
Mathematical Programming 25 (1983) 183-198 
North-Holland Publishing Company 

INTEGRAL DECOMPOSITION IN POLYHEDRA 

Colin McDIARMID 

Wolfson College, Oxford, England 

Received 17 September 1981 
Revised manuscript received 13 April 1982 

We say that a polyhedron P satisfies weak integral decomposition if whenever an integral 
vector is the sum of k vectors in P it is also the sum of k integral vectors in P. This property 
is related to rounding results for packing and covering problems. We study the property and 
two related properties, and give results concerning integral polymatroids, totally unimodular 
matrices and network flows, pairs of strongly-base-orderable matroids, and branchings in 
directed graphs. 
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1. Introduction 

We say that a (convex) polyhedron P in R" satisfies weak integral decom- 
position (WID) if whenever  an integral vector c is the sum of k vectors in P 

(that is, c E kP), then c is also the sum of k integral vectors in P. This property 

is closely related to certain rounding properties for packing and covering 

problems--see  Section 2. Four of the most interesting examples of polyhedra 
satisfying WID are the following. 

(a) Any matroid polyhedron, or more generally any integral polymatroid [4, 15, 
19, 27]. 

(b) Any polyhedron of the form { x E R "  :Ax<~b} where A is totally uni- 

modular ( m x  n) matrix and b is an integral vector in R m. A special case is the 

polyhedron of feasible circulations in a network [1, 2, 24, 30]. 

(c) The intersection of the polyhedra of two strongly-base-orderable matroids 
[20]. Recall that such matroids include transversal matroids and gammoids. 

(d) The convex hull of the (0, D-incidence vectors of the branchings in a 
directed graph [4]. 

We shall see in Section 7 that also any integral polyhedron of dimension at 
most two satisfies WID. 

In this paper we consider also a property stronger than the weak integral 

decomposit ion property WID, namely the strong integral decomposition prop- 

erty (SID), and an intermediate property middle integral decomposition (MID). 
We shall see easily that 

SID ~ MID ~ WID; (1) 
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that the polyhedra in example (a) satisfy SID; that the polyhedra in example (b) 
satisfy MID but not necessarily SID; and that the polyhedra in examples (c) and 
(d) satisfy WID but not necessarily MID. Thus all these polyhedra satisfy WID, 
and indeed all satisfy 'equitable'  versions of WID (see below). 

Recall that a polyhedron P in ~n is integral if every  face contains an integral 
vector.  If P is pointed, that is, if P has an extreme point, this is equivalent to 
saying that every  extreme point of P is integral. Now suppose that P is integral 
and let Q be the polyhedron obtained by projecting P onto say its first m 
co-ordinates,  that is, 

Q = { x ~ R " : ( x , y ) ~ P  for s o m e y E ~ n  m}. 

Then the polyhedron Q is also integral, since the set of points of P projecting 
onto any given face of Q forms a face of P. We shall use this observation 
several times below. 

Before we define the properties MID and SID let us consider briefly the 
property WID. Recall that a polyhedron P satisfies weak integral decomposition 
(WID) if given any positive integer k and any integral vector  c in (k + I)P there 
exists k + 1 integral vectors in P which sum to c. A simple induction shows (as 
noted in [4]; see also the earlier paper [28]) that this is equivalent to insisting that 
if c is in (k + 1)P as above,  then there is an integral vector  x in P such that c - x 
is in kP, that is, insisting that there is an integral vector  x in the polyhedron 
Q = P n (c - kP). Now a vector  c is in (k + 1)P if and only if the polyhedron Q 
above is non-empty.  Thus the polyhedron P satisfies WID if and only if, given 
any positive integer k and any integral vector c such that the polyhedron 
Q = P n (c - kP) is non-empty,  there exists an integral vector  in Q. 

We say that the polyhedron P satisfies middle integral decomposition (MID) if 
given any positive integer k and any integral vector  c the polyhedron Q = 
P n (c - kP) is integral. It is immediate from the above reformulation of WID 
that if P satisfies MID, then it must satisfy WID. The property MID was 
introduced in [4], where it was shown that integral polymatroids satisfy it. 

Finally we say that the polyhedron P in R" satisfies strong integral decom- 
position (SID) if given any positive integer k and any integral vector  c the 
polyhedron 

Qk(C)=((x  I . . . . .  x k ) E E k " : x ~ P ( i =  l . . . . .  k ) , ~ / x ~ = c }  

is integral. Note  that if P satisfies SID, then it must satisfy MID; for the 
polyhedron P n ( c - k P )  is the projection onto its first n co-ordinates of the 
polyhedron Qk+~(c) above. Thus if P satisfies SID it must satisfy WID. This also 
follows immediately from the definitions, since if an integral vector  c is the sum 
of k vectors in P then the polyhedron Qk(c) above is non-empty and so if it is 
integral then it must contain an integral point. 

We have now as promised introduced the three integral decomposit ion prop- 
erties WID, MID and SID, and noted that the implications (1) hold. 
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We need a last batch of definitions. We define below an 'equitable '  and a 
'nearly uni form'  version of the weak integral decomposi t ion proper ty  WID. 

Given a family x ~ . . . . .  x k of integral vectors  in R n we say that it is equitable if 

x ~-  x J ~  < 1 for all i, j = I . . . . .  k; and that it is nearly uni form if further  1 - x  ~ -  

1 - x ~  < 1 for all i, j = 1 . . . . .  k. Here and elsewhere 1 denotes an appropriate  
vector  with each co-ordinate equal to 1, and so 1 �9 x is the co-ordinate sum of the 

vector  x. Note  that if the family x ~ .. . .  , x  g is equitable and if ka < ~ , ~ x i < ~ k b  

where a and b are integral vectors ,  then a ~< x ~ <~ b for  each i = 1 . . . . .  k. 
Let  us say that a polyhedron P in R" satisfies equitable weak integral 

decompos i t ion  (equitable WID) if whenever  an integral vector  is the sum of k 

vectors  in P it is the sum of an equitable family of k integral vectors  in P. We 
define nearly uni form weak integral decompos i t ion  (nearly uniform WID) analo- 
gously. It is s t raightforward to check the following proposition. 

Proposition 1.1. A polyhedron P in R" satisfies equitable W I D  if and only if 

P (3 B satisfies W I D  for  every 'integral box '  B o f  the f o rm  {x E R " :  a <<-x <~ b} 

where a and b are integral. A n d  P satisfies nearly uni form W I D  if and only if 

P A B satisfies W I D  f o r  every "generalised integral box '  B o f  the f o r m  {x ~ R": 

a <~ x <<- b, l <~ 1 �9 x ~ m}  where a and b are integral, and I and m are integers. 

Let us say now that a polyhedron P in R" satisfies equitable MID if the 
intersection of P with any integral box {x E R" :a <~x ~< b} satisfies MID, and let 

us define nearly uniform MID analogously. Further,  let us say that P satisfies 
equitable SID if the intersection of the polyhedron Qk(e) with any integral box in 
R k" is always integral, and let us define nearly uniform SID analogously. I f  P 

satisfies equitable SID, then of course it satisfies equitable MID,  and so on. 
The plan of the paper  is as follows. In Section 2 we sketch the connect ion 

between the weak integral decomposi t ion proper ty  WID and certain rounding 
propert ies for packing and covering problems.  In Section 3 we show that integral 

polymatroids  satisfy nearly uniform SID. In Section 4 we investigate polyhedra  
obtained f rom totally unimodular matrices,  and show that although they satisfy 
equitable MID they do not necessari ly satisfy SID. We also comment  briefly on 
network flows. Then in Section 5 we consider the intersection P of the 
polyhedra  of the two strongly-base-orderable matroids,  and find that P satisfies 
nearly uniform WID but not necessari ly MID. Indeed the example in [4] of a 
polyhedron which satisfies WID but not MID may be represented as a poly- 
hedron P here. In Section 6 we consider polyhedra  arising f rom branchings and 
find that they satisfy nearly uniform WID but need not satisfy MID. Finally in 
Section 7 we investigate when a polyhedron satisfying WID is integral and 
conversely.  We do not consider algorithms here, but the reader is referred to the 
recent paper  by Orlin [22]. 
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2. Weak integral decomposition and rounding 

We sketch here the connect ion between the weak integral decomposi t ion  
proper ty  WID and certain rounding propert ies  for  packing and covering problems.  
We follow the t reatment  of Baum and Trot ter  [4]. 

Let M be an (m • n) matrix of non-negative rationals. We say that the integer 
round-down proper ty  (IRD) holds for M if for any integral vector  c in ~ (that 
is, e E ~ ,  e >/0) the optimal value of the integral packing problem 

max{1 �9 y : yM ~< e, y/> 0, y integral} 

is obtained by rounding down to the nearest  integer the optimal value of the lin- 

ear programming relaxation (where we drop the constraint  that y be integral). 
Similarly, we say that the integer round-up proper ty  (IRU) holds for M if for 

any integral vector  e in [~  the optimal value of the integral covering problem 

rain{1 �9 y: yM >I e, y >i O. y integral} 

is obtained by rounding up the optimal value of its linear programming relax- 
ation. Packing and covering problems such as those above arise naturally in 
combinatorial  optimisation, and many instances in which IRU or IRD hold 
have been studied (see [4]). 

We need two more definitions. A polyhedron P in R" is called upper 
comprehensive if x E P, y ~> x ~ y E P ;  and P is called lower comprehensive if 
x ~ P, O~<y ~< x ~ y ~ P. Note that blocking polyhedra  are upper  comprehen-  
sive and anti-blocking polyhedra  are lower comprehens ive  and bounded.  

Theorem 2.1 [4]. (a) Let P be an upper comprehensive integral polyhedron in R"~ 
which is non-empty and not equal to ~'J. Let the rows of matrix M be the 
minimal integral vectors of P. Then IRD holds for M if and only if P satisfies the 
weak integral decomposition property WID. 

(b) Let P be a lower comprehensive integral polyhedron in ~ which is bounded 
and has non-empty interior. Let the rows of matrix M be the maximal integral 
vectors of P. The IRU holds for M if and only if P satisfies the weak integral 
decomposition property WID. 

3. Integral polymatroids 

An integral polymatroid is a particularly well-behaved sort of polytope.  It may 
be defined [8] as a polyhedron P = P ( E , f )  of the form 

{ x~':x>~O'~-~x~<~f(S)(SCE)}~s 

where E = {1,2 . . . . .  n}, and f is a non-negative integer-valued function defined 
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on the subsets of E which is non-decreasing and submodular; that is for all 
R, S C _ E  

R C S  ::) f ( R ) < - f ( S ) ,  f ( R ) + f ( S ) > - f ( R U S ) + f ( R N S ) .  

A well-known instance of an integral polymatroid is obtained by taking f as 
the rank function of a matroid on E, in which case P ( E , f )  is the familiar 
'matroid polyhedron',  whose extreme points are the incidence vectors of the 
independent sets of the matroid. It is also the case that in general integral poly- 
matroids are integral polytopes. For further definitions examples and results 
useful below see [8, 17, 19, 21, 27]. 

The fact that integral polymatroids satisfy the weak integral decomposition 
property WID was noted in [19] (see also [27]) and in [15]. In [4] it is shown 
further that they satisfy the middle integral decomposition property MID. The 
following result (with each P~ = P) shows that an integral polymatroid P 
actually satisfies the strong integral decomposition property SID. 

Theorem 3.1. Let  P~ . . . . .  Pk be integral po lymatro ids  in ~" and let c be an integral 

t, ec tor  in R". Then the po ly tope  

Q = {(x' . . . . .  x k ) ~ R k " ' x ~ P ~ ( i = I  . . . . .  k ) , ~  x i = e }  

is integral. 

Proof. It is easy to see that the polytopes 

Ql={(x  I . . . . .  x k ) ~ R  k~:x i E P i ( i =  1 . . . . .  k)} 

and 

Q2 = {(x I . . . . .  X k ) ~ k " :  x~ ~O( i  = l . . . . .  k),  ~ x~ ~ c }  

are both integral polymatroids. Hence by Edmonds'  intersection theorem [8] the 
polytope Q~ A Q2 is integral. But the polytope Q is a face of Ql A Q2 and so Q is 
integral. 

Corollary 3.2. For i = 1 . . . . .  k let P~ be an integral po lymatro id  in R ~, let a ~ and b ~ 
be integral vectors in ~", and let l~ and rn~ be posi t ive integers. Le t  c be an integral 

vector  in R". Then the poly tope  

Q = ~(x 1 . . . . .  x k ) ~  k" 
L 

: xi ~_pi, ai ~ x i  <~bi, l i ~ l  . x i 

m~(i = 1 . . . . .  k ) , ~  x ~ = c }  
t 

is integral. 



188 Colin McDiarmid/ Integral decomposition 

Proof. Let  y =(y~ . . . . .  yk) be an ext reme point  of  Q. For  i =  1 . . . . .  k define an 
integral vec tor  d ~ in R" by sett ing d i =  aii if yij= aii and d i =  b~j o therwise ,  and 

define an integer t~ by setting t~ = It if I �9 y~ = l, and t, = m~ otherwise .  Then  y is 

an ext reme point  of  the po lyhedron  

Q'  = {(x ~ . . . . .  x k) c ~k,,: x ~ ~ Pi, x ~ ~< d ~, 1 �9 x ~ 

<~t i ( i=  1 . . . . .  k ) , ~ ] x i = c l .  
I J 

For  i = 1 . . . . .  k let P'~ be obta ined f rom P~ by restr ict ing to d ~ and t runcat ing to t~, 

that  is P'~ = {x E P~: x ~< d ~, 1 �9 x ~< t~}. Then  P'~ is an integral po lymat ro id  [21] and 

O'  = {(x'  . . . . .  x k ) E R k " : x ~ P i ( i = l  . . . . .  k ) , ~ x ~ = c } .  

Hence  by Theorem 3.1 the po ly tope  Q '  is integral. Hence  the vec tor  y is integral 
and so the po ly tope  Q is integral, as required. 

Corol lary  3.3. An integral po lymatro id  satisfies nearly uni form SID. 

4. Totally unimodular matrices and network flows 

Recall that  a matrix is totally un imodu lar  if the de te rminant  of  every  square 
submatr ix  equals 0 or -+ I. The fol lowing results appear  essential ly in [24]. 

Theorem 4.1. Let  the (m • n) matr ix  A be totally un imodu lar  and let b be an 

integral vec tor in  ~m Then the polyhedron P = {x ~ R" : A x  ~ b} satisfies the middle 
integral decompos i t ion  proper ty  MID.  

Proof.  Let  c be an integral vec tor  in F~" and let k be a posi t ive integer. We must  

show that the po lyhedron  Q = P (~ ( e -  kP)  is integral. But a vec tor  x C ~" is in 
Q if and only if 

A x  ~ b and Ac - A x  <~ kb, 

that  is, if and only if 

Ac - kb <~ A x  <~ b. 

It fol lows [16, 14] that Q is integral, as required.  

Corol lary  4.2. Let  the (m • n) matr ix  A be totally un imodular  and let a and b be 

integral vectors  in ~ "  with a <~b. ( W e  may  allow a and b to have some  

co-ordinates  infinite.) Then the polyhedron P = {x ~ R" : a <~ A x  <~ b} satisfies 
equitable MID.  
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Proof. Apply Theorem 4.1 to the totally unimodular ( ( 2 m + 2 n ) x n )  matrix 
formed by stacking A, - A ,  I and - I  where I is the (n x n) identity matrix. 

By Corollary 4.2 the polyhedron P there of course satisfies equitable WID. This 
result is essentially due to Baranyai [1, Lemma 3] (see also [30, Lemma 2.1] and 
generalises the theorem that a unimodular hypergraph has an equitable k- 
colouring for any positive integer k [29, 5, 30]. The result may also be stated in 
the following more palatable (?) form. 

Corollary 4.3. L e t  the ( m x  n)  m a t r i x  A be to ta l ly  u n i m o d u l a r  and  let e be an 

integral  v e c t o r  in R". T h e n  f o r  a n y  pos i t i ve  in teger  k there ex is ts  integral  vec tor s  

x ~ . . . . .  x k in R" w h i c h  s u m  to c and  are s u c h  tha t  b o t h  the f a m i l i e s  x ~ . . . . .  x k and  

A x  ~ . . . . .  A x  k are equi table .  

The following example shows that polyhedra arising as here from totally 
unimodular matrices need not satisfy the strong integral decomposit ion property 
SID. This result is not surprising, for if such polyhedra had satisfied equitable 
SID rather than just equitable MID then we would have been able to use linear 
programming in a straightforward manner to solve certain timetabling problems 
with preassignments which are known [10] to be NP-complete .  

Example 4.4. The 2-dimensional (3 x 3) assignment polytope P is the set of all 
non-negative vectors x - (x~: i, j = 1,2, 3) such that ]~  x~j = ~ j  x~ i = 1. Thus 

P { x  C P g :  x >IO, A x  = I} 

for a certain totally unimodular (6 x 9) matrix A, and so P satisfies MID. If P 
satisfied SID, then the 3-dimensional (3 x 3 x 3) assignment polytope Q would be 
integral, where Q is the set of non-negative vectors 

x = (xijk" i, j, k = 1,2, 3) such that ~ xiik = ~] xijk = ~ ,  xi,k = l. 
" j k 

However ,  Q is not integral (as is well known). We may specify a non-integral 
vertex y = (Y~,k) of Q by giving the three (3 x 3) matrices Mk = (Y~jk: i, j = 1, 2, 3) 
for k =  1,2,3: 

Mi = 0 - ; M? = ~ ; M 3 = - 0 . 
I 0 0 

It is easy to check that y E Q, and that if z E Q and yi/k = 0 =:) ziik = 0, then z = y. 
Thus y is a vertex of Q, as required. 

Now let us consider network flows. Let  D be a directed graph with vertex-set 
V and edge-set E, and let A be its vertex-edge incidence matrix, which is of 
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course totally unimodular.  Let  a and b be integral vectors  in R e- with a ~ b. (We 

may allow a and b to have some co-ordinates infinite.) A feasible circulation in 

D is a vector  f in Rc satisfying a ~<f~<b and A f  = 0. By Corollary 4.2 the 
polyhedron P of feasible circulations in D satisfies equitable MID,  and thus of 

course it also satisfies equitable WID. Some variant  of this last result has 
appeared in each of [13, 19, 26, 31] and no doubt  elsewhere.  

It is s traightforward to adapt  Example  4.4 to show that a polyhedron P of 
feasible circulations need not satisfy the strong integral decomposi t ion proper ty  
SID. Alternatively this may be shown for the polyhedron of non-negative 

circulations in the complete  graph on four vertices. Note  also that the poly- 
hedron P need not satisfy nearly uniform W I D - - c o n s i d e r  for  example  the 
directed graph consisting of two disjoint directed cycles,  one with two edges and 

one with four. 
We have noted that polyhedra  of feasible circulations satisfy MID but need 

not satisfy SID. However ,  often we are interested less in circulations than in 
network flows and in particular in the vectors  linked by such flows. Let  us use 

the same notation as above,  and say that a feasible flow in D is simply a vector  f 
in R E such that a <~f<~b. We say that two vectors  x and y in ~ v  are linked if 

there is a feasible flow f with A f  = x - y. 

Theorem 4.5. The polyhedron P in N r x  R v of linked pairs of vectors satisfies 
equitable SID. 

Proof. Let  k be a positive integer and let (x ~ yO) be a fixed integral vector  in kP. 
For  i =  1 . . . . .  k let (c~,d ~) and (i~,d ~) be integral vectors  in R v x R  v with 
(c ~, d ~) ~-- (i~, d~). Let  the polyhedron Q consist  of all k-tuples of vectors  (x ~, y~) in 
P with (ci, di)<~(x~,y~)<~(~,~,d ~) which sum to (x~176 We must show that Q is 

integral. 
Form a directed graph D' as follows. Start with k disjoint copies of D. For 

each vertex v of D, add a ver tex v + together with an edge (v*, v ~) from v -~ to 
each of the k copies v i of v, and add a ver tex v together with the k edges 

(v ~, v ). Finally add a vertex s together with all the edges (s, v+) and (v , s). Let  
E '  be the edge set of D' ,  and define integral vectors  a '  and b' in R E' as follows. 
Let  a 'e  = a,, and b',,. = b,, if e' is a copy of the edge e in D; let ai~-,, ~ = cl, and 
b;~.~ ~.,~ = dl.; let a'~,<~ ,=  dl. and bi,,~. ,=  d[; and let ai.~.,:-i = b~.,.-, = x~ and ai,~- ~, = 

b~L-,~ = y?. 
Then the polyhedron Q is the project ion onto the co-ordinates corresponding 

to the edges (v ' ,  v ~) and (v ~, v-) of the polyhedron of circulations f '  in D'  with 
a' <~f'<~ b'; and so Q is integral, as required. 

The polyhedron P in the theorem above is an example of an 'integral 
polylinking sys tem'  [23], and the theorem actually holds for such polyhedra.  This 
result may be deduced from the results of Section 3 or proved along similar 
lines. 
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5. Strongly-base-orderable matroids 

We shall identify a matroid (see for example Welsh [27]) with its collection of 
independent  sets. Given a family M of subsets of a set E the associated 
transversal matroid is the collection of partial transversals of M. A strongly- 
base-orderable matroid on a set E may be defined as a non-empty collection M 
of subsets of E such that given any two sets A, B E , g  there is a transversal 
matroid 5~ such that A, B ~ ~ C_ M. Thus a strongly-base-orderable matroid is a 
'locally transversal '  matroid, and any transversal matroid is of course strongly- 
base-orderable. 

Suppose that we have a directed graph with vertex set V, and two subsets X 
and Y of V. The associated gammoid on X is the collection of subsets of X 
which are linked by vertex-disjoint paths to subsets of Y. Any transversal 
matroid is a gammoid, but not conversely.  However  any gammoid is still 
strongly-base-orderable [6, 27]. 

Now Corollary 4.3 together with a straightforward graph construction will 
show that the intersection of the polyhedra of two gammoids satisfies nearly 
uniform WID [25, 18]. However ,  one may use results from [7] together with a 
replication argument as in [20] to prove the following stronger theorem. 

Theorem 5.1. The intersection P of the polyhedra of two strongly-base-orderable 
matroids satisfies nearly uniform WID. 

In [20] this theorem is used to obtain various results on integral and real 
covering and packing with sets independent  in two strongly-base-orderable 
matroids. These results extend the work of Weinberger [25] on transversal 
matroids. The example in [7] shows that if one of the matroids in Theorem 5.1 is 
not strongly-base-orderable then we may not have the weak integral decom- 
position property WID. 

We have seen in Theorem 5.1 that the intersection P of the polyhedra of two 
strongly-base-orderable matroids satisfies WID. We note below that the poly- 
hedron in [4] which satisfies WID but not MID may be represented as the 
intersection of the polyhedra of two transversal matroids. Thus our polyhedron 
P need not satisfy the middle integral decomposit ion property MID. 

Example 5.2. Let  the collection ~ of subsets of {1, 2 . . . . .  6} consist of the five 
sets {l. 3, 4}, {1,2, 5}, {2, 3, 6}, {4, 5, 6} and {1,2, 3} together with all their subsets, 
and let the polyhedron P in R 6 be the convex hull of their incidence vectors.  
Following [4] we note that the vector  (1, !, !, ~. !, 0) is in the polyhedron Q = 
P 7~ (1 - P)  but the only integral vectors in Q are (1, l, l, 0, 0, 0) and (0, 0, 0, 1, 1, 
1). Thus Q is not integral and so P does not satisfy MID. 

But now consider the transversal matroids Mt and M2 of the families {1,6}, 
{2, 4}, {3.5} and {2, 3, 6}, {1,3, 4}, {1, 2, 5} respectively. The common independent 
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sets of Mt and M 2 form precisely the collection ~,  and so by Edmond ' s  
intersection theorem the polyhedron P is the intersection of the polyhedra  of M1 
and M2. 

6. Branchings 

Let  G be a directed graph with edge-set E. A branching in G is a set of edges 
which forms a fores t  in the underlying undirected graph (that is, contains no 
cycles) and is such that no two edges are directed towards  the same vertex.  A 
branching is said to be rooted at a ver tex r if each vertex other than r has an 
edge directed towards it. 

Now suppose that there is a branching in G rooted at r, and let the matrix A 
have as rows the (0, 1)-incidence vectors  of the branchings in G rooted at r. 
Results of Edmonds  [8, 9] show that if e is an integral vector  in ~ ,  then the 
(packing) linear program 

max{1 �9 y: yA ~< e, y I> 0} 

always has an integral optimal vector  y. (Indeed if the matrix C has as rows the 
incidence vectors  of the minimal cuts in G rooted at r, then both the pairs (A, C) 
and (C, A) satisfy the strong ra in-max equality [11, 12].) But for the matrix B 
with as rows the incidence vectors  of all the branchings in G the corresponding 

packing linear program as above does not necessari ly have an integral optimal 
vec to r - - cons ide r  for example  the graph with three edges forming a directed 
cycle [11]. 

Now let the polyhedra  Pr(G) and P(G) in R E be the convex  hulls of the rows 
of A and of B respectively.  Since each rooted branching has the same size it 
follows easily from the above that Pr(G) satisfies W I D - - n o t e  that if e ~ kP,(G), 
then the maximum value in the packing problem above  is k. (Further Pr(G) must 
of course satisfy nearly uniform WID.) Baum and Trot ter  [4] have shown that 
the polyhedron P(G) also satisfies WID. (They attribute their proof  to R. Giles.) 
We show below that P(G) actually satisfies nearly uniform WID,  but that neither 
Pr(G) nor P(G) need satisfy MID. 

Example 6.1. Let  G be the directed graph in Fig. l(a), with edges labelled 
1 . . . . .  9. Let  the polyhedron P = P ( G )  in ~9 be the convex  hull of the incidence 

I 1 1 I vectors  of the branchings in G. Let y be the vector  (~, ~_, 0, 2 ~:, 0, 0, ~, ~) in 
R~ Fig. l(b). We shall show that y is an ext reme point of P N ( 1 - 2 P ) .  

Now {1, 4, 5} and {2, 8, 9} are branchings in G, and y is half the sum of their 
incidence vectors ;  and thus y ~ P. Also {I, 3, 6}, {2, 3, 5}, {4, 7, 8} and {6, 7, 9} are 
branchings in G, and 1 - y  is half the sum of their incidence vectors ;  and thus 
1 - y ~ 2 P .  H e n c e y ~ P N ( 1 - 2 P ) .  

The following nine inequalities are satisfied by each vector  x in P N ( ! -  2P),  
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Fig. l(a) The directed graph G; (b) the vector y. 

and are satisfied at equal i ty  by  the vec to r  y. 

x3 >t 0, x6>/0,  x7/> 0, 

x ~ + x 2 ~ l ,  x e + x 4 ~  1, x l + x s ~ l ,  

xl + x2+ x4+ x g ~ 2 ,  

x~ + x2+ xs+ x s ~ 2 ,  

X3"~ X4"I'- X5-t- X6-~- X 7 ~  1. 

Fur ther  it is routine to check  that the (9 x 9) matrix of  coefficients is non-  

singular. Hence  the non-integral  vec to r  y is an ext reme point  of  P n ( 1 - 2 P ) .  

Thus  the po lyhed ron  P ( G )  does not  sat isfy the middle integral decompos i t i on  

p rope r ty  MID. 
Le t  G' be obtained f rom G by adding a new ver tex r toge ther  with edges 

labelled 10, I I and 12 to the three outer  ver t ices  u, v and w of  G. Extend  y to a 

vec to r  in ~ 2  by  sett ing Y~0 = 0 and y~ Y~2 =,~. Then  we may check  as above  that  

y is an ex t reme  point  of  the po lyhedron  P '  n ( 1 -  2P'),  where  P '  = Pr(G') .  Thus  

the po lyhed ron  Pr(G' )  does not  sat isfy MID.  
It  remains  now to show that the po lyhed ron  P(G)  genera ted  by the branchings  

in G satisfies nearly uni form WID,  that  is, if an integral vec to r  c is the sum of  k 

vec tors  in P ( G ) ,  then there exist  k branchings  B~ . . . . .  Bk in G such that  e is the 

sum of their inc idence  vec tors ,  and ]B ; [ -  ]B;I ~< 1 for  i, j = 1 . . . . .  k. This fol lows 

f rom the result  above  that  P(G)  satisfies W I D ,  together  with the L e m m a  6.2. 

L e m m a  6.2. Let  A and B be branchings in a directed graph G and suppose that 

IAI < IBI  Then there exist sets X C_ A -.- B and Y C_ B ~ A with tY] = IXI + 1 such 

that both (A ~ X )  U Y and (B .. Y )  U X are branchings. 

Proof.  Clearly we m a y  assume that  the head of  each edge b in B is incident  with 
an edge in A, for  o therwise  we could s imply t ransfer  b to A. Also we may 
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assume that A and B are disjoint, for otherwise we may consider the branchings 
A ~ B and B ~ A  in the directed graph obtained by contracting the edges in 
A N B .  

Consider a component  K of the undirected graph corresponding to the 
branching A. Suppose that K has k edges and thus has k + 1 vertices. Then the 

number  of edges in B with their heads in K is at most k + 1. Since ]B] > IA I there 
must be some componen t  K with IY] = IXI + l, where X is the set of edges in A 

in K and Y is the set of edges in B with their heads in K. 
We may complete  the proof  by showing that both the sets A ' =  (A ~ X ) U  Y 

and B ' =  ( B - - - Y )  U X are branchings in G. But it is immediate  from their 
definitions that in each set no two edges can be directed towards the same 
vertex.  Further any cycle C is the undirected graph corresponding to A U B 
must contain an edge b in B followed by an edge in A incident with the head of 
b; and so C is not contained in A' or in B'. Hence  A' and B' are both branchings 
in G, as required. 

7. Integral polyhedra and weak integral decomposition 

Consider a polyhedron P in R". If  P satisfies the weak integral decomposi t ion 
proper ty  WID then we might expect  P to be integral, and conversely.  For 
example it is easy to see that if P satisfies WID and contains a rational point, 
then it must  contain an integral point; and if P satisfies WID,  then so does every 
face of P. Thus if P satisfies WID and has ' enough '  rational points it must be 

integral. In this section we shall see that if a pointed polyhedron P satisfies 
WID,  then its ' rationally spanned part '  (defined below) must be integral. After 

that we show conversely  that any integral polyhedron of dimension at most two 
satisfies WID. 

Let  C be a convex  set in ~n and let Q be the set of rational points in C. Let us 

define the rationally spanned part rats(C) of C to be C n 0 where Q denotes 
the closure of Q. For example if the polyhedron P in R ~ is the convex hull of the 
vectors  (0, 0, 0), (1, 0, 0) and (0, l, ~/2), then ra ts(P)  is the convex hull of the 
first two vectors.  The following result shows that the rationally spanned part  of a 
polyhedron is another  polyhedron.  

Proposition 7.1. Let C be a convex set in ~." and let Q be the set of rational points 
in C. Then 

C n 0 = C n aft(Q), 

where aft(Q) denotes the affine hull of Q. 

Proof. Since aft Q is closed and contains Q it is immediate  that C N aft Q _~ C n 
O. Conversely ,  suppose that the convex set D = C n aft Q is non-empty  and let 



Colin McDiarmid/ Integral decomposition 195 

x r D. We must  show that x r 0 .  No te  first that  since Q c D C aft Q we have 

aft D = aft Q. Let  e > 0. Then  there exists a point  y in the relative interior of  D 

with I [ x - y l l < ~ e ;  and there exists a 6 > 0 .  6 < { e  such that 

z E a f f D ,  I l y - z l l < ~  ~ z E D .  

But since y E aft Q cer ta inly  there is a rational point  z in aft Q = aft D with 

]IY - zll < ~. But now z E D and so z E Q, and [Ix - zl] < ~. Hence  x E Q, as 
required.  

N o w  if P is a po lyhed ron  and k is a posi t ive integer clearly the po lyhedra  kP 
and k(ra ts (P))  contain precise ly  the same integral points.  H e n c e  we have the 
following. 

Proposi t ion 7.2. A polyhedron P in R n satisfies WID if and only if its rationally 
spanned part ra t s (P)  satisfies WID.  

Let  us say that a convex  set C in R" is rationally spanned if it equals  its 

rat ionally spanned  part  ra ts(C);  that  is, if the set Q of  rational points  in C is 

dense  in C, or equivalent ly  if C is conta ined  in the affine hull of  Q. For  example ,  

any convex  set with n o n - e m p t y  interior is rat ionally spanned.  Also, the c o n v e x  

hull of  any set of  rational points  is rat ionally spanned,  and thus so is any  

po lyhedron  P specified by a finite number  of  rational const ra in ts ,  since clearly 

we could assume that  P is bounded .  In part icular  any (bounded)  integral 

po ly tope  is rat ionally spanned.  Also of  course  the rat ionally spanned part  of  any  

convex  set is rat ionally spanned.  By Propos i t ion  7.2 we may  f rom now on 
restr ict  our  a t tent ion to rat ionally spanned polyhedra .  

Cons ider  then a rat ional ly spanned  po lyhed ron  P which satisfies the weak  

integral decompos i t ion  p roper ty  WID.  Must  P be integral? Propos i t ion  7.3 

shows  that if P is pointed (that is if P has an ex t reme point),  then indeed P must  

be integral;  and Example  7.5 shows  that if P is not pointed,  then it need not  be 

integral. Propos i t ion  7.3 is related to the conver se  parts  of  [2, T h e o r e m  2] and 
[30, T h e o r e m  2.2]. 

Proposit ion 7.3. Let the pointed polyhedron P be rationally spanned and satis- 
fy the weak integral decomposition property WID. Then P is integral. 

Proof. Suppose  that  some ext reme point  x of  P is not  integral. Then  there is a 
non-zero  vec tor  a such that 

a �9 x > b = max{a �9 z: z ~ P, z integral}. 

Since P is rat ional ly spanned there is a rational vec to r  y E P such that  a �9 y > b. 

Choose  a posit ive integer k such that ky is integral. Then  since P satisfies W I D  
there exist integral vec tors  x ~ . . . . .  x k in P such that ky = 2~ x i. But now 
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kb < a . ky = ~'~ a . x; <~ kb, 

a contradiction. 

From Proposit ions 7.3 and 1.1 we have immediately  the following. 

Proposition 7.4. If a rationally spanned polyhedron satisfies the equitable weak 

integral decompos i t ion  property,  then it mus t  be integral. 

Example 7.5. We give an example  of a rationally spanned polyhedron P which 
satisfies WID but is not integral. Of course by Proposi t ions  7.3 and 7.4 the 
polyhedron has no extreme points and does not satisfy equitable WID. We let P 
be the half space in ~2 

P = {(x, y) ~ a~-: x + X/2y ~< ~3} .  

Clearly P is rationally spanned and is not integral. Let k be a positive integer 
and let a and b be integers with a +~/5_b <~kV'3. In order to show that P 
satisfies WID it suffices for us to show that the inequalities 

a + V 2 b - ( k - l ) V 3 < ~ x + X / 2 y - < - V ' 3  

have a solution x, y in integers. But this is true since a + V'2b - ( k -  1)X/3 < X/.3 
and the numbers  x + X/2y for x, y integers are dense in ~. 

It remains for us to prove the (partial) converse  implication that any integral 
polyhedron of dimension at most  2 must satisfy WID. Note  first the following 
simple example.  

Example 7.6. Let P be the convex hull of the vectors  (0, 0, 0), (1, 1, 0), (0, 1, 1) 
and (1, 0, 1) in E3. Then (1, 1, 1) is in 2P but it is not the sum of two integral 
vectors  in P. Thus the 3-dimensional integral polytope P does not satisfy WID. 

Proposition 7.7. A n y  integral polyhedron P o f  d imension at mos t  2 satisfies WID. 

Proof. It  is sufficient to prove  the result for a polyhedron of the form 

QI = conv(a,  b) + C 

and one of the form 

Q~ = conv(a,  b, c) 

where a, K c are integral vectors  (not necessari ly distinct) and C is cone 
(perhaps C = {0}); for by Cara th4odory ' s  theorem,  given a vector  x in P there is 

a polyhedron Q of the form Q~ or Q2 such that x E Q c_ P. 

Consider first the polyhedron Q~. Let  k be an integer />2 and let x be an 
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integral  vec tor  in kP. Thus  

x = c~a + ~ b  + c 

for some ~ , / 3 / > 0 ,  ~ +/3 = k and some c E C. But  then  ei ther  a or /3  is at least  1 

and so ei ther  x -  a or x -  b is in ( k -  l )P,  and  we may  comple te  the proof  by 

induc t ion .  

Now cons ide r  the po lyhed ron  Q_~. By the above  we may as sume  that a, b and c 

are d is t inc t  and indeed are affinely i ndependen t .  Also by t rans la t ing  if neces sa ry  

we may as sume  that  c = 0. Suppose  that Q_, does no t  sat isfy W I D  and fu r the r  

that of all such po lyhedra  Q2 con ta ins  the Least n u m b e r  of integral  vectors .  Let  

the integer  k >/2 be min imal  such that  some vector  x in kQ~ c a n n o t  be 

d e c o m p o s e d  as required.  Note  that  x = c~a +/3b for some c~, /3 >/0 with c~ +/3 ~< 

k. Clear ly  c~ < 1 and /3  < l s ince o therwise  we would  con t rad ic t  the min imal i ty  of 

k. Fu r the r  c ~ + / 3 > 1 .  Now cons ide r  the integral  vec to r  y = a + b - x =  

( 1 - c ~ ) a  + ( 1 - / 3 ) b .  Then  y C Q~ and  y ~ 0 ,  a, b. Thus  each of the three integral  

po lyhedra  P~ = cony(y,  a, b), P~ = cony(y,  a, 0) and P~=  cony(y,  b, 0) con ta ins  

fewer  integral  points  than Q2 and  so mus t  sat isfy WID.  But Q, = P~ to P,  to P3 

and so Q2 satisfies WID,  which is a con t rad ic t ion .  
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