Mathematical Programming 31 (1985) 153-191
North-Holland

CONOPT: A GRG CODE FOR LARGE SPARSE DYNAMIC
NONLINEAR OPTIMIZATION PROBLEMS

Arne DRUD

Development Research Department, The World Bank, 1818 H Street, N.W., Washington, DC 20433,
USA

Received 26 August 1983
Revised manuscript received 5 September 1984

The paper presents CONOPT, an optimization system for static and dynamic large-scale
nonlinearly constrained optimization problems. The system is based on the GRG algorithm. All
computations involving the Jacobian of the constraints use sparse-matrix algorithms from linear
programming, modified to deal with the nonlinearity and to take maximum advantage of the
periodic structure in dynamic models. The paper presents the main features of the system, especially
the inversion routines and their data structures, the dynamic setting of tolerances in Newton's
algorithm, and the user features in the overall packaging. The difficulties with implementing a
practical GRG algorithm are described in detail. Computational experience with some medium
to large models is presented, indicating the viability of CONOQPT for certain real-life problems,
particularly those involving almost as many constraints as variables.

Key words: Large-scale Systems, Dynamic Models, Optimization, Nonlinear Programming,
Generalized Reduced Gradient, Nonlinear Constraints, Sparse Matrix Techniques, Dynamic
Tolerances.

1. Introduction

Two classes of algorithms are currently available for solving large nonlinear
optimization problems, i.e. problems with 100 to 1000 constraints and a similar
number of variables. These classes consist of algorithms based on solving a sequence
of linearly constrained problems (SLC algorithms), and algorithms based on the
generalized reduced gradient approach (GRG algorithms) [3]. GRG algorithms
attracted much attention after Colville’s comparative study [8], but a recent compara-
tive study by Schittkowski [29] has revived interest in SLC algorithms. The excellent
large-scale code MINOS/AUGMENTED [25], based on SLC techniques, has rein-
forced this interest. Unfortunately, no comparative studies have looked at large-scale
problems, mainly because the number of codes is very small: furthermore, formatting
a large set of large-scale test problems for different codes is an enormous task. We
are therefore currently not in a position to recommend one algorithm class over
another for large problems, based on computational evidence.

The views and interpretations in this document are those of the author and should not be attributed
to the World Bank, to its affiliated organizations or to any individual acting in their behalf.

153

154 A. Drud |/ Large-scale GRG code

The present paper presents a GRG-based optimization system called CONOPT,
which is designed for large time-dependent nonlinear optimization problems.
CONOPT can, of course, also be used to solve large static problems by defining
only one time period.

The concepts in the GRG algorithm are quite simple but as in most conceptual
algorithms, there are many undefined implementation details. The difference between
a good and a bad GRG code therefore lies in the choice of data structures, in the
detailed implementation of the ditferent components, and in the way the components
work together through data structures. Since the concepts of the GRG algorithm
are assumed to be well known, this paper will contain little theory; instead, it will
describe how some of the crucial GRG components have been implemented and
why these implementation choices have been made. The description will concentrate
on the general case of large-scale static models, and only elaborate on how the
dynamic structure is used in a few subsections.

GRG algorithms can have several disadvantages. In particular, much effort can
be needed to maintain feasibility far from the optimum, and recomputations of the
Jacobian and subsequent reinversion of the basis after each line search can be
expensive. The paper tries to explain how we have reduced these disadvantages by
proper choice of dynamic feasibility tolerances and of data structures for the basis
inverse. After an initial problem definition and a short description of the GRG
algorithm in Sections 2 and 3, the paper describes the way CONOPT presents itself
to the user, i.e. the way a user enters a model into CONOPT (Section 4). It also
describes some important systems features that make CONOPT convenient for the
user; these include completely dynamic core allocation, error reporting and recovery,
and time-limit handling. Subsequent sections describe subcomponents of the GRG
algorithm itself: computing the Jacobian (Section 5), choosing and inverting a basis
(Section 6), computing the reduced gradient (Section 7), and computing the search
direction (Section 8). Section 9 is concerned with details of the one-dimensional
search, including how CONOPT restores feasibility, what tolerances it uses, and
how it handles bounds on the variables. Section 10 describes an algorithm for finding
a first feasible solution; the algorithm is very fast for almost feasible problems and
is therefore suitable for restarting perturbed problems. The last two sections contain
computational results with some medium to large models and outline areas for
future research and development.

2. Notation and problem statement

2.1. The static model

In most of this paper we will be concerned with the time-independent part of
CONOPT, and the model we will consider internally in CONOPT has the following

A. Drud [Large-scale GRG code 155

format:
min X (1-8)
st. flx)=b and (2-S)
I=sx<u (3-S)

where

x is an m-vector of optimization variables,

fis a mapping from R™ into R",

b is an n-vector of right-hand sides,

I and u are m-vectors of lower and upper bounds, some of which may be minus
or plus infinity, and

x; is the j-th component of x, usually a slack variable.

If a model has inequality constraints they will be converted into equalities by the
input routines through the addition of properly bounded slack variables. Section 4
contains more details on the actual input.

2.2. The dynamic model

CONOPT can take advantage of the time structure of dynamic models provided
the model has the following format:

,

min Y x; (1-D)
=1

st filxy Xy, x_,)=b, t=1,...,T, and (2-D)
L<x<u, t=1,... T (3-D)

where

x, 1s an m-vector of optimization variables in period ¢,

f: is an n-dimensional function of constraint values in period f,

b, is an n-vector of right-hand sides in period ¢,

!, and u, are m-vectors of lower and upper bounds in period ¢ (some of the
bounds may be minus or plus infinity),

x;; 1s the j-th component of x,

P 1s the largest number of lags in the model,

T is the time horizon, and

the values of the lagged variables x,, ..., x,_, are known and fixed.

2.3. Design assumptions

There are many design decisions in any large-scale system, and choices must be
based on assumptions about the models that the system will be used to solve. The
static part of CONOPT is built around the following assumptions:

156 A. Drud / Large-scale GRG code

- all functions are twice differentiable,

- all functions are defined for all values of the optimization variables satisfying

the bounds,

- m and n are large, i.e. greater than 50,

- the functions are sparse, i.e. the number of nonzero Jacobian elements in each

equation is small,

- most functions are linear and the remaining functions have substantial linear

parts, and

- the models are well scaled.

Although we assume many functions to be linear we still assume that the models
are ‘rather nonlinear’. By this vague term we mean that the optimal step length in
most one-dimensional searches will be determined by nonlinearities and not by
bounds.

For dynamic problems we make the additional assumptions:

- all variables appear unlagged at least once,

- the unlagged Jacobian, J,, = df,/dx, has full row-rank at all feasible points,

- the structure of the functions or the sparsity pattern of J,, ,=df;/dx,_,, |=

0,...,p, is time-independent,

- most data such as right-hand sides, bounds, and coefficients in linear terms are

time-independent, and

- the number of time periods is small, usually less than 25.

3. A generic GRG algorithm

For ease of reference in the rest of the paper, the main steps in a GRG algorithm
(see also [3]) will be reproduced here:

0. Read the Model Input.

1. Find a feasible solution, x°. Set the iteration counter k to 0.

2. Compute the Jacobian J* = af/ax".

3. Separate the variables into n basic variables and m —n nonbasic variables,
subscripted by b and n respectively, such that the current basis Ji=0of/oxk is
nonsingular. It is preferable that the basis is well-conditioned and the basic variables
are away from their bounds.

4. Compute the multipliers, u'=e},(J})~', and the reduced gradient, g, =
e;,—u'J%. (Superscript T denotes transpose, ¢ is an m-dimensional unit vector
with +1 in position j, and e; and ¢, are the basic and nonbasic components of ¢,
respectively.)

5. Stop if the current point satisfies the Kuhn-Tucker conditions.

6. Separate the nonbasic variables into superbasics, subscripted by s, and fixed
nonbasic variables.

7. Compute a search direction for the superbasics, d, based on g,, the superbasic

part of the reduced gradient, and an estimate of the Hessian of the reduced objective,
H,=#x;/0x2.

A. Drud / Large-scale GRG code 157

8. Perform a one-dimensional search along d,. For each step length, 6, solve
f(xp, x5+ 0Od,, x5)=b for x, using (J§) ' in a Newton-type procedure, and extract
the value of the objective. The step length must be so small that all variables remain
between their bounds.

9. Save the best solution found in step 8 in x**', set k=k+1,.and go to 2.

4. Meodel input and systems features

CONOPT’s system features and overall packaging are of course irrelevant from
an algorithmic point of view. Nevertheless, they are extremely important for improv-
ing the productivity of a practical user, especially an unsophisticated user; we have
therefore chosen to devote some space to them. The description that follows is only
an overview: it would be impossible to cover all details, since the non-optimizing
parts of CONOPT account for more than half the code.

CONOPT is a FOrRTRAN program of around 25000 lines, including comments.
From the user’s point of view, CONOPT is organized as a stand alone optimization
system, which is called through a procedure at the operating system level. A model
is defined for the CONOPT procedure through three or more files. The way in which
the procedure is called and the way the files are defined is machine and operating
system dependent, but the format of the files is machine-independent.

4.1. The MPS file

CONOPT tries to stay as close as possible to the industry standard for Linear
Programming (LP). A large part of the model is therefore defined through a modified
MPS or CONVERT format file, as defined in the CDC/APEX III manual [30] or
the IBM/MPSX manual [31]. The types of constraints (equal, less than or equal,
greater than or equal, or nonbinding), the values of the right-hand sides, and the
non-default upper and lower bounds on structural and logical variables are all
defined in standard ROWS, RHS, BOUNDS, and RANGES sections. The
COLUMNS section defines the sparsity pattern of the Jacobian. A nonlinear element
in the Jacobian is identified by a special coeflicient with a default value of 999 999.
A linear element in the Jacobian can be identified by its numerical value or by
another special coefficient with a default value of 9999. Bound sets with a name
starting with INIT, e.g., INITIAL, are used to provide initial values for some or all
of the variables.

The extensions to the MPS format used in CONOPT have been inspired by similar
extensions used in other codes, e.g. [21, 24].

4.2. The FCOMP subroutine

The values of the nonlinear and unspecified linear components of each constraint,
i.e., the components identified by 999 999. or 9999. in the MPS file, must be supplied

158 A. Drud [Large-scale GRG code

to CONOPT through a second file containing a FORTRAN subroutine called FCOMP.
FCOMP can also contain constant additive terms that otherwise would have been
defined in the RHS section. Derivatives are not defined by the user and are therefore
not part of FCOMP. They are computed numerically by CONOPT, as will be
explained in Section 5.

FCOMP is supplied with a vector of optimization variables that always satisfy
the lower and upper bounds, and it must return all constraint components in another
vector. It was originally considered that FCOMP might compute the value of one
constraint, identified by an input parameter, in each call. This would facilitate the
computation of derivatives and make block decompositions possible. The expected
savings were not thought large enough, however, to compensate for the extra
subroutine linkage and conditional branching overhead - and, above all, for the
added complications for the user.

Since constraints and variables are identified by names in the MPS file and by
indices in FCOMP it is necessary to define some mapping between the constraint
names and the function indices, and between the variable names and the variable
indices. The default mappings are defined by the positions of the constraint and
variable names in the MPS file. These implicit mappings make it hard to modify a
model without recoding large parts of FCOMP. CONOPT therefore includes an
option for defining one or both mappings explicitly. A special right-hand side in
the MPS file, named FUNCTION, maps the constraint names into function indices
and a special bound set, named VARIABLE, maps the variable names into variable
indices.

4.3. The CONTROL program

The third input file must contain a control program. We have implemented a
procedural contro! program similar to the one in CDC’s LP-system APEX 111 [30].
It has verbs for calling different CONOPT procedures like MODEL (real input),
CHECK, OPTIMIZE, OUTPUT, WRITE (create coded restart file), SAVE (create
binary restart file), and RESTART (restart from SAVE-file). Other verbs like SET
and STEP can define so-called CR-cells containing tolerances, options, iteration
and time-limits, and names of the selected right-hand side, bound set, range set,
and initial value bound set. CRPRINT can display the CR-cells, TITLE can change
the page headers, and the USER verb activates a user supplied FORTRAN subroutine
that can initialize common blocks for FCOMP or print special reports. The remaining
verbs, TEST (set condition code), BRANCH (multiway conditional branch), PER-
FORM (multiway conditional branch with saved return address), and NEXT (return
to line after last PERFORM), can be used to define conditional execution sequences
and simple subroutine constructions. The major executing verbs are all followed by
a default BRANCH unless the user supplies his own BRANCH or PERFORM verb.
For example the input verbs are followed by default by a branch that depends on
whether a major or minor error has been encountered.

A. Drud |/ Large-scale GRG code 159
4.4. Input checking

One of the design objectives of CONOPT has been to ensure that as many as
possible of the inconsistencies in the model input should be caught and reported
to the user, so that expensive optimizations are not attempted on models containing
errors. The MPS file is tested for undeclared row names, split columns, multiple
definitions of the same information (row name, matrix element, bound value, etc.),
consistent bounds, and all the other standard LP-tests. If a FUNCTION right-hand
side or a VARIABLE bound set defines a mapping, CONOPT checks that the
relationship is one to one and that indices are defined for all nonlinear constraints
and variables.

All the tests described so far are relatively straightforward because all necessary
information is readily available. The problem area, as in most other nonlinear
optimization systems, is in the FCOMP subroutine. CONOPT does not know what
is inside FCOMP; it can only call FCOMP with different x-vectors as arguments
and observe function values returned by FCOMP. The tests currently implemented
try to make sure that a constraint function in FCOMP does not depend on a variable
unless it was declared in the MPS file, and that linear functions in FCOMP really
are linear within tight tolerances. The presence of undeclared variables in a constraint
is tested by evaluating the constraint at a random point satisfying the bounds,
assigning new random values to all undeclared variables, and evaluating the con-
straint again. If the constraint value is different, it must depend on at least one of
the variables that was changed, i.e. on one of the undeclared variables. The incon-
sistency is found by resetting the undeclared variables to their initial values one by
one and observing when the constraint value changes. The test is very cheap if no
errors are found, requiring only one FCOMP call per nonlinear constraint. It may
not find an error if the undeclared constraint derivative is identically zero over a
large area. This happens very infrequently, however, and the test has proved itself
very useful in practice.

4.5. Error recovery

If all input tests are passed and the CONTROL program contains an OPTIMIZE
verb, CONOPT will start optimizing. At this point some very undesirable things
could happen. A division by zero or another arithmetic exception could cause the
job to abort without giving the user any idea of what went wrong. Alternatively,
the job could reach its time-limit and abort, leaving the user with nothing but the bill.

To avoid the first of these problems, CONOPT uses machine-dependent error
recovery routines to regain control after an arithmetic exception. A logical variable
will indicate whether the error happened in CONOPT or in FCOMP: if it happened
in the latter, CONOPT will tell the user that he has made a mistake and will print
all the information passed on to FCOMP as well as the content of the constraint
vector at abort time. Depending on the FORTRAN compiler, there may also be an
estimate of the line in which the error occurred. If the error happened in CONOPT,

160 A. Drud / Large-scale GRG code

the system will write a message of apology and urge the user to submit the problem
to the author so that CONOPT can be corrected.

The time-limit problem has also been eliminated. CONOPT checks through a
machine-dependent routine how much time is left when it starts executing, and it
stops when 80% of the time available has been used. This leaves sufficient time to
save and/or print the solution. The default BRANCH that follows OPTIMIZE in
the CONTROL program automatically calls SAVE and OUTPUT.

4.6. Debugging facilities

A system of the size of CONOPT is bound to have some bugs. Facilities for
debugging have therefore been incorporated as an integral part of CONOPT. All
major routines contain WRITE statements that describe the filow of control and the
values of all important variables. Definition of CR-cells in the control program
permits the test output to be turned on and off independently in more than 25
functionally distinct parts of the code: in most cases, the detail of the output can
be varied. It is therefore possible to get a good picture of what happens in one part
of CONOPT without being swamped by output from irrelevant parts.

When an error occurs in iteration 100 we are not interested in test output from
the first 95 iterations. In this case we would, through the CONTROL program, set
the iteration limit to 95, optimize until this limit is reached, reset the limit to 105,
turn the selected test output on, and continue the optimization. Great care has been
taken to retain all relevant information when an iteration sequence is interrupted,
so that a continuation of the optimization will produce exactly the same iteration
sequence as an optimization run without the interruption. It is even possible to
SAVE a binary copy of the solution status and, after a RESTART in a later job, to
produce exactly the same iteration sequence as would have been produced by an
uninterrupted job. If an error occurs at the end of a very expensive job it is possible
to rerun the job and save the status a few iterations before the error occurs, and
then locate the error through a sequence of small inexpensive jobs.

4.7. Memory management

A final systems detail is that of memory management. The user never has to worry
about dimension statements or allocation of working storage. On virtual storage
machines like IBM, a large piece of working storage is reserved once and for all,
and CONOPT manages its allocation for different purposes. On machines like CDC
where memory is at a premium, CONOPT starts with a small amount of working
storage and requests more memory when it is needed. Whenever a vector exceeds
its initial allocation (during input for example), CONOPT reallocates the working
storage and moves the information accordingly.

4.8. Dynamic models

The assumptions in Section 2.3 make it possible to define a dynamic model
essentially by defining the model for one period and adding a few series of time-

A. Drud [/ Large-scale GRG code 161

dependent quantities. The ROWS, COLUMNS, RHS, BOUNDS, and RANGES
sections are therefore only defined for one period. The only difference from static
models is that coefficients, right-hand sides, and bound values can be defined as
time-dependent through the use of a special coefficient. The values of the time-
dependent quantities are defined in a separate SERIES file.

The structure of each of the lagged Jacobians, J,, , I=1,...,p, is defined in a
LAGS section in the MPS file. The LAGS sections have the same format as the
COLUMNS section.

The FCOMP subroutine is also written for one period only. Tt receives x,, ..., x,_,
plus the value of 1 and must return the nonlinear part of fi(x, ..., x_,).

5. The Jacobian

There are many advantages to using analytic derivatives. If properly coded, they
are both more accurate and faster to compute than numerical derivatives. Analytic
derivatives also have important disadvantages, however. It is labor intensive to code
all derivatives by hand, especially for large models where the number of different
expressions can be in the hundreds. In addition, it can be difficult for an unsophisti-
cated user to understand the data structures into which he has to store the derivative
values. Finally, the chances of error are rather large, although the system could use
finite differences to run checks and to inform the user about likely errors.

Because of the above problems, it was decided to compute derivatives numerically.
The linear Jacobian elements that are defined through FCOMP (hereafter called
linear FCOMP elements) are computed in a setup phase. The columns with linear
FCOMP elements are perturbed one by one, and the derivatives are computed via
first differences. A fairly large perturbation is used to minimize the effect of round-oft
errors.

The nonlinear elements in the Jacobian are computed repeatedly, and one FCOMP
call per nonlinear column per evaluation can become very expensive. A setup routine
based on 9] is therefore used to organize the columns of the nonlinear Jacobian
into groups such that each group has at most one nonlinear element in each row.
The nonlinear elements are evaluated in groups: all columns in a group are perturbed,
FCOMP is called, and each nonlinear element in the group is computed numerically
as the ratio of the row and column perturbations. The direct use of the row
perturbation assumes that the perturbation does not contain terms from linear
FCOMP elements. Subtracting these terms from linear FCOMP elements would
require either a search for the relevant elements or a special data structure to
reference them. We have avoided this complication by slightly changing the group-
building heuristic described in [9]: a column is simply not added to a group during
the building process if this would mean that the group would get a row with both
a linear and a nonlinear derivative.

The number of groups, and therefore the number of FCOMP calls needed to
compute all derivatives, is generally quite small. The group-selection heuristics in

162 A. Drud / Large-scale GRG code

[7] should give fewer groups and therefore fewer FCOMP calls than the current
techniques, but the savings in overall computer time are not expected to be more
than a few percent and the change, although desirable, is of low priority.

The discussion of analytic derivatives at the beginning of this section assumed
that a human user had to code the derivatives by hand. Eventually, however, we
expect that more than half the problems submitted to CONOPT will be generated
by computerized modeling systems like GAMS [5], in which case correct analytic
derivatives can be generated automatically and inserted into any type of data
structure. We are therefore considering adding an option so that the user can supply
analytic derivatives. The option will be designed for computer-generated models
and will probably not be friendly for a human user.

The matrix operations in a GRG algorithm are similar to those of an LP algorithm.
The Jacobian is therefore stored in the same way, i.e. the elements are sorted by
columns, their values and row numbers are stored in two parallel vectors, and a
shorter vector points to the start of each column. CONOPT also stores a column
number to facilitate other operations used mainly in dynamic models.

Dynamic models do not give rise to many complications. The structure of the
Jacobian, shown in Fig. 1, is represented by the structure for one period, and all
constant linear elements are stored only once. The values of nonlinear and time-
dependent elements are stored with one copy per period. The two types of element,
constant and time-dependent, are distinguished by being in separate data structures.
The lagged Jacobians are usually very sparse with many empty columns. Only
nonzero elements with row and column numbers are stored, since we never need
to access the lagged Jacobians by columns.

f 0

NN N
A

X,

="

1

Fig. 1. The structure of the Jacobian of a dynamic model. The blocks with the same number have the

same sparsity pattern, so the pattern for the hatched area is sufficient to represent the whole sparsity

pattern. The stored row and column numbers are relative to the period, and the lag number is imbedded
in the column number.

A. Drud | Large-scale GRG code 163

6. Basis selection and basis inversion

6.1. Static models

The word matrix-inversion is used throughout this paper to denote the creation
of a factorization that makes it easy to solve sets of equations involving the matrix
or its transpose.

The set of basic variables can in principle change from iteration to iteration as
mentioned in step 3 in the GRG algorithm. We prefer to keep the same set as long
as possible, however, either until a basic variable hits a bound in step &, or until
Ji becomes badly conditioned. The reasons are that a stable basis set facilitates
accumulation of second-order information, that the selection of a basis set involves
some overhead, and that inversions of a sequence of basis matrices with the same
sparsity pattern and similar numerical values can be done very efficiently.

Given this overall basis strategy, a basis selection and inversion routine will have
to work in two modes, search mode and reinversion mode. In search mode, we
select and invert a basis from a set of n or more candidate variables, preferably
choosing variables that are away from their bounds. This mode is used in the
following cases:

1. For the initial basis, or after 2 or 3 below fails. The candidate set consists of
all variables.

2. After a basic variable hits a bound in the one-dimensional search. The candidate
set consists of all old basic and superbasic variables except the basic variable that
hit a bound.

3. After a reinversion fails as described below. The candidate set consists of all
old basic and superbasic variables.

In reinversion mode, we invert the same basis matrix as before, but with new
numerical values.

CONOPT assumes that the nonlinearities of both constraints and objective are
so strong that most one-dimenstonal searches end before a variable hits a bound.
We often observe that more than 80% of all one-dimensional searches end in an
interior point, and we assume that more than 80% of all inversions are reinversions.
It is therefore important that reinversions are fast, even if some of the speed is
gained at the expense of the search-mode inversions.

Our search-mode inversion routine is a modification of Hellerman’s and Rarick’s
P* routine [17], used on the rectangular matrix of all basis candidates. The principles
of P* are assumed to be known. The key features of our modification are as follows:

1. Columns are stacked and unstacked on a spike stack or selected as triangular
columns as in P* on the basis of a tally function. The algorithm stops when n pivot
columns have been chosen, and the columns that are left on the spike stack become
nonbasic or superbasic. In general, we expect that more basis candidates will result
in fewer spikes in the basis, because most of the potential spikes will never be
unstacked.

164 A. Drud | Large-scale GRG code

2. Hellerman and Rarick’s tally function is augmented with a term that reflects
the distance from bound. Variables close to their bounds are favored during spike
selection, i.e. selection of potential superbasics, and variables far from their bound
are favored during selection of triangular columns, i.e. selection of variables that
definitely will become basic.

3. During the inversion, a row-wise representation of the sparsity pattern is added
to the permanent column-wise representation, so as to facilitate searches through
the rows of the matrix. The space needed for this representation is shared with
vectors that are only used as intermediates in the one-dimensional search, so no
extra core is needed.

4. The factorization of the basis is stored using alpha-vectors, following [19]. The
triangular columns are embedded in the Jacobian itself and the updated spike
columns are stored as additional columns of the Jacobian, using the standard
Jacobian data structure. To avoid problems with zeros that becomes nonzeros at a
different point, we create the logical structure of the updated column and use its
sparsity pattern to decide which elements to store.

5. The pivot element of a column is accepted if it is numerically larger than
max(RTPIVA, RTPIVR cnorm), where cnorm is the norm of the updated column
and RTPIVA and RTPIVR are absolute and relative tolerances with initial values
0.05. If the pivot is too small, the column is stacked as a spike and the first column
from the top of the spike stack satisfying the test is selected. If no such column
exists, the inversion is considered a failure and we increase the set of basis candidates
as described above. If all columns are already candidates, we accept the best pivot
element provided that it satisfies some minimal tolerances. If not, we stop the job
with a message that the Jacobian does not have full row-rank.

With the inversion scheme adopted here, reinversions are very fast. After the
Jacobian has been recomputed, it is sufficient to update the spike columns and save
their new nonzero values. Since we used the logical sparsity pattern during the
search-mode inversion, no new nonzero positions will appear and no tests for zero
are therefore needed. Nevertheless, it is still necessary to test that the pivot elements,
both in the spike columns and in the triangular columns, are large enough. We use
slightly smaller tolerances than in 5 above, so a reinversion will always be possible
in the neighborhood of a point at which a successful search-mode inversion was
performed.

An earlier version of the inversion routine, [11], was based on the P* routine,
[18], with some additions to take care of the degrees of freedom in the basis selection.
However, the vector orientation of FCOMP prevented the block structure from P?
from being used in other parts of CONOPT and it was abandoned in favor of the
simpler P* routine.

6.2. Dynamic models

One of the important differences between static and dynamic GRG codes comes
from the inversion routine. In early work on GRG codes for dynamic models, it

A. Drud | Large-scale GRG code 165

was assumed that a block triangular basis with square diagonal blocks corresponding
to the time structure could always be found (see [2]). This would be very convenient,
because it implies that the overall inverse basis can be represented by the inverse
of the smaller diagonal blocks. Some classes of models do have this helpful basis
structure, for example models that in each period have n unbounded ‘state variables’,
x;, for which af,/dx] is always nonsingular. Some optimization models based on
economic models belong to this class, and [22] describes a GRG code for this
application.

Unfortunately, models with many active bounds in late periods may need non-
square blocks in their bases as shown in Fig. 2. An early discussion of the problem
in relation to GRG codes is given in [1]. Apart from the basis selection, the inversion
in a dynamic GRG code is similar to the inversion in staircase LP, and some of the
techniques from this field could be used. For further details and references, see [13].
There are, however, some important differences between general LP staircase models
and time dynamic nonlinear models in CONOPT. The time orientation of FCOMP,
and of the data structure for the Jacobian, makes it important to preserve as much
of the time structure as possible in the factorization of the inverse, so that it can be
used efficiently with single-period vectors of function values or single-period columns
of the Jacobian. Fortunately, the extra freedom in the basis selection can help us
select a basis that has square or almost square in-period blocks.

N
AN
AN
AN
f 0
AN
N
AN
\1 AN
AN
1 A \\O
AN
AN
N
N
N
N
f 2 1 AN
\\
AN
AN
Xt Xer

Fig. 2. A typical basis matrix for a dynamic model with nonsquare in-period or 0-lag blocks. The lower
right corner of all 0-lag blocks must be on or above the diagonal for the basis to be nonsingular.

To take as much advantage of the structure as possible, CONOPT contains a
special dynamic basis selection and inversion routine. It is based on the conceptual
reorganization of the basis shown in Fig. 3. The basis contains in-period blocks, i.e.
blocks of columns that have their pivot rows in their own period, and inter-period
columns, i.e. columns that have their pivot rows in later periods. The inversion or

166 A. Drud / Large-scale GRG code

LI
/774&

|

Fig. 3. The reorganized basis matrix with in-period blocks and inter-period columns.

factorization of this basis structure into easily invertible matrices is derived from
the factorization in Fig. 4. For r=1, E,, is empty, and for t> 1 it is factorized by
recursive uses of Fig. 4, i.e. E,,=E,, |Es, Ex, Es,_,. E>, is analytically invertible
and can be represented by A, itself. E;, is invertible through an inversion of (C, I')
within period r only. And the final factor E,, can be splitinto a product of inter-period
alpha-vectors using a product or elimination form of the inverse. The only factor
that destroys the time structure is E,,. This is not serious for the computation of
dual variables, reduced gradients, or tangent directions, because these operations
are oriented towards the whole time horizon. However, E,, must be integrated with
the single-period FCOMP calls in the feasibility-restoring Newton steps. The
implementation of this is described in Section 9.2.

The dynamic inversion and basis selection routine in CONOPT can now be
summarized. It assumes as input a set of basis candidate columns. For r=1to T,
execute steps 1 and 2:

1. Select and invert a submatrix of J,, using the static basis selection and inversion
routine described above. As before, the inverse basis is represented by triangular
columns embedded in the in-period Jacobian and updated in-period spike columns
saved separately. The procedure is modified so that it rejects rows without a good
pivot element. These rows are logically assigned unit columns for pivot until final
pivots from earlier periods can be assigned in step 2. The result of this step is the
selection and inversion of (C, I') in E;,.

2. For each row j without a final pivot element, replace the preliminary unit
column with an inter-period pivot column using steps 2.1 to 2.3:

2.1. Find the vector of possible pivot elements by updating the pivot row using
the usual formula: ¢"=(e¢/ B, ,)J,., == J,_,. ¢ is the unit vector to be replaced,
B!, is the current inverse basis, and J,_, is the Jacobian for period | to t. The
BTRAN routine described in the next section is used.

A. Drud / Large-scale GRG code 167

B,

B = D,| =Ey - Ey - Ey - Ey - where
A, C,
Bi_y

Ey= Ex

A, |

G

vy _ p—1 —1 —1
ondD1—E3' -E2T -ET . D

1 1

Fig. 4. The factorization of a basis matrix into 4 simpler matrices. B,_, is a square matrix that covers
all periods before 1, 4, and C, correspond to the rows in period t, and D, represent the columns that
originate before period ¢ and have their pivot in period «. The empty rectangles contain only zeros.

2.2. Find a good pivot element in ¢ The pivot element is chosen to be greater
than a fraction of max(c;). First priority is given to columns from periods that are
already linked to period ¢ with inter-period pivots. If no such column exists we
choose a column from as late a period as possible, so as to make the inter-period
alpha-vector as short as possible. The distance from bounds is used as a secondary
criterion.

168 A. Drud | Large-scale GRG code

2.3. Update the selected pivot column a; using a;= B;!,a;, and store it as an
inter-period alpha-vector with pivot in row j. The alpha-vector is considered part
of By., during the next pass of 2.1 to 2.3. The result of step 2 is the selection and
inversion of E,,.

The set of basis candidates is managed as in the static routine. The degree of
freedom in the selection of basic variables is used in step 1 to give the in-pertod
blocks as many columns as possible, thereby decreasing the number of inter-period
pivots. The freedom is also used in step 2.2 to make the inter-period alpha-vectors
short: this saves storage and weakens the harmful effects of E,, in the Newton step.

The dynamic reinversion routine is just as simple as the static one. In-period
blocks are reinverted using the static reinversion routine, and the numerical values
of the inter-period alpha-vectors are simply recomputed using step 2.3 above. No
structural work is needed and the only tests are those that test the size of the pivot
elements.

A special mixture of the reinversion and the basis selection and inversion routine
is used after a basic variable hits a bound and leaves the basis. Let the time period
of the variable that leaves the basis be connected with all time periods from 1, to
t, through inter-period pivots. We first perform a reinversion for period 1 to 1, — 1.
Between period ¢, and 1, we perform a basis selection and inversion. The basis
selection can choose variables before 1, as pivots, thereby increasing the size of the
inter-period block, and it can break the block into smaller blocks. It cannot affect
periods after t,, however, so a reinversion is sufficient for period -+ 1 to T.

7. The reduced gradient

The computation of dual variabies or Lagrange multiplier esjimates follows a
standard LP BTRAN procedure. The dual variables are subsequently used in a
pricing procedure where CONOPT prices all columns, nonbasic as well as basic.
The nonbasic reduced costs define the reduced gradient. The basic reduced costs
should be zero and can therefore be used to test for the numerical stability of the
basis. If they are large compared to intermediate results and nonbasic reduced costs,
the pivot tolerances RTPIVA and RTPIVR are tightened for future inversions, and
an extra BTRAN is applied to the basic reduced costs to improve the dual variables
and reduced costs in an iterative refinement fashion. The pivot tolerances are relaxed
if the basic reduced costs are repeatedly small.

In the dynamic setting we must, of course, use the time staged inverse basis, i.e.
the in-period E;, factors, the inter-period E,, factors, and the lagged E,, factors.
In the implementation we have integrated the ordinary BTRAN operation with the
pricing operation or computation of the updated objective row. The effect is that
all lagged Jacobian elements are accessed in one pass instead of requiring one pass
of the basic elements for the E,, multiplication and one pass of the nonbasic elements
for the pricing. It is therefore not necessary in this routine to be able to access the

A. Drud | Large-scale GRG code 169

lagged Jacobian by column; as mentioned in Section 5, this fact is reflected in our
simple data structure.

The first stop test in CONOPT is based on the norm of the reduced gradient. The
solution is considered optimal if all components are less than RTREDG or less
than RTRGER times the largest intermediate result in BTRAN. The default of both
is €% where &,, is the relative machine precision. The test is only applied if the
solution is accurate, however, i.e. if the tolerance on the objective as defined in
Section 9.1 is minimal. If the reduced gradient is small but the solution is inaccurate,
we perform a line search, and the accuracy will automatically be tightened as
described in Section 9.4. The reduced gradient will be tested again at the more
accurate point in the next iteration.

8. The superbasis and the search direction

The management of the superbasis, or the subspace optimization strategy, is fairly
standard. At the first feasible point, all nonbasic variables away from their bounds
are chosen as superbasic, and a variable will only leave the superbasis if it hits a
bound or if it becomes basic, usually because it replaces a basic variable that hits
a bound. During the iterations, nonbasic variables are allowed to enter the superbasis
before the beginning of each line search, provided that their reduced gradient is
sufficiently large. The mathematics are set out below.

For a given set of superbasic variables, the search direction for the superbasics
can be computed using a conjugate-gradient, a quasi-Newton (variable metric), or
a Newton method. Newton methods can be excluded immediately because the
Hessian of the reduced objective function is too expensive to compute. Quasi-Newton
methods generally give fewer iterations than conjugate-gradient methods, but their
core requirements and updating time grows quadratically with the size of the
superbasis compared to a linear growth for conjugate gradients. Some large-scale
systems have therefore included both methods, and they switch from quasi-Newton
to conjugate gradient when the number of superbasics exceeds a user-defined limit
(see [23]).

In CONOPT we have decided that the extra overhead in a quasi-Newton method
is always worthwhile. We have assumed that a problem with many superbasics will
also have many constraints, so the costs of computing a reduced gradient and
performing a line search will always be large compared to the cost of a quasi-Newton
update. We have also assumed that CONOPT is not used on problems with more
than 150 superbasics, so the extra core for the Hessian estimate does not become
excessive compared to the core used for the code and for other problem-dependent
arrays.

The quasi-Newton update used in CONOPT is the BFGS or the complementary
DFP update, and the implementation is similar to that of MINOS [23]. Actually,
the routines RIADD, RISUB, RIPROD, and DELCOL from MINOS are used

170 A. Drud | Large-scale GRG code

with only minor changes, through the courtesy of M. Saunders. Only the changes
to the MINOS implementation will be described. The reader is referred to [23] for
a comprehensive description.

The basis selection algorithm has been designed to find as sparse a basis as
possible. We have to pay a price for this extra sparsity: the set of basic variables
can change by more than one variable even if only one variable hits a bound. If
this happens, it becomes too difficult to update the Hessian estimate and we
reinitialize it as the unit matrix.

If exactly one variable is replaced in the basis, we test whether the Hessian
estimate contains any second order information, i.e. whether it has been changed
from the initial unit matrix. If this is not the case, we simply keep the unit matrix.
If second order information is available, we update the Hessian estimate in the old
basic/superbasic space, project it into the new space, and delete the variable that
hit a bound and caused the basis change. The projection and variable deletion are
done as in MINOS. The update is slightly more complicated because of the non-
linearities. The new reduced gradient needed in the update of the Hessian is only
computed in the new basic/superbasic space using the new Jacobian. A projection
back to the old space but with the new value of the Jacobian is therefore necessary.
Fortunately, the projection of the reduced gradient and the projection of the Hessian
estimate can be represented by the same updated row of the Jacobian, so there are
essentially no extra costs.

When a nonbasic variable is made superbasic following the test below, the Hessian
is augmented with one row and one column. The off-diagonal elements are set to
zero, and the new diagonal element is set to RMEAN, the geometric mean of the
other diagonal elements. This value is chosen instead of the usual | to get an
augmentation that is asymptotically invariant to scalings of the objective function.

At the beginning of each line search we compute the reduced gradient, g,, the
search direction for the old superbasics, d,, and the slope along this direction,
SLOPE = d!g,. The nonbasic variable with the largest reduced gradient component
pointing away from its current bound is then identified. If the reduced gradient,
Zumaxs passes the test

g2..LKSAME® RTINSB/RMEAN = abs(SLOPE)

it is added to the superbasis, d, and SLOPE are updated, and the search for a
nonbasic variable to enter the superbasis is repeated. RTINSB is a tolerance with
default value 4 and LKSAME is the number of consecutive times this nonbasic
variable has been a candidate for the superbasis.

The subspace optimization strategy used in CONOPT lets variables enter and
leave the superbasis in each iteration, and it can in theory cause cycling between
subspaces, unlike more accurate subspace optimizations that can prevent cycling.
However, CONOPT is designed for problems that may pass through hundreds of
intermediate subspaces, so we cannot afford to do a strict optimization on each.
The weak subspace strategy is therefore still used, despite its disadvantages. Fortu-
nately, a recent paper by Dembo and Sahi [10], seems to indicate that weak subspace

A. Drud | Large-scale GRG code 171

minimization can be protected against cycling. These results will be considered for
inclusion in CONOPT in the near future.

The second stop test in CONOPT is based on SLOPE. SLOPE is twice the
predicted change in objective based on the quasi-Newton formula. If this number
is smaller than the minimal tolerance on the objective, we consider the solution
optimal. As with the reduced gradient test, this test is only applied if the current
solution is accurate.

9. The one-dimensional search

Once the search direction for the superbasic variables has been computed, we
perform a one-dimensional search along this direction. In one of the early GRG
papers, [2], Abadie suggested that the search be performed along the tangent to the
constraint surface, and that feasibility be restored only from the final step. However,
most later implementations attempt to return to the constraint surface at each step
(see e.g. [20]). This approach makes it easier to handle models with linear objective
functions and models that are so nonlinear that it is difficult to restore feasibility
for large step lengths. CONOPT follows this approach and restores feasibility at
each step.

During the one-dimensional search, the bounds on superbasic variables are in
danger of being violated; during the iterations that restore feasibility, the bounds
on basic variables can be violated. Several implementations, e.g. [2] and [20], allow
the bounds to be temporarily violated, and bounds are only guaranteed to be satisfied
in the final point of the line search. This means that the constraint functions may
be called outside their domain of definition, however, and it becomes the user’s
responsibility to handle exceptions. This is contrary to the philosophy in CONOPT,
that FCOMP never should be called with values that are outside the lower or upper
bounds. Once a user has specified a set of bounds, he/she should never have to
worry about them again.

As a consequence of the decision always to remain within bounds, the one-
dimensional search in CONOPT is slightly different from one-dimensional searches
in other GRG codes. In the following subsections we will describe the three main
components of our one-dimensional search:

- the Newton algorithm that restores feasibility for given values of the superbasic

variables and given estimates for the basic variables,

- the algorithm that computes initial estimates for the basic variables and manages

the bounds on superbasic and basic variables, and

- the algortthm components that suggest step lengths and manage stop criteria.

9.1. The Newton algorithm - Static version

For each step in the one-dimensional search we solve the subproblem

f(x'”xn):b (5)

172 A. Drud |/ Large-scale GRG code

with respect to x, for fixed x,. Since (3) must be solved many times, the solution
of (5) is the most expensive component of many GRG codes, and great care must
be taken with it. It is important not to solve (5) more accurately than necessary and
not to spend too much time trying to solve it if it is in fact not solvable.

To determine an appropriate degree of accuracy, it is helpful to see how the
output is used. The output consists of the value of the objective function and the
values of the basic variables. At all intermediate points we only use the objective
function value to determine a new step length, and we only use the values of the
basic variables to determine new initial values for the next Newton call. We cannot
expect that doing one extra iteration now and making the basics more accurate will
save us more than one iteration in the next Newton call, so our main stop criterion
should be based on the error, df, in the objective function. df is the change that
would occur in the objective function if the residuals were all reduced to zero, and
it can be approximated by the change in objective function that one extra Newton
iteration would give, i.e.

Ay = oF Ty '
df=Ax;=efAx,=¢[J; 'r=u'r

where r is the current vector of residuals and u is the vector of multipliers computed
in step 4 of the GRG algorithm. Note that the df computation is very cheap.

The threshold for df should be large when the objective changes are large, and
small when we approach the optimum and the objective changes are small. We
therefore stop when abs(df) is less than RTOBJ = max(RTDFMN, edf 1072), where
RTDFMN = (1 +abs(f,))en; is an absolute lower bound, and edf is an estimate
of the change in objective during the current line search, based on the slope of the
objective at step length zero and a moving average of earlier objective changes.
Apart from the RTDFMN term, the test is invariant to scalings of both the objective
function and the constraints, and it performs a gradual tightening of the tolerances
that allow inaccurate and cheap Newton solutions far from the final point, and
guarantees accurate Newton solutions close to the optimum. We usually see 0, 1 or
2 Newton iterations before convergence, both in the initial phase where we make
large steps and large residuals are compared with loose tolerances, and in the final
phase where we make small steps and where small residuals are compared with
tight tolerances.

The tests that stop the iterations if they are not likely to converge are based on
the following principles. There is an overall iteration limit (default 10). Hitting this
limit is expensive, however, so after each iteration we compute both the rate of
decrease of the residuals and the number of iterations needed before convergence
at the computed rate. If the expected number of remaining iterations is less than
half the total number of remaining iterations, we continue: otherwise we stop without
a solution. The purpose of the one-half value is to make the test gradually weaker,
so that we do not stop without a solution after having invested several iterations,
unless the rate of convergence deteriorates substantially. Experience shows that if
the algorithm is not aborted by this test after the first iteration, it will almost always
converge.

A. Drud [Large-scale GRG code 173
We can now describe the Newton algorithm used in CONOPT:

0. Set niter=0.

1. Set niter =niter+ |. If niter > LENWIT, return (failure). (Default LFNWIT =
10.)

2. Computer r=b—f(x,, x,). If niter> | only compute residuals of the nonlinear
equations and set the linear residuals to zero.

3. Set ar=|r|;, df=r"-u, adf=abs(df), and compute p=(LKNWIT-
niters+1)/2.

4. If ars RTNEW, go to 6. (Default RTNEW = 0.001%n.)

If niter> | and ar(ar/arold)” >RTNEW then return (failure), else go to 8.
If adf< RTOBJ, go to 12.

If niter> 1 and adf(adf/adfold)” > RTOBIJ, return (failure).

Set arold = max(ar, RTNEW) and adfold = max(adf, RTOBJ).

9. Solve J,Ax,=r with respect to Ax, using the same inverse basis as in the
reduced gradient computation.

10. Set x, = x, + Ax,,.

1. If a bound with value bnd is violated by more than (1 +abs(bnd))RTBNDI,
return (failure). If a bound is violated by less, set the basic variable to the bound
value. Go to 1. (Default RTBNDI=10"")

12. Set objective = x; +df and return (success).

O~ N Lh

Steps 2, 9 and 10 are standard GRG-Newton procedures, where the changes in
basic variables are computed as the constraint residuals multiplied by the inverse
basis from step length zero. Note that the residuals in all linear equations will be
zero after the first iteration. Only nonlinear residuals are therefore computed in
later iterations. Most of the other steps are included to handle bounds and to improve
efficiency.

If the l-norm of the residuals is large (default limit 0.00] n), we test that it
converges fast (steps 4 and 5). If the residuals are small, we assume that the
approximation of df is sufficiently accurate and we test that df converges fast (steps
6 and 7).

Step 11 is included to guarantee that the variables passed on to FCOMP always
satisfy the bounds. If the point suggested by the Newton step is far outside one of
the bounds, we expect that no solution exists within the bounds and we return to
the step-length procedure in which a new and smaller step is chosen.

The Newton algorithm returns a status code, which defines whether Newton was
successful or not. The code also distinguishes between the case where the initial
point was already feasible and the case where it was not, and between failure due
to slow convergence and failure due to violated bounds. Note, however, that too
large a value of RTBNDI can transform a bound violation into a slow convergence
and that a large bound violation may occur even when a solution exists. The status
code must therefore be interpreted with caution by the line search routine. Experi-
ments are currently underway to change RTBND! dynamically, but a final choice
has not yet been made.

174 A. Drud / Large-scale GRG code

9.2. The Newton algorithm - Dynamic version

When there are no inter-period pivots, we have a block-triangular system of
equations and can therefore use the static Newton routine T times, once with each
of the T in-period inverse bases. This fits well with the time orientation of the user’s
FCOMP subroutine.

When inter-period pivots link more time periods together, the equations from all
time periods linked in one block must be soived as one simultaneous set of equations.
To utilize the time structure of the inverse and of FCOMP, CONOPT breaks the
iterations into an outer loop that runs over the periods in the block, from rbegin
to tend, and an inner loop that iterates within one time period. The main components
of the procedure are as follows:

1. For = tbegin to tend, execute the following in-period substeps:

1.1. Compute r, the vector of residuals in period ¢

1.2. If the residuals are small, go to next . If the residuals are not converging,
return (failure). The actual tests are the ones described in Section 9.1 above.

1.3. Compute Ax, assuming that all periods before ¢ are feasible:

0 0 0 [o
Ax, = B!, =E, E;'E5 E7/ =E; E3} = E4,‘{ o }
¥ r r B, ..

i.e. first apply the in-period inverse to the residuals and then apply the inter-period
alpha-vectors with pivot in period . Note that dx, can contain nonzeros between
period rbegin and 1.

1.4, Set x, = x,+ Ax,,.

1.5. If a bound is more violated than RTBNDI, return (failure). If a bound is
violated by less than RTBNDI, move the variable back to the bound. Go to 1.1.

2. If no changes were made to lagged values in step 1.4 in any period i.e. if no
inter-period alpha-vectors were used, then return (success).

3. If the lagged changes are diverging, return (failure), otherwise go to step 1.

The routine makes one period feasible before it considers the next. During
iterations in later periods it assumes (but does not check) that the earlier periods
remain feasible. This is not an unreasonable assumption since the only changes in
variables in earlier periods are those derived from the inter-period alpha-vectors,
so new infeasibilities will be second order terms. The advantage of the assumption
is that the routine only requires residuals for one period at a time, which is the way
FCOMP produces them, and that the lagged Jacobian in the factor E,,, is not needed
directly. The linear part of the lagged Jacobian is: of course, used indirectly to
compute the residual. After one pass of all time periods we must check that the
residuals in earlier periods have remained small and, if necessary, make another
round of adjustments. It is our experience that one round of adjustments is usually
enough. The second round is only needed to test the final residuals.

A. Drud / Large-scale GRG code 175
9.3. Bounds on basic and superbasic variables and initial values for Newton's algorithm

The superbasic variables move along the search direction d; in a straight line.
This makes it easy to determine once and for all the step length at which the first
superbasic hits a bound. This step length, #),.,, is an absolute upper bound on the
step length.

The basic variables move along a curve that is implicitly defined through the
Newton algorithm. The upper bound on the step length from bounds on basic
variables, 6%, is therefore only defined implicitly through failures of the Newton
algorithm due to bound violations for steps greater than 9" ... To avoid frequent
Newton failures due to bound violations, 80, is estimated on the basis of extrapola-
tions of the values of the basic variables. The extrapolations (and similar interpola-
tions) are, of course, also used as initial values for the Newton algorithm to speed
it up.

For the first step, CONOPT uses a linear extrapolation for the basics based on
the base point and the tangent, d,, in the base point computed from

dh = _J;'(Jvd\)

In the static case, the computation relies on a standard FTRAN routine as in LP.
In the dynamic case, we have, as in BTRAN, integrated the computations of the
lagged parts of J; - d; with the multiplication using the E,, factor; all lagged Jacobian
elements are thus again accessed in one pass, independent of the split of variables
in basic and nonbasic.

After a feasible point is found with some positive step length, we fit a quadratic
model, first through the base point, the new point, and the tangent, and later through
three points. CONOPT keeps three m-vectors for this purpose. The space for two
of the intermediate vectors is re-used as scratch storage by the inversion routine as
mentioned in Section 6.

During the interpolation or extrapolation processes, one of the old vectors is
always overwritten by the initial values for the new point. If Newton fails, we are
therefore left with only two feasible points or with the base point and the base
tangent, and the next interpolation or extrapolation must use an inferior linear
model. Because of this loss of a point each time Newton fails, we approach a bound
in a rather conservative way: before testing whether a basic variable will hit a bound,
we multiply the distance to the bound, abs(bnd — x), by a ‘safety factor’. Currently
CONOPT uses max(0.8, | —abs(bnd — x)/(1+abs(bnd))). When the basic variable
is far from its bound, the extrapolation will be uncertain and the safety factor is
small. As the basic variable moves closer to its bound, the extrapolation will be
shorter and the safety factor will be closer to 1. If the previous Newton call accepted
the extrapolated point as immediately feasible, we set the safety factor to 1, and
the next extrapolation will therefore produce a point with the critical basic variable
exactly at its bound.

The safety procedure gives few Newton flailures, but it may require 4 or 5 step
length increases before the basic variable ends at its bound if it started far away.

176 A. Drud / Large-scale GRG code

Fortunately, the last small increases in step length are cheap, since the extrapolated
values for the basic variables are good; the number of Newton iterations is therefore
small.

During the extrapolations, extra precautions must be taken with a degenerate
basis. If a basic variable remains very close to a bound throughout the line search,
it can create false upper bounds on the step length. We have eliminated this problem
by disregarding basic variables whose extrapolation intersects the bound at a very
flat angle from the bound tests. The tests are similar in spirit to the CHUZR-tests
in the DEVEX LP-code [16].

9.4. Step-length determination, stop criteria, and exception handling

A one-dimensional search procedure for a GRG code is more complicated than
a one-dimensional search procedure for an unconstrained optimization code,
because the former must handle some problems that do not occur in an unconstrained
model. Tt is likely that function values are not available for large steps because
Newton’s algorithm fails, and we can find that the error in the function values
caused by inaccurate Newton solutions is comparable to the changes in function
value for small steps. After a short treatment of the general stop criteria, we describe
in some detail how CONOPT handles these two problem areas.

The initial step length is computed as the expected change in objective function
divided by the slope at step zero. If this step length is close to 1 - the optimal
Newton step, it is changed to 1. After at least one function value has been found,
a new step length is computed based on a quadratic model, subject to the constraint
that the step length cannot increase by more than a factor ALPHA. The default
value of ALPHA is initially 4, but it may decrease as mentioned below. Bounds on
variables are incorporated as described in the previous subsection. The search is
stopped if the expected improvement in objective function from the quadratic model
is less than RTONED (default 0.2) times the improvement so far. In cases where
the step is defined by a bound on a variable, however, we do not stop unless the
variable is within (1 +abs(bnd)) RTBNDI of the bound, independent of the expected
improvement in objective function.

Newton failures can occur at several points in a one-dimensional search. If Newton
fails before a first improved objective function value has been found, we make the
step smaller. If the failure was caused by a bound, we multiply the step by a factor
0.9; and if the convergence was slow, we multiply it by a factor 1/ALPHA. Newton
can also fail in an interpolation step after an improved point has been found,
although this is unlikely. In this case we stop the search, reinvert, and compute a
new search direction,

The last case of a Newton failure is after an extrapolation step where an improved
point has already been found. If the failure was due to a bound, we assume that
the step exceeded but was close to 6°,.: we cut the step increase by a factor 0.9,
and call Newton again without any improvement tests. If the failure was due to

A. Drud / Large-scale GRG code 177

slow convergence, we replace the step by the geometric mean of the previous step
and the largest feasible step, replace the step-length multiplier ALPHA by its square
root (for the duration of this line search only), and again apply the improvement
criterion mentioned above before the next Newton call. If ALPHA has already been
decreased twice, we define the one-dimensional search as badly behaved and stop.
Many GRG codes stop the one-dimensional search after the first Newton failure in
an extrapolation (see e.g. [20]), but we have found that the smaller value of the step
length multiplier ALPHA, combined with the extrapolation of basic variables, will
often let us increase the step length considerably beyond the point where Newton
first failed. And although the step-length multiplier is smaller, it is applied to a
larger step, so the objective improvement can be considerable.

Inaccurate objective function values can cause problems for small step lengths.
New step lengths are computed from differences in objective function values and
the computed step lengths are therefore useless when the ditferences in objective
functions are comparable in magnitude to the errors in these objective functions.
We therefore keep track of df, the error estimate computed in the Newton algorithm,
for each feasible point. Before a one-dimensional search is started, we test whether
the error estimate for the base point is less than the error tolerance for the coming
one-dimensional search. If it is not, we call Newton at the base point before starting
the one-dimensional search. This precaution should minimize the problem of badly
behaved one-dimensional searches. During the search, we impose a lower bound
on the step corresponding to the step where the expected decrease in objective is
equal to the error tolerance. A smaller step is only allowed if a vartable previously
hits a bound. Whenever an interpolation suggests a smaller step, the one-dimensional
search is stopped and the following recovery sequence is initiated:

A: The expected change in objective (edf) and the Newton tolerances on residuals
(RTNEW) and objective (RTOBI) are divided by 10, and Newton is called to make
the base point more accurate before the one-dimensional search is called again with
the old direction vectors and old inverse basis.

B: The improved base point is usually enough to get the optimization back on
track, but if the next one-dimensional search also fails, we recompute the Jacobian,
reinvert in the new base point, compute new direction vectors, and call the one-
dimensional search again.

C: If this still is not enough, we switch to the steepest descent direction.

D: Increase the superbasis if there are any nonbasic candidates, and

E: Invert with search for a new basis with larger pivot tolerances.

F: A to E are repeated until a line search gives an improvement or until all
tolerance are minimal, in which case CONOPT declares that it cannot solve the
model. We should insert a routine here that tests whether the noise level in FCOMP
is very high, or first and/or second derivatives are unreasonable. The best format
for such tests is not yet clear, however,

While tightening the tolerances in A above, we may find that Newton's algorithm
fails because a degenerate basic variable exceeds a bound. We cannot simply rely

178 A. Drud | Large-scale GRG code

on the one-dimensional search algorithm to cut the step length as the ordinary
Newton algorithm does, so CONOPT contains a more elaborate Newton routine
with Newton steps less than one and basis changes for this purpose. It is based on
the phase-1 algorithm in the next section.

10. A phase-1 algorithm

Most papers on GRG codes describe their phase-1 algorithm very superficially
if at all, but our general impression is that most codes minimize a sum of absolute
or squared residuals, using the standard GRG procedure and starting from an
all-logical basis. This approach is easy to implement and it is as reliable as the
underlying GRG code. Unfortunately, however, this phase-1 will need at least k
line searches, where k is the number of structural variables in the first feasible basis,
independent of the initial values of the structural variables.

By comparison, Newton’s algorithm can find a feasible point very quickly if good
initial values are provided and a good basis is chosen. Based on these observations,
we have implemented the following algorithm:

0. Choose an initial point x.

1. Compute the Jacobian, J, and select and invert a basis. The usual criteria of
basic variables away from bounds and good conditioning applies. Define the basis
as new.

2. Compute the Newton direction for the basic variables, 4x, = —J; (f(x)—b).

3. Find the step length a at which the Newton direction hits a bound.

4. If a <1 go to 5. Otherwise take a full Newton step, xXi=x,+Ax,, xp=x,. If
the point is feasible, [f(x")—b|, < RTNEW, return (success). If the residuals did
not decrease fast, go to 8. Otherwise set x:= x", define the basis as old, and go to
2 where the old inverse basis is used again.

5. Take a step length of « in the Newton direction, x; = x,, + adx,, x,=x, If the
residuals did not decrease fast, go to 8, otherwise set x = x . A critical basic variable,
J, i1s now at a bound.

6. Compute the Jacobian, reinvert the old basis in the new point, and compute
a new Newton step. If the previous critical variable is no longer critical, go to 3,
otherwise perform a basis change where j leaves the basis. The incoming basic
variable is selected as follows: Compute the updated row in which variable j has
its pivot, i.e. the row of potential pivot elements ¢ =(e"J,")J = 7'J where e is a
unit vector that picks out the proper row. Choose a column p to enter the basis. It
must satisfy:

a. abs(c,)> RTPIVA ie. an absolute pivot tolerance,

b. Ax,=4x;/c, =0 if x, is at its lower bound and 4x, =0 if x, is at its upper
bound. If there is more than one p-candidate, choose one that maximizes the step
a, for the incoming variable, namely a, = (bnd, — x,)/ 4x, if max a, < [. If max a, =
1, maximize the pivot element abs(c,) among columns with e, = 1. If a p is found,
replace column j by p in the basis, define the basis as new and go to 2.

A. Drud | Large-scale GRG code 179

7. If no p is found in 6, we declare the solution infeasible and return (failure).
The weighted sum of infeasibilities abs(a"(f(x) —b)) has the value abs(4x;)>0,
and it is at a local minimum or at a stationary point.

8. Convergence was slow. If the basis was old, go to 1. If the basis was new, the
slow convergence can only be due to second order terms. Decrease a until a
sufficiently fast decrease in residuals is found or until @ < a., (default 1077). Set
X, = x, + adx,. If « 1s small (default limit is 0.01) for two consecutive iterations,
we make a heuristic basis change where the basic variable with maximum abs(Ax,)
leaves the basis; alternatively, we reinvert the same basis. In either case, we then
define the basis as new, and go to 2.

The algorithm tries to make Newton steps, and it can only be stopped by two
things: a bound on a basic variable or slow convergence due to large second order
terms. A bound on a basic variable leads to a basis change in step 6. The incoming
variable is chosen so that it will not hit a bound immediately and, if possible, so
that it has a good step bound and a good pivot element. This should improve the
next iterations. An anti-degeneracy measure could be added to prevent cycling if
a =0 repeatedly, but it has not yet been necessary. An incoming basic variable can
always be found unless a certain weighted sum of infeasibilities (see step 7) is at a
local minimum or at a stationary point. In the linear or convex case this would
prove infeasibility, even if the sum of infeasibilities is not minimum, so we use it
as an indication that no feasible solution exists.

Slow convergence due to large second order terms, handled in step 8, is a more
serious problem. CONOPT currently contains a heuristic that tries to get around
the problem by choosing a new basis. The basic variable that changes most, i.e. the
variable that is likely to cause the largest second order terms, is removed from the
basis and the criterion in step 6 is used to choose the entering variable. A better
approach would be to incorporate a steepest-descent step, as in Powell's hybrid
algorithm [28], or to switch to a standard phase-1 algorithm. These additions have
high priority and will be implemented soon.

The phase-1 algorithm described above will usually find a feasible solution after
very few iterations when good initial values are available. A few basis changes may
be needed. If only some variables have been initialized with good values and the
remainder have been initialized by default at a bound, more iterations are needed.
The first bases will have many basic variables at the bound and it is likely that «
will be zero. After some iterations with small or zero steps, however, the Newton
direction will usually be directed into the feasible space and the iterates will move
very quickly to a solution.

Some models do fail with this phase-1 algorithm - notably ones containing terms
that are very nonlinear close to the bounds, such as log(x), x = 10"". We have often
solved these models in practice by changing the bounds to exclude the worst
nonlinearities, but an automatic solution must also of course be implemented.

In dynamic problems, CONOPT searches for a feasible solution one period at a
time. In the first period it uses the static procedure described above. In later periods
CONOPT tests two initial points. The first is one supplied by the user or defined

180 A. Drud | Large-scale GRG code

by default, and the second is an extrapolation from earlier periods. The point with
the smallest sum of residuals 1s used to start the static phase-1 procedure. During
basis changes, we try 1o choose the incoming basic variable from the current period,
so that other periods will remain unchanged and we can continue to work on the
current period only. Sometimes, however, there is no incoming variable with a good
pivot element in the current period. In this case, CONOPT tries to introduce a
variable from an earlier period in the basis, and in the next iterations it continues
to solve the larger block of periods with the static phase 1 procedure. If a feasible
solution cannot be found in one period, there is no point in continuing to later
periods, so CONOPT declares the problem infeasible and stops.

We have found that this approach is very fast for problems with constant or
gradually changing bounds. The extrapolation from earlier periods usually generates
a reasonably good initial point with many variables between bounds, and the static
phase-1 procedure finds a feasible solution after only a few iterations, often without
any basis changes. When new bounds become active in a period, however, e.g., when
terminal conditions are imposed in the last period, extra work is needed to obtain
feasibility.

The algorithm can be thought of as based on the homotopy

hix, 0)=flx)— (b8 + flx,)(1 -8)) =0

where x, is the initial (or current) point, and 6 is the homotopy parameter. The
algorithm approximates a path for x as a function of 8 from x(0) = x, to a solution
x(1). Since we are not interested in the path itself, we restart the path each time a
better point has been found. [14] contains a general discussion of this type of
path-following algorithm.

11. Computational experiments

CONOPT has been used extensively for several years in the World Bank’s research
work. During the first 6 months of 1983 it was called more than 2000 times, mainly
in connection with research and development work on economic models. Models
change frequently because of the research environment: many of them have data
errors or inconsistencies, others are infeasible, and stiil others are badly scaled. A
general-purpose system should be judged by its ability to work efficiently in all these
different cases. CONOPT has not yet reached this point; model builders typically
learn to adjust to CONOPT and models developed at the late stages of a project
consequently benefit from this learning process and solve much more successfully
than early ones.

This section will describe our computational experiments with a few models. The
models presented here are mainly late-stage, well established models whose authors
have been through the learning process. Some of the models are only solved for a
single time horizon or a few different ones - the situation usually found in practice.

A. Drud | Large-scale GRG code 181

On the other hand some models for which data are available are solved for several
different time horizons to show how solution times and core requirements depend
on size. The models have been chosen to demonstrate how different characteristics
of a model influence performance.

All experiments were performed on a CDC Cyber 176 using the FTN compiler
with OPT = 2. This computer has an address space of 131 000 words of 60 bits. The
code, including the user’s FCOMP subroutine, uses approximately 51 000 words,
leaving 80 000 words available for working storage. In the version used for most of
the experiments reported here CONOPT packs 4 integers or 32 logicals into one
word. The latest version does not use this packing; it is a little faster and the code
is 3000 words smaller, but it uses more working storage. The times reported are
total execution time including reading input, hashing variable and constraint names,
setting up core allocation, and printing the MPS-type output file, but excluding time
to compile FCOMP and load the system. The total compile and load time is from
1.0 to 1.2 CP-second, relatively independent of the size of FCOMP,.

11.1. The OPEC model

This is a model that describes optimal pricing and extraction of a limited resource
for the OPEC cartel. It is described in [27]. The model has 5 equality constraints
and 6 structural variables per period, plus a nonbinding constraint and an associated
slack variable that together represent the objective function component for the
period. More detailed characteristics of this and the following models are shown
in Table |. The solution characteristics for 8 different time horizons are shown in
Table 2.

[1.2. The Manne model

This is the model described in the MINOS/AUGMENTED paper [25]. It has an
inequality that only applies to the terminal period. This is implemented in CONOPT
as an inequality with a time dependent right-hand side; the right-hand side is very
large in all but the last time period.

The model has been tested in 8 versions (see Table 3) with varying amounts of
bounds and with the constraints as equalities or inequalities. The results are shown
in Table 4. The first conclusion is that the equality constrained versions, | to 4, are
much faster than the corresponding inequalitity constrained versions, 5 to 8. Phase
1 is slower with the equalities, but the number of line searches is smaller once a
feasible solution is found. The reason is probably the reduced dimension of the
search space. However, the first feasible point generated by phase | seems to be a
more important but rather uncontrollable factor. The fast versions, 2 and 4, both
have 98 superbasics and an objective value of 8.99 in the first feasible point. In each
of these versions, one superbasic variable hits a bound and is removed from the
superbasis in each of the first 86 line searches. The last 19 line searches required
for version 2 and the last 17 required for version 4 increase the superbasis again

A. Drud |/ Large-scale GRG code

| I L | I I e xepy

66 H 9t 4 4 y €101 -
6 v 0t 0 0 0 slgeliea -
0 0 0 0 0 0 $91198 3] -
L L 1 4 4 12 JUBISUOD ~ SIUAWAR 1qode(padder
19¢ L6 LL 11 6 Sl {eiol -
£6L 19 Iz T T N 3(qruieA -
0c ¢ 0 0 0 0 $a11as) -
324 £e 9s 6 L 01 JURISUOD - 5JuaWl2 1qooer peddrjun
el L 33 L S L 1e101 -
L0 o 6l [4 4 14 igauijuou -
$¢ 4 9l S ¢ £ JRAUL] - $YIR]S |OUl $D|YRURA
Fil 144 144 v 14 9 J2101 -
YL £l £C Z < T wauluou -
414 Tl 1 4 T 4 Ivaul] - 1qo [aUL STUIRIISUG)
ssavoad
risauopu| (earway PO 8-S /ANNVIN v-1/INNVIN 24d0 pouad 1ad sonsuers

S]OpOLU 1821 3Y1 10 SDNSLINORIBYD WIQ0I]

| 3lquy

183

A. Drud [/ Large-scale GRG code

9L1 12640 DAD.
00t 002 v 0TLO0f $59L 0 1327 Z 20T 0021 ooF1 002
001 001 ¥ TSLO] zr6l 0 66 61 201 009 00L 001
SL SL W 891L 10t 0 6L 8 LL 0S¥ zT St
0 0s$ W 9609 999 0 <9 0 s 00¢ 05€ 0§
0 0t 0f 095¢ 09! 0 61 0 0t 081 01z 0t
0T 07 0z 9t 1 660 0 vl 0 0T 0zl ovi 0c
0l 01 01 +T01 050 0 11 0 01 09 0L 01
S < S ¥20 1 1€°0 0 8 0 S 0f 43 S
[eung X (Y2 pauiensuooun] paurejsuo’)
ade1018 sa8ueyd suotivian spousad
sisequadng 3uryiop 238-dD siseq $3Y2IB3S AUl | aseyd SIUTRNSUOD) $A[QRLIPA g

japow DFJO Y3l 10 $HIISHUIOEIRYD UONN[OS

2Iqel

184 A. Drud | Large-scale GRG code

Table 3

Characteristics of the § versions of the Manne model

Version Equality/ Upper bound Lower bound
Inequality on | on C

1 eq no 0.95

2 eq yes 0.95:

3 eq no 0.01

4 eq yes 0.01

5 ineq no 0.95

6 ineq yes 0.95

7 ineq no 0.01

8 ineq ves 0.01

and establish optimality. Both slow versions, 1 and 3, start from a vertex with a
much smaller objective value of —0.97. The search is more irregular; variables,
especially basic variables, keep hitting bounds that are not binding in the optimal
solution. CONOPT must consequently spend extra time performing basis changes
and search mode inversions, and in building up second order information that is
lost during changes in the superbasis.

As mentioned earlier, CONOPT has been designed for problems where most of
the line searches have their optima at interior points, i.e. where the step lengths are
determined from nonlinearities and not from bound values. This assumption is
clearly not satisfied for this model, which is why the computing times reported here
{adjusted for ditterences in machine speed) are 5 to 10 times those reported for
MINOS/AUGMENTED. Nevertheless, the model seems to be useful for testing
different subspace minimization strategies since the bounds are so important.

11.3. The world coffee model

The coftee modelis an econometric model of world coffee demand and production.
It has been used by T. Cauchois to evaluate the viability of different cartels in the
coffee market [6].

Some results obtained with the model are given in Table 5. The model is rather
badly scaled, producing problems with the optimality tolerances for models with
more than 2000 constraints.

11.4. Chemical process model

This model, contributed by J. Bisschop, describes a chemical reaction. The
objective is to minimize the total process time, subject to bounds on the final
concentrations and the final volume. The control variables are material inflows and
heat exchanges. The process is modeled with 19 time steps, so as to meet CONOPT’s
requirement of a fixed number of time periods; the length of each time step is made
a variable in the model. The length of the time step in each period (except the first)
1s made equal to the lagged time step, so that they all become equal.

9L1 129KD DA D,

24 L9 0y 089 L Pre

A. Drud | Large-scale GRG code

LET Sy 10% [00y 00L 8

66 66 0y 0y 0l 9621 iz L19 19¢ < 00t 00L L
x4 PC oy tvi9 'y L€l Se 96¢ < 00r 00L 9
86 86 or 0rT Ol 1'v6 L11 ot (40 14 00t 00 N
2 86 vl 0L 8 I'é 0 Ll 98 g 00y 00$ 4
66 66 0Oy YOLR el 88 PLS 96 001 00y 00¢ ¢
vT 86 Pl oL 8 6 0 6l 98 ty 00y 00¢ <
86 86 oy $0L8 98¢ 8T 18C 091 001 00t 00% !

jeutq XBN Ul A PauIRIISUOdUN pauirsu0 ")
adrions sadueyd SUOLIRIDN
siseqiadng Fuyiopm D9S$-dD SISegg $IY2iRas duUl] [aseyd SIUIRIISUO)) SI|QEURA UOISIap

12POW JUUEB 33 JO SUOISI3A § Y] 10) SINISLIIIORIBYD UOIN|OS

polqel

A. Drud | Large-scale GRG code

186

941 12940 DA D,

Ly LE it 8805C Lpet tl [£l £6 0CLE 00T 08
0t Pt 6T P68l Te8l 4 9il cl £L 0¥0c 001¢ 09
8T 143 8T TLYSI £S5l 6 £01 11 t9 00L1 0sLl 0s
Lz £e 9¢ 008 T pes 6 9 6 2 09¢] 001 914
0T 0t 0z 0veol 9LY t 0% 0l |24 0z01 0501 0t

11 0T I 891 L L'Le 9 19 01 vt 089 00L 0¢

4 01 2 960 ¥ 06 9 23 8 13 ovt 05t 0l

jRUL] XeW uriy pauIrIIsuodUn pauIRnsuO)

3vL018 saBueyd SUOIIRIN spousad

siseqradng Fuopom 23S-dD -s1seg SaYoIras UL [aseyd SIUIEIISUD) SI[GRLIBA awity

[3pOW 23J0D 31} 10} SOLSLIIDRIRYD U0NN[OS

§ dlqeL

A. Drud | Large-scale GRG code 187

The overall model has 456 constraints and 513 variables. It begins from an almost
feasible point and requires 21 phase-1 iterations to become feasible. After 10 line
searches, problems arise with a degenerate point, the tolerances are tightened, and
a new phase | with 22 iterations is performed. It takes 90 more line searches to
become optimal. 25 of the 100 line searches are stopped by a bound on a variable,
but there are basis changes in 31 iterations. The last 6 basis changes are caused by
small pivot elements, which are in turn caused by poor scaling. The superbasis
changes from 36 variables in the first feasible point to 16 in the optimal solution,
and the overall optimization requires 85.8 CP-sec and 8704 words of working storage.

11.5. The Indonesia model

This model is currently under development by A. Gelb, see [15]. It describes in
detail production, investment, capital accumulation, income generation, savings and
consumption, and imports and exports in a 6 sector model. The model has 18
nonbasics per period but is run in many different versions, usually with many fixed
variables leaving only 1 or 2 superbasics per period. The number of periods is
usually 10, so the size of the overall model is 1140 constraints, 1320 variables, and
10 to 20 superbasics.

Each time a new version of the model is developed, all nonbasics are fixed and
a new base trajectory is computed. An accurate solution is usually found in 15 to
30 phase-1 iterations and 3 to 5 CP seconds. This trajectory is then used for several
optimization runs. A sample of 11 optimizations required between 10 and 60 line
searches, with an average of 28. A variable hit a bound in 30% of all line searches.
The solution times were between 9.5 and 63 CP seconds, with an average of 32: the
final number of superbasic variables were between 1 and |1, with an average of 4.6.

11.6. A static-dynamic comparison

The previous models have been large because they had many time periods. The
model with the largest number of constraints per period, the Indonesia model, had
only 114 constraints per period. To test the capabilities of CONOPT on large static
models we solved the OPEC model from Section 11.1 as if it had been a static
model. In the first experiments we started both the static and the dynamic model
from the same infeasible point. The first feasible points turned out to be quite
different and the characteristics of the solution path seemed to be rather sensitive
to these first feasible points, exactly as we saw in Section 11.2. The following 3-step
procedure was therefore used to create results that were comparable:

I. CONOPT was first applied to the dynamic model to find a feasible solution.
This solution was written to a file in CONOPT input format using the WRITE-verb.
The USER-verb was then called. The USER subroutine contained a matrix generator
that created the MODEL file for the static model including an INITIAL bound set
with the feasible solution.

188 A. Drud [Large-scale GRG code

2. CONOPT was called to solve the dynamic model starting from the feasible
solution generated in the first step.

3. CONOPT was finally called to solve the static model from the same feasible
solution.

Table 6 shows the results from the last two calls of CONOPT. The latest version
of CONOPT (without packing) was used, so the working storage numbers are larger
than in Table I. It was not possible to run the static version of the 200 period model
due to core storage limitations. The static 175 period model was also close to the
limit; only 6000 words were left. The resuits seem to indicate that there can be
considerable gains from exploiting the dynamic structure of large models. They also
show, however, that the gains are insignificant for ‘small’ models, i.e. models with
less than 100-200 constraints.

12. Ceonclusions

It has been known for some time that sparse matrix techniques used in LP with
minor modifications could be used to build large-scale GRG codes. This paper has
described one such code, CONOPT, and has indicated several areas where it has
been useful to modify LP-techniques to deal with the characteristics of a nonlinear
problem. A new phase-l algorithm for almost-feasible problems has also been
described.

The paper has mainly considered large static problems but it has also described
techniques for handling dynamic problems with many bounds. The key features
here are the inversion routine and the associated Newton routine.

Thus far, CONOPT has been successfully used to solve static models with over
1000 constraints and variables and dynamic models with over 2000 constraints and
variables; by doing so, it has proved the viability of large-scale GRG codes,
particularly on problems involving almost as many constraints as variables. There
are still many research areas to pursue, however, the most important of which seem
to be:

(1) Subspace minimization strategies or strategies for releasing variables from
their bounds;

(2) Automatic scaling. Although (4) contains rather disappointing results about
automatic scaling, we hope that dynamic problems will be easier to scale because
better and more stable scale factors can be derived by averaging over all time periods.
Other user-defined groupings may also be useful in deriving good average scale
factors;

(3) Dynamic setting of parameters and tolerances. Many parameters should have
one value for almost linear problems and another for very nonlinear problems. The
values of these parameters should be adjusted as the optimization progresses and
more information is gained on the problem characteristics;

189

A. Drud / Large-scale GRG code

"UONIEN|EAD URIQOOE[Y] 10 S[[Ed JINOD PNIDUT JOU Op SIIQUWINU dYj ‘SidquInu
Y ajqeiedwoo 103 01 sponad jo 1aguInu 3yl £q PapIAIp usaq [apow dlwreudp 241 10) SBY SUONIRIA} UCTM3N JO 13qUInu 2FBIIAE 3U) PUE S|[BD WO JO 19quinu ay |,

1291 (44 i 96°0 S|Ied dINODA

6£C 6L'T 00t €T 98e1018 Juiyiom

LLY £9°C L9°1 9] aum B0

65°Y 6¢°C Wl S0°1 suin uoneziwndQ
”UMENG%Q \UC.SW'mOCmM
vrL 1€ 9LLSL 9EE ¥l 9£6 6€ vr19 Tev 81 TLog 8911 age101s Funjiom
6509 81°68¢ €781 £9'8p 1£°9 501 780 £€'] awn [elo]
Sl'6s 1€°1LT 99°L1 8Ty 8¢ 678 95°0 650 aw uoneziudQ
LU0 S6°0 1€°0 96°0 19°0 6L°0 1L°0 9.0 2SUONEISN HOIMIN "2AY
LT $6°1 11 96'1 19'1 6Lt 1.1 9Ll das/dNODA
y IS 08 8°00¢ 99¢ 617C Ly '€ 1S S8 dIW0DA
881 61 S6'1 £8°1 44 91T 17°C L0'T yoreas sul|/sdaig
1427 £y 0£g L8] 8¢l 8¢l 3 6C sdaig
9¢¢ Siz 811 701 $9 9 14! 4! EEURELERIC g |
STl 9l 00L 0L 0St IS¢ oyl i+l SaqrlIeA
0501 1501 009 109 00¢ 10¢ 0zl 1Tl sjureasuo))
SLl 001 0s 07 Spotiad

JtweuLqg 2NEIS eJLi:21 P Ng | BI81:31N JrwruA(g anels omeui(q oUBIS

[apow swes 3y} jo uonelvawaduwy ojweudp pue dels jo uosuedwor)

93IqeL

190 A. Drud | Large-scale GRG code

(4) Comparisons with other large-scale codes such as MINOS 5.0 [26], sequential
linear programming, and sequential quadratic programming codes. We hope that
the advances of high-level modeling systems will make this task easier. So far, a
link has been built between the General Algebraic Modeling System GAMS [5] and
CONOPT. Once links to other algorithms are developed, comparisons will become
very easy, though not necessarily cheap. The ultimate goal in this area is to be able
to predict from within a modeling system which code will be best suited for a
particular problem, and to choose that code automatically.

13. Acknowledgement

I would like to thank two anonymous referees for their careful reading of earlier
versions of the paper and for their many constructive comments. I would also like
to thank Alex Meeraus for encouragement and helpful discussions during the many
years it took to develop CONOPT.

References

[1] J. Abadie, **Optimization problems with coupled blocks™, Economic Cybernetics Studies and Research
(1970b).

[2] J. Abadie. “Application of the GRG algorithm to optimal control problems”, in: J. Abadie, ed.,
Nonlinear and integer programming (North-Holland, Amsterdam, 1972) pp. 191-211.

[3] J. Abadie and J. Carpentier, “Generalization of the Wolfe reduced gradient method to the case of
nonlinear constraints™, in: R. Fletcher, ed., Optimization (Academic Press, New York, 1969) pp.
37-47.

[4] P.O.Beck and L.S. Lasdon, *'Scaling nonlinear programs”, Operations Research Letters 1 (1981) 6-9.

[5] 1. Bisschop and A. Meeraus, “On the development of a general algebraic modeling system in a
strategic planning environment”, Mathemarical Programming Study 20 {1982) 1-29.

[6] T. Cauchois, “The world coffee model”, M.Sc. Diss., Massachusetts Institute of Technology
(Cambridge, MA, 1980).

[7] C.F.Coleman and 1.J. More, *Estimation of sparse jacobian matrices and graph coloring problems”,
SIAM Journal of Numerical Analysis (1983) 187-209.

[8] A.R. Colville, A comparative study of nonlinear programming codes™”, in: H.W. Kuhn, ed,,
Proceedings of the Princeton Symposium on Mathematical Programming (Princeton University Press,
1970).

[91 A.R. Curtis, M.J.D. Powell and J.K. Reid, *On the estimation of sparse jacobian matrices™, Journal
of the Institute of Mathematics and its Applications 13 (1974) 117-119.

[10] R.S. Dembo and S. Sahi, A globally convergent framework for linearly constrained nonlinear
optimization™, Working Paper B69, Yale School of Organization and Management, Yale University
(New Haven, CT, 1983).

[11] A. Drud, “Optimization in large partly nonlinear systems”, in: J. Cea, ed., Optimization techniques.
Modeling and optimization in the service of Man, Part 2, Lecture notes in computer science, Vol. 41
{Springer-Verlag, Berlin, Heidelberg, New York, 1976) 312-329,

[12] A Drud and A. Meeraus, "CONOPT - A system for large-scale dynamic optimization - User's
guide™, Technical note 16, Development Research Center, World Bank (Washington, DC, 1980).

[13] R. Fourer, “Solving staircase linear programs by the simplex method, Part I: Inversion™, Mathemati-
cal Programming 23 (1983) 274-313.

A. Drud | Large-scale GRG code 191

[14] C.B. Garcia and W.I. Zangwill, Pathways to solutions, fixed points, and equilibria (Prentice-Hall,
NI, 1983).

[15] A. Gelb, “Oil rent and development strategies: A model for Indonesia”, Development Research
Department, World Bank (Washington, DC, 1983).

[16] P.M.J. Harris, "Pivot selection methods of the devex LP code™, Mathematical Programming 5
(1973) 1-28.

{17] E. Hellerman and D. Rarick, “Reinversion with the preassigned pivot procedure”, Mathematical
Programming |1 (1971) 195-216.

[18] E. Hellerman and D. Rarick, “The partitioned preassigned pivot procedure™, in: D.J. Rose and
R.A. Willoughby, eds., Sparse matrices and their applications (Plenum Press, New York, 1972) pp.
67-76.

[19] J.E. Kalan, "Aspects of large-scale in-core linear programming”, in: Proceedings of ACM conference,
Chicago, 1971, pp. 304-313.

[20] L.S. Lasdon, A.D. Waren, A. Jain and M. Ratner, “*Design and testing of a generalized reduced
gradient code for nonlinear programming”, ACM Transactions on Mathematical Software 4 (1978)
34-50.

[21] L.S. Lasdon and N.H. Kim, “SLP User’s Guide”, Department of General Business, School of
Business Administration, University of Texas (Austin, Texas, 1983).

[22] J.B. Mantell and L.S. Lasdon, “*A GRG algorithm for econometric control prablems™, Annals of
Economic and Social Measurement 6 (1978) 581-597.

[23] B.A. Murtagh and M.A. Saunders, “'Large-scale linearly constrained optimization™, Mathematical
Programming 14 (1978) 41-72.

[24] B.A. Murtagh and M.A. Saunders, “MINOS/AUGMENTED user's manual’, Report SOL 80-14
(1980), Department of Operations Research, Stanford University, Stanford, CA.

[25] B.A. Murtagh and M.A. Saunders, “A projected lagrangian algorithm and its implementation for
sparse nonlinear constraints™, Mathematical Programming Study 16 (1982) 84-117.

[26] B.A. Murtagh and M.A. Saunders, “MINQS 5.0 User's Guide™, Report SOL 83-20 (1983}, Depart-
ment of Operations Research, Stanford University. Stanford, CA.

[27] R.S. Pindyck, “'Gains to producers from the cartelization of exhaustible resources”, Review of
Economics and Statistics 60 (1978) 238-251.

(28] M.J.D. Powell, “A hybrid method for nonlinear equations™, and A FORTRAN subroutine for
solving systems of nonlinear algebraic equations™, in: P. Rabinowitz, ed., Numerical methods for
nonlinear algebraic equations (Gordon and Breach, London, 1970).

[29] K. Schittkowski, Nonlinear pragramming codes, Lecture Note in Economics and Mathematical
Systems, vol. 183 (Springer-Verlag, Berlin, Heidelberg, New York, 1980).

(30] “APEX [Il Reference Manual Version 1.2, CDC Manual 76070000.

[31] “Mathematical Programming System-Extended (MPSX)}, and Generalized Upper Bounding
(GUB)™, IBM manual SH20-0968-1.

