5 10.8 5 14.6 
10 30 40 5 2.6 3 24.6 3 24.8 
10 30 50 5 8.5 3 33.2 2 29.9 
10 30 6(} 5 4.5 4 25.2 2 26.9 

" 5 problems per class. 
Limit set to 1 minute CPU time or 150 iterations per problem. 
Time averaged for all 5 problems. Time for problems not solved within 1 minute taken to be 1 minute. 

Al l  test  p rob lems  were  run under  two kinds of l imi ta t ions  (as ind ica ted  in the  

tables) :  a t ime limit (1 or  5 minutes ,  depend ing  on the p h e n o m e n o n  s tudied)  and 

a l imit  (150 or  200) on the n u m b e r  of i tera t ions ,  hence  on the n u m b e r  of n o n r e m o v -  

able  inequal i t ies  gene ra t ed ,  due to space l imitat ions.  The  la t te r  l imit  is different  

f rom the threshold  value  zl that  t r iggers  the cut  d r o p p i n g  rout ine .  In  A lgo r i t hms  I 

and II ,  af ter  some expe r imen t a t i on  A was set to 2n, i.e., twice the  n u m b e r  of 

var iables ;  whereas  in A l g o r i t h m  III  compu ta t i ona l  tests ind ica ted  a h igher  value,  

and  a was set equal  to the  max imum n u m b e r  of i t e ra t ions  (150 or  200).  

Al l  C P U  times r e p o r t e d  are  exclusive of i n p u t / o u t p u t  t ime.  The  m a x i m u m  input  

t ime for  any of the test  p rob l ems  was 0.02 seconds.  

Tab le  1 shows that  a l though A lgo r i t hm III  pe r fo rms  somewha t  be t t e r  than 

A l g o r i t h m  I on the p rob l ems  with T =  10 and T = 20 (i.e., with 6 and 12 te rms per  

cons t ra in t  on the  average ,  respect ively) ,  its p e r f o r m a n c e  quickly de t e r io r a t e s  for 

h igher  values  of T, as ref lected in the sharp ly  decreas ing  n u m b e r  of p rob l ems  solved 

within the limits a l lowed.  This concurs  with the obse rva t ion  of G r a n o t ,  G r a n o t ,  and  

Vaessen  [11] that  for  their  a lgor i thm (which pe r fo rms  p h e n o m e n a l l y  well on sparse  

p rob lems) ,  CPU t ime appea r s  to grow exponen t ia l ly  with T. A t  the same t ime,  the  
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per formance  of Algor i thm I is only modera te ly  affected by the increase of T. As 

for Algor i thm II, its per formance  is not bet ter  than that of III on the problems with 

small T, and considerably worse than that of Algor i thm I on the problems with 

large T. Thus  the per formance  of Algor i thm II will not be fur ther  pursued.  

Table  2 compares the per formance  of Algor i thms I and IIl  on the same set of 

problems with the t ime and i terat ion limits for Algor i thm I l l  increased to 5 minutes  

and 200 i terations,  respectively. 

Table 2 

Number of problems solved and average CPU time (seconds)" 

rn n T Algorithm I b Algorithm 111 c 

No. solved Time No. solved Time 

10 30 10 5 2.6 5 0.6 
10 30 20 5 0.2 5 0.2 
10 30 30 5 2.8 5 14.6 
10 30 40 5 2.6 4 111.2 
10 30 5(/ 5 8.5 3 91.5 
10 30 60 5 4.5 4 76.9 

5 problems per class. Time averaged for all 5 problems. 
b Limit set to 1 minute or 150 iterations per problem. 
c Limit set to 5 minutes or 200 iterations per problem, Time for problems 

not solved within 5 minutes taken to be 5 minutes. 

The results show an even sharper  contrast  be tween the sensitivity of the two 

algori thms to an increase in the n u m b e r  of terms per constraints.  We conclude that 

the more  compact l inear izat ion based on the theory of Section 2 definitely pays off 

for problems with more  than 12-15 terms per constraint .  

In  Table  3 we compare  the average n u m b e r  of i terat ions and cuts ( l inear 

inequali t ies)  generated,  in order  to bet ter  unders tand  the difference in the perform- 

ance of the two algorithms. We see that as T is increased from, say, 30 to 60, the 

n u m b e r  of i terat ions and cuts increases by more  than 400% for Algor i thm III, as 

opposed to 8 - 1 7 %  for Algor i thm I. On the other  hand,  while the percentage of 

covers that can be extended (in Algor i thm I) increases with T, the increase is only 

modest ,  since this percentage is high to begin with (i.e., for all p roblem classes). 

This modest  increase cannot  fully account  for the sharply increasing difference in 

the n u m b e r  of i terat ions required  by the two Algori thms.  What  the table does not 

show, however,  is that as the n u m b e r  of terms per constraint  increases, not  only 

does the percentage of covers that can be extended increase, but more  important ly ,  

there is a significant increase in the extent  to which every minimal  cover can be 

extended:  with more terms per constraint ,  many more  indices are included in the 

extension of each cover. 
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Table 3 

Number of iterations and of cuts a 

m n T Algorithm I t, 

Iterations Cuts Percent covers 
extended 

Algorithm IlK 

Iterations Cuts 

10 
I0 
10 
10 
10 
1(1 

30 10 5.8 30.8 89.6 
3() 20 4.0 25.0 94.5 
30 30 8.4 39.4 95.3 
30 40 9.6 40.0 95. I 
30 50 I2.0 46.8 99.5 
3(1 6(/ 9.8 42.6 98,3 

8.6 30.0 
7.8 28.4 

23.0 92.8 
45.4 d 172.0 d 

75.6 ~ 303.0 ~ 
109.0 e 436.2 d 

5 problems per class. Values averaged for all 5 problems. 
u Limit set to 1 minute or 150 iterations per problem. 
r Limit set to 5 minutes or 200 iterations pcr problem. 
'J Only 4 problems solved to optimality. 

Only 3 problems solved to optimalit.~. 

In  T a b l e s  4 a n d  5 w e  i l l u s t r a t e  t h e  e f fec t  o f  a n  i n c r e a s e  in t h e  n u m b e r  o f  v a r i a b l e s  

a n d  c o n s t r a i n t s ,  r e s p e c t i v e l y ,  o n  t h e  p e r f o r m a n c e  of  A l g o r i t h m  I. 

Table 4 

Eltect of an increase in the number of variables (Algorithm 1) '' 

m n T No. solved Time Iterations Cuts Percent covers 
(seconds) extended 

10 30 30 5 2.8 8.4 39.4 95.3 
10 40 30 5 6.4 11.8 44.2 96.5 
1() 5(I 30 5 17.7 11.4 45.2 96.3 

5 problems per class. 

Table 5 

Etieet of an increase in the number of constraints (Algorithm I)*' 

m n T No. solved Time Iterations Cuts 
(seconds) 

Percent covers 
extended 

5 30 30 5 (I.4 5.8 17.0 95.1 
10 30 30 5 2.8 8.4 39.4 95.3 
15 30 30 4 75.2 14.8 81.4 95.3 
20 30 30 5 4(I.7 22.2 109.6 92.6 

a 5 problems per class. 
Limit set to 5 minutes or 150 iterations per problem. 
Values averaged for all 5 problems. Time for problems not solved within 5 minutes taken to be 

5 minutes. 
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Tab le  4 shows that  as the  n u m b e r  of var iables  increases  f rom 30 to 50, there  is 

a co r r e spond ing  increase  in the  t ime requ i red  to solve the  p rob lems .  This is of 

course  to be expected ,  since the n u m b e r  of var iables  increases  to the  same ex ten t  

in the  l inear  0-1  p rog ram as in (MLP) .  Note ,  however ,  that  the  n u m b e r  of i t e ra t ions  

increases  by only abou t  �89 as the  n u m b e r  of var iables  increases  t h ree  t imes. Tab le  

5 shows a m a r k e d  increase  in comput ing  t ime as well  as the  n u m b e r  of i t e ra t ions  

and cuts as the n u m b e r  of cons t ra in ts  increases.  This is due  to the  fact that  the  

n u m b e r  of inequal i t ies  in the  l inear  equiva len t  of (MLP)  sharp ly  rises with the 

n u m b e r  of const ra in ts  of (MLP) ,  hence  so does  the  n u m b e r  of i t e ra t ions  requ i red  

to gene ra t e  an a p p r o p r i a t e  subset  of the l inear  inequali t ies .  

A l g o r i t h m  I was also tes ted  on the series of p rob lems  solved by Taha  [21]. 

A l t h o u g h  these  p r o b l e m s  are  not  large and have re la t ive ly  few te rms  per  const ra in t ,  

we ran them in o r d e r  to observe  the  pe r fo rmance  of the a lgor i thm on a known set 

of mul t i l inear  0-1 p r o b l e m s  with non l inea r  ob jec t ive  functions.  As  descr ibed  in 

Sect ion 3, we chose to l inear ize  the  ob jec t ive  funct ion by in t roduc ing  one  new 

cons t ra in t  and an a p p r o p r i a t e  n u m b e r  of new 0-1  variables .  The  resul ts  of this test 

are  r e p o r t e d  in Tab le  6. The  symbols  m and n deno t e  the  n u m b e r  of const ra in ts  

and  var iables ,  respect ive ly ,  of the  or iginal  p rob l ems  (before  the  above  men t ioned  

t r ans fo rmat ion) .  P rob l em 2C, which took  41.4 seconds  to solve, seems to be very 

t ight ly cons t ra ined .  

Table 6 

Algorithm 1 tested on Taha's [21] problems 

Problem m n Average no. of Time Iterations Percent 
terms per (seconds) covers 
constraint extended 

IA 3 5 4.3 0.02 4 75.0 
1B 3 10 4.3 0.86 36 16.2 
1C 3 20 4.3 5.42 56 9.4 
2A 7 5 6 0.07 5 82.8 
2B 7 10 6 0.15 6 69.2 
2C 7 20 6 41.40 91 42.6 
2D 7 30 6 6.81 37 46.1 
2E 7 5 6 0.03 1 100.0 
3A 6 10 4.7 0.02 2 100.0 
3B 6 10 4.7 0.02 3 100.0 
3C 6 10 4.7 0.04 6 100.0 
3D 6 10 4.7 0.18 9 95.8 
3E 6 10 4.7 0.17 8 100.0 

Fina l ly ,  in the  last two tables  we examine  the pe r fo rmance  of A l g o r i t h m  I in the  

heur is t ic  mode .  When  used as a heurist ic ,  A l g o r i t h m  I s tops at the  first ( app rox ima te )  

solut ion of the l inear  0-1 p rog ram found  by Pivot  and C o m p l e m e n t  that  is feasible 

to (MLP) .  When  Pivot  and  C o m p l e m e n t  fails to find a feasible solut ion,  the branch  

and bound  p rocedu re  is app l i ed  until  it finds a first feasible solut ion.  
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Table 7 

Algorithm I in the heuristic mode" 

m n T No. Iterations Time Proximity 
solved (seconds) to LP bound 

(%) 

Proximity 
to integer 
optimum (%) 

10 30 10 5 5.0 0.3 3.5 0.00 
10 30 20 5 4.0 0.l 1.8 0.25 
10 30 30 5 8.2 0.6 2.7 0.08 
10 30 40 5 8.8 0.6 2.4 0.07 
10 30 50 5 11.2 1.1 2.4 0.14 
10 30 60 5 9.4 0.8 2.6 0.14 

5 problems per class. Values averaged for all 5 problems. 

The  l inear p rogramming  solut ion to the last l inear  0-1 program (more  precisely, 

the lowest value of any LP solved dur ing the procedure) ,  rounded  down to the 

neares t  integer,  provides an upper  bound for the op t imum of (MLP),  which we call 

the LP bound.  This bound  is guaranteed ,  but in most cases not  tight. For  the 

problems of Table 7 the integer  op t imum is also known,  so the quali ty of the 

heuristic solution can be measured  against the actual opt imum.  For  the problems 

of Tab le  8 this is not the case, and the only measure  available is the LP bound.  On  

both  counts,  the quali ty of the solut ions ob ta ined  by using Algor i thm I in the 

heuristic mode seems excellent,  and the computa t iona l  effort is modest.  

Table 8 

Additional tests with the heuristic" 

m n T No. solved Iterations Time Proximity to 
(seconds) LP bound (%) 

10 30 70 5 23.8 1.4 2.8 
l0 40 30 5 10.4 1.0 3.0 
10 50 30 5 ll.2 1.9 1.8 
10 50 40 5 14.0 3.3 1.8 
10 50 50 5 9.0 1.2 1.6 
5 100 30 5 7.0 0.6 0.4 
5 150 30 5 6.4 1.0 0.4 
5 100 50 5 15.4 6.2 0.8 

" 5 problems per class. Values averaged for all 5 problems. 

We conclude from this computa t iona l  study that Algor i thm I, based on the 

l inearizat ion of [6] and Section 2 is an efficient procedure  for solving mul t i l inear  

0-1 programs to optimality.  In part icular ,  problems having more  than 20 terms per 

constraint  have now been  opened  up to exact solution. The use of the first phase 

of the algori thm as a heuristic is also an at tract ive opt ion for problems with many 
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constraints and/or  variables, in that high quality solutions can be obtained at a 
modest computational cost. 
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