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This paper discusses some properties of trust region algorithms for nonsmooth optimization. 
The problem is expressed as the minimization of a function h(f(x)L where h(. ) is convex and 
f is a continuously ditterentiable mapping from g~" to ~"'. Bounds for the second order derivative 
approximation matrices are discussed. It is shown that Powell's [7, 8] results hold for nonsmooth 
optimization. 
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1. Introduction 

M a n y  papers  have b e e n  p u b l i s h e d  on trust  reg ion  a lgor i thms ,  b u t  mos t  a t t en t i on  

has been  g iven to the s m o o t h  case, for e x a m p l e  see F le t che r  [2], M 6 r e  [5], Powel l  

[6, 7, 8], S o r e n s e n  [12], S te ihaug  [13] a n d  T o i n t  [14]. T rus t  reg ion  a lgo r i thms  for 

n o n s m o o t h  o p t i m i z a t i o n  are s tud ied  by F le tche r  [1, 3, 4], and  Powell  [9]. The  p r o b l e m  

we wan t  to solve is 

m in  F ( x ) = h ( f ( x ) ) ,  (1.1) 
, t  ~r (f .~" 

where  h ( . )  is a c o n v e x  f u n c t i o n  def ined  on  ~"  a n d  is b o u n d e d  b e l o w ;  f ( x ) =  

( f l ( x ) , . l ) ( x )  . . . . .  f , , ( x ) )  T is a m a p  f rom IR ~ to ~ "  a n d  f ( x )  ( i =  1 . . . .  , m) are all 

c o n t i n u o u s l y  d i f fe ren t iab le  f u n c t i o n s  on  ~".  

The  t rus t  reg ion  a lgo r i t hms  are i terat ive,  a n d  an  in i t ia l  po in t  xs c R" shou ld  be 

given.  The  m e t h o d s  gene ra t e  a s e q u e n c e  o f  po in t s  xk (k = I, 2, . . . )  in the  fo l lowing  

way. At the b e g i n n i n g  of  k th  i te ra t ion ,  xk, 'dk a n d  Bk are ava i l ab le ,  where  Ak > 0 is 

a s t e p - b o u n d  a n d  Bk is a n • n real s y m m e t r i c  matr ix .  Let dk be a s o l u t i o n  of  

m in  4,k(d)--= h ( f ( x ) + V l i / ' ( x ) d ) + ! d V B k d  (1.2) 

sub jec t  to 

Ildll-<&, (1.3) 

Here  I1' II may  be any  n o r m  in R" space.  S ince  any  two n o r m s  in a E u c l i d e a n  space  

are equ iva l en t ,  w i thou t  loss of  genera l i ty  t h r o u g h o u t  this p a p e r  we a s s u m e  that  I1" II 

22o 
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is I1" I1=. Let 

{ x k + d k  i f F ( x k ) > F ( x k + d k ) ,  

xk+. = xk otherwise.  
(1.4) 

It is no ted  that  our  choice  of  xk+k is different from Powel l ' s  [9]. Because our  

condi t ion  for  lett ing xk+~ = xk + dk is weaker ,  our  a lgor i thms let xk+~ = xk + dk more  

often, so we have the des i rab le  p rope r ty  of  accept ing  any trial vec tor  of  var iables  

that  reduces  the object ive  funct ion.  

Let ,.lk+. sat isfy 

if 

(1.5) 

F ( x k )  - F (xk+, )  >1 c2[F(Xk) -- d)k( dk )], (1.6) 

o therwise  let 

c.~lld~ I; _< & + ,  _< c4,3k, ( I .7) 

where  ci ( i = 1,2, 3, 4) are posi t ive  constants  sat isfying q > 1, c2 < 1 and tb <~ c 4 < I, 

and  where ~ is a posi t ive constant  which can be taken  equal  to the d iamete r  o f  

D ( D  will be def ined below).  Our  theory appl ies  to several  techniques  for genera t ing  

ibm}. 
Fle tcher  [3] proves that  if  xk (k = 1,2 . . . .  ) are all in a b o u n d e d  set and if Bk is 

the Hess ian  o f  the Lagrange  funct ion at the kth i terat ion,  then there exists an 

accumula t ion  poin t  x* o f  the a lgor i thm at which first o rder  cond i t ion  holds ,  which 

means ,  

max  A T v T f ( x * ) d > ~ O  f o r a l l d e R  n. (I .8)  
A r:;~h * 

He also poin ts  out  that  the above  result  holds  for a qua s i -N e w ton  me thod  as long 

as []Bkl] is b o u n d e d  above.  However ,  for many  upda t ing  me thods  one can easily 

prove that  

k 

IIB~ll~cs+c~ E a~ (1.9) 
i I 

(see Powell  [7]), or that  

IIBkll <~ c~+ c~k, (l.lO) 

yet  the b o u n d e d n e s s  o f  {HBkH} is not explici t .  Our  main  result  is to show that  

F le tcher ' s  result  (1.8) holds  if (1.9) or ( l .10)  is satisfied for all k. 

Th roughou t  this p a p e r  we assume that  {Xk} (k = l,  2 . . . .  ) is b o u n d e d ,  which is 

usual ly  satisfied,  especia l ly  when {x; k ( f ( x ) ) < - h ( f ( x ~ ) ) }  is a b o u n d e d  set. Hence  

there exists a compac t  convex closed set D c  I~" such that xk c D for all k. Since 
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h( �9 ) is convex and well defined, there exists a positive constant  L such that 

Ihr - h (.l'_,)l ~< LII.I; - . l~l l ,  ( l .  i 1) 

for all J ] , J ~ c f ( D )  (Rockafellar,  [10, p. 237]). By the continuity o f  Vs, t; there exists 

a constant  M >  0 such that 

lIvTj(x)ll ~ M, (1.12) 

for a l l x ~ D .  

2. Stationa~ points 

For the simplification of  notation,  we denote 

) ( x ;  d)  = h ( f ( x )  ) - h( . f (x)  + V ' f ( x ) d ) ,  

Or(X) = max{x(x ;  d)[lldll << ,'}, (2.1) 
d 

D F ( x :  d)  = s u p { a r v m f ( x ) d l a  ~ Oh(.f(x))}, 
a 

where ah ( f (x ) )  be the subgradient  of  h( �9 ), evaluated a t f ( x ) ,  x* is called a stationary 

point  of  h ( f ( x ) )  if 

DF(x* :  d) > 0 for all d ~ ~", (2.2) 

which is the same as the first order condit ion of  Fletcher [3]. The following results 
are elementary results in convex analysis (see Rockafel lar  [10, I l l) .  

Lemma 2.1. (i) DF(x ;  d) exists lbr all x and d: 

(ii) X(x;"  ) is convex, given d ~ ~", its directional derivative in the direction d, 

evaluated at d* =0 ,  is D F ( x ;  d) ;  

(iii) O,.(x)>~O for  any r>O, and & ( x ) = O  !f and only i f  x is a stationao, point o f  

h(f(x)): 
(iv) Or(X) is concave in r, 

(v) ~l~,( �9 ) is continuous.lor any given r >~ O. 

By using the above results, one can prove that the condit ion that there exists an 

accumulat ion point x* o f  the algorithm at which the first order  condit ion holds is 

equivalent to the limit 

lim inf Ol(xk) = 0. (2.3) 

And we also have the following lemma: 

Lemma 2.2 

F(. 'q) dk(d~) I . - ~> 20j~(xk)rain{ I, tl, j~(Xk)/llBkll/l~}. (2.4) 
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Proof. By the definition (1.2) of  dk, we have 

F ( x k ) - - & k ( d k ) > ~ F ( x k ) - - & k ( d )  for all]]dll<~'Ak. (2.5) 

Let Ildll <~ & satisfy 

tpj,, (xk) = F(xk )  - h ( f ( x k )  + VVf(xk )dk). (2.6) 

Then by using the convexity of  h ( . ) ,  remember ing  that [[. l[ is the 2-norm, we have 
that for all a c [0, 1], 

F ( x k ) -  cbk(dk) >~ F(xk)  -- &k(c~dk) ~ cxtbj, (Xk) -�89 

Therefore  

F ( x k ) - d ) k ( d k )  >~ max {atka~ (xk)-~[IBkl lA~a z} 

~> ~ min{ 4%(xk ), [t0~(xk )]2/IIBk liar}, 

which ensures (2.4). [] 

3. Bounds for Bk 

In this section it is shown that the result 1.8) holds if Bk satisfy (1.9), then we 
establish that the result remains  valid if (1.9) is replaced by (I .  10). Though  the latter 

result is s t ronger  than the previous one, we still prove both, because the proofs  are 
different. 

Theorem 3.1. l f  h ( f ( x ) )  satLsfies all the conditions in Section 1, i f  {xk}, generated by 
the algorithms stated in Section 1, is in a bounded set D, and i f  all matrices Bk sati.sfv 

(1.9), then (1.8) holds, or in other words, {xk} is not bounded away f rom stationary 
points o f  h ( f ( x ) ) .  

Proof,  Assume that the theorem is invalid, then there exists 6 > 0, such that 

01 (xk)>  6 (3.1) 

for all k. From (iv) o f  L e m m a  2.1, Lemma  2.2, the above inequali ty and the fact 
that Ak is bounded ,  we can show that  the inequali ty 

F(xk)  - &k(dk)>1 c9 min{Jk, J/llBkll}, (3.2) 

holds for some positive constant  c9. Let ~ '  denote  the sum over  the i terations on 
which (1.6) holds, Then by the fact that h( .  ) is bounded  below, we have 

E'  [F(xk)  -- ~k (dk)] (3.3) 
k 
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is convergent .  From (3.2) we have 

is convergent .  By the definit ion of  Ak, we have, due to Powell [7], 

, ~ , ~ ( 1 + c ~ / ( 1 - c 4 ) )  J , + ~ ' . - %  . (13.5) 
i = [  i = l  

Therefore  

,.~ Ak +Cr I +  ,V',3 i 
' c 5  1 - c4 ,=F 

v '  A k is convergent .  Notice that  by is also convergent .  Hence,  we can show that  ~k 
(3.5), we have that ~ k ~  Ak is finite. Consequent ly ,  IIBkll is uni formly  bounded .  
Then f rom Fletcher 's  results [3], (3.1) cannot  be satisfied for all k. This is a 
contradict ion,  which shows that the theorem is true. 

To prove that the above theorem is still true if (1.9) is replaced by (1.10), we 
need the following lemmas.  

Lemma 3.2. I f  II dk II < ~k, then 

IId~[I ~ '  ~50t(Xk)  m i n { 1 / L M ,  1/(I  + J)llB~ll}. (3.6) 

Proof.  Cons ider  the funct ion 

d~k(/3)= qsk(ak+/3[dk--ak]) ,  0~</3 ~< 1, (3.7) 

where dk is defined in Section I and Jk satisfies 

X(xk : J~ ) = O~ (xk) 

and II dk II ~< 1. The definition (1.2) shows that  ,~k (/3) is the sum of  a term that  depends  
on h ( . )  and a term that depends  on Bk- Using the convexity of  h ( . ) ,  the definition 

of  dk, and condit ions ( l . l l )  and (I.12), the first of  these terms is bounded  above 
by the express ion 

(1 -- /3 )h(J'(xk) + vT  f(xk )d~ ) + /3h(f(xk)  + VT f (xk )dk)  

= h ( f ( x k ) + V T f ( x k ) d ~ ) + ~ [ h ( f ( x k ) ) - O , ( x k ) - - h ( . f ( x k ) + V T f ( x k ) d k ) ]  

<~ h ( f (  xk ) + VTf(xk)dk) +/3[--0,(x 'k)  + LMII d~ II], 

and the other  term satisfies 

~(dk + fi [dk dk]TBk ( d~ + fl [J~. - dj.]) <~ !d~ Bkdk +/3 II Bk II II dk I1( 1 + X) 

§ ]lB~ll(l § ~)=. 
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Thus we deduce the relation 

4;k(/3) <~ 4 ; , (0 )+  N - q , , ( x k ) +  Ildkll(tM+ IIBkll(l + a ) ) ] + ~  II Bkl](1 +~)2 .  

Since t[dkll <,-% ~(/3) does not decrease initially when /3 is increased from zero. 
Hence the coefficient o f  13 in (3.7) is nonnegative,  consequently 

II d~ II ~> ~,, ( x k ) / [ L M  + (I + 5)II B~ 11]. 

Therefore the lemma is valid. [] 

It is noted that the above lemma reduces to lemma 6 of  Powell 's  [9] if I[B~II are 

uniformly bounded  and O~(Xk) is bounded  away from zero, and it should be pointed 
out that the p roof  of  the lemma is guided by that of  Powell 's lemma 6 [9]. 

Lemma 3.3. I f  h ( f ( x ) )  satis, hes all the conditions stated in Section 1, and i f  (3.1) 

holds for all k, then there exists a positive number c~c, such that 

Ak >i c, , /  M~ (3.8) 

.for all k, where Mk is defined by 

Mk = max{ ]j B, II} + 1. (3.9) 
i ~ k  

Proof. Since v~f (x )  is cont inuous  on the compact  set D, there exists a 7/> 0 such 

that 

IIf(x) - f ( x ' )  - v ~ f ( x ' ) ( x  - x')II ~< c~(i - c=) II x - x'll (3. J0) 
2L 

holds for all x, x ' ~  D such that I Ix-x ' l l  ~ ,7. We prove the lemma is true when qo 

has the value 

c~o = min{at  Mj, c4"t-lMi, gM~/2LM, 6/2( I  + ~) ,  c4, C4C,)( I - -  c 2 ) } -  

Our p roo f  is inductive. 
By the definition of  c,~, (3.8) holds for k = 1. We assume (3.8) is true for k, and 

prove it is also true for k +  1. 
I f  [[dk[[ > r/, then A~+ I > c4[[d,~ j[-~ C4r/~  C,,/Mt,  so (3.8) holds for k +  1, since the 

definition (3.9) indicates that Mk+~/> Mk for all k. Therefore for the remainder  of  

the p roof  we assume II d~ II < ,7. 
If  (1.6) is satisfied, Lemma 3.2 gives 

.a~+,/> IId~ll/> ~ min{ I /LM,  1/(I + ~)Mk} ~> qo/Mk >1 C,o/Mk,,,  

SO (3.7) holds for k +  1. 
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To comple te  our  proof ,  we assume Ildkll< 7, and (1.6) fails. F rom (3.10) and 

(1.11), it follows that  

F (xk + dk ) - F (xk)  = h ( f (  xk + dk ) ) - h ( f ( x k )  + V Xf(Xk ) dk) -- X (Xk ; dk ) 

<~ L }lf(xk + dk ) - f ( x k  ) - V f ( x k  ) dk II - X (xk ; dk ) 

'c~(I - c~)ll dk I I -X(xk : dk). 

Remember ing  that (1.6) fails, f rom the above inequali ty we can show that 

(1 - v2)[~cgl I d~ I I -  X( x~" dk)] 1> ~c2d~-Bkdk. (3.1 l 

By adding (3.11) and ( l - c ~ )  times (3.2) and using (1.2) and (2.1), we deduce  

IId~ II-~ll B~ll/> c~(l - c=) min{lldkll,  2/II B~II-  Ila~ II}. 

If II d~ II/> 2/l1Bk II - II d~ II then I[ dk II ~> 1/II B~ II, otherwise  II dk 11311Bk II/> c~(1 - c2)II & II 
Hence  II dk II ~> min{l ,  cg(l - c2)}/Mk. Consequent ly  Ak+l /> C411dk II 1> C,o/M~/> 
V~o/Mk+~. This shows (3.8) holds for k +  I. By induction,  our l emma is true. [] 

F rom this lemma,  we have the following result, which and whose p r o o f  are due 

to Powell [8]. 

Lemma 3.4 (Powell,  1982). Let  {Ak} and {Mk} be two sequences such that Ak>~ 

c~o/ M~ > O.for all k, where c~o > 0 is a positive constant. Le t  I be a subset  o f  { I, 2 , . . . } .  

A s s u m e  

Ak+ I <~ ClAk, 

At+ l <~ c4Ak, 

mk+,>~ m~ 

k c l ,  

kr 

f o r  all k, ~] min(Ak, l / Mk ) < oe, 
I 

where c~ > 1, c4< 1 are positive constants. Then the sum 

1 / M k  <~176  
k--I  

p I Proof.  Let p be a posit ive integer such that c~c4 1. Denote  Ik = I c~{ l ,2  . . . . .  k} 
and q ( k )  be the number  of  the elements  of  I k. Let J = { k ;  k<~pq(k ) }  and J k = J ~  

{ 1, 2 , . . . ,  k}. Since Mk does not decrease as k increases, we have that  (for details, 

see Powell [8]) 

E 1 / M k  ~ p  E 1 / M k ,  
J~ Ik 

which shows that ~ j  1 / M k  is finite. By the definition of  J, we have the inequali ty 

(l  (I q ( k - I )  L.~I Cl 
k -  I c~ ~ - -  _ _  c k  

C l o / M k ~ A k ~ A i c ~ k - I ~ c ~ k  I~ . ( k - k ~ = j l C  4 \ C j  C4 \ C j  

- A I ( c I c ~ - t )  kip for a l l k ~ J ,  
s 
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which shows that the sum ~" l / M k  is also finite. This completes the proof. [] L.~ k ~t ,i 

From the above lemmas, it can be shown that 

Theorem 3.5. Theorem 3.1 still holds (f (1.9) is replaced b), (l.10). 

Proof. I f  the theorem is not true, then (3.1) holds for some 6 > 0, consequently (3.2) 
and (3.3) hold. Let / be the set of those k such that (1.6) holds. Then from (3.2), 

(3.3), Lemma 3.3 and 3.4, it follows that 

Z l / M k  < ~ ,  
k - I  

which contradicts (I.10). Therefore the theorem is true. [] 

4. Discussions 

The main interest of  this paper is investigating bounds on Bk to ensure global 
convergence (Fletcher [3]). Global convergence result holds if the sum 

E l/Mk 
k = l  

is infinite, where Mk is defined by (3.9), and the condition could not be strengthened 
(see Powell [8]). Hence our results are a generalization of Powell's results [8]. 

It would be interesting to investigate relations between the boundedness of  n Bk ]1 
and convergence of the algorithms, since one might ask whether or not the bounded- 
ness of ]]Bkl[ is a technical step towards the more interesting result of superlinear 
convergence. But, one can easily show that the boundedness of II Bk n is not necessary 
for convergence (not even for superlinear convergence). However, the superlinear 

convergence ensures that ]d-~Bkdk[/I]dkjl z is bounded (see Powell [9]). 
Updating schemes for the matrices Bk can be obtained by applying updating 

formulas for smooth optimization (see [7] for example]. The only change we need 
to make is replacing the gradient of  the objective function by that of  the approximate 
Lagrange function. If  the approximate Lagrangian multipliers are sufficiently accu- 
rate, {Bk} can be updated such that (1.9) holds, and a fast rate of  convergence is 
expected. However, due to the Maratos effect, it seems that a general superlinear 
convergence result cannot be proved for nonsmooth h(.  ) without other additional 
conditions. Yuan [15] gives examples of  only linearly convergence of trust region 
algorithms for nonsmooth optimization, and the author believes that second order 
information should be considered to construct superlinear convergence algorithms. 
Second order algorithms have been studied by Fletcher [4] and Yuan [16], and the 
author thinks Fletcher's conjecture [4] that his second order algorithm [4] ensures 
superlinear convergence is true. 
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