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The paper presents CONOPT, an optimization system for static and dynamic large-scale 
nonlinearly constrained optimization problems. The system is based on the GRG algorithm. All 
computations involving the Jacobian of the constraints use sparse-matrix algorithms from linear 
programming, modified to deal with the nonlinearity and to take maximum advantage of the 
periodic structure in dynamic models. The paper presents the main features of the system, especially 
the inversion routines and their data structures, the dynamic setting of tolerances in Newton's 
algorithm, and the user features in the overall packaging. The difficulties with implementing a 
practical GRG algorithm are described in detail. Computational experience with some medium 
to large models is presented, indicating the viability of CONOPT for certain real-life problems, 
particularly those involving almost as many constraints as variables. 
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I. Introduction 

T w o  classes  o f  a l g o r i t h m s  are  cu r ren t ly  a v a i l a b l e  for  so lv ing  large n o n l i n e a r  

o p t i m i z a t i o n  p r o b l e m s ,  i.e. p r o b l e m s  with  100 to 1000 cons t r a in t s  and  a s imi la r  

n u m b e r  o f  va r iab les .  T h e s e  classes  cons is t  o f  a l g o r i t h m s  based  on  so lv ing  a s e q u e n c e  

o f  l inea r ly  c o n s t r a i n e d  p r o b l e m s  ( S L C  a l g o r i t h m s ) ,  and  a l g o r i t h m s  based  on  the  

g e n e r a l i z e d  r e d u c e d  g r a d i e n t  a p p r o a c h  ( G R G  a l g o r i t h m s )  [3]. G R G  a l g o r i t h m s  

a t t r ac t ed  m u c h  a t t en t ion  a f te r  Co lv i l l e ' s  c o m p a r a t i v e  s tudy  [8], but  a recen t  c o m p a r a -  

t ive  s tudy  by  Sch i t t kowsk i  [29] has r ev ived  in te res t  in S L C  a lgor i thms .  The  e x c e l l e n t  

l a rge - sca le  c o d e  M I N O S / A U G M E N T E D  [25], ba sed  on S L C  t e c h n i q u e s ,  has re in-  

f o r c e d  this in teres t .  U n f o r t u n a t e l y ,  no  c o m p a r a t i v e  s tudies  have  l o o k e d  at l a rge - sca le  

p r o b l e m s ,  m a i n l y  b e c a u s e  the n u m b e r  o f  codes  is very  smal l ,  f u r t h e r m o r e ,  f o r m a t t i n g  

a large  set o f  l a rge - sca le  test p r o b l e m s  for  d i f fe ren t  codes  is an  e n o r m o u s  task. We 

are  t h e r e f o r e  cu r ren t ly  no t  in a pos i t i on  to r e c o m m e n d  one  a l g o r i t h m  class o v e r  

a n o t h e r  for  large  p r o b l e m s ,  based  on c o m p u t a t i o n a l  e v i d e n c e .  

The views and interpretations in this document are those of the author and should not be attributed 
to the World Bank, to its amliated organizations or to any individual acting in their behalf. 
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154 A. Drud / Large-scale GRG code 

The present paper  presents a GRG-based optimization system called CONOPT,  
which is designed for large t ime-dependent nonlinear optimization problems. 
C O N O P T  can, of course, also be used to solve large static problems by defining 
only one time period. 

The concepts in the G R G  algorithm are quite simple but as in most conceptual 
algorithms, there are many undefined implementation details. The difference between 
a good and a bad GRG code therefore lies in the choice of data structures, in the 
detailed implementation of the different components,  and in the way the components 
work together through data structures. Since the concepts of the G R G  algorithm 
are assumed to be well known, this paper will contain little theory; instead, it will 
describe how some of the crucial GRG components have been implemented and 
why these implementation choices have been made. The description will concentrate 
on the general case of  large-scale static models, and only elaborate on how the 

dynamic structure is used in a few subsections. 
GRG algorithms can have several disadvantages. In particular, much effort can 

be needed to maintain feasibility far from the optimum, and recomputations of the 
Jacobian and subsequent reinversion of the basis alter each line search can be 
expensive. The paper tries to explain how we have reduced these disadvantages by 
proper choice of dynamic feasibility tolerances and of data structures for the basis 
inverse. After an initial problem definition and a short description of the G R G  
algorithm in Sections 2 and 3, the paper describes the way C O N O P T  presents itself 
to the user, i.e. the way a user enters a model into C O N O P T  (Section 4). It also 
describes some important systems features that make C O N O P T  convenient for the 
user; these include completely dynamic core allocation, error reporting and recovery, 
and time-limit handling. Subsequent sections describe subcomponents  of  the GRG 
algorithm itself: computing the Jacobian (Section 5), choosing and inverting a basis 
(Section 6), computing the reduced gradient (Section 7), and computing the search 
direction (Section 8). Section 9 is concerned with details of  the one-dimensional 
search, including how C ONOP T restores feasibility, what tolerances it uses, and 
how it handles bounds on the variables. Section 10 describes an algorithm for finding 
a first feasible solution; the algorithm is very fast for almost feasible problems and 
is therefore suitable for restarting perturbed problems. The last two sections contain 
computational results with some medium to large models and outline areas for 
future research and development. 

2. Notation and problem statement 

2. I. The static model 

In most of this paper  we will be concerned with the t ime-independent part of 
CONOPT,  and the model we will consider internally in CONOPT has the following 
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form at: 

where 

min xj (I-S) 

s.t. f ( x )  = b and (2-S) 

i<~x<~u (3-S) 

x is an m-vector of  optimization variables, 
f is a mapping from R"  into ~", 
b is an n-vector of  right-hand sides, 

I and u are m-vectors of  lower and upper  bounds, some of which may be minus 
or plus infinity, and 

xj is the j - th component  of x, usually a slack variable. 
I f a  model has inequality constraints they will be converted into equalities by the 

input routines through the addition of properly bounded slack variables. Section 4 
contains more details on the actual input. 

2.2. The dynamic model 

CONOPT can take advantage of the time structure of dynamic models provided 
the model has the following format: 

T 

min 3~ xj, ( l -D) 
t = l  

s.t. f ( x ,  xr_.~ . . . .  ,x, p)=b, ,  t = 1 , . . . ,  T, and (2-D) 

l,<~x,<~u,, t= l , . . . ,  T, (3-D) 

where 

x, is an m-vector of  optimization variables in period t, 
f is an n-dimensional function of constraint values in period t, 
b, is an n-vector of  right-hand sides in period t, 
l, and u, are m-vectors of  lower and upper  bounds in period t (some of the 

bounds may be minus or plus infinity), 
:% is the j - th component  of  x,, 
p is the largest number of lags in the model, 
T is the time horizon, and 
the values of  the lagged variables x 0 , . . . ,  x~_p are known and fixed. 

2.3. Design assumptions 

There are many design decisions in any large-scale system, and choices must be 
based on assumptions about the models that the system will be used to solve. The 

static part of  C O N O P T  is built around the following assumptions: 
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- all functions are twice differentiable, 
- all functions are defined for all values of  the opt imizat ion variables satisfying 

the bounds ,  

- m and n are large, i.e. greater than 50, 
- the functions are sparse, i.e. the number  o f  nonzero Jacobian elements in each 

equation is small, 

- m o s t  functions are linear and the remaining functions have substantial linear 

parts, and 
- t h e  models  are well scaled. 

Al though we assume many functions to be linear we still assume that the models  
are ' rather  nonlinear ' .  By this vague term we mean that the optimal step length in 

most  one-dimensional  searches will be determined by nonlinearities and not by 

bounds.  

For  dynamic  problems we make the addit ional  assumptions:  

- all variables appear  unlagged at least once, 
- t h e  unlagged Jacobian,  J,, = ;~f,/Ox, has full row-rank at all feasible points, 

- t h e  structure o f  the functions or the sparsity pattern o f  J,, ~=af/Ox,_l, l= 
0 , . . . ,  p, is t ime-independent ,  

- most data such as r ight-hand sides, bounds ,  and coefficients in linear terms are 

t ime-independent ,  and 

- the number  of  time periods is small, usually less than 25. 

3. A g e n e r i c  GRG algorithm 

For ease o f  reference in the rest of  the paper,  the main steps in a G R G  algorithm 
(see also [3]) will be reproduced here: 

0. Read the Model  Input.  

1. Find a feasible solution, x ~ Set the iteration counter  k to 0. 

2. Compute  the Jacobian g k =  Of/ijx k. 
3. Separate the variables into n basic variables and m - n  nonbasic  variables, 

subscripted by b and n respectively, such that the current basis J~ = Of/Ox~ is 

nonsingular.  It is preferable that the basis is well-condit ioned and the basic variables 
are away from their bounds.  

= T t ~ k ~  I 4. Compute  the multipliers, u T eib~ab) , and the reduced gradient,  g ~ =  

e~, -uVJ~.  (Superscript  T denotes transpose,  e i is an m-dimensional  unit vector 
with + I in posit ion j, and ejt and ej,, are the basic and nonbasic  components  of  ej, 
respectively.) 

5. Stop if the current point satisfies the K u h n - T u c k e r  conditions. 
6. Separate the nonbasic  variables into superbasics,  subscripted by s, and fixed 

nonbasic  variables. 

7. Compu te  a search direction for the superbasics,  d~, based on g~, the superbasic 

part of  the reduced gradient,  and an estimate o f  the Hessian of  the reduced objective, 
H~ = ;~xj/Ox~. 
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8. Perform a one-dimensional search along dr. For each step length, O, solve 
f(xb, x~ + Od~, x~)= b for Xb using (J~) ~ in a Newton-type procedure, and extract 

the value of the objective. The step length must be so small that all variables remain 

between their bounds. 
9. Save the best solution found in step 8 in x k+~, set k =  k +  l~mnd go to 2. 

4. Model input and systems features 

CONOPT's  system features and overall packaging are of course irrelevant from 
an algorithmic point of  view. Nevertheless, they are extremely important for improv- 
ing the productivity of  a practical user, especially an unsophisticated user; we have 
therefore chosen to devote some space to them. The description that follows is only 
an overview: it would be impossible to cover all details, since the non-optimizing 
parts of C O N O P T  account for more than half the code. 

C O N O P T  is a FORTRAN program of around 25 000 lines, inclu~ting comments. 
From the user 's point of view, C ONOP T is organized as a stand alone optimization 
system, which is called through a procedure at the operating system level. A model 
is defined for the C O N O P T  procedure through three or more files. The way in which 

the procedure is called and the way the files are defined is machine and operating 
system dependent,  but the format of the files is machine-independent.  

4.1. The MPS.file 

C O N O P T  tries to stay as close as possible to the industry standard for Linear 
Programming (LP). A large part of  the model is therefore defined through a modified 
MPS or CONVERT format file, as defined in the C D C / A P E X  I I I  manual [30] or 
the I B M / M P S X  manual [31]. The types of  constraints (equal, less than or equal, 
greater than or equal, or nonbinding), the values of the right-hand sides, and the 
non-default upper  and lower bounds on structural and logical variables are all 
defined in standard ROWS, RHS, BOUNDS,  and RANGES sections. The 

C O L U M N S  section defines the sparsity pattern of the Jacobian. A nonlinear element 
in the Jacobian is identified by a special coefficient with a default value of 999 999. 
A linear element in the Jacobian can be identified by its numerical value or by 
another special coefficient with a default value of 9999. Bound sets with a name 
starting with INIT,  e.g., INITIAL,  are used to provide initial values for some or all 
of  the variables. 

The extensions to the MPS format used in C O N O P T  have been inspired by similar 
extensions used in other codes, e.g. [21,24]. 

4.2. The F C O M P  subroutine 

The values of  the nonlinear and unspecified linear components of  each constraint, 
i.e., the components  identified by 999 999. or 9999. in the MPS file, must be supplied 
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tO CONOPT through a second file containing a FORTRAN subroutine called FCOMP. 

FCOMP can also contain constant additive terms that otherwise would have been 

defined in the RHS section. Derivatives are not defined by the user and are therefore 
not part of FCOMP. They are computed numerically by CONOPT, as will be 
explained in Section 5. 

FCOMP is supplied with a vector of optimization variables that always satisfy 
the lower and upper bounds, and it must return all constraint components in another 

vector. It was originally considered that FCOMP might compute the value of one 
constraint, identified by an input parameter, in each call. This would facilitate the 

computation of derivatives and make block decompositions possible. The expected 

savings were not thought large enough, however, to compensate for the extra 

subroutine linkage and conditional branching overhead - and, above all, for the 
added complications for the user. 

Since constraints and variables are identified by names in the MPS file and by 

indices in FCOMP it is necessary to define some mapping between the constraint 
names and the function indices, and between the variable names and the variable 

indices. The default mappings are defined by the positions of the constraint and 

variable names in the MPS file. These implicit mappings make it hard to modify a 

model without recoding large parts of FCOMP. CONOPT therefore includes an 
option for defining one or both mappings explicitly. A special right-hand side in 

the MPS file, named FUNCTION,  maps the constraint names into function indices 

and a special bound set, named VARIABLE, maps the variable names into variable 
indices. 

4.3. The C O N T R O L  program 

The third input file must contain a control program. We have implemented a 

procedural control progra~n similar to the one in CDC's  LP-system APEX III [30]. 
It has verbs for calling different CONOPT procedures like MODEL (real input), 

CHECK, OPTIMIZE,  OUTPUT, WR1TE (create coded restart file), SAVE (create 
binary restart file), and RESTART (restart from SAVE-file). Other verbs like SET 

and STEP can define so-called CR-cells containing tolerances, options, iteration 

and time-limits, and names of the selected right-hand side, bound set, range set, 
and initial value bound set. CRPRINT can display the CR-cells, TITLE can change 
the page headers, and the USER verb activates a user supplied FORTRAN subroutine 

that can initialize common blocks for FCOMP or print special reports. The remaining 

verbs, TEST (set condition code), BRANCH (multiway conditional branch), PER- 
FORM (multiway conditional branch with saved return address), and NEXT (return 

to line after last PERFORM), can be used to define conditional execution sequences 

and simple subroutine constructions. The major executing verbs are all followed by 
a default BRANCH unless the user supplies his own BRANCH or PERFORM verb. 

For example the input verbs are followed by default by a branch that depends on 
whether a major or minor error has been encountered. 
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4.4. Input checking 

One of  the design objectives of  C O N O P T  has been to ensure that as many as 

possible o f  the inconsistencies in the model input should be caught and reported 

to the user, so that expensive optimizations are not at tempted on models containing 
errors. The MPS file is tested for undeclared row names, split columns,  multiple 

definitions o f  the same information (row name,  matrix element, bound  value, etc.), 

consistent bounds,  and all the other s tandard LP-tests. I f  a F U N C T I O N  right-hand 
side or a V A R I A B L E  bound  set defines a mapping,  C O N O P T  checks that the 

relationship is one to one and that indices are defined for all nonlinear  constraints 

and variables. 

All the tests described so far are relatively straightforward because all necessary 
information is readily available. The problem area, as in most  other nonlinear  

opt imizat ion systems, is in the F C O M P  subroutine.  C O N O P T  does not know what 
is inside F C O M P ;  it can only call F C O M P  with different x-vectors as arguments  
and observe function values returned by FCOMP.  The tests currently implemented 

try to make sure that a constraint  function in F C O M P  does not depend on a variable 

unless it was declared in the MPS file, and that linear functions in F C O M P  really 

are linear within tight tolerances. The presence o f  undeclared variables in a constraint 
is tested by evaluating the constraint at a random point satisfying the bounds,  

assigning new r andom values to all undeclared variables, and evaluating the con- 

straint again. If  the constraint  value is different, it must depend on at least one of  
the variables that was changed,  i.e. on one o f  the undeclared variables. The incon- 

sistency is found by resetting the undeclared variables to their initial values one by 

one and observing when the constraint value changes. The test is very cheap if no 
errors are found,  requiring only one F C O M P  call per nonl inear  constraint.  It may 

not find an error if the undeclared constraint  derivative is identically zero over a 

large area. This happens  very infrequently, however,  and the test has proved itself 

very useful in practice. 

4.5. Error recoverv 

If  all input tests are passed and the C O N T R O L  program contains an O P T I M I Z E  

verb, C O N O P T  will start optimizing. At this point  some very undesirable things 
could happen.  A division by zero or another  arithmetic exception could cause the 
job to abort  without giving the user any idea of  what  went wrong. Alternatively, 

the job could reach its time-limit and abort,  leaving the user with nothing but the bill. 

To avoid the first o f  these problems, C O N O P T  uses machine-dependent  error 
recovery routines to regain control after an arithmetic exception. A logical variable 

will indicate whether  the error happened in C O N O P T  or in F C O M P ;  if it happened  
in the latter, C O N O P T  will tell the user that he has made a mistake and will print 

all the informat ion passed on to F C O M P  as well as the content  of  the constraint 

vector at abort  time. Depending  on the FORTRAN compiler,  there may also be an 

estimate of  the line in which the error occurred. If  the error happened  in C O N O P T ,  
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the system will write a message of  apo logy  and urge the user  to submit  the p rob lem 

to the au thor  so that C O N O P T  can be correc ted .  

The t ime- l imi t  p rob lem has also been e l imina ted .  C O N O P T  checks th rough  a 

m a c h i n e - d e p e n d e n t  rout ine  how much t ime is left when it starts execut ing,  and it 

s tops when 80% of  the t ime avai lable  has been used. This leaves sufficient t ime to 

save a n d / o r  print  the solut ion.  The defaul t  B R A N C H  that  fol lows O P T I M I Z E  in 

the C O N T R O L  program au tomat i ca l ly  calls SAVE and OUTPUT.  

4.6. Debugging facilities 

A system of  the size of  C O N O P T  is b o u n d  to have some bugs. Faci l i t ies  for 

debugging  have therefore  been inco rpora t ed  as an integral  part  of  C O N O P T .  All 

ma jo r  rout ines  conta in  W R I T E  s ta tements  that  descr ibe  the flow of  control  and the 

values  of  all impor t an t  variables .  Defini t ion of  CR-cel ls  in the control  p rogram 

permits  the test ou tput  to be turned on and off i nde pe nde n t l y  in more  than 25 

func t iona l ly  dis t inct  parts  of  the code :  in most cases, the detai l  of  the ou tput  can 
be varied.  It is therefore  poss ib le  to get a good  picture  of  what  ha ppe ns  in one par t  

of  C O N O P T  wi thout  being swamped  by ou tput  from irrelevant  parts.  

When  an er ror  occurs  in i terat ion 100 we are not in teres ted in test ou tput  from 

the first 95 i terat ions.  In this case we would ,  th rough  the C O N T R O L  program,  set 

the i tera t ion l imit  to 95, opt imize  until this l imit  is reached ,  reset the limit to 105, 

turn the se lec ted  test ou tput  on, and cont inue the op t imiza t ion .  Grea t  care has been 

taken to retain all re levant  in fo rmat ion  when an i tera t ion sequence  is in te r rup ted ,  

so that  a con t inua t ion  of  the op t imiza t ion  will p roduce  exact ly  the same i terat ion 

sequence  as an op t imiza t ion  run without  the in ter rupt ion .  It is even poss ible  to 

SAVE a b ina ry  copy of  the solut ion status and,  after  a R E S T A R T  in a later  job ,  to 

p roduce  exact ly  the same i tera t ion sequence  as would  have been  p r o d u c e d  by an 

un in te r rup ted  job.  If  an error  occurs  at the end o f  a very expens ive  j ob  it is poss ib le  

to rerun the j ob  and save the status a few i tera t ions  before  the error  occurs,  and  

then locate  the error  th rough  a sequence of  small  inexpens ive  jobs .  

4.7. Memory management 

A final systems detai l  is that  of  memory  managemen t .  The user  never  has to worry  

abou t  d imens ion  s ta tements  or  a l loca t ion  of  work ing  storage.  On vir tual  s torage 

machines  like IBM, a large piece of  working  s torage is reserved once and for all, 

and  C O N O P T  manages  its a l loca t ion  for different  purposes .  On machines  like C D C  

where  memory  is at a p remium,  C O N O P T  starts with a smal l  amoun t  of  working  

s torage and  requests  more  memory  when it is needed.  Wheneve r  a vector  exceeds 
its init ial  a l loca t ion  (dur ing  input  for example ) ,  C O N O P T  rea l loca tes  the working  

s torage and  moves  the in format ion  accord ingly .  

4+8. Dynamic models 

The a s sumpt ions  in Sect ion 2.3 make it poss ib le  to define a dyna mic  mode l  

essent ia l ly  by defining the model  for one pe r iod  and add ing  a few series of  t ime- 
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dependent  quantities. The ROWS, C O L U M N S ,  RHS, B O U N D S ,  and R A N G E S  
sections are therefore only defined for one period. The only difference from static 

models is that  coefficients, r ight-hand sides, and bound  values can be defined as 

t ime-dependent  through the use of  a special coefficient. The values o f  the time- 

dependent  quantities are defined in a separate SERIES  file. 
The structure of  each of  the lagged Jacobians,  d,, i, l =  1 , . . . , p ,  is defined in a 

LAGS section in the MPS file. The LAGS sections have the same format as the 
C O L U M N S  section. 

The F C O M P  subroutine is also written for one period only. It receives x,, . . . ,  x,_, 

plus the value of  t and must return the nonl inear  part o f f ( x , , . . . ,  x, ,).  

5. The Jacobian 

There are many  advantages to using analytic derivatives. I f  properly coded,  they 
are both more accurate and faster to compute  than numerical derivatives. Analytic 

derivatives also have important  disadvantages,  however. It is labor intensive to code 

all derivatives by hand,  especially for large models where the number  of  different 

expressions can be in the hundreds.  In addit ion,  it can be difficult for an unsophisti-  

cated user to unders tand the data structures into which he has to store the derivative 

values. Finally, the chances o f  error are rather large, al though the system could use 

finite differences to run checks and to inform the user about  likely errors. 
Because of  the above problems, it was decided to compute  derivatives numerically. 

The linear Jacobian elements that are defined through F C O M P  (hereafter called 

linear F C O M P  elements) are computed  in a setup phase. The columns with linear 

F C O M P  elements are per turbed one by one, and the derivatives are computed  via 

first differences. A fairly large perturbation is used to minimize the effect of  round-off  

errors. 

The nonl inear  elements in the Jacobian are computed  repeatedly, and one FCOM P 
call per nonl inear  column per evaluation can become very expensive. A setup routine 

based on [9] is therefore used to organize the columns of  the nonl inear  Jacobian 

into groups such that each group has at most one nonlinear  element in each row. 
The nonl inear  elements are evaluated in groups:  all columns in a group are perturbed, 

F C O M P  is called, and each nonl inear  element in the group is computed  numerical ly 

as the ratio of  the row and column perturbations.  The direct use of  the row 
perturbat ion assumes that the perturbation does not contain terms from linear 
F C O M P  elements. Subtracting these terms from linear F C O M P  elements would 

require either a search for the relevant elements or a special data structure to 
reference them. We have avoided this complicat ion by slightly changing the group- 

building heuristic described in [9]: a column is simply not added to a group during 

the building process if this would mean that the group would get a row with both 

a linear and a nonl inear  derivative. 
The number  of  groups,  and therefore the number  of  F C O M P  calls needed to 

compute  all derivatives, is generally quite small. The group-select ion heuristics in 
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[7] should give fewer groups and therefore fewer FCOMP calls than the current 

techniques, but the savings in overall computer time are not expected to be more 
than a few percent and the change, although desirable, is of low priority. 

The discussion of analytic derivatives at the beginning of this section assumed 

that a human user had to code the derivatives by hand. Eventually, however, we 

expect that more than half the problems submitted to CONOPT will be generated 

by computerized modeling systems like GAMS [5], in which case correct analytic 

derivatives can he generated automatically and inserted into any type of data 

structure. We are therefore considering adding an option so that the user can supply 

analytic derivatives. The option will be designed for computer-generated models 
and will probably not be friendly for a human user. 

The matrix operations in a GRG algorithm are similar to those of an LP algorithm. 

The Jacobian is therefore stored in the same way, i.e. the elements are sorted by 

columns, their values and row numbers are stored in two parallel vectors, and a 

shorter vector points to the start of each column. CONOPT also stores a column 

number to facilitate other operations used mainly in dynamic models. 

Dynamic models do not give rise to many complications. The structure of the 
Jacobian, shown in Fig. 1, is represented by the structure for one period, and all 

constant linear elements are stored only once. The values of nonlinear and time- 
dependent elements are stored with one copy per period. The two types of element, 

constant and time-dependent, are distinguished by being in separate data structures. 

The lagged Jacobians are usually very sparse with many empty columns. Only 
nonzero elements with row and column numbers are stored, since we never need 

to access the lagged Jacobians by columns. 

X~ X+ 

Fig. 1. The s t ruc ture  of  the Jacob ian  of a dynamic  model .  The blocks  with the same number  have  the 

same spars i ty  pat tern ,  so the pat tern  for the ha tched area is sufficient to represent  the whole  spars i ty  
pat tern.  The s tored row and co lumn  numbers  are relat ive to the per iod,  and  the lag n u m b e r  is i m b e d d e d  

in the co lumn  number .  
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6. Basis selection and basis inversion 
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6. I. Static models 

The word  mat r ix - invers ion  is used t h roughou t  this p a p e r  to deno te  the crea t ion  

of  a fac tor iza t ion  that  makes  it easy to solve sets o f  equa t ions  involving the matr ix  

or its t ranspose .  

The set o f  bas ic  var iables  can in pr inc ip le  change  from i tera t ion to i tera t ion as 

men t ioned  in s tep 3 in the G R G  algor i thm.  We prefer  to keep the same set as long 

as possible ,  however ,  e i ther  until  a bas ic  var iab le  hits a b o u n d  in s tep 8, or  unti l  

d~ becomes  bad ly  cond i t ioned .  The reasons are that  a s table basis  set faci l i tates 

accumula t i on  o f  s econd -o rde r  in format ion ,  that the se lect ion of  a basis set involves 

some overhead ,  and that  invers ions of  a sequence  o f  basis matr ices  with the same 

spars i ty  pa t t e rn  and s imi lar  numer ica l  values  can be done  very efficiently. 

Given this overal l  basis  strategy,  a basis se lect ion and invers ion rout ine  will have 

to work in two modes ,  search mode  and  re invers ion mode.  In search mode ,  we 

select and  invert  a basis  from a set of  n or  more  cand ida t e  var iables ,  p re fe rab ly  

choos ing  var iables  that  are away from their  bounds .  This mode  is used in the 

fo l lowing cases:  

1. For  the initial  basis ,  or after  2 or  3 be low fails. The cand ida te  set consists of  

all var iables .  

2. After  a bas ic  var iable  hits a bound  in the one -d imens iona l  search.  The cand ida t e  
set consists  o f  all old bas ic  and superbas ic  var iables  except  the bas ic  var iable  that  

hit a bound .  

3. Af ter  a re invers ion  fails  as descr ibed  below. The cand ida t e  set consists  o f  all 

old basic  and superbas ic  var iables .  

In re invers ion mode,  we invert  the same basis  matr ix  as before ,  but  with new 

numer ica l  values.  

C O N O P T  assumes  that  the nonl inear i t ies  of  both  const ra ints  and  object ive  are 

so s t rong that  most  one -d imens iona l  searches  end before  a var iable  hits a bound .  

We often observe  that  more  than 80% of  all one -d imens iona l  searches  end in an 

inter ior  poin t ,  and  we assume that more  than 80% of  all" inversions are reinversions.  

It is therefore  impor t an t  that  re invers ions  are fast, even if some o f  the speed  is 

gained at the expense  o f  the sea rch -mode  inversions.  

Our  s ea rch -mode  invers ion rout ine is a modi f ica t ion  of  He l l e rman ' s  and  Rar ick 's  

P~ rout ine [17], used on the rec tangular  matr ix  of  all basis  candida tes .  The pr inc ip les  

o f  p3 are a s sumed  to be known.  The key features  of  our  modi f ica t ion  are as fol lows:  

[. Co lumns  are s tacked and uns tacked  on a sp ike  s tack or  se lec ted  as t r iangular  

co lumns  as in p3 o n  the basis  of  a tally funct ion.  The a lgor i thm stops when n p ivot  

co lumns  have been chosen,  and  the co lumns  that  are left on the spike  s tack become 

nonbas i c  or superbas ic ,  in  general ,  we expect  that  more  basis cand ida tes  will result  

in fewer spikes  in the  basis ,  because  most  of  the potent ia l  spikes  will never be 

uns tacked.  
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2. Hellerman and Rarick's  tally function is augmented  with a term that reflects 

the distance from bound.  Variables close to their bounds  are favored during spike 
selection, i.e. selection of  potential superbasics,  and variables far from their bound  

are favored during selection of  tr iangular columns,  i.e. selection of  variables that 

definitely will become basic. 
3. During the inversion, a row-wise representat ion of  the sparsity pattern is added  

to the permanent  column-wise representation, so as to facilitate searches through 

the rows of  the matrix. The space needed for this representat ion is shared with 
vectors that are only used as intermediates in the one-dimensional  search, so no 

extra core is needed. 

4. The factorization o f  the basis is stored using alpha-vectors,  following [19]. The 
tr iangular columns are embedded  in the Jacobian itself and the updated spike 
columns are stored as additional columns of  the Jacobian,  using the s tandard 

Jacobian data structure. To avoid problems with zeros that becomes nonzeros at a 

different point,  we create the logical structure of  the upda ted  column and use its 
sparsity pattern to decide which elements to store. 

5. The pivot element of  a column is accepted if it is numerical ly larger than 

max(RTPIVA,  RTPIVR cnorm),  where cnorm is the norm of  the updated  column 

and RTPIVA and RTPIVR are absolute and relative tolerances with initial values 
0.05. I f  the pivot is too small, the column is stacked as a spike and the first column 

from the top of  the spike stack satisfying the test is selected. If  no such column 

exists, the inversion is considered a failure and we increase the set of  basis candidates 

as described above. If  all columns are already candidates,  we accept the best pivot 
element provided  that it satisfies some minimal tolerances. If not, we stop the job 

with a message that the Jacobian does not have full row-rank. 

With the inversion scheme adopted here, reinversions are very fast. After the 
Jacobian has been recomputed ,  it is sufficient to update the spike columns and save 

their new nonzero values. Since we used the logical sparsity pattern during the 

search-mode inversion, no new nonzero positions will appear  and no tests for zero 

are therefore needed. Nevertheless, it is still necessary to test that the pivot elements, 
both in the spike columns and in the tr iangular columns,  are large enough.  We use 

slightly smaller tolerances than in 5 above, so a reinversion will always be possible 

in the ne ighborhood  of  a point at which a successful search-mode inversion was 
performed.  

An earlier version o f  the inversion routine, [11], was based on the p4 routine, 

[18], with some additions to take care of  the degrees o f  f reedom in the basis selection. 
However,  the vector orientation of  F C O M P  prevented the block structure from Pa 

From being used in other parts of  C O N O P T  and it was abandoned  in favor of  the 
simpler P~ routine. 

6.2. D y n a m i c  models  

One of  the important  differences between static and dynamic  G R G  codes comes 
From the inversion routine. In early work on G R G  codes for dynamic  models,  it 
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was assumed that a block triangular basis with square diagonal blocks corresponding 
to the time structure could always be found (see [2]). This would be very convenient,  

because it implies that the overall inverse basis can be represented by the inverse 

of  the smaller diagonal  blocks. Some classes o f  models do have this helpful basis 

structure, for example models that in each period have n unbounded  'state variables' ,  

xT, for which i~f/i~x~ is always nonsingular.  Some optimizat ion models based on 
economic  models  belong to this class, and [22] describes a G R G  code for this 
application. 

Unfor tunately ,  models with many active bounds  in late periods may need non- 

square blocks in their bases as shown in Fig. 2. An early discussion of  the problem 

in relation to G R G  codes is given in [1]. Apart  from the basis selection, the inversion 

in a dynamic  G R G  code is similar to the inversion in staircase LP, and some of  the 

techniques from this field could be used. For further details and references, see [13]. 

There are, however,  some important  differences between general LP staircase models 

and time dynamic  nonl inear  models in C O N O P T .  The time orientation of  FCOMP,  
and of  the data structure for the Jacobian,  makes it important  to preserve as much 

of  the time structure as possible in the factorization of  the inverse, so that it can be 

used efficiently with single-period vectors of  function values or single-period columns 

of  the Jacobian.  Fortunately,  the extra freedom in the basis selection can help us 

select a basis that has square or almost square in-period blocks. 
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Fig. 2. A typical basis matrix for a dynamic model with nonsquare in-period or 0-lag blocks. The lower 
right corner of all 0-lag blocks must be on or above the diagonal for the basis to be nonsingular. 

To take as much advantage of  the structure as possible, C O N O P T  contains a 
special dynamic  basis selection and inversion routine. It is based on the conceptual  

reorganizat ion of  the basis shown in Fig. 3. The basis contains in-period blocks, i.e. 
blocks o f  columns that have their pivot rows in their own period, and inter-period 

columns,  i.e. columns that have their pivot rows in later periods. The inversion or 
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Fig. 3. The reorganized basis mamx with in-period blocks and rater-period columns. 

factorization of  this basis structure into easily invertible matrices is derived from 

the factorization in Fig. 4. For t = l, E~, is empty,  and for t >  1 it is factorized by 
recursive uses of  Fig. 4, i.e. E~, = E,, ~E2, ~E3, ~E~, ~. E:, is analytically invertible 

and can be represented by A, itself. E~, is invertible through an inversion of  ((7,, I )  
within period t only. And the final factor E4, can be split into a product  of  inter-period 

alpha-vectors using a product  or elimination form of  the inverse. The only factor  

that destroys the time structure is E4,. This is not serious for the computa t ion  o f  
dual variables, reduced gradients, or tangent directions, because these operat ions 
are oriented towards the whole time horizon. However,  E4, must be integrated with 

the single-period F C O M P  calls in the feasibility-restoring Newton  steps. The 

implementat ion of  this is described in Section 9.2. 

The dynamic  inversion and basis selection routine in C O N O P T  can now be 

summarized.  It assumes as input a set of  basis candidate columns. For  t = 1 to T, 
execute steps 1 and 2: 

1. Select and invert a submatrix of,/,, using the static basis selection and inversion 

routine described above. As before, the inverse basis is represented by tr iangular 
columns embedded  in the in-period Jacobian and updated in-period spike columns 

saved separately. The procedure  is modified so that it rejects rows without  a good 

pivot element. These rows are logically assigned unit columns for pivot until final 
pivots from earlier periods can be assigned in step 2. The result o f  this step is the 

selection and inversion of  (C,, I )  in E,,. 

2. For each row j without a final pivot element, replace the prel iminary unit 

column with an inter-period pivot column using steps 2.1 to 2.3: 
2.l. Find the vector of  possible pivot elements by updat ing the pivot row using 

the usual formula:  c r =  (e~'Bi.~.,)d~_, = rr~d~_,, ej is the unit vector to be replaced, 
B ~ ,  is the current inverse basis, and J~_., is the Jacobian for period 1 to t. The 

BTRAN routine described in the next section is used. 
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Fig. 4. The factorization of a basis matrix into 4 simpler matrices. B, j is a square matrix that covers 
all periods before t, A, and C, correspond to the rows in period t, and D, represent the columns that 

originate before period t and have their pivot in period t. The empty rectangles contain only zeros. 

2.2. F i n d  a g o o d  p ivo t  e l e m e n t  in c. T h e  p ivo t  e l e m e n t  is c h o s e n  to be g rea t e r  

t han  a f r ac t i on  o f  m a x ( q ) .  First  p r io r i ty  is g iven  to c o l u m n s  f r o m  p e r i o d s  that  a re  

a l r e ady  l i n k e d  to p e r i o d  t wi th  i n t e r - p e r i o d  p ivots .  If  no  such  c o l u m n  exists  we 

c h o o s e  a c o l u m n  f rom as late  a p e r i o d  as poss ib le ,  so as to m a k e  the  i n t e r - p e r i o d  

a l p h a - v e c t o r  as shor t  as poss ib le .  T h e  d i s t a n c e  f r o m  b o u n d s  is u s e d  as a s e c o n d a r y  

c r i te r ion .  
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I 2.3. Update  the selected pivot column at using r = B~,a~ and store it as an 
inter-period alpha-vector  with pivot in row j. The alpha-vector  is considered part 

of  -~ B,~, during the next pass of  2.1 to 2.3. The result of  step 2 is the selection and 

inversion o f  E4,. 
The set of  basis candidates  is managed as in the st/ttic routine. The degree of  

f reedom in the selection of  basic variables is used in step 1 to give the in-period 

blocks as many  columns as possible, thereby decreasing the number  of  inter-period 

pivots. The f reedom is also used in step 2.2 to make the inter-period alpha-vectors 

short:  this saves storage and weakens the harmful effects of  E4, in the Newton step. 

The dynamic  reinversion routine is .just as simple as the static one. In-period 

blocks are reinverted using the static reinversion routine, and the numerical  values 
o f  the inter-period alpha-vectors are simply recomputed  using step 2.3 above. No 

structural work is needed and the only tests are those that test the size of  the pivot 

elements. 
A special mixture of  the reinversion and the basis selection and inversion routine 

is used after a basic variable hits a bound and leaves the basis. Let the time period 

o f  the variable that leaves the basis be connected with all time periods from t~ to 

t2 through inter-period pivots. We first perform a reinversion for period 1 to t~ - 1. 
Between period t~ and t2 we perform a basis selection and inversion. The basis 
selection can choose variables before t, as pivots, thereby increasing the size of  the 

inter-period block, and it can break the block into smaller blocks. It cannot  affect 
periods after t> however,  so a reinversion is sufficient for period t : +  1 to T. 

7. The reduced gradient 

The computa t ion  of  dual variables or Lagrange multiplier esJimates follows a 

s tandard LP B T R A N  procedure.  -['he dual variables are subsequently used in a 
pricing procedure  where C O N O P T  prices all columns,  nonbasic  as well as basic. 

The nonbasic  reduced costs define the reduced gradient. The basic reduced costs 
should be zero and can therefore be used to test for the numerical stability of  the 

basis. I f  they are large compared  to intermediate results and nonbasic  reduced costs, 

the pivot tolerances RTPIVA and RTPIVR are tightened for future inversions, and 
an extra B T R A N  is applied to the basic reduced costs to improve the dual variables 

and reduced costs in an iterative refinement fashion. The pivot tolerances are relaxed 
if the basic reduced costs are repeatedly small. 

In the dynamic  setting we must, of  course, use the time staged inverse basis, i.e. 

the in-period E3, factors, the inter-period E4, factors, and the lagged E2, factors. 
In the implementat ion we have integrated the ordinary B T R A N  operat ion with the 

pricing operat ion or computa t ion  of  the updated  objective row. The effect is that 

all lagged Jacobian elements are accessed in one pass instead o f  requiring one pass 
of  the basic elements for the E> multiplication and one pass o f  the nonbasic  elements 
for the pricing. It is therefore not necessary in this routine to be able to access the 
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lagged Jacobian by column; as mentioned in Section 5, this fact is reflected in our 

simple data structure. 
The first stop test in C O N O P T  is based on the norm of the reduced gradient. The 

solution is considered optimal if all components  are less than R T R E D G  or less 
than RTRGER times the largest intermediate result in BTRAN. The default of both 
is eM~ where eM is the relative machine precision. The test is only applied if the 
solution is accurate, however, i.e. if the tolerance on the objective as defined in 
Section 9. I is minimal. I f  the reduced gradient is small but the solution is inaccurate, 
we perform a line search, and the accuracy will automatically be tightened as 
described in Section 9.4. The reduced gradient will be tested again at the more 

accurate point in the next iteration. 

8. The superbasis and the search direction 

The management  of the superbasis, or the subspace optimization strategy, is fairly 
standard. At the first feasible point, all nonbasic variables away from their bounds 
are chosen as superbasic, and a variable will only leave the superbasis if it hits a 
bound or if it becomes basic, usually because it replaces a basic variable that hits 
a bound. During the iterations, nonbasic variables are allowed to enter the superbasis 
before the beginning of each line search, provided that their reduced gradient is 

sufficiently large. The mathematics are set out below. 
For a given set of superbasic variables, the search direction for the superbasics 

can be computed using a conjugate-gradient, a quasi-Newton (variable metric), or 
a Newton method. Newton methods can be excluded immediately because the 
Hessian of the reduced objective function is too expensive to compute. Quasi-Newton 
methods generally give fewer iterations than conjugate-gradient methods, but their 
core requirements and updating time grows quadratically with the size of the 
superbasis compared to a linear growth for conjugate gradients. Some large-scale 
systems have therefore included both methods, and they switch from quasi-Newton 
to conjugate gradient when the number of  superbasics exceeds a user-defined limit 

(see E23]). 
In C O N O P T  we have decided that the extra overhead in a quasi-Newton method 

is always worthwhile. We have assumed that a problem with many superbasics will 
also have many constraints, so the costs of computing a reduced gradient and 
performing a line search will always be large compared to the cost of a quasi-Newton 
update. We have also assumed that C O N O P T  is not used on problems with more 
than 150 superbasics, so the extra core for the Hessian estimate does not become 
excessive compared to the core used for the code and for other problem-dependent  

arrays. 
The quasi-Newton update used in C O N O P T  is the BFGS or the complementary 

DFP update, and the implementation is similar to that of MINOS [23]. Actually, 
the routines R1ADD, R1SUB, RIPROD,  and DELCOL from MINOS are used 
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with only minor changes, through the courtesy of M. Saunders. Only the changes 
to the MINOS implementation will be described. The reader is referred to [23] for 

a comprehensive description. 

The basis selection algorithm has been designed to find as sparse a basis as 

possible. We have to pay a price for this extra sparsity: the set of basic variables 
can change by more than one variable even if only one variable hits a bound. If 

this happens, it becomes too difficult to update the Hessian estimate and we 
reinitialize it as the unit matrix. 

If exactly one variable is replaced in the basis, we test whether the Hessian 

estimate contains any second order information, i.e. whether it has been changed 

from the initial unit matrix. If this is not the case, we simply keep the unit matrix. 

If second order information is available, we update the Hessian estimate in the old 

basic/superbasic space, project it into the new space, and delete the variable that 
hit a bound and caused the basis change. The projection and variable deletion are 

done as in MINOS. The update is slightly more complicated because of the non- 

linearities. The new reduced gradient needed in the update of the Hessian is only 

computed in the new basic/superbasic space using the new Jacobian. A projection 

back to the old space but with the new value of the Jacobian is therefore necessary. 
Fortunately, the projection of the reduced gradient and the projection of the Hessian 

estimate can be represented by the same updated row of the Jacobian, so there are 
essentially no extra costs. 

When a nonbasic variable is made superbasic following the test below, the Hessian 

is augmented with one row and one column. The off-diagonal elements are set to 
zero, and the new diagonal element is set to RMEAN, the geometric mean of the 

other diagonal elements. This value is chosen instead of the usual 1 to get an 

augmentation that is asymptotically invariant to scalings of the objective function. 

At the beginning of each line search we compute the reduced gradient, g,, the 
search direction for the old superbasics, &, and the slope along this direction, 

SLOPE = d~V&. The nonbasic variable with the largest reduced gradient component 
pointing away from its current bound is then identified. If the reduced gradient, 

g, .... passes the test 

g~axLKSAME: RTINSB/RMEAN > abs(SLOPE) 

it is added to the superbasis, & and SLOPE are updated, and the search for a 
nonbasic variable to enter the superbasis is repeated. RTINSB is a tolerance with 
default value 4 and LKSAME is the number of consecutive times this nonbasic 

variable has been a candidate for the superbasis. 

The subspace optimization strategy used in CONOPT lets variables enter and 

leave the superbasis in each iteration, and it can in theory cause cycling between 
subspaces, unlike more accurate subspace optimizations that can prevent cycling. 

However, CONOPT is designed for problems that may pass through hundreds of 
intermediate subspaces, so we cannot afford to do a strict optimization on each. 

The weak subspace strategy is therefore still used, despite its disadvantages. Fortu- 

nately, a recent paper by Dembo and Sahi [10], seems to indicate that weak subspace 
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minimization can be protected against cycling. These results will be considered for 

inclusion in CONOPT in the near future. 

The second stop test in CONOPT is based on SLOPE. SLOPE is twice the 

predicted change in objective based on the quasi-Newton formula. If this number 
is smaller than the minimal tolerance on the objective, we consider the solution 

optimal. As with the reduced gradient test, this test is only applied if the current 
solution is accurate. 

9. The one-dimensional search 

Once the search direction for the superbasic variables has been computed, we 
perform a one-dimensional search along this direction. In one of the early GRG 

papers, [2], Abadie suggested that the search be performed along the tangent to the 
constraint surface, and that feasibility be restored only from the final step. However, 

most later implementations attempt to return to the constraint surface at each step 

(see e.g. [20]). This approach makes it easier to handle models with linear objective 

functions and models that are so nonlinear that it is difficult to restore feasibility 
for large step lengths. CONOPT follows this approach and restores feasibility at 
each step. 

During the one-dimensional search, the bounds on superbasic variables are in 

danger of being violated; during the iterations that restore feasibility, the bounds 

on basic variables can be violated. Several implementations, e.g+ [2] and [20], allow 

the bounds to be temporarily violated, and bounds are only guaranteed to be satisfied 

in the final point of the line search. This means that the constraint functions may 
be called outside their domain of definition, however, and it becomes the user's 
responsibility to handle exceptions. This is contrary to the philosophy in CONOPT, 

that FCOMP never should be called with values that are outside the lower or upper 

bounds. Once a user has specified a set of bounds, he/she should never have to 
worry about them again. 

As a consequence of the decision always to remain within bounds, the one- 

dimensional search in CONOPT is slightly different from one-dimensional searches 
in other GRG codes. In the following subsections we will describe the three main 
components of our one-dimensional search: 

- the Newton algorithm that restores feasibility for given values of the superbasic 
variables and given estimates for the basic variables, 

- the algorithm that computes initial estimates for the basic variables and manages 
the bounds on superbasic and basic variables, and 

- the algorithm components that suggest step lengths and manage stop criteria. 

9.1. The N e w t o n  algori thm - Stat ic  version 

For each step in the one-dimensional search we solve the subproblem 

f(xb, x,, ) = b (5) 
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with respect to x~, for fixed x,,. Since (5) must be solved many times, the solution 

o f  (5) is the most expensive component  of  many G R G  codes, and great care must 

be taken with it. It is important  not to solve (5) more accurately than necessary and 
not to spend too much time trying to solve it if it is in fact not solvable. 

To determine an appropria te  degree of  accuracy,  it is helpful to see how the 

output  is used. The output  consists of  the value of  the objective function and the 

values of  the basic variables. At all intermediate points we only use the objective 

funct ion value to determine a new step length, and we only use the values of  the 

basic variables to determine new initial values for the next Newton call. We cannot  

expect that doing one extra iteration now and making the basics more accurate will 
save us more than one iteration in the next Newton call, so our  main stop criterion 
should be based on the error, dr, in the objective function, df  is the change that 

would occur  in the objective function if the residuals were all reduced to zero, and 

it can be approximated  by the change in objective function that one extra Newton  

iteration would give, i.e. 

d r =  i x ,  = e)r.3xh = e ~ d ; I r  = u lr  

where r is the current vector of  residuals and u is the vector of  multipliers computed  
in step 4 of  the G R G  algorithm. Note that the df  computa t ion  is very cheap. 

The threshold for df  should be large when the objective changes are large, and 

small when we approach  the opt imum and the objective changes are small. We 
therefore stop when abs(df) is less than RTOBJ = m a x ( R T D F M N ,  edf  10 2), where 

-r- o.s R T D F M N  =(1 abs(f~bi))eM is an absolute lower bound ,  and edf  is an estimate 

of  the change in objective during the current line search, based on the slope of  the 
objective at step length zero and a moving average of  earlier objective changes. 
Apart  from the R T D F M N  term, the test is invariant to scalings of  both the objective 

function and the constraints, and it performs a gradual t ightening of  the tolerances 

that allow inaccurate and cheap Newton solutions far from the final point, and 
guarantees accurate Newton solutions close to the opt imum. We usually see 0, 1 or 

2 Newton  iterations before convergence,  both in the initial phase where we make 

large steps and large residuals are compared  with loose tolerances, and in the final 
phase where we make small steps and where small residuals are compared  with 

tight tolerances. 
The tests that stop the iterations if they are not likely to converge are based on 

the following principles. There is an overall iteration limit (default 10). Hitting this 

limit is expensive, however,  so after each iteration we compute  both  the rate of  
decrease o f  the residuals and the number  of  iterations needed before convergence 

at the computed  rate. If  the expected number  of  remaining iterations is less than 
haft  the total number  of  remaining iterations, we cont inue:  otherwise we stop without 

a solution. The purpose of  the one-half  value is to make the test gradually weaker, 
so that we do not stop without a solution after having invested several iterations, 
unless the rate of  convergence deteriorates substantially. Experience shows that if 

the algori thm is not aborted by this test after the first iteration, it will almost always 

converge. 
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We can now describe the Newton algorithm used in C O N O P T :  

0. Set niter = 0. 
I. Set n i t e r=  n i te r+  1. If  n i t e r>  L F N W I T ,  return (failure). (Default  L F N W I T =  

10.) 
2. Compute r  r = b - f ( x ~ ,  x,,).  If  n i t e r>  i only compute  residuals of  the nonl inear  

equations and set the linear residuals to zero. 
3. Set ar=l l r ] ] l ,  d f = r V . u ,  a d f = a b s ( d f ) ,  and compute  p = ( L K N W 1 T -  

ni ters+ 1 )/2. 
4. I f  ar<~ R T N E W ,  go to 6. (Default R T N E W =  0.001*n.) 
5. If  n i t e r>  1 and ar (a r /a ro ld)  ~" > R T N E W  then return (failure), else go to 8. 

6. I f  a d f ~  < RTOBJ, go to 12. 

7. If  n i t e r>  1 and adf (adf /adfo ld )P  > RTOBJ, return (failure). 

8. Set arold = max(ar,  R T N E W )  and adfold = max(adf ,  RTOBJ).  
9. Solve JhAx~ = r with respect to Axe, using the same inverse basis as in the 

reduced gradient  computat ion.  

10. Set x~ := xb + Axe. 
I1. I f  a bound  with value bnd is violated by more than (l + a b s ( b n d ) ) R T B N D 1 ,  

return (failure). I f  a bound  is violated by less, set the basic variable to the bound  

value. Go  to 1. (Default  RTBND1 = 10 ~.) 

12. Set objective := XJ + df  and return (success). 

Steps 2, 9 and 10 are s tandard G R G - N e w t o n  procedures,  where the changes in 

basic variables are computed  as the constraint residuals multiplied by the inverse 

basis from step length zero. Note that the residuals in all linear equations will be 

zero after the first iteration. Only nonl inear  residuals are therefore computed  in 

later iterations. Most of  the other steps are included to handle bounds  and to improve 
efficiency. 

If  the 1-norm of  the residuals is large (default limit 0.001 n), we test that it 

converges fast (steps 4 and 5). I f  the residuals are small, we assume that the 

approximat ion  of  df  is sufficiently accurate and we test that df  converges fast (steps 
6 and 7). 

Step 11 is included to guarantee that the variables passed on to F C O M P  always 
satisfy the bounds.  If  the point suggested by the Newton step is far outside one of  
the bounds ,  we expect that no solution exists within the bounds  and we return to 
the step-length procedure  in which a new and smaller step is chosen. 

The Newton  algorithm returns a status code, which defines whether Newton  was 
successful or not. The code also distinguishes between the case where the initial 

point was already feasible and the case where it was not, and between failure due 

to slow convergence and failure due to violated bounds.  Note, however,  that too 
large a value of  R T B N D I  can transform a bound  violation into a slow convergence 
and that a large bound  violation may occur  even when a solution exists. The status 

code must therefore be interpreted with caution by the line search routine. Experi- 
ments are currently underway to change R T B N D I  dynamically,  but a final choice 

has not yet been made. 
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9.2. The Newton algorithm - Dynamic version 

When there are no inter-period pivots, we have a block-triangular system of 
equations and can therefore use the static Newton routine T times, once with each 

of the T in-period inverse bases. This fits well with the time orientation of the user's 

FCOMP subroutine. 

When inter-period pivots link more time periods together, the equations from all 

time periods linked in one block must be solved as one simultaneous set of equations. 

To utilize the time structure of the inverse and of FCOMP, CONOPT breaks the 

iterations into an outer loop that runs over the periods in the block, from tbegin 
to tend, and an inner loop that iterates within one time period. The main components 

of the procedure are as follows: 

1. For t'=- tbegin to tend, execute the following in-period substeps: 

I.I. Compute r, the vector of residuals in period t. 
1.2. If the residuals are small, go to next t. If the residuals are not converging, 

return (failure). The actual tests are the ones described in Section 9.1 above. 

1.3. Compute Jxh assuming that all periods before t are feasible: 

Axb = Bl.'~,{Or} = E4,' E~,' E~,' E~,' { Or} = E~,~E3,'{O} = E 4,' { BO,r}  

i.e. first apply the in-period inverse to the residuals and then apply the inter-period 

alpha-vectors with pivot in period t. Note that 3xb can contain nonzeros between 

period tbegin and t. 

1.4. Set x~, := xl, + Axe. 
1.5. If  a bound is more violated than RTBND1, return (failure). If a bound is 

violated by less than RTBNDI ,move  the variable back to the bound. Go to 1.1. 

2. If no changes were made to lagged values in step 1.4 in any period i.e. if no 

inter-period alpha-vectors were used, then return (success). 
3. If the lagged changes are diverging, return (failure), otherwise go to step 1. 

The routine makes one period feasible before it considers the next. During 

iterations in later periods it assumes (but does not check) that the earlier periods 

remain feasible. This is not an unreasonable assumption since the only changes in 
variables in earlier periods are those derived from the inter-period alpha-vectors, 

so new infeasibilities will be second order terms. The advantage of the assumption 
is that the routine only requires residuals for one period at a time, which is the way 

FCOMP produces them, and that the lagged Jacobian in the factor E2,, is not needed 
e 

directly. The linear part of the lagged Jacobian is, of course, used indirectly to 

compute the residual. After one pass of all time periods we must check that the 
residuals in earlier periods have remained small and, if necessary, make another 
round of adjustments. It is our experience that one round of adjustments is usually 

enough. The second round is only needed to test the final residuals. 
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9.3. Bounds on basic and superbasic variables and initial values for  Newton ' s  algorithm 

The superbasic variables move along the search direction ds in a straight line. 
This makes it easy to determine once and for all the step length at which the first 
superbasic hits a bound. This step length, 0~ ..... is an absolute upper  bound on the 
step length. 

The basic variables move along a curve that is implicitly defined through the 
Newton algorithm. The upper  bound on the step length from bounds on basic 
variables, b 0 . . . .  is therefore only defined implicitly through failures of  the Newton 
algorithm due to bound violations for steps greater than 0~l~x. To avoid frequent 
Newton failures due to bound violations, 0~ax is estimated on the basis of extrapola- 
tions of the values of the basic variables. The extrapolations (and similar interpola- 
tions) are, of  course, also used as initial values for the Newton algorithm to speed 
it up. 

For the first step, C O N O P T  uses a linear extrapolation for the basics based on 
the base point and the tangent, d~, in the base point computed from 

dh = -J; ' (J~d~) .  

In the static case, the computat ion relies on a standard FTRAN routine as in LP. 
In the dynamic case, we have, as in BTRAN, integrated the computations of the 
lagged parts ofJ~ �9 d~ with the multiplication using the E2, factor; all lagged Jacobian 
elements are thus again accessed in one pass, independent of  the split of variables 
in basic and nonbasic. 

After a feasible point is found with some positive step length, we fit a quadratic 
model, first through the base point, the new point, and the tangent, and later through 
three points. C O N O P T  keeps three m-vectors for this purpose. The space for two 
of  the intermediate vectors is re-used as scratch storage by the inversion routine as 
mentioned in Section 6. 

During the interpolation or extrapolation processes, one of the old vectors is 
always overwritten by the initial values for the new point. If  Newton fails, we are 
therefore left with only two feasible points or with the base point and the base 
tangent, and the next interpolation or extrapolation must use an inferior linear 
model. Because of this loss of a point each time Newton fails, we approach a bound 
in a rather conservative way: before testing whether a basic variable will hit a bound, 
we multiply the distance to the bound, a b s ( b n d -  x), by a 'safety factor'. Currently 
CONOPT uses max(0.8, 1 - a b s ( b n d - x ) / ( l  +abs(bnd))) .  When the basic variable 
is far from its bound, the extrapolation will be uncertain and the safety factor is 
small. As the basic variable moves closer to its bound, the extrapolation will be 
shorter and the safety factor will be closer to 1. If the previous Newton call accepted 
the extrapolated point as immediately feasible, we set the safety factor to 1, and 
the next extrapolation will therefore produce a point with the critical basic variable 
exactly at its bound. 

The safety procedure gives few Newton failures, but it may require 4 or 5 step 
length increases before the basic variable ends at its bound if it started far away. 
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For tuna te ly ,  the last small  increases  in step length are cheap,  since the ex t r apo la t ed  

values for  the bas ic  var iables  are good ;  the number  of  Newton  i tera t ions  is therefore  

small .  

Dur ing  the ex t rapo la t ions ,  extra p recau t ions  must be taken with a degenera te  

basis.  I f  a bas ic  var iable  remains  very close to a b o u n d  th roughou t  the line search,  

it can create  false u p p e r  b o u n d s  on the step length. We have e l imina ted  this p rob lem 

by d i s rega rd ing  basic  var iables  whose ex t r apo la t ion  intersects  the b o u n d  at a very 

flat angle from the b o u n d  tests. The tests are s imilar  in spiri t  to the C H U Z R - t e s t s  

in the D E V E X  LP-code  [16]. 

9.4. Step-length determination, stop criteria, and exception handling 

A one -d imens iona l  search p rocedure  for a G R G  code  is more  compl i ca t ed  than  

a one -d imens iona l  search p rocedure  for an uncons t r a ined  op t imiza t ion  code,  

because  the former  must  handle  some p rob lems  that  do not occur  in an uncons t ra ined  

model .  It is l ikely that  funct ion values are not ava i lab le  for large steps because  

Newton ' s  a lgor i thm fails, and  we can find that  the error  in the funct ion values 

caused  by inaccura te  Newton  solut ions  is c o m p a r a b l e  to the changes  in funct ion 

value for smal l  steps. After  a short  t rea tment  of  the general  s top cri teria,  we descr ibe  

in some detai l  how C O N O P T  handles  these two p rob lem areas.  

The init ial  s tep length is c o m p u t e d  as the expec ted  change  in objec t ive  funct ion 

d iv ided  by the s lope at s tep zero. If this step length is close to 1 - the op t imal  

Newton  step,  it is changed  to I. After  at least  one funct ion value has been found,  

a new step length is c o m p u t e d  based  on a quadra t i c  model ,  subject  to the cons t ra in t  

that  the s tep length cannot  increase  by more  than a fac tor  A L P H A .  The defaul t  

value  o f  A L P H A  is ini t ial ly 4, but it may decrease  as men t ioned  below.  Bounds  on 

var iab les  are i nco rpo ra t ed  as descr ibed  in the previous  subsect ion.  The search is 

s t opped  i f  the expec ted  improvemen t  in objec t ive  funct ion  from the quadra t i c  model  

is less than  R T O N E D  (defaul t  0.2) times the improvemen t  so far. In cases where  

the step is def ined by a b o u n d  on a var iable ,  however ,  we do not  s top unless  the 

var iable  is within ( 1 + abs (bnd) )  RTBN D1 of  the bound ,  i n d e p e n d e n t  of  the expec ted  

improvemen t  in objec t ive  funct ion.  

Newton  fai lures  can occur  at several poin ts  in a one -d imens iona l  search.  If  Newton  

fails before  a first i m p r o v e d  object ive  funct ion value has been found,  we make the 

step smaller .  If the fai lure was caused by a bound ,  we mul t ip ly  the s tep by a fac tor  

0.9; and  if  the convergence  was slow, we mul t ip ly  it by a factor  I / A L P H A .  Newton  

can also fail  in an in te rpo la t ion  step after  an improved  poin t  has been found,  

a l though  this is unl ikely.  In this case we s top the search,  reinvert ,  and  compute  a 

new search direct ion.  

The last case of  a Newton  fai lure is a l te r  an ex t r apo la t ion  step where an improved  

po in t  has a l r eady  been found.  If the fai lure was due to a bound ,  we assume that  

the step exceeded  but  was close to 0,h~;,~; we cut the step increase  by a factor  0.9, 

and call Newton  again  wi thout  any improvemen t  tests. I f  the fai lure was due to 
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slow convergence, we replace the step by the geometric mean of the previous step 
and the largest feasible step, replace the step-length multiplier ALPHA by its square 

root (for the duration of this line search only), and again apply the improvement 

criterion mentioned above before the next Newton call. If ALPHA has already been 

decreased twice, we define the one-dimensional search as badly behaved and stop. 

Many GRG codes stop the one-dimensional search after the first Newton failure in 

an extrapolation (see e.g. [20]), but we have found that the smaller value of the step 

length multiplier ALPHA, combined with the extrapolation of basic variables, will 
often let us increase the step length considerably beyond the point where Newton 

first failed. And although the step-length multiplier is smaller, it is applied to a 

larger step, so the objective improvement can be considerable. 

Inaccurate objective function values can cause problems for small step lengths. 
New step lengths are computed from differences in objective function values and 

the computed step lengths are therefore useless when the differences in objective 

functions are comparable in magnitude to the errors in these objective functions. 
We therefore keep track of dr, the error estimate computed in the Newton algorithm, 

for each feasible point. Before a one-dimensional search is started, we test whether 

the error estimate for the base point is less than the error tolerance for the coming 
one-dimensional search. If it is not, we call Newton at the base point before starting 

the one-dimensional search. This precaution should minimize the problem of badly 

behaved one-dimensional searches. During the search, we impose a lower bound 

on the step corresponding to the step where the expected decrease in objective is 
equal to the error tolerance. A smaller step is only allowed if a variable previously 

hits a bound. Whenever an interpolation suggests a smaller step, the one-dimensional 

search is stopped and the following recovery sequence is initiated: 
A: The expected change in objective (edf) and the Newton tolerances on residuals 

(RTNEW) and objective (RTOBJ) are divided by 10, and Newton is called to make 

the base point more accurate before the one-dimensional search is called again with 

the old direction vectors and old inverse basis. 
B: The improved base point is usually enough to get the optimization back on 

track, but if the next one-dimensional search also fails, we recompute the Jacobian, 

reinvert in the new base point, compute new direction vectors, and call the one- 

dimensional search again. 
C: If this still is not enough, we switch to the steepest descent direction. 

D: Increase the superbasis if there are any nonbasic candidates, and 

E: Invert with search for a new basis with larger pivot tolerances. 
F: A to E are repeated until a line search gives an improvement or until all 

tolerance are minimal, in which case CONOPT declares that it cannot solve the 

model. We should insert a routine here that tests whether the noise level in FCOMP 

is very high, or first and/or  second derivatives are unreasonable. The best format 

for such tests is not yet clear, however. 
While tightening the tolerances in A above, we may find that Newton's algorithm 

fails because a degenerate basic variable exceeds a bound. We cannot simply rely 
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on the one -d imens iona l  search a lgor i thm to cut the s tep length as the o rd ina ry  

Newton  a lgor i thm does ,  so C O N O P T  conta ins  a more  e labora te  Newton  rout ine  

with Newton  steps less than one and basis changes  for this purpose .  It is based  on 

the phase - I  a lgor i thm in the next section. 

10. A phase-1 algorithm 

Most  papers  on G R G  codes descr ibe  their  phase-1 a lgor i thm very superf ic ia l ly  

if  at all,  but  our  general  impress ion  is that  most  codes minimize  a sum of  abso lu te  

or squared  residuals ,  using the s t andard  G R G  procedure  and s tar t ing from an 

al l - logical  basis.  This a p p r o a c h  is easy to imp lemen t  and it is as re l iable  as the 

under ly ing  G R G  code.  Unfor tuna te ly ,  however ,  this phase-1 will need  at least  k 

line searches,  where  k is the number  of  s t ructura l  var iables  in the first feas ible  basis,  

i n d e p e n d e n t  of  the initial  values  of  the s t ructura l  var iables .  

By compar i son ,  Newton ' s  a lgor i thm can find a feas ible  poin t  very quickly  if good  

initial  values  are p rov ided  and a good  basis is chosen.  Based on these observa t ions ,  

we have imp lemen ted  the fol lowing a lgor i thm:  

0. Choose  an initial poin t  x. 

1. C o m p u t e  the Jacob ian ,  J, and  select and  invert  a basis. The usual  cr i ter ia  of  

bas ic  var iables  away from bounds  and good  cond i t ion ing  appl ies .  Define the basis  

as new. 

2. C o m p u t e  the Newton  di rec t ion  for the bas ic  var iables ,  Axb = - - , l h J ( f ( x ) - - b ) .  

3. F ind  the step length c~ at which the Newton  di rec t ion  hits a bound .  

4. I f  c~ < l go to 5. 0 t h e r w i s e  take a full N e w t o n  s tep,  x~, = Xb + AX~, X+,, x, , . I f  

the poin t  is feasible,  I f ( x + ) - b l ~  ~ R T N E W ,  re turn  (success).  If the res iduals  did  

not  decrease  fast, go to 8. Otherwise  set x : =  x *, define the basis as old,  and  go to 

2 where the old  inverse basis  is used again.  

5. Take a s tep length of  o~ in the Newton  d i rec t ion ,  x{ = xb + c~Jx~,, x, +, = x,,. I f  the 

res iduals  d id  not  decrease  fast, go to 8, o therwise  set x := x ~ . A crit ical  bas ic  var iable ,  

j ,  is now at a bound .  

6. C o m p u t e  the Jacob ian ,  reinvert  the o ld  basis in the new point ,  and  compute  

a new Newton  step. I f  the previous  cri t ical  var iab le  is no longer  cri t ical ,  go to 3, 

o therwise  pe r fo rm a basis  change where j leaves the basis.  The incoming  bas ic  

var iable  is se lec ted  as fol lows:  C o m p u t e  the u p d a t e d  row in which var iable  j has 

its pivot,  i.e. the row of  potent ia l  pivot  e lements  c T= ( e T J ~ l ) J  = ~rTJ where e is a 

unit vec tor  that  picks out  the  p rope r  row. Choose  a co lumn p to enter  the basis.  It 

must  satisfy:  

a. abs(cp) > RTPIVA i.e. an absolt ,  te pivot  to lerance ,  

b. , -4xp=AxJcp>~O if xp is at its lower b o u n d  and  Axp<~O i f x p  is at its upper  

bound .  I f  there  is more  than  one p -cand ida t e ,  choose  one that  maximizes  the s tep 

% for the incoming  var iable ,  namely  oLp = (bndp - xp) / z lxp  if max o~p < 1. If  max ap 1> 

1, maximize  the pivot  e lement  abs(cp) among  co lumns  with c~p/> 1. I f  a p is found,  

replace  co lumn j by p in the basis,  define the basis  as new and go to 2. 
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7. If  no p is found  in 6, we dec la re  the so lu t ion  infeas ib le  and return (fai lure) .  

The weighted  sum of  infeasibi l i t ies  a b s ( ~ ' v ( f ( x ) - b ) )  has the value abs(/_lxj)> 0, 

and it is at a local m i n i m u m  or  at a s ta t ionary  point .  

8. Convergence  was slow. I f  the basis was old,  go to 1. If  the basis  was new, the 

slow convergence  can only  be due to second  o rde r  terms. Decrease  a until  a 

sufficiently fast decrease  in res iduals  is found  or  until  a < am~, (defaul t  10-7). Set 

x~, := xh+ aAx~,. If  a is smal l  (defaul t  l imit  is 0.01) for two consecut ive  i terat ions,  

we make a heur is t ic  basis  change where  the bas ic  var iable  with m a x i m u m  abs(Ax~) 

leaves the bas is ;  a l te rnat ive ly ,  we reinvert  the same basis. In e i ther  case, we then 

define the basis  as new, and go to 2. 

The a lgor i thm tries to make  Newton  steps,  and  it can only be s topped  by two 

things: a b o u n d  on a bas ic  var iable  or  slow convergence  due to large second  o rde r  

terms. A b o u n d  on a bas ic  var iable  leads  to a basis change  in step 6. The incoming  

var iable  is chosen  so that  it will not hit a b o u n d  immedia t e ly  and,  if poss ible ,  so 

that  it has a good  step b o u n d  and a good  pivot  e lement .  This should  improve  the 

next i terat ions.  An an t i -degeneracy  measure  could  be a d d e d  to prevent  cycl ing if 

a = 0 repea ted ly ,  but  it has not yet been necessary.  An incoming  basic  var iable  can 

always be found  unless a certain weighted sum of  infeasibi l i t ies  (see s tep 7) is at a 

local  m i n i m u m  or at a s ta t ionary  point.  In the l inear  or convex case this would  

prove  infeasibi l i ty ,  even if the sum of  infeasibi l i t ies  is not min imum,  so we use it 

as an ind ica t ion  that  no feasible so lu t ion  exists. 

Slow convergence  due to large second  o rde r  terms,  hand led  in s tep 8, is a more  

ser ious p rob lem.  C O N O P T  current ly  conta ins  a heuris t ic  that  tries to get a round  

the p rob lem by choos ing  a new basis.  The bas ic  var iable  that  changes  most,  i.e. the 

var iable  that  is l ikely to cause the largest  second  order  terms,  is r emoved  from the 
basis  and  the cr i ter ion in s tep 6 is used to choose  the enter ing var iable .  A bet ter  

a p p r o a c h  would  be to incorpora te  a s teepes t -descent  step, as in Powel l ' s  hybr id  

a lgor i thm [28], or  to switch to a s t anda rd  phase - I  a lgor i thm.  These add i t ions  have 

high pr ior i ty  and will be imp lemen ted  soon.  

The phase - I  a lgor i thm descr ibed  above  will usual ly  find a feasible  so lu t ion  after  

very few i tera t ions  when good  initial values  are avai lable .  A few basis  changes  may  

be needed.  If  only  some var iables  have been in i t ia l ized with good  values  and the 
r ema inde r  have been in i t ia l ized by defaul t  at a bound ,  more  i tera t ions  are needed.  

The first bases  will have many  basic  var iables  at the b o u n d  and it is l ikely that  c~ 

will be zero. Af ter  some i tera t ions  with small  or  zero steps, however ,  the Newton  

di rec t ion  will usual ly  be d i rec ted  into the feas ible  space  and the i terates will move 

very quickly  to a solut ion.  

Some mode l s  do fail with this phase- I  a lgor i thm - no tab ly  ones con ta in ing  terms 

that  are very non l inea r  close to the bounds ,  such as log(x) ,  x/> 10 7. We have of ten 

solved these mode l s  in pract ice  by changing  the bounds  to exclude  the worst  

nonl inear i t ies ,  but  an au toma t i c  solut ion must  also of  course be implemented .  

In d y n a m i c  p rob lems ,  C O N O P T  searches  for a feasible  so lu t ion  one pe r iod  at a 

time. In the first pe r iod  it uses the static p rocedu re  descr ibed  above.  In later  pe r iods  

C O N O P T  tests two init ial  points.  The first is one supp l i ed  by the user or  defined 
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by default, and the second is an extrapolation from earlier periods. The point with 

the smallest sum of residuals is used to start the static phase-I procedure. During 

basis changes, we try to choose the incoming basic variable from the current period, 

so that other periods will remain unchanged and we can continue to work oil the 

current period only. Sometimes, however, there is no incoming variable with a good 

pivot element in the current period. In this case, CONOPT tries to introduce a 

variable from an earlier period in the basis, and in the next iterations it continues 
to solve the larger block of periods with the static phase I procedure. If a feasible 

solution cannot be found in one period, there is no point in continuing to later 

periods, so CONOPT declares the problem infeasible and stops. 
We have found that this approach is very fast for problems with constant or 

gradually changing bounds. The extrapolation from earlier periods usually generates 

a reasonably good initial point with many variables between bounds, and the static 

phase-I procedure finds a feasible solution after only a few iterations, often without 
any basis changes. When new bounds become active in a period, however, e.g., when 
terminal conditions are imposed in the last period, extra work is needed to obtain 

feasibility. 

The algorithm can be thought of as based on the homotopy 

h ( x ,  O) : f ( x )  - ( bO + f (x , . , ) (  l - 0 ) )  = 0 

where xo is the initial (or current) point, and 0 is the homotopy parameter. The 
algorithm approximates a path for x as a function of 0 from x(0) = xo to a solution 

x(l). Since we are not interested in the path itself, we restart the path each time a 

better point has been found. [14] contains a general discussion of this type of 

path-following algorithm. 

11. Compulational experiments 

CONOPT has been used extensively for several years in the World Bank's research 

work. During the first 6 months of 1983 it was called more than 2000 times, mainly 

in connection with research and development work on economic models. Models 

change frequently because of the research environment; many of them have data 

errors or inconsistencies, others are infeasible, and still others are badly scaled. A 
general-purpose system should be judged by its ability to work efficiently in all these 

different cases. CONOPT has not yet reached this point; model builders typically 
learn to adjust to CONOPT and models developed at the late stages of a project 

consequently benefit from this learning process and solve much more successfully 

than early ones. 
This section will describe our computational experiments with a few models. The 

models presented here are mainly late-stage, well established models whose authors 

have been through the learning process. Some of the models are only solved for a 
single time horizon or a few different ones - the situation usually found in practice. 
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On the other hand some models for which data are available are solved for several 
different time horizons to show how solution times and core requirements depend 

on size. The models have been chosen to demonstrate how different characteristics 
of a model influence performance. 

All experiments were performed on a CDC Cyber 176 using the FTN compiler 
with O P T =  2. This computer  has an address space of 131 000 words of 60 bits. The 
code, including the user's FCOMP subroutine, uses approximately 51 000 words, 
leaving 80 000 words available for working storage. In the version used for most of 
the experiments reported here C ONOP T packs 4 integers or 32 logicals into one 
word. The latest version does not use this packing: it is a little faster and the code 
is 3000 words smaller, but it uses more working storage. The times reported are 
total execution time including reading input, hashing variable and constraint names, 
setting up core allocation, and printing the MPS-type output file, but excluding time 
to compile FCOMP and load the system. The total compile and load time is from 
1.0 to 1.2 CP-second, relatively independent of the size of FCOMP. 

I I.l.  The O P E C  model 

This is a model that describes optimal pricing and extraction of a limited resource 
for the OPEC cartel. It is described in [27]. The model has 5 equality constraints 
and 6 structural variables per period, plus a nonbinding constraint and an associated 
slack variable that together represent the objective function component  for the 
period. More detailed characteristics of  this and the following models are shown 
in Table 1. The solution characteristics for 8 different time horizons are shown in 
Table 2. 

11.2. The Manne  model 

This is the model described in the M I N O S / A U G M E N T E D  paper [25]. It has an 
inequality that only applies to the terminal period. This is implemented in CONOPT 
as an inequality with a time dependent right-hand side; the right-hand side is very 
large in all but the last time period. 

The model has been tested in 8 versions (see Table 3) with varying amounts of 
bounds and with the constraints as equalities or inequalities. The results are shown 
in Table 4. The first conclusion is that the equality constrained versions, I to 4, are 
much faster than the corresponding inequalitity constrained versions, 5 to 8. Phase 
I is slower with the equalities, but the number  of line searches is smaller once a 
feasible solution is found. The reason is probably the reduced dimension of the 
search space. However, the first feasible point generated by phase 1 seems to be a 
more important but rather uncontrollable factor. The fast versions, 2 and 4, both 

have 98 superbasics and an objective v a l u e o f  8.99 in the first feasible point. In each 
of these versions, one superbasic val-iable hits a bound and is removed from the 
superbasis in each of the first 86 line searches, The last 19 line searches required 
for version 2 and the last 17 required for version 4 increase the superbasis again 
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Table 3 

Characteristics of the 8 versions of the Manne model 

Version Equality/ Upper bound Lower bound 
Inequality oll I on C 

1 eq no 0.95 
2 eq yes 0.95, 
3 eq no 0.01 
4 eq yes 0.01 
5 ineq no 0,95 
6 ineq yes 0.95 
7 ineq no 0.01 
8 ineq yes 0.01 

and establish optimality. Both slow versions, 1 and 3, start f rom a vertex with a 
much smaller objective value of  -0.97.  The search is more irregular; variables, 

especially basic variables, keep hitting bounds  that are not binding in the optimal 

solution. C O N O P T  must consequently spend extra time performing basis changes 
and search mode  inversions, and in building up second order  information that is 
lost during changes in the superbasis. 

As ment ioned earlier, C O N O P T  has been designed for problems where most of  
the line searches have their opt ima at interior points, i.e. where the step lengths are 

determined from nonlinearities and not from bound  values. This assumption is 

clearly not satisfied for this model,  which is why the comput ing  times reported here 

(adjusted for differences in machine speed) are 5 to 10 times those reported for 

M I N O S / A U G M E N T E D .  Nevertheless, the model seems to be useful for testing 
different subspace minimizat ion strategies since the bounds  are so important.  

11.3. The world coffee model 

The coffee model  is an econometr ic  model of  world coffee demand  and product ion.  

It has been used by T. Cauchois  to evaluate the viability of  different cartels in the 
coffee market  [6]. 

Some results obtained with the model are given in Table 5. The model  is rather 
badly scaled, producing problems with the optimality tolerances for models  with 
more than 2000 constraints. 

i i .4 .  Chemical process model 

This model ,  contr ibuted by J. Bisschop, describes a chemical reaction. The 
objective is to minimize the total process time, subject to bounds  on the final 

concentrat ions and the final volume. The control variables are material inflows and 
heat exchanges.  The process is modeled with 19 time steps, so as to meet C O N O P T ' s  

requirement  of  a fixed number  of  time per iods:  the length of  each time step is made 
a variable in the model.  The length of  the time step in each period (except the first) 

is made equal to the lagged time step, so that they all become equal. 
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The overall model has 456 constraints and 513 variables. It begins from an almost 

feasible point and requires 21 phase-I iterations to become feasible. After I0 line 

searches, problems arise with a degenerate point, the tolerances are tightened, and 
a new phase 1 with 22 iterations is performed. It takes 90 more line searches to 

become optimal. 25 of the 100 line searches are stopped by a bound on a variable, 

but there are basis changes in 31 iterations. The last 6 basis changes are caused by 

small pivot elements, which are in turn caused by poor scaling. The superbasis 

changes from 36 variables in the first feasible point to 16 in the optimal solution, 

and the overall optimization requires 85.8 CP-sec and 8704 words of working storage. 

I1.5. The Indonesia model 

This model is currently under development by A. Gelb, see [15]. It describes in 

detail production, investment, capital accumulation, income generation, savings and 

consumption, and imports and exports in a 6 sector model. The model has 18 

nonbasics per period but is run in many different versions, usually with many fixed 

variables leaving only I or 2 superbasics per period. The number of periods is 

usually 10, so the size of the overall model is 1140 constraints, 1320 variables, and 
10 to 20 superbasics. 

Each time a new version of the model is developed, all nonbasics are fixed and 

a new base trajectory is computed. An accurate solution is usually found in 15 to 

30 phase-1 iterations and 3 to 5 CP seconds. This trajectory is then used for several 

optimization runs. A sample of I I optimizations required between l0 and 60 line 
searches, with an average of 28. A variable hit a bound in 30% of all line searches. 

The solution times were between 9.5 and 63 CP seconds, with an average of 32" the 
final number of superbasic variables were between 1 and I l, with an average of 4.6. 

11.6. A static-dynamic comparison 

The previous models have been large because they had many time periods. The 

model with the largest number of constraints per period, the Indonesia model, had 

only 114 constraints per period. To test the capabilities of CONOPT on large static 

models we solved the OPEC model from Section 11.1 as if it had been a static 
model. In the first experiments we started both the static and the dynamic model 

from the same infeasible point. The first feasible points turned out to be quite 
different and the characteristics of the solution path seemed to be rather sensitive 

to these first feasible points, exactly as we saw in Section 11.2. The following 3-step 

procedure was therefore used to create results that were comparable: 
1. CONOPT was first applied to the dynamic model to find a feasible solution. 

This solution was written to a file in CONOPT input format using the WRITE-verb. 
The USER-verb was then called. The USER subroutine contained a matrix generator 

that created the MODEL file for the static model including an INIT1AL bound set 
with the feasible solution. 
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2. CONOPT was called to solve the dynamic model starting from the feasible 

solution generated in the first step. 
3. CONOPT was finally called to solve the static model from the same feasible 

solution. 
Table 6 shows the results from the last two calls of CONOPT. The latest version 

of CONOPT (without packing) was used, so the working storage numbers are larger 

than in Table 1. It was not possible to run the static version of the 200 period model 

due to core storage limitations. The static 175 period model was also close to the 
limit; only 6000 words were left. The results seem to indicate that there can be 

considerable gains from exploiting the dynamic structure of large models. They also 

show, however, that the gains are insignificant for 'small' models, i.e. models with 
less than 100-200 constraints. 

12. Conclusions 

It has been known for some time that sparse matrix techniques used in LP with 

minor modifications could be used to build large-scale GRG codes. This paper has 
described one such code, CONOPT, and has indicated several areas where it has 

been useful to modify LP-techniques to deal with the characteristics of a nonlinear 
problem. A new phase-I algorithm for almost-feasible problems has also been 

described. 

The paper has mainly considered large static problems but it has also described 
techniques for handling dynamic problems with many bounds. The key features 

here are the inversion routine and the associated Newton routine. 
Thus far, CONOPT has been successfully used to solve static models with over 

1000 constraints and variables and dynamic models with over 2000 constraints and 
variables; by doing so, it has proved the viability of large-scale GRG codes, 

particularly on problems involving almost as many constraints as variables. There 

are still many research areas to pursue, however, the most important of which seem 
to be: 

(1) Subspace minimization strategies or strategies for releasing variables from 
their bounds : 

(2) Automatic scaling. Although (4) contains rather disappointing results about 
automatic scaling, we hope that dynamic problems will be easier to scale because 

better and more stable scale factors can be derived by averaging over all time periods. 

Other user-defined groupings may also be useful in deriving good average scale 
factors ; 

(3) Dynamic setting of parameters and tolerances. Many parameters should have 
one value for almost linear problems and another for very nonlinear problems. The 
values of these parameters should be adjusted as the optimization progresses and 

more information is gained on the problem characteristics; 



" o  
o 

t~ 

o 

r" 

.o 

0 

o 

A. D m d / L a r g e - s c a l e G R G c o d e  

~ N g  N o 

~ - ~ - o ~  

~ - ~ - o ~  

U 

,4 ~ eq ~ 

.,., 

E 

r,  

0 

E 

- -  - -  m - -  

.e 

o 

z 
tc% C',l m ,.~ 0 

.o  ~ 

~ o ~ o ~  . . . .  ~ o  o . _ ~ .  ~ ~-~" 

. o  

e,  

E 
8 

o 

o 

o 

0 

o 

~o 

" o  

~o 
0 ,~ 

E 
o 

e. 

189 



190 A. Drud / Large-scale GRG code 

(4) Comparisons with other large-scale codes such as MINOS 5.0 [26], sequential 
linear programming, and sequential quadratic programming codes. We hope that 
the advances of high-level modeling systems will make this task easier. So far, a 
link has been built between the General Algebraic Modeling System GAMS [5] and 
CONOPT. Once links to other algorithms are developed, comparisons will become 
very easy, though not necessarily cheap. The ultimate goal in this area is to be able 
to predict from within a modeling system which code will be best suited for a 
particular problem, and to choose that code automatically. 
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