
Mathematical Programming 31 (1985) 153-191
North-Holland

CONOPT: A GRG CODE FOR LARGE SPARSE DYNAMIC
NONLINEAR OPTIMIZATION PROBLEMS

A r n e D R U D

Development Researeh Department, The World Bank. 1,~r H Street, N. IV., Washington, DC 20433,
USA

Received 26 August 1983
Revised manuscript received 5 September 1984

The paper presents CONOPT, an optimization system for static and dynamic large-scale
nonlinearly constrained optimization problems. The system is based on the GRG algorithm. All
computations involving the Jacobian of the constraints use sparse-matrix algorithms from linear
programming, modified to deal with the nonlinearity and to take maximum advantage of the
periodic structure in dynamic models. The paper presents the main features of the system, especially
the inversion routines and their data structures, the dynamic setting of tolerances in Newton's
algorithm, and the user features in the overall packaging. The difficulties with implementing a
practical GRG algorithm are described in detail. Computational experience with some medium
to large models is presented, indicating the viability of CONOPT for certain real-life problems,
particularly those involving almost as many constraints as variables.

Key words: Large-scale Systems, Dynamic Models, Optimization, Nonlinear Programming,
Generalized Reduced Gradient, Nonlinear Constraints, Sparse Matrix Techniques, Dynamic
Tolerances.

I. Introduction

T w o classes o f a l g o r i t h m s are cu r ren t ly a v a i l a b l e for so lv ing large n o n l i n e a r

o p t i m i z a t i o n p r o b l e m s , i.e. p r o b l e m s with 100 to 1000 cons t r a in t s and a s imi la r

n u m b e r o f va r iab les . T h e s e classes cons is t o f a l g o r i t h m s based on so lv ing a s e q u e n c e

o f l inea r ly c o n s t r a i n e d p r o b l e m s (S L C a l g o r i t h m s) , and a l g o r i t h m s based on the

g e n e r a l i z e d r e d u c e d g r a d i e n t a p p r o a c h (G R G a l g o r i t h m s) [3]. G R G a l g o r i t h m s

a t t r ac t ed m u c h a t t en t ion a f te r Co lv i l l e ' s c o m p a r a t i v e s tudy [8], but a recen t c o m p a r a -

t ive s tudy by Sch i t t kowsk i [29] has r ev ived in te res t in S L C a lgor i thms . The e x c e l l e n t

l a rge - sca le c o d e M I N O S / A U G M E N T E D [25], ba sed on S L C t e c h n i q u e s , has re in-

f o r c e d this in teres t . U n f o r t u n a t e l y , no c o m p a r a t i v e s tudies have l o o k e d at l a rge - sca le

p r o b l e m s , m a i n l y b e c a u s e the n u m b e r o f codes is very smal l , f u r t h e r m o r e , f o r m a t t i n g

a large set o f l a rge - sca le test p r o b l e m s for d i f fe ren t codes is an e n o r m o u s task. We

are t h e r e f o r e cu r ren t ly no t in a pos i t i on to r e c o m m e n d one a l g o r i t h m class o v e r

a n o t h e r for large p r o b l e m s , based on c o m p u t a t i o n a l e v i d e n c e .

The views and interpretations in this document are those of the author and should not be attributed
to the World Bank, to its amliated organizations or to any individual acting in their behalf.

153

154 A. Drud / Large-scale GRG code

The present paper presents a GRG-based optimization system called CONOPT,
which is designed for large t ime-dependent nonlinear optimization problems.
C O N O P T can, of course, also be used to solve large static problems by defining
only one time period.

The concepts in the G R G algorithm are quite simple but as in most conceptual
algorithms, there are many undefined implementation details. The difference between
a good and a bad GRG code therefore lies in the choice of data structures, in the
detailed implementation of the different components, and in the way the components
work together through data structures. Since the concepts of the G R G algorithm
are assumed to be well known, this paper will contain little theory; instead, it will
describe how some of the crucial GRG components have been implemented and
why these implementation choices have been made. The description will concentrate
on the general case of large-scale static models, and only elaborate on how the

dynamic structure is used in a few subsections.
GRG algorithms can have several disadvantages. In particular, much effort can

be needed to maintain feasibility far from the optimum, and recomputations of the
Jacobian and subsequent reinversion of the basis alter each line search can be
expensive. The paper tries to explain how we have reduced these disadvantages by
proper choice of dynamic feasibility tolerances and of data structures for the basis
inverse. After an initial problem definition and a short description of the G R G
algorithm in Sections 2 and 3, the paper describes the way C O N O P T presents itself
to the user, i.e. the way a user enters a model into C O N O P T (Section 4). It also
describes some important systems features that make C O N O P T convenient for the
user; these include completely dynamic core allocation, error reporting and recovery,
and time-limit handling. Subsequent sections describe subcomponents of the GRG
algorithm itself: computing the Jacobian (Section 5), choosing and inverting a basis
(Section 6), computing the reduced gradient (Section 7), and computing the search
direction (Section 8). Section 9 is concerned with details of the one-dimensional
search, including how C ONOP T restores feasibility, what tolerances it uses, and
how it handles bounds on the variables. Section 10 describes an algorithm for finding
a first feasible solution; the algorithm is very fast for almost feasible problems and
is therefore suitable for restarting perturbed problems. The last two sections contain
computational results with some medium to large models and outline areas for
future research and development.

2. Notation and problem statement

2. I. The static model

In most of this paper we will be concerned with the t ime-independent part of
CONOPT, and the model we will consider internally in CONOPT has the following

A. Drud / Large-scale GRG code 155

form at:

where

min xj (I-S)

s.t. f (x) = b and (2-S)

i<~x<~u (3-S)

x is an m-vector of optimization variables,
f is a mapping from R" into ~",
b is an n-vector of right-hand sides,

I and u are m-vectors of lower and upper bounds, some of which may be minus
or plus infinity, and

xj is the j - th component of x, usually a slack variable.
I f a model has inequality constraints they will be converted into equalities by the

input routines through the addition of properly bounded slack variables. Section 4
contains more details on the actual input.

2.2. The dynamic model

CONOPT can take advantage of the time structure of dynamic models provided
the model has the following format:

T

min 3~ xj, (l -D)
t = l

s.t. f (x , xr_.~ ,x, p)=b, , t = 1 , . . . , T, and (2-D)

l,<~x,<~u,, t= l , . . . , T, (3-D)

where

x, is an m-vector of optimization variables in period t,
f is an n-dimensional function of constraint values in period t,
b, is an n-vector of right-hand sides in period t,
l, and u, are m-vectors of lower and upper bounds in period t (some of the

bounds may be minus or plus infinity),
:% is the j - th component of x,,
p is the largest number of lags in the model,
T is the time horizon, and
the values of the lagged variables x 0 , . . . , x~_p are known and fixed.

2.3. Design assumptions

There are many design decisions in any large-scale system, and choices must be
based on assumptions about the models that the system will be used to solve. The

static part of C O N O P T is built around the following assumptions:

1 5 6 A. Drud / Large-scale GRG code

- all functions are twice differentiable,
- all functions are defined for all values of the opt imizat ion variables satisfying

the bounds ,

- m and n are large, i.e. greater than 50,
- the functions are sparse, i.e. the number o f nonzero Jacobian elements in each

equation is small,

- m o s t functions are linear and the remaining functions have substantial linear

parts, and
- t h e models are well scaled.

Al though we assume many functions to be linear we still assume that the models
are ' rather nonlinear ' . By this vague term we mean that the optimal step length in

most one-dimensional searches will be determined by nonlinearities and not by

bounds.

For dynamic problems we make the addit ional assumptions:

- all variables appear unlagged at least once,
- t h e unlagged Jacobian, J,, = ;~f,/Ox, has full row-rank at all feasible points,

- t h e structure o f the functions or the sparsity pattern o f J,, ~=af/Ox,_l, l=
0 , . . . , p, is t ime-independent ,

- most data such as r ight-hand sides, bounds , and coefficients in linear terms are

t ime-independent , and

- the number of time periods is small, usually less than 25.

3. A g e n e r i c GRG algorithm

For ease o f reference in the rest of the paper, the main steps in a G R G algorithm
(see also [3]) will be reproduced here:

0. Read the Model Input.

1. Find a feasible solution, x ~ Set the iteration counter k to 0.

2. Compute the Jacobian g k = Of/ijx k.
3. Separate the variables into n basic variables and m - n nonbasic variables,

subscripted by b and n respectively, such that the current basis J~ = Of/Ox~ is

nonsingular. It is preferable that the basis is well-condit ioned and the basic variables
are away from their bounds.

= T t ~ k ~ I 4. Compute the multipliers, u T eib~ab) , and the reduced gradient, g ~ =

e~, -uVJ~. (Superscript T denotes transpose, e i is an m-dimensional unit vector
with + I in posit ion j, and ejt and ej,, are the basic and nonbasic components of ej,
respectively.)

5. Stop if the current point satisfies the K u h n - T u c k e r conditions.
6. Separate the nonbasic variables into superbasics, subscripted by s, and fixed

nonbasic variables.

7. Compu te a search direction for the superbasics, d~, based on g~, the superbasic

part of the reduced gradient, and an estimate o f the Hessian of the reduced objective,
H~ = ;~xj/Ox~.

A. Drud / Large-scale GRG code 157

8. Perform a one-dimensional search along dr. For each step length, O, solve
f(xb, x~ + Od~, x~)= b for Xb using (J~) ~ in a Newton-type procedure, and extract

the value of the objective. The step length must be so small that all variables remain

between their bounds.
9. Save the best solution found in step 8 in x k+~, set k = k + l~mnd go to 2.

4. Model input and systems features

CONOPT's system features and overall packaging are of course irrelevant from
an algorithmic point of view. Nevertheless, they are extremely important for improv-
ing the productivity of a practical user, especially an unsophisticated user; we have
therefore chosen to devote some space to them. The description that follows is only
an overview: it would be impossible to cover all details, since the non-optimizing
parts of C O N O P T account for more than half the code.

C O N O P T is a FORTRAN program of around 25 000 lines, inclu~ting comments.
From the user 's point of view, C ONOP T is organized as a stand alone optimization
system, which is called through a procedure at the operating system level. A model
is defined for the C O N O P T procedure through three or more files. The way in which

the procedure is called and the way the files are defined is machine and operating
system dependent, but the format of the files is machine-independent.

4.1. The MPS.file

C O N O P T tries to stay as close as possible to the industry standard for Linear
Programming (LP). A large part of the model is therefore defined through a modified
MPS or CONVERT format file, as defined in the C D C / A P E X I I I manual [30] or
the I B M / M P S X manual [31]. The types of constraints (equal, less than or equal,
greater than or equal, or nonbinding), the values of the right-hand sides, and the
non-default upper and lower bounds on structural and logical variables are all
defined in standard ROWS, RHS, BOUNDS, and RANGES sections. The

C O L U M N S section defines the sparsity pattern of the Jacobian. A nonlinear element
in the Jacobian is identified by a special coefficient with a default value of 999 999.
A linear element in the Jacobian can be identified by its numerical value or by
another special coefficient with a default value of 9999. Bound sets with a name
starting with INIT, e.g., INITIAL, are used to provide initial values for some or all
of the variables.

The extensions to the MPS format used in C O N O P T have been inspired by similar
extensions used in other codes, e.g. [21,24].

4.2. The F C O M P subroutine

The values of the nonlinear and unspecified linear components of each constraint,
i.e., the components identified by 999 999. or 9999. in the MPS file, must be supplied

158 A. Drud / Large-scale GRG code

tO CONOPT through a second file containing a FORTRAN subroutine called FCOMP.

FCOMP can also contain constant additive terms that otherwise would have been

defined in the RHS section. Derivatives are not defined by the user and are therefore
not part of FCOMP. They are computed numerically by CONOPT, as will be
explained in Section 5.

FCOMP is supplied with a vector of optimization variables that always satisfy
the lower and upper bounds, and it must return all constraint components in another

vector. It was originally considered that FCOMP might compute the value of one
constraint, identified by an input parameter, in each call. This would facilitate the

computation of derivatives and make block decompositions possible. The expected

savings were not thought large enough, however, to compensate for the extra

subroutine linkage and conditional branching overhead - and, above all, for the
added complications for the user.

Since constraints and variables are identified by names in the MPS file and by

indices in FCOMP it is necessary to define some mapping between the constraint
names and the function indices, and between the variable names and the variable

indices. The default mappings are defined by the positions of the constraint and

variable names in the MPS file. These implicit mappings make it hard to modify a

model without recoding large parts of FCOMP. CONOPT therefore includes an
option for defining one or both mappings explicitly. A special right-hand side in

the MPS file, named FUNCTION, maps the constraint names into function indices

and a special bound set, named VARIABLE, maps the variable names into variable
indices.

4.3. The C O N T R O L program

The third input file must contain a control program. We have implemented a

procedural control progra~n similar to the one in CDC's LP-system APEX III [30].
It has verbs for calling different CONOPT procedures like MODEL (real input),

CHECK, OPTIMIZE, OUTPUT, WR1TE (create coded restart file), SAVE (create
binary restart file), and RESTART (restart from SAVE-file). Other verbs like SET

and STEP can define so-called CR-cells containing tolerances, options, iteration

and time-limits, and names of the selected right-hand side, bound set, range set,
and initial value bound set. CRPRINT can display the CR-cells, TITLE can change
the page headers, and the USER verb activates a user supplied FORTRAN subroutine

that can initialize common blocks for FCOMP or print special reports. The remaining

verbs, TEST (set condition code), BRANCH (multiway conditional branch), PER-
FORM (multiway conditional branch with saved return address), and NEXT (return

to line after last PERFORM), can be used to define conditional execution sequences

and simple subroutine constructions. The major executing verbs are all followed by
a default BRANCH unless the user supplies his own BRANCH or PERFORM verb.

For example the input verbs are followed by default by a branch that depends on
whether a major or minor error has been encountered.

A. Drud / Large-scale GRG code 159

4.4. Input checking

One of the design objectives of C O N O P T has been to ensure that as many as

possible o f the inconsistencies in the model input should be caught and reported

to the user, so that expensive optimizations are not at tempted on models containing
errors. The MPS file is tested for undeclared row names, split columns, multiple

definitions o f the same information (row name, matrix element, bound value, etc.),

consistent bounds, and all the other s tandard LP-tests. I f a F U N C T I O N right-hand
side or a V A R I A B L E bound set defines a mapping, C O N O P T checks that the

relationship is one to one and that indices are defined for all nonlinear constraints

and variables.

All the tests described so far are relatively straightforward because all necessary
information is readily available. The problem area, as in most other nonlinear

opt imizat ion systems, is in the F C O M P subroutine. C O N O P T does not know what
is inside F C O M P ; it can only call F C O M P with different x-vectors as arguments
and observe function values returned by FCOMP. The tests currently implemented

try to make sure that a constraint function in F C O M P does not depend on a variable

unless it was declared in the MPS file, and that linear functions in F C O M P really

are linear within tight tolerances. The presence o f undeclared variables in a constraint
is tested by evaluating the constraint at a random point satisfying the bounds,

assigning new r andom values to all undeclared variables, and evaluating the con-

straint again. If the constraint value is different, it must depend on at least one of
the variables that was changed, i.e. on one o f the undeclared variables. The incon-

sistency is found by resetting the undeclared variables to their initial values one by

one and observing when the constraint value changes. The test is very cheap if no
errors are found, requiring only one F C O M P call per nonl inear constraint. It may

not find an error if the undeclared constraint derivative is identically zero over a

large area. This happens very infrequently, however, and the test has proved itself

very useful in practice.

4.5. Error recoverv

If all input tests are passed and the C O N T R O L program contains an O P T I M I Z E

verb, C O N O P T will start optimizing. At this point some very undesirable things
could happen. A division by zero or another arithmetic exception could cause the
job to abort without giving the user any idea of what went wrong. Alternatively,

the job could reach its time-limit and abort, leaving the user with nothing but the bill.

To avoid the first o f these problems, C O N O P T uses machine-dependent error
recovery routines to regain control after an arithmetic exception. A logical variable

will indicate whether the error happened in C O N O P T or in F C O M P ; if it happened
in the latter, C O N O P T will tell the user that he has made a mistake and will print

all the informat ion passed on to F C O M P as well as the content of the constraint

vector at abort time. Depending on the FORTRAN compiler, there may also be an

estimate of the line in which the error occurred. If the error happened in C O N O P T ,

160 A. Drud / Large-scale G R G ('ode

the system will write a message of apo logy and urge the user to submit the p rob lem

to the au thor so that C O N O P T can be correc ted .

The t ime- l imi t p rob lem has also been e l imina ted . C O N O P T checks th rough a

m a c h i n e - d e p e n d e n t rout ine how much t ime is left when it starts execut ing, and it

s tops when 80% of the t ime avai lable has been used. This leaves sufficient t ime to

save a n d / o r print the solut ion. The defaul t B R A N C H that fol lows O P T I M I Z E in

the C O N T R O L program au tomat i ca l ly calls SAVE and OUTPUT.

4.6. Debugging facilities

A system of the size of C O N O P T is b o u n d to have some bugs. Faci l i t ies for

debugging have therefore been inco rpora t ed as an integral part of C O N O P T . All

ma jo r rout ines conta in W R I T E s ta tements that descr ibe the flow of control and the

values of all impor t an t variables . Defini t ion of CR-cel ls in the control p rogram

permits the test ou tput to be turned on and off i nde pe nde n t l y in more than 25

func t iona l ly dis t inct parts of the code : in most cases, the detai l of the ou tput can
be varied. It is therefore poss ib le to get a good picture of what ha ppe ns in one par t

of C O N O P T wi thout being swamped by ou tput from irrelevant parts.

When an er ror occurs in i terat ion 100 we are not in teres ted in test ou tput from

the first 95 i terat ions. In this case we would , th rough the C O N T R O L program, set

the i tera t ion l imit to 95, opt imize until this l imit is reached , reset the limit to 105,

turn the se lec ted test ou tput on, and cont inue the op t imiza t ion . Grea t care has been

taken to retain all re levant in fo rmat ion when an i tera t ion sequence is in te r rup ted ,

so that a con t inua t ion of the op t imiza t ion will p roduce exact ly the same i terat ion

sequence as an op t imiza t ion run without the in ter rupt ion . It is even poss ible to

SAVE a b ina ry copy of the solut ion status and, after a R E S T A R T in a later job , to

p roduce exact ly the same i tera t ion sequence as would have been p r o d u c e d by an

un in te r rup ted job. If an error occurs at the end o f a very expens ive j ob it is poss ib le

to rerun the j ob and save the status a few i tera t ions before the error occurs, and

then locate the error th rough a sequence of small inexpens ive jobs .

4.7. Memory management

A final systems detai l is that of memory managemen t . The user never has to worry

abou t d imens ion s ta tements or a l loca t ion of work ing storage. On vir tual s torage

machines like IBM, a large piece of working s torage is reserved once and for all,

and C O N O P T manages its a l loca t ion for different purposes . On machines like C D C

where memory is at a p remium, C O N O P T starts with a smal l amoun t of working

s torage and requests more memory when it is needed. Wheneve r a vector exceeds
its init ial a l loca t ion (dur ing input for example) , C O N O P T rea l loca tes the working

s torage and moves the in format ion accord ingly .

4+8. Dynamic models

The a s sumpt ions in Sect ion 2.3 make it poss ib le to define a dyna mic mode l

essent ia l ly by defining the model for one pe r iod and add ing a few series of t ime-

A. Drud / Large-scale GRG code 161

dependent quantities. The ROWS, C O L U M N S , RHS, B O U N D S , and R A N G E S
sections are therefore only defined for one period. The only difference from static

models is that coefficients, r ight-hand sides, and bound values can be defined as

t ime-dependent through the use of a special coefficient. The values o f the time-

dependent quantities are defined in a separate SERIES file.
The structure of each of the lagged Jacobians, d,, i, l = 1 , . . . , p , is defined in a

LAGS section in the MPS file. The LAGS sections have the same format as the
C O L U M N S section.

The F C O M P subroutine is also written for one period only. It receives x,, . . . , x,_,

plus the value of t and must return the nonl inear part o f f (x , , . . . , x, ,).

5. The Jacobian

There are many advantages to using analytic derivatives. I f properly coded, they
are both more accurate and faster to compute than numerical derivatives. Analytic

derivatives also have important disadvantages, however. It is labor intensive to code

all derivatives by hand, especially for large models where the number of different

expressions can be in the hundreds. In addit ion, it can be difficult for an unsophisti-

cated user to unders tand the data structures into which he has to store the derivative

values. Finally, the chances o f error are rather large, al though the system could use

finite differences to run checks and to inform the user about likely errors.
Because of the above problems, it was decided to compute derivatives numerically.

The linear Jacobian elements that are defined through F C O M P (hereafter called

linear F C O M P elements) are computed in a setup phase. The columns with linear

F C O M P elements are per turbed one by one, and the derivatives are computed via

first differences. A fairly large perturbation is used to minimize the effect of round-off

errors.

The nonl inear elements in the Jacobian are computed repeatedly, and one FCOM P
call per nonl inear column per evaluation can become very expensive. A setup routine

based on [9] is therefore used to organize the columns of the nonl inear Jacobian

into groups such that each group has at most one nonlinear element in each row.
The nonl inear elements are evaluated in groups: all columns in a group are perturbed,

F C O M P is called, and each nonl inear element in the group is computed numerical ly

as the ratio of the row and column perturbations. The direct use of the row
perturbat ion assumes that the perturbation does not contain terms from linear
F C O M P elements. Subtracting these terms from linear F C O M P elements would

require either a search for the relevant elements or a special data structure to
reference them. We have avoided this complicat ion by slightly changing the group-

building heuristic described in [9]: a column is simply not added to a group during

the building process if this would mean that the group would get a row with both

a linear and a nonl inear derivative.
The number of groups, and therefore the number of F C O M P calls needed to

compute all derivatives, is generally quite small. The group-select ion heuristics in

162 A. Drud / Large-scale GRG code

[7] should give fewer groups and therefore fewer FCOMP calls than the current

techniques, but the savings in overall computer time are not expected to be more
than a few percent and the change, although desirable, is of low priority.

The discussion of analytic derivatives at the beginning of this section assumed

that a human user had to code the derivatives by hand. Eventually, however, we

expect that more than half the problems submitted to CONOPT will be generated

by computerized modeling systems like GAMS [5], in which case correct analytic

derivatives can he generated automatically and inserted into any type of data

structure. We are therefore considering adding an option so that the user can supply

analytic derivatives. The option will be designed for computer-generated models
and will probably not be friendly for a human user.

The matrix operations in a GRG algorithm are similar to those of an LP algorithm.

The Jacobian is therefore stored in the same way, i.e. the elements are sorted by

columns, their values and row numbers are stored in two parallel vectors, and a

shorter vector points to the start of each column. CONOPT also stores a column

number to facilitate other operations used mainly in dynamic models.

Dynamic models do not give rise to many complications. The structure of the
Jacobian, shown in Fig. 1, is represented by the structure for one period, and all

constant linear elements are stored only once. The values of nonlinear and time-
dependent elements are stored with one copy per period. The two types of element,

constant and time-dependent, are distinguished by being in separate data structures.

The lagged Jacobians are usually very sparse with many empty columns. Only
nonzero elements with row and column numbers are stored, since we never need

to access the lagged Jacobians by columns.

X~ X+

Fig. 1. The s t ruc ture of the Jacob ian of a dynamic model . The blocks with the same number have the

same spars i ty pat tern , so the pat tern for the ha tched area is sufficient to represent the whole spars i ty
pat tern. The s tored row and co lumn numbers are relat ive to the per iod, and the lag n u m b e r is i m b e d d e d

in the co lumn number .

A, Drud / Large-scale GRG code

6. Basis selection and basis inversion

163

6. I. Static models

The word mat r ix - invers ion is used t h roughou t this p a p e r to deno te the crea t ion

of a fac tor iza t ion that makes it easy to solve sets o f equa t ions involving the matr ix

or its t ranspose .

The set o f bas ic var iables can in pr inc ip le change from i tera t ion to i tera t ion as

men t ioned in s tep 3 in the G R G algor i thm. We prefer to keep the same set as long

as possible , however , e i ther until a bas ic var iab le hits a b o u n d in s tep 8, or unti l

d~ becomes bad ly cond i t ioned . The reasons are that a s table basis set faci l i tates

accumula t i on o f s econd -o rde r in format ion , that the se lect ion of a basis set involves

some overhead , and that invers ions of a sequence o f basis matr ices with the same

spars i ty pa t t e rn and s imi lar numer ica l values can be done very efficiently.

Given this overal l basis strategy, a basis se lect ion and invers ion rout ine will have

to work in two modes , search mode and re invers ion mode. In search mode , we

select and invert a basis from a set of n or more cand ida t e var iables , p re fe rab ly

choos ing var iables that are away from their bounds . This mode is used in the

fo l lowing cases:

1. For the initial basis , or after 2 or 3 be low fails. The cand ida te set consists of

all var iables .

2. After a bas ic var iable hits a bound in the one -d imens iona l search. The cand ida t e
set consists o f all old bas ic and superbas ic var iables except the bas ic var iable that

hit a bound .

3. Af ter a re invers ion fails as descr ibed below. The cand ida t e set consists o f all

old basic and superbas ic var iables .

In re invers ion mode, we invert the same basis matr ix as before , but with new

numer ica l values.

C O N O P T assumes that the nonl inear i t ies of both const ra ints and object ive are

so s t rong that most one -d imens iona l searches end before a var iable hits a bound .

We often observe that more than 80% of all one -d imens iona l searches end in an

inter ior poin t , and we assume that more than 80% of all" inversions are reinversions.

It is therefore impor t an t that re invers ions are fast, even if some o f the speed is

gained at the expense o f the sea rch -mode inversions.

Our s ea rch -mode invers ion rout ine is a modi f ica t ion of He l l e rman ' s and Rar ick 's

P~ rout ine [17], used on the rec tangular matr ix of all basis candida tes . The pr inc ip les

o f p3 are a s sumed to be known. The key features of our modi f ica t ion are as fol lows:

[. Co lumns are s tacked and uns tacked on a sp ike s tack or se lec ted as t r iangular

co lumns as in p3 o n the basis of a tally funct ion. The a lgor i thm stops when n p ivot

co lumns have been chosen, and the co lumns that are left on the spike s tack become

nonbas i c or superbas ic , in general , we expect that more basis cand ida tes will result

in fewer spikes in the basis , because most of the potent ia l spikes will never be

uns tacked.

164 A. Drud / Large-scale GRG ('ode

2. Hellerman and Rarick's tally function is augmented with a term that reflects

the distance from bound. Variables close to their bounds are favored during spike
selection, i.e. selection of potential superbasics, and variables far from their bound

are favored during selection of tr iangular columns, i.e. selection of variables that

definitely will become basic.
3. During the inversion, a row-wise representat ion of the sparsity pattern is added

to the permanent column-wise representation, so as to facilitate searches through

the rows of the matrix. The space needed for this representat ion is shared with
vectors that are only used as intermediates in the one-dimensional search, so no

extra core is needed.

4. The factorization o f the basis is stored using alpha-vectors, following [19]. The
tr iangular columns are embedded in the Jacobian itself and the updated spike
columns are stored as additional columns of the Jacobian, using the s tandard

Jacobian data structure. To avoid problems with zeros that becomes nonzeros at a

different point, we create the logical structure of the upda ted column and use its
sparsity pattern to decide which elements to store.

5. The pivot element of a column is accepted if it is numerical ly larger than

max(RTPIVA, RTPIVR cnorm), where cnorm is the norm of the updated column

and RTPIVA and RTPIVR are absolute and relative tolerances with initial values
0.05. I f the pivot is too small, the column is stacked as a spike and the first column

from the top of the spike stack satisfying the test is selected. If no such column

exists, the inversion is considered a failure and we increase the set of basis candidates

as described above. If all columns are already candidates, we accept the best pivot
element provided that it satisfies some minimal tolerances. If not, we stop the job

with a message that the Jacobian does not have full row-rank.

With the inversion scheme adopted here, reinversions are very fast. After the
Jacobian has been recomputed , it is sufficient to update the spike columns and save

their new nonzero values. Since we used the logical sparsity pattern during the

search-mode inversion, no new nonzero positions will appear and no tests for zero

are therefore needed. Nevertheless, it is still necessary to test that the pivot elements,
both in the spike columns and in the tr iangular columns, are large enough. We use

slightly smaller tolerances than in 5 above, so a reinversion will always be possible

in the ne ighborhood of a point at which a successful search-mode inversion was
performed.

An earlier version o f the inversion routine, [11], was based on the p4 routine,

[18], with some additions to take care of the degrees o f f reedom in the basis selection.
However, the vector orientation of F C O M P prevented the block structure from Pa

From being used in other parts of C O N O P T and it was abandoned in favor of the
simpler P~ routine.

6.2. D y n a m i c models

One of the important differences between static and dynamic G R G codes comes
From the inversion routine. In early work on G R G codes for dynamic models, it

A. D r u d / Large-scale G R G code 165

was assumed that a block triangular basis with square diagonal blocks corresponding
to the time structure could always be found (see [2]). This would be very convenient,

because it implies that the overall inverse basis can be represented by the inverse

of the smaller diagonal blocks. Some classes o f models do have this helpful basis

structure, for example models that in each period have n unbounded 'state variables' ,

xT, for which i~f/i~x~ is always nonsingular. Some optimizat ion models based on
economic models belong to this class, and [22] describes a G R G code for this
application.

Unfor tunately , models with many active bounds in late periods may need non-

square blocks in their bases as shown in Fig. 2. An early discussion of the problem

in relation to G R G codes is given in [1]. Apart from the basis selection, the inversion

in a dynamic G R G code is similar to the inversion in staircase LP, and some of the

techniques from this field could be used. For further details and references, see [13].

There are, however, some important differences between general LP staircase models

and time dynamic nonl inear models in C O N O P T . The time orientation of FCOMP,
and of the data structure for the Jacobian, makes it important to preserve as much

of the time structure as possible in the factorization of the inverse, so that it can be

used efficiently with single-period vectors of function values or single-period columns

of the Jacobian. Fortunately, the extra freedom in the basis selection can help us

select a basis that has square or almost square in-period blocks.

\
\

\
\

o
\

\
\

\
\

\
\ 0

\
\

\
\

\
\

' , \

\ 0 \
\

\
\

Xbt XbT

Fig. 2. A typical basis matrix for a dynamic model with nonsquare in-period or 0-lag blocks. The lower
right corner of all 0-lag blocks must be on or above the diagonal for the basis to be nonsingular.

To take as much advantage of the structure as possible, C O N O P T contains a
special dynamic basis selection and inversion routine. It is based on the conceptual

reorganizat ion of the basis shown in Fig. 3. The basis contains in-period blocks, i.e.
blocks o f columns that have their pivot rows in their own period, and inter-period

columns, i.e. columns that have their pivot rows in later periods. The inversion or

166 A. Drud Large-scale GRG code

Fig. 3. The reorganized basis mamx with in-period blocks and rater-period columns.

factorization of this basis structure into easily invertible matrices is derived from

the factorization in Fig. 4. For t = l, E~, is empty, and for t > 1 it is factorized by
recursive uses of Fig. 4, i.e. E~, = E,, ~E2, ~E3, ~E~, ~. E:, is analytically invertible

and can be represented by A, itself. E~, is invertible through an inversion of ((7,, I)
within period t only. And the final factor E4, can be split into a product of inter-period

alpha-vectors using a product or elimination form of the inverse. The only factor

that destroys the time structure is E4,. This is not serious for the computa t ion o f
dual variables, reduced gradients, or tangent directions, because these operat ions
are oriented towards the whole time horizon. However, E4, must be integrated with

the single-period F C O M P calls in the feasibility-restoring Newton steps. The

implementat ion of this is described in Section 9.2.

The dynamic inversion and basis selection routine in C O N O P T can now be

summarized. It assumes as input a set of basis candidate columns. For t = 1 to T,
execute steps 1 and 2:

1. Select and invert a submatrix of,/,, using the static basis selection and inversion

routine described above. As before, the inverse basis is represented by tr iangular
columns embedded in the in-period Jacobian and updated in-period spike columns

saved separately. The procedure is modified so that it rejects rows without a good

pivot element. These rows are logically assigned unit columns for pivot until final
pivots from earlier periods can be assigned in step 2. The result o f this step is the

selection and inversion of (C,, I) in E,,.

2. For each row j without a final pivot element, replace the prel iminary unit

column with an inter-period pivot column using steps 2.1 to 2.3:
2.l. Find the vector of possible pivot elements by updat ing the pivot row using

the usual formula: c r = (e~'Bi.~.,)d~_, = rr~d~_,, ej is the unit vector to be replaced,
B ~ , is the current inverse basis, and J~_., is the Jacobian for period 1 to t. The

BTRAN routine described in the next section is used.

A. Drud / Large-scale GRG code 167

B t

Bt_t

At C t

D t = E~t ' E2t , E3t . E4t . w h e r e

El ! z

Bt_t

I

E2t

A t I

E3 t z

C~

E4t
D" t

a n d D" t E3-~ . E2-t ~ - E - t �9 D

Fig. 4. The factorization of a basis matrix into 4 simpler matrices. B, j is a square matrix that covers
all periods before t, A, and C, correspond to the rows in period t, and D, represent the columns that

originate before period t and have their pivot in period t. The empty rectangles contain only zeros.

2.2. F i n d a g o o d p ivo t e l e m e n t in c. T h e p ivo t e l e m e n t is c h o s e n to be g rea t e r

t han a f r ac t i on o f m a x (q) . First p r io r i ty is g iven to c o l u m n s f r o m p e r i o d s that a re

a l r e ady l i n k e d to p e r i o d t wi th i n t e r - p e r i o d p ivots . If no such c o l u m n exists we

c h o o s e a c o l u m n f rom as late a p e r i o d as poss ib le , so as to m a k e the i n t e r - p e r i o d

a l p h a - v e c t o r as shor t as poss ib le . T h e d i s t a n c e f r o m b o u n d s is u s e d as a s e c o n d a r y

c r i te r ion .

168 A. Drud / Large-scale G R G code

I 2.3. Update the selected pivot column at using r = B~,a~ and store it as an
inter-period alpha-vector with pivot in row j. The alpha-vector is considered part

of -~ B,~, during the next pass of 2.1 to 2.3. The result of step 2 is the selection and

inversion o f E4,.
The set of basis candidates is managed as in the st/ttic routine. The degree of

f reedom in the selection of basic variables is used in step 1 to give the in-period

blocks as many columns as possible, thereby decreasing the number of inter-period

pivots. The f reedom is also used in step 2.2 to make the inter-period alpha-vectors

short: this saves storage and weakens the harmful effects of E4, in the Newton step.

The dynamic reinversion routine is .just as simple as the static one. In-period

blocks are reinverted using the static reinversion routine, and the numerical values
o f the inter-period alpha-vectors are simply recomputed using step 2.3 above. No

structural work is needed and the only tests are those that test the size of the pivot

elements.
A special mixture of the reinversion and the basis selection and inversion routine

is used after a basic variable hits a bound and leaves the basis. Let the time period

o f the variable that leaves the basis be connected with all time periods from t~ to

t2 through inter-period pivots. We first perform a reinversion for period 1 to t~ - 1.
Between period t~ and t2 we perform a basis selection and inversion. The basis
selection can choose variables before t, as pivots, thereby increasing the size of the

inter-period block, and it can break the block into smaller blocks. It cannot affect
periods after t> however, so a reinversion is sufficient for period t : + 1 to T.

7. The reduced gradient

The computa t ion of dual variables or Lagrange multiplier esJimates follows a

s tandard LP B T R A N procedure. -['he dual variables are subsequently used in a
pricing procedure where C O N O P T prices all columns, nonbasic as well as basic.

The nonbasic reduced costs define the reduced gradient. The basic reduced costs
should be zero and can therefore be used to test for the numerical stability of the

basis. I f they are large compared to intermediate results and nonbasic reduced costs,

the pivot tolerances RTPIVA and RTPIVR are tightened for future inversions, and
an extra B T R A N is applied to the basic reduced costs to improve the dual variables

and reduced costs in an iterative refinement fashion. The pivot tolerances are relaxed
if the basic reduced costs are repeatedly small.

In the dynamic setting we must, of course, use the time staged inverse basis, i.e.

the in-period E3, factors, the inter-period E4, factors, and the lagged E2, factors.
In the implementat ion we have integrated the ordinary B T R A N operat ion with the

pricing operat ion or computa t ion of the updated objective row. The effect is that

all lagged Jacobian elements are accessed in one pass instead o f requiring one pass
of the basic elements for the E> multiplication and one pass o f the nonbasic elements
for the pricing. It is therefore not necessary in this routine to be able to access the

A. Drud / Large-scale GRG code 169

lagged Jacobian by column; as mentioned in Section 5, this fact is reflected in our

simple data structure.
The first stop test in C O N O P T is based on the norm of the reduced gradient. The

solution is considered optimal if all components are less than R T R E D G or less
than RTRGER times the largest intermediate result in BTRAN. The default of both
is eM~ where eM is the relative machine precision. The test is only applied if the
solution is accurate, however, i.e. if the tolerance on the objective as defined in
Section 9. I is minimal. I f the reduced gradient is small but the solution is inaccurate,
we perform a line search, and the accuracy will automatically be tightened as
described in Section 9.4. The reduced gradient will be tested again at the more

accurate point in the next iteration.

8. The superbasis and the search direction

The management of the superbasis, or the subspace optimization strategy, is fairly
standard. At the first feasible point, all nonbasic variables away from their bounds
are chosen as superbasic, and a variable will only leave the superbasis if it hits a
bound or if it becomes basic, usually because it replaces a basic variable that hits
a bound. During the iterations, nonbasic variables are allowed to enter the superbasis
before the beginning of each line search, provided that their reduced gradient is

sufficiently large. The mathematics are set out below.
For a given set of superbasic variables, the search direction for the superbasics

can be computed using a conjugate-gradient, a quasi-Newton (variable metric), or
a Newton method. Newton methods can be excluded immediately because the
Hessian of the reduced objective function is too expensive to compute. Quasi-Newton
methods generally give fewer iterations than conjugate-gradient methods, but their
core requirements and updating time grows quadratically with the size of the
superbasis compared to a linear growth for conjugate gradients. Some large-scale
systems have therefore included both methods, and they switch from quasi-Newton
to conjugate gradient when the number of superbasics exceeds a user-defined limit

(see E23]).
In C O N O P T we have decided that the extra overhead in a quasi-Newton method

is always worthwhile. We have assumed that a problem with many superbasics will
also have many constraints, so the costs of computing a reduced gradient and
performing a line search will always be large compared to the cost of a quasi-Newton
update. We have also assumed that C O N O P T is not used on problems with more
than 150 superbasics, so the extra core for the Hessian estimate does not become
excessive compared to the core used for the code and for other problem-dependent

arrays.
The quasi-Newton update used in C O N O P T is the BFGS or the complementary

DFP update, and the implementation is similar to that of MINOS [23]. Actually,
the routines R1ADD, R1SUB, RIPROD, and DELCOL from MINOS are used

170 A. Drud / Large-scale GRG code

with only minor changes, through the courtesy of M. Saunders. Only the changes
to the MINOS implementation will be described. The reader is referred to [23] for

a comprehensive description.

The basis selection algorithm has been designed to find as sparse a basis as

possible. We have to pay a price for this extra sparsity: the set of basic variables
can change by more than one variable even if only one variable hits a bound. If

this happens, it becomes too difficult to update the Hessian estimate and we
reinitialize it as the unit matrix.

If exactly one variable is replaced in the basis, we test whether the Hessian

estimate contains any second order information, i.e. whether it has been changed

from the initial unit matrix. If this is not the case, we simply keep the unit matrix.

If second order information is available, we update the Hessian estimate in the old

basic/superbasic space, project it into the new space, and delete the variable that
hit a bound and caused the basis change. The projection and variable deletion are

done as in MINOS. The update is slightly more complicated because of the non-

linearities. The new reduced gradient needed in the update of the Hessian is only

computed in the new basic/superbasic space using the new Jacobian. A projection

back to the old space but with the new value of the Jacobian is therefore necessary.
Fortunately, the projection of the reduced gradient and the projection of the Hessian

estimate can be represented by the same updated row of the Jacobian, so there are
essentially no extra costs.

When a nonbasic variable is made superbasic following the test below, the Hessian

is augmented with one row and one column. The off-diagonal elements are set to
zero, and the new diagonal element is set to RMEAN, the geometric mean of the

other diagonal elements. This value is chosen instead of the usual 1 to get an

augmentation that is asymptotically invariant to scalings of the objective function.

At the beginning of each line search we compute the reduced gradient, g,, the
search direction for the old superbasics, &, and the slope along this direction,

SLOPE = d~V&. The nonbasic variable with the largest reduced gradient component
pointing away from its current bound is then identified. If the reduced gradient,

g, passes the test

g~axLKSAME: RTINSB/RMEAN > abs(SLOPE)

it is added to the superbasis, & and SLOPE are updated, and the search for a
nonbasic variable to enter the superbasis is repeated. RTINSB is a tolerance with
default value 4 and LKSAME is the number of consecutive times this nonbasic

variable has been a candidate for the superbasis.

The subspace optimization strategy used in CONOPT lets variables enter and

leave the superbasis in each iteration, and it can in theory cause cycling between
subspaces, unlike more accurate subspace optimizations that can prevent cycling.

However, CONOPT is designed for problems that may pass through hundreds of
intermediate subspaces, so we cannot afford to do a strict optimization on each.

The weak subspace strategy is therefore still used, despite its disadvantages. Fortu-

nately, a recent paper by Dembo and Sahi [10], seems to indicate that weak subspace

A. Drud / Large-scale GRG code 171

minimization can be protected against cycling. These results will be considered for

inclusion in CONOPT in the near future.

The second stop test in CONOPT is based on SLOPE. SLOPE is twice the

predicted change in objective based on the quasi-Newton formula. If this number
is smaller than the minimal tolerance on the objective, we consider the solution

optimal. As with the reduced gradient test, this test is only applied if the current
solution is accurate.

9. The one-dimensional search

Once the search direction for the superbasic variables has been computed, we
perform a one-dimensional search along this direction. In one of the early GRG

papers, [2], Abadie suggested that the search be performed along the tangent to the
constraint surface, and that feasibility be restored only from the final step. However,

most later implementations attempt to return to the constraint surface at each step

(see e.g. [20]). This approach makes it easier to handle models with linear objective

functions and models that are so nonlinear that it is difficult to restore feasibility
for large step lengths. CONOPT follows this approach and restores feasibility at
each step.

During the one-dimensional search, the bounds on superbasic variables are in

danger of being violated; during the iterations that restore feasibility, the bounds

on basic variables can be violated. Several implementations, e.g+ [2] and [20], allow

the bounds to be temporarily violated, and bounds are only guaranteed to be satisfied

in the final point of the line search. This means that the constraint functions may
be called outside their domain of definition, however, and it becomes the user's
responsibility to handle exceptions. This is contrary to the philosophy in CONOPT,

that FCOMP never should be called with values that are outside the lower or upper

bounds. Once a user has specified a set of bounds, he/she should never have to
worry about them again.

As a consequence of the decision always to remain within bounds, the one-

dimensional search in CONOPT is slightly different from one-dimensional searches
in other GRG codes. In the following subsections we will describe the three main
components of our one-dimensional search:

- the Newton algorithm that restores feasibility for given values of the superbasic
variables and given estimates for the basic variables,

- the algorithm that computes initial estimates for the basic variables and manages
the bounds on superbasic and basic variables, and

- the algorithm components that suggest step lengths and manage stop criteria.

9.1. The N e w t o n algori thm - Stat ic version

For each step in the one-dimensional search we solve the subproblem

f(xb, x,,) = b (5)

172 A. Drud / Large-scale GRG code

with respect to x~, for fixed x,,. Since (5) must be solved many times, the solution

o f (5) is the most expensive component of many G R G codes, and great care must

be taken with it. It is important not to solve (5) more accurately than necessary and
not to spend too much time trying to solve it if it is in fact not solvable.

To determine an appropria te degree of accuracy, it is helpful to see how the

output is used. The output consists of the value of the objective function and the

values of the basic variables. At all intermediate points we only use the objective

funct ion value to determine a new step length, and we only use the values of the

basic variables to determine new initial values for the next Newton call. We cannot

expect that doing one extra iteration now and making the basics more accurate will
save us more than one iteration in the next Newton call, so our main stop criterion
should be based on the error, dr, in the objective function, df is the change that

would occur in the objective function if the residuals were all reduced to zero, and

it can be approximated by the change in objective function that one extra Newton

iteration would give, i.e.

d r = i x , = e)r.3xh = e ~ d ; I r = u lr

where r is the current vector of residuals and u is the vector of multipliers computed
in step 4 of the G R G algorithm. Note that the df computa t ion is very cheap.

The threshold for df should be large when the objective changes are large, and

small when we approach the opt imum and the objective changes are small. We
therefore stop when abs(df) is less than RTOBJ = m a x (R T D F M N , edf 10 2), where

-r- o.s R T D F M N =(1 abs(f~bi))eM is an absolute lower bound , and edf is an estimate

of the change in objective during the current line search, based on the slope of the
objective at step length zero and a moving average of earlier objective changes.
Apart from the R T D F M N term, the test is invariant to scalings of both the objective

function and the constraints, and it performs a gradual t ightening of the tolerances

that allow inaccurate and cheap Newton solutions far from the final point, and
guarantees accurate Newton solutions close to the opt imum. We usually see 0, 1 or

2 Newton iterations before convergence, both in the initial phase where we make

large steps and large residuals are compared with loose tolerances, and in the final
phase where we make small steps and where small residuals are compared with

tight tolerances.
The tests that stop the iterations if they are not likely to converge are based on

the following principles. There is an overall iteration limit (default 10). Hitting this

limit is expensive, however, so after each iteration we compute both the rate of
decrease o f the residuals and the number of iterations needed before convergence

at the computed rate. If the expected number of remaining iterations is less than
haft the total number of remaining iterations, we cont inue: otherwise we stop without

a solution. The purpose of the one-half value is to make the test gradually weaker,
so that we do not stop without a solution after having invested several iterations,
unless the rate of convergence deteriorates substantially. Experience shows that if

the algori thm is not aborted by this test after the first iteration, it will almost always

converge.

A. Drud / Large-scale G R G code 173

We can now describe the Newton algorithm used in C O N O P T :

0. Set niter = 0.
I. Set n i t e r= n i te r+ 1. If n i t e r> L F N W I T , return (failure). (Default L F N W I T =

10.)
2. Compute r r = b - f (x ~ , x,,). If n i t e r> i only compute residuals of the nonl inear

equations and set the linear residuals to zero.
3. Set ar=l l r]] l , d f = r V . u , a d f = a b s (d f) , and compute p = (L K N W 1 T -

ni ters+ 1)/2.
4. I f ar<~ R T N E W , go to 6. (Default R T N E W = 0.001*n.)
5. If n i t e r> 1 and ar (a r /a ro ld) ~" > R T N E W then return (failure), else go to 8.

6. I f a d f ~ < RTOBJ, go to 12.

7. If n i t e r> 1 and adf (adf /adfo ld)P > RTOBJ, return (failure).

8. Set arold = max(ar, R T N E W) and adfold = max(adf , RTOBJ).
9. Solve JhAx~ = r with respect to Axe, using the same inverse basis as in the

reduced gradient computat ion.

10. Set x~ := xb + Axe.
I1. I f a bound with value bnd is violated by more than (l + a b s (b n d)) R T B N D 1 ,

return (failure). I f a bound is violated by less, set the basic variable to the bound

value. Go to 1. (Default RTBND1 = 10 ~.)

12. Set objective := XJ + df and return (success).

Steps 2, 9 and 10 are s tandard G R G - N e w t o n procedures, where the changes in

basic variables are computed as the constraint residuals multiplied by the inverse

basis from step length zero. Note that the residuals in all linear equations will be

zero after the first iteration. Only nonl inear residuals are therefore computed in

later iterations. Most of the other steps are included to handle bounds and to improve
efficiency.

If the 1-norm of the residuals is large (default limit 0.001 n), we test that it

converges fast (steps 4 and 5). I f the residuals are small, we assume that the

approximat ion of df is sufficiently accurate and we test that df converges fast (steps
6 and 7).

Step 11 is included to guarantee that the variables passed on to F C O M P always
satisfy the bounds. If the point suggested by the Newton step is far outside one of
the bounds , we expect that no solution exists within the bounds and we return to
the step-length procedure in which a new and smaller step is chosen.

The Newton algorithm returns a status code, which defines whether Newton was
successful or not. The code also distinguishes between the case where the initial

point was already feasible and the case where it was not, and between failure due

to slow convergence and failure due to violated bounds. Note, however, that too
large a value of R T B N D I can transform a bound violation into a slow convergence
and that a large bound violation may occur even when a solution exists. The status

code must therefore be interpreted with caution by the line search routine. Experi-
ments are currently underway to change R T B N D I dynamically, but a final choice

has not yet been made.

174 A. Drud / Large-scale GRG code

9.2. The Newton algorithm - Dynamic version

When there are no inter-period pivots, we have a block-triangular system of
equations and can therefore use the static Newton routine T times, once with each

of the T in-period inverse bases. This fits well with the time orientation of the user's

FCOMP subroutine.

When inter-period pivots link more time periods together, the equations from all

time periods linked in one block must be solved as one simultaneous set of equations.

To utilize the time structure of the inverse and of FCOMP, CONOPT breaks the

iterations into an outer loop that runs over the periods in the block, from tbegin
to tend, and an inner loop that iterates within one time period. The main components

of the procedure are as follows:

1. For t'=- tbegin to tend, execute the following in-period substeps:

I.I. Compute r, the vector of residuals in period t.
1.2. If the residuals are small, go to next t. If the residuals are not converging,

return (failure). The actual tests are the ones described in Section 9.1 above.

1.3. Compute Jxh assuming that all periods before t are feasible:

Axb = Bl.'~,{Or} = E4,' E~,' E~,' E~,' { Or} = E~,~E3,'{O} = E 4,' { BO,r}

i.e. first apply the in-period inverse to the residuals and then apply the inter-period

alpha-vectors with pivot in period t. Note that 3xb can contain nonzeros between

period tbegin and t.

1.4. Set x~, := xl, + Axe.
1.5. If a bound is more violated than RTBND1, return (failure). If a bound is

violated by less than RTBNDI ,move the variable back to the bound. Go to 1.1.

2. If no changes were made to lagged values in step 1.4 in any period i.e. if no

inter-period alpha-vectors were used, then return (success).
3. If the lagged changes are diverging, return (failure), otherwise go to step 1.

The routine makes one period feasible before it considers the next. During

iterations in later periods it assumes (but does not check) that the earlier periods

remain feasible. This is not an unreasonable assumption since the only changes in
variables in earlier periods are those derived from the inter-period alpha-vectors,

so new infeasibilities will be second order terms. The advantage of the assumption
is that the routine only requires residuals for one period at a time, which is the way

FCOMP produces them, and that the lagged Jacobian in the factor E2,, is not needed
e

directly. The linear part of the lagged Jacobian is, of course, used indirectly to

compute the residual. After one pass of all time periods we must check that the
residuals in earlier periods have remained small and, if necessary, make another
round of adjustments. It is our experience that one round of adjustments is usually

enough. The second round is only needed to test the final residuals.

A. Drud / Large.scale GRG code 175

9.3. Bounds on basic and superbasic variables and initial values for Newton ' s algorithm

The superbasic variables move along the search direction ds in a straight line.
This makes it easy to determine once and for all the step length at which the first
superbasic hits a bound. This step length, 0~ is an absolute upper bound on the
step length.

The basic variables move along a curve that is implicitly defined through the
Newton algorithm. The upper bound on the step length from bounds on basic
variables, b 0 is therefore only defined implicitly through failures of the Newton
algorithm due to bound violations for steps greater than 0~l~x. To avoid frequent
Newton failures due to bound violations, 0~ax is estimated on the basis of extrapola-
tions of the values of the basic variables. The extrapolations (and similar interpola-
tions) are, of course, also used as initial values for the Newton algorithm to speed
it up.

For the first step, C O N O P T uses a linear extrapolation for the basics based on
the base point and the tangent, d~, in the base point computed from

dh = -J; ' (J~d~) .

In the static case, the computat ion relies on a standard FTRAN routine as in LP.
In the dynamic case, we have, as in BTRAN, integrated the computations of the
lagged parts ofJ~ �9 d~ with the multiplication using the E2, factor; all lagged Jacobian
elements are thus again accessed in one pass, independent of the split of variables
in basic and nonbasic.

After a feasible point is found with some positive step length, we fit a quadratic
model, first through the base point, the new point, and the tangent, and later through
three points. C O N O P T keeps three m-vectors for this purpose. The space for two
of the intermediate vectors is re-used as scratch storage by the inversion routine as
mentioned in Section 6.

During the interpolation or extrapolation processes, one of the old vectors is
always overwritten by the initial values for the new point. If Newton fails, we are
therefore left with only two feasible points or with the base point and the base
tangent, and the next interpolation or extrapolation must use an inferior linear
model. Because of this loss of a point each time Newton fails, we approach a bound
in a rather conservative way: before testing whether a basic variable will hit a bound,
we multiply the distance to the bound, a b s (b n d - x), by a 'safety factor'. Currently
CONOPT uses max(0.8, 1 - a b s (b n d - x) / (l +abs(bnd))) . When the basic variable
is far from its bound, the extrapolation will be uncertain and the safety factor is
small. As the basic variable moves closer to its bound, the extrapolation will be
shorter and the safety factor will be closer to 1. If the previous Newton call accepted
the extrapolated point as immediately feasible, we set the safety factor to 1, and
the next extrapolation will therefore produce a point with the critical basic variable
exactly at its bound.

The safety procedure gives few Newton failures, but it may require 4 or 5 step
length increases before the basic variable ends at its bound if it started far away.

176 A. Drud / Lard;e-scale GRG code

For tuna te ly , the last small increases in step length are cheap, since the ex t r apo la t ed

values for the bas ic var iables are good ; the number of Newton i tera t ions is therefore

small .

Dur ing the ex t rapo la t ions , extra p recau t ions must be taken with a degenera te

basis. I f a bas ic var iable remains very close to a b o u n d th roughou t the line search,

it can create false u p p e r b o u n d s on the step length. We have e l imina ted this p rob lem

by d i s rega rd ing basic var iables whose ex t r apo la t ion intersects the b o u n d at a very

flat angle from the b o u n d tests. The tests are s imilar in spiri t to the C H U Z R - t e s t s

in the D E V E X LP-code [16].

9.4. Step-length determination, stop criteria, and exception handling

A one -d imens iona l search p rocedure for a G R G code is more compl i ca t ed than

a one -d imens iona l search p rocedure for an uncons t r a ined op t imiza t ion code,

because the former must handle some p rob lems that do not occur in an uncons t ra ined

model . It is l ikely that funct ion values are not ava i lab le for large steps because

Newton ' s a lgor i thm fails, and we can find that the error in the funct ion values

caused by inaccura te Newton solut ions is c o m p a r a b l e to the changes in funct ion

value for smal l steps. After a short t rea tment of the general s top cri teria, we descr ibe

in some detai l how C O N O P T handles these two p rob lem areas.

The init ial s tep length is c o m p u t e d as the expec ted change in objec t ive funct ion

d iv ided by the s lope at s tep zero. If this step length is close to 1 - the op t imal

Newton step, it is changed to I. After at least one funct ion value has been found,

a new step length is c o m p u t e d based on a quadra t i c model , subject to the cons t ra in t

that the s tep length cannot increase by more than a fac tor A L P H A . The defaul t

value o f A L P H A is ini t ial ly 4, but it may decrease as men t ioned below. Bounds on

var iab les are i nco rpo ra t ed as descr ibed in the previous subsect ion. The search is

s t opped i f the expec ted improvemen t in objec t ive funct ion from the quadra t i c model

is less than R T O N E D (defaul t 0.2) times the improvemen t so far. In cases where

the step is def ined by a b o u n d on a var iable , however , we do not s top unless the

var iable is within (1 + abs (bnd)) RTBN D1 of the bound , i n d e p e n d e n t of the expec ted

improvemen t in objec t ive funct ion.

Newton fai lures can occur at several poin ts in a one -d imens iona l search. If Newton

fails before a first i m p r o v e d object ive funct ion value has been found, we make the

step smaller . If the fai lure was caused by a bound , we mul t ip ly the s tep by a fac tor

0.9; and if the convergence was slow, we mul t ip ly it by a factor I / A L P H A . Newton

can also fail in an in te rpo la t ion step after an improved poin t has been found,

a l though this is unl ikely. In this case we s top the search, reinvert , and compute a

new search direct ion.

The last case of a Newton fai lure is a l te r an ex t r apo la t ion step where an improved

po in t has a l r eady been found. If the fai lure was due to a bound , we assume that

the step exceeded but was close to 0,h~;,~; we cut the step increase by a factor 0.9,

and call Newton again wi thout any improvemen t tests. I f the fai lure was due to

A. Drud / Large-scale GRG code 177

slow convergence, we replace the step by the geometric mean of the previous step
and the largest feasible step, replace the step-length multiplier ALPHA by its square

root (for the duration of this line search only), and again apply the improvement

criterion mentioned above before the next Newton call. If ALPHA has already been

decreased twice, we define the one-dimensional search as badly behaved and stop.

Many GRG codes stop the one-dimensional search after the first Newton failure in

an extrapolation (see e.g. [20]), but we have found that the smaller value of the step

length multiplier ALPHA, combined with the extrapolation of basic variables, will
often let us increase the step length considerably beyond the point where Newton

first failed. And although the step-length multiplier is smaller, it is applied to a

larger step, so the objective improvement can be considerable.

Inaccurate objective function values can cause problems for small step lengths.
New step lengths are computed from differences in objective function values and

the computed step lengths are therefore useless when the differences in objective

functions are comparable in magnitude to the errors in these objective functions.
We therefore keep track of dr, the error estimate computed in the Newton algorithm,

for each feasible point. Before a one-dimensional search is started, we test whether

the error estimate for the base point is less than the error tolerance for the coming
one-dimensional search. If it is not, we call Newton at the base point before starting

the one-dimensional search. This precaution should minimize the problem of badly

behaved one-dimensional searches. During the search, we impose a lower bound

on the step corresponding to the step where the expected decrease in objective is
equal to the error tolerance. A smaller step is only allowed if a variable previously

hits a bound. Whenever an interpolation suggests a smaller step, the one-dimensional

search is stopped and the following recovery sequence is initiated:
A: The expected change in objective (edf) and the Newton tolerances on residuals

(RTNEW) and objective (RTOBJ) are divided by 10, and Newton is called to make

the base point more accurate before the one-dimensional search is called again with

the old direction vectors and old inverse basis.
B: The improved base point is usually enough to get the optimization back on

track, but if the next one-dimensional search also fails, we recompute the Jacobian,

reinvert in the new base point, compute new direction vectors, and call the one-

dimensional search again.
C: If this still is not enough, we switch to the steepest descent direction.

D: Increase the superbasis if there are any nonbasic candidates, and

E: Invert with search for a new basis with larger pivot tolerances.
F: A to E are repeated until a line search gives an improvement or until all

tolerance are minimal, in which case CONOPT declares that it cannot solve the

model. We should insert a routine here that tests whether the noise level in FCOMP

is very high, or first and/or second derivatives are unreasonable. The best format

for such tests is not yet clear, however.
While tightening the tolerances in A above, we may find that Newton's algorithm

fails because a degenerate basic variable exceeds a bound. We cannot simply rely

178 A. Drud / Large-scale GRG code

on the one -d imens iona l search a lgor i thm to cut the s tep length as the o rd ina ry

Newton a lgor i thm does , so C O N O P T conta ins a more e labora te Newton rout ine

with Newton steps less than one and basis changes for this purpose . It is based on

the phase - I a lgor i thm in the next section.

10. A phase-1 algorithm

Most papers on G R G codes descr ibe their phase-1 a lgor i thm very superf ic ia l ly

if at all, but our general impress ion is that most codes minimize a sum of abso lu te

or squared residuals , using the s t andard G R G procedure and s tar t ing from an

al l - logical basis. This a p p r o a c h is easy to imp lemen t and it is as re l iable as the

under ly ing G R G code. Unfor tuna te ly , however , this phase-1 will need at least k

line searches, where k is the number of s t ructura l var iables in the first feas ible basis,

i n d e p e n d e n t of the initial values of the s t ructura l var iables .

By compar i son , Newton ' s a lgor i thm can find a feas ible poin t very quickly if good

initial values are p rov ided and a good basis is chosen. Based on these observa t ions ,

we have imp lemen ted the fol lowing a lgor i thm:

0. Choose an initial poin t x.

1. C o m p u t e the Jacob ian , J, and select and invert a basis. The usual cr i ter ia of

bas ic var iables away from bounds and good cond i t ion ing appl ies . Define the basis

as new.

2. C o m p u t e the Newton di rec t ion for the bas ic var iables , Axb = - - , l h J (f (x) - - b) .

3. F ind the step length c~ at which the Newton di rec t ion hits a bound .

4. I f c~ < l go to 5. 0 t h e r w i s e take a full N e w t o n s tep, x~, = Xb + AX~, X+,, x, , . I f

the poin t is feasible, I f (x +) - b l ~ ~ R T N E W , re turn (success). If the res iduals did

not decrease fast, go to 8. Otherwise set x : = x *, define the basis as old, and go to

2 where the old inverse basis is used again.

5. Take a s tep length of o~ in the Newton d i rec t ion , x{ = xb + c~Jx~,, x, +, = x,,. I f the

res iduals d id not decrease fast, go to 8, o therwise set x := x ~ . A crit ical bas ic var iable ,

j , is now at a bound .

6. C o m p u t e the Jacob ian , reinvert the o ld basis in the new point , and compute

a new Newton step. I f the previous cri t ical var iab le is no longer cri t ical , go to 3,

o therwise pe r fo rm a basis change where j leaves the basis. The incoming bas ic

var iable is se lec ted as fol lows: C o m p u t e the u p d a t e d row in which var iable j has

its pivot, i.e. the row of potent ia l pivot e lements c T= (e T J ~ l) J = ~rTJ where e is a

unit vec tor that picks out the p rope r row. Choose a co lumn p to enter the basis. It

must satisfy:

a. abs(cp) > RTPIVA i.e. an absolt , te pivot to lerance ,

b. , -4xp=AxJcp>~O if xp is at its lower b o u n d and Axp<~O i f x p is at its upper

bound . I f there is more than one p -cand ida t e , choose one that maximizes the s tep

% for the incoming var iable , namely oLp = (bndp - xp) / z lxp if max o~p < 1. If max ap 1>

1, maximize the pivot e lement abs(cp) among co lumns with c~p/> 1. I f a p is found,

replace co lumn j by p in the basis, define the basis as new and go to 2.

A. Drud / Large-scale GRG code 179

7. If no p is found in 6, we dec la re the so lu t ion infeas ib le and return (fai lure) .

The weighted sum of infeasibi l i t ies a b s (~ ' v (f (x) - b)) has the value abs(/_lxj)> 0,

and it is at a local m i n i m u m or at a s ta t ionary point .

8. Convergence was slow. I f the basis was old, go to 1. If the basis was new, the

slow convergence can only be due to second o rde r terms. Decrease a until a

sufficiently fast decrease in res iduals is found or until a < am~, (defaul t 10-7). Set

x~, := xh+ aAx~,. If a is smal l (defaul t l imit is 0.01) for two consecut ive i terat ions,

we make a heur is t ic basis change where the bas ic var iable with m a x i m u m abs(Ax~)

leaves the bas is ; a l te rnat ive ly , we reinvert the same basis. In e i ther case, we then

define the basis as new, and go to 2.

The a lgor i thm tries to make Newton steps, and it can only be s topped by two

things: a b o u n d on a bas ic var iable or slow convergence due to large second o rde r

terms. A b o u n d on a bas ic var iable leads to a basis change in step 6. The incoming

var iable is chosen so that it will not hit a b o u n d immedia t e ly and, if poss ible , so

that it has a good step b o u n d and a good pivot e lement . This should improve the

next i terat ions. An an t i -degeneracy measure could be a d d e d to prevent cycl ing if

a = 0 repea ted ly , but it has not yet been necessary. An incoming basic var iable can

always be found unless a certain weighted sum of infeasibi l i t ies (see s tep 7) is at a

local m i n i m u m or at a s ta t ionary point. In the l inear or convex case this would

prove infeasibi l i ty , even if the sum of infeasibi l i t ies is not min imum, so we use it

as an ind ica t ion that no feasible so lu t ion exists.

Slow convergence due to large second o rde r terms, hand led in s tep 8, is a more

ser ious p rob lem. C O N O P T current ly conta ins a heuris t ic that tries to get a round

the p rob lem by choos ing a new basis. The bas ic var iable that changes most, i.e. the

var iable that is l ikely to cause the largest second order terms, is r emoved from the
basis and the cr i ter ion in s tep 6 is used to choose the enter ing var iable . A bet ter

a p p r o a c h would be to incorpora te a s teepes t -descent step, as in Powel l ' s hybr id

a lgor i thm [28], or to switch to a s t anda rd phase - I a lgor i thm. These add i t ions have

high pr ior i ty and will be imp lemen ted soon.

The phase - I a lgor i thm descr ibed above will usual ly find a feasible so lu t ion after

very few i tera t ions when good initial values are avai lable . A few basis changes may

be needed. If only some var iables have been in i t ia l ized with good values and the
r ema inde r have been in i t ia l ized by defaul t at a bound , more i tera t ions are needed.

The first bases will have many basic var iables at the b o u n d and it is l ikely that c~

will be zero. Af ter some i tera t ions with small or zero steps, however , the Newton

di rec t ion will usual ly be d i rec ted into the feas ible space and the i terates will move

very quickly to a solut ion.

Some mode l s do fail with this phase- I a lgor i thm - no tab ly ones con ta in ing terms

that are very non l inea r close to the bounds , such as log(x) , x/> 10 7. We have of ten

solved these mode l s in pract ice by changing the bounds to exclude the worst

nonl inear i t ies , but an au toma t i c solut ion must also of course be implemented .

In d y n a m i c p rob lems , C O N O P T searches for a feasible so lu t ion one pe r iod at a

time. In the first pe r iod it uses the static p rocedu re descr ibed above. In later pe r iods

C O N O P T tests two init ial points. The first is one supp l i ed by the user or defined

180 A. Drud / Large-scale GRG code

by default, and the second is an extrapolation from earlier periods. The point with

the smallest sum of residuals is used to start the static phase-I procedure. During

basis changes, we try to choose the incoming basic variable from the current period,

so that other periods will remain unchanged and we can continue to work oil the

current period only. Sometimes, however, there is no incoming variable with a good

pivot element in the current period. In this case, CONOPT tries to introduce a

variable from an earlier period in the basis, and in the next iterations it continues
to solve the larger block of periods with the static phase I procedure. If a feasible

solution cannot be found in one period, there is no point in continuing to later

periods, so CONOPT declares the problem infeasible and stops.
We have found that this approach is very fast for problems with constant or

gradually changing bounds. The extrapolation from earlier periods usually generates

a reasonably good initial point with many variables between bounds, and the static

phase-I procedure finds a feasible solution after only a few iterations, often without
any basis changes. When new bounds become active in a period, however, e.g., when
terminal conditions are imposed in the last period, extra work is needed to obtain

feasibility.

The algorithm can be thought of as based on the homotopy

h (x , O) : f (x) - (bO + f (x , . ,) (l - 0)) = 0

where xo is the initial (or current) point, and 0 is the homotopy parameter. The
algorithm approximates a path for x as a function of 0 from x(0) = xo to a solution

x(l). Since we are not interested in the path itself, we restart the path each time a

better point has been found. [14] contains a general discussion of this type of

path-following algorithm.

11. Compulational experiments

CONOPT has been used extensively for several years in the World Bank's research

work. During the first 6 months of 1983 it was called more than 2000 times, mainly

in connection with research and development work on economic models. Models

change frequently because of the research environment; many of them have data

errors or inconsistencies, others are infeasible, and still others are badly scaled. A
general-purpose system should be judged by its ability to work efficiently in all these

different cases. CONOPT has not yet reached this point; model builders typically
learn to adjust to CONOPT and models developed at the late stages of a project

consequently benefit from this learning process and solve much more successfully

than early ones.
This section will describe our computational experiments with a few models. The

models presented here are mainly late-stage, well established models whose authors

have been through the learning process. Some of the models are only solved for a
single time horizon or a few different ones - the situation usually found in practice.

A. Drud / Large-scale GRG code l SI

On the other hand some models for which data are available are solved for several
different time horizons to show how solution times and core requirements depend

on size. The models have been chosen to demonstrate how different characteristics
of a model influence performance.

All experiments were performed on a CDC Cyber 176 using the FTN compiler
with O P T = 2. This computer has an address space of 131 000 words of 60 bits. The
code, including the user's FCOMP subroutine, uses approximately 51 000 words,
leaving 80 000 words available for working storage. In the version used for most of
the experiments reported here C ONOP T packs 4 integers or 32 logicals into one
word. The latest version does not use this packing: it is a little faster and the code
is 3000 words smaller, but it uses more working storage. The times reported are
total execution time including reading input, hashing variable and constraint names,
setting up core allocation, and printing the MPS-type output file, but excluding time
to compile FCOMP and load the system. The total compile and load time is from
1.0 to 1.2 CP-second, relatively independent of the size of FCOMP.

I I.l. The O P E C model

This is a model that describes optimal pricing and extraction of a limited resource
for the OPEC cartel. It is described in [27]. The model has 5 equality constraints
and 6 structural variables per period, plus a nonbinding constraint and an associated
slack variable that together represent the objective function component for the
period. More detailed characteristics of this and the following models are shown
in Table 1. The solution characteristics for 8 different time horizons are shown in
Table 2.

11.2. The Manne model

This is the model described in the M I N O S / A U G M E N T E D paper [25]. It has an
inequality that only applies to the terminal period. This is implemented in CONOPT
as an inequality with a time dependent right-hand side; the right-hand side is very
large in all but the last time period.

The model has been tested in 8 versions (see Table 3) with varying amounts of
bounds and with the constraints as equalities or inequalities. The results are shown
in Table 4. The first conclusion is that the equality constrained versions, I to 4, are
much faster than the corresponding inequalitity constrained versions, 5 to 8. Phase
I is slower with the equalities, but the number of line searches is smaller once a
feasible solution is found. The reason is probably the reduced dimension of the
search space. However, the first feasible point generated by phase 1 seems to be a
more important but rather uncontrollable factor. The fast versions, 2 and 4, both

have 98 superbasics and an objective v a l u e o f 8.99 in the first feasible point. In each
of these versions, one superbasic val-iable hits a bound and is removed from the
superbasis in each of the first 86 line searches, The last 19 line searches required
for version 2 and the last 17 required for version 4 increase the superbasis again

182 A. Drud / Large-scale GRG code

t . - "

E
, i . ,

t ,

G

~z~__ ,-,~-.~- ~ o ~ 7 ~ ,.-, , . -o~,~

A. Drud / Large-scale GRG code I83

E

0

"d

. . . . ~

r ~

~D

184 A. Drud / Large-scale GRG code

Table 3

Characteristics of the 8 versions of the Manne model

Version Equality/ Upper bound Lower bound
Inequality oll I on C

1 eq no 0.95
2 eq yes 0.95,
3 eq no 0.01
4 eq yes 0.01
5 ineq no 0,95
6 ineq yes 0.95
7 ineq no 0.01
8 ineq yes 0.01

and establish optimality. Both slow versions, 1 and 3, start f rom a vertex with a
much smaller objective value of -0.97. The search is more irregular; variables,

especially basic variables, keep hitting bounds that are not binding in the optimal

solution. C O N O P T must consequently spend extra time performing basis changes
and search mode inversions, and in building up second order information that is
lost during changes in the superbasis.

As ment ioned earlier, C O N O P T has been designed for problems where most of
the line searches have their opt ima at interior points, i.e. where the step lengths are

determined from nonlinearities and not from bound values. This assumption is

clearly not satisfied for this model, which is why the comput ing times reported here

(adjusted for differences in machine speed) are 5 to 10 times those reported for

M I N O S / A U G M E N T E D . Nevertheless, the model seems to be useful for testing
different subspace minimizat ion strategies since the bounds are so important.

11.3. The world coffee model

The coffee model is an econometr ic model of world coffee demand and product ion.

It has been used by T. Cauchois to evaluate the viability of different cartels in the
coffee market [6].

Some results obtained with the model are given in Table 5. The model is rather
badly scaled, producing problems with the optimality tolerances for models with
more than 2000 constraints.

i i .4 . Chemical process model

This model , contr ibuted by J. Bisschop, describes a chemical reaction. The
objective is to minimize the total process time, subject to bounds on the final

concentrat ions and the final volume. The control variables are material inflows and
heat exchanges. The process is modeled with 19 time steps, so as to meet C O N O P T ' s

requirement of a fixed number of time per iods: the length of each time step is made
a variable in the model. The length of the time step in each period (except the first)

is made equal to the lagged time step, so that they all become equal.

A. Drud / Large-scale G R G crate 185

E

's

c o

o o

u~

F-~

~ r ~ r ~ ~,

r ~

L~

L.,

I86 A. Drud / Large-scale G R G code

G

3

2

~ . ~ , q "~ ,C.. c'! r'2.

e,-, r.~

p~

A. Drud / Large-scale GRG code 187

The overall model has 456 constraints and 513 variables. It begins from an almost

feasible point and requires 21 phase-I iterations to become feasible. After I0 line

searches, problems arise with a degenerate point, the tolerances are tightened, and
a new phase 1 with 22 iterations is performed. It takes 90 more line searches to

become optimal. 25 of the 100 line searches are stopped by a bound on a variable,

but there are basis changes in 31 iterations. The last 6 basis changes are caused by

small pivot elements, which are in turn caused by poor scaling. The superbasis

changes from 36 variables in the first feasible point to 16 in the optimal solution,

and the overall optimization requires 85.8 CP-sec and 8704 words of working storage.

I1.5. The Indonesia model

This model is currently under development by A. Gelb, see [15]. It describes in

detail production, investment, capital accumulation, income generation, savings and

consumption, and imports and exports in a 6 sector model. The model has 18

nonbasics per period but is run in many different versions, usually with many fixed

variables leaving only I or 2 superbasics per period. The number of periods is

usually 10, so the size of the overall model is 1140 constraints, 1320 variables, and
10 to 20 superbasics.

Each time a new version of the model is developed, all nonbasics are fixed and

a new base trajectory is computed. An accurate solution is usually found in 15 to

30 phase-1 iterations and 3 to 5 CP seconds. This trajectory is then used for several

optimization runs. A sample of I I optimizations required between l0 and 60 line
searches, with an average of 28. A variable hit a bound in 30% of all line searches.

The solution times were between 9.5 and 63 CP seconds, with an average of 32" the
final number of superbasic variables were between 1 and I l, with an average of 4.6.

11.6. A static-dynamic comparison

The previous models have been large because they had many time periods. The

model with the largest number of constraints per period, the Indonesia model, had

only 114 constraints per period. To test the capabilities of CONOPT on large static

models we solved the OPEC model from Section 11.1 as if it had been a static
model. In the first experiments we started both the static and the dynamic model

from the same infeasible point. The first feasible points turned out to be quite
different and the characteristics of the solution path seemed to be rather sensitive

to these first feasible points, exactly as we saw in Section 11.2. The following 3-step

procedure was therefore used to create results that were comparable:
1. CONOPT was first applied to the dynamic model to find a feasible solution.

This solution was written to a file in CONOPT input format using the WRITE-verb.
The USER-verb was then called. The USER subroutine contained a matrix generator

that created the MODEL file for the static model including an INIT1AL bound set
with the feasible solution.

188 A. Drud / Large-scale GRG code

2. CONOPT was called to solve the dynamic model starting from the feasible

solution generated in the first step.
3. CONOPT was finally called to solve the static model from the same feasible

solution.
Table 6 shows the results from the last two calls of CONOPT. The latest version

of CONOPT (without packing) was used, so the working storage numbers are larger

than in Table 1. It was not possible to run the static version of the 200 period model

due to core storage limitations. The static 175 period model was also close to the
limit; only 6000 words were left. The results seem to indicate that there can be

considerable gains from exploiting the dynamic structure of large models. They also

show, however, that the gains are insignificant for 'small' models, i.e. models with
less than 100-200 constraints.

12. Conclusions

It has been known for some time that sparse matrix techniques used in LP with

minor modifications could be used to build large-scale GRG codes. This paper has
described one such code, CONOPT, and has indicated several areas where it has

been useful to modify LP-techniques to deal with the characteristics of a nonlinear
problem. A new phase-I algorithm for almost-feasible problems has also been

described.

The paper has mainly considered large static problems but it has also described
techniques for handling dynamic problems with many bounds. The key features

here are the inversion routine and the associated Newton routine.
Thus far, CONOPT has been successfully used to solve static models with over

1000 constraints and variables and dynamic models with over 2000 constraints and
variables; by doing so, it has proved the viability of large-scale GRG codes,

particularly on problems involving almost as many constraints as variables. There

are still many research areas to pursue, however, the most important of which seem
to be:

(1) Subspace minimization strategies or strategies for releasing variables from
their bounds :

(2) Automatic scaling. Although (4) contains rather disappointing results about
automatic scaling, we hope that dynamic problems will be easier to scale because

better and more stable scale factors can be derived by averaging over all time periods.

Other user-defined groupings may also be useful in deriving good average scale
factors ;

(3) Dynamic setting of parameters and tolerances. Many parameters should have
one value for almost linear problems and another for very nonlinear problems. The
values of these parameters should be adjusted as the optimization progresses and

more information is gained on the problem characteristics;

" o
o

t~

o

r"

.o

0

o

A. D m d / L a r g e - s c a l e G R G c o d e

~ N g N o

~ - ~ - o ~

~ - ~ - o ~

U

,4 ~ eq ~

.,.,

E

r,

0

E

- - - - m - -

.e

o

z
tc% C',l m ,.~ 0

.o ~

~ o ~ o ~ ~ o o . _ ~ . ~ ~-~"

. o

e,

E
8

o

o

o

0

o

~o

" o

~o
0 ,~

E
o

e.

189

190 A. Drud / Large-scale GRG code

(4) Comparisons with other large-scale codes such as MINOS 5.0 [26], sequential
linear programming, and sequential quadratic programming codes. We hope that
the advances of high-level modeling systems will make this task easier. So far, a
link has been built between the General Algebraic Modeling System GAMS [5] and
CONOPT. Once links to other algorithms are developed, comparisons will become
very easy, though not necessarily cheap. The ultimate goal in this area is to be able
to predict from within a modeling system which code will be best suited for a
particular problem, and to choose that code automatically.

13. Acknowledgement

I would like to thank two anonymous referees for their careful reading of earlier
versions of the paper and for their many constructive comments. I would also like
to thank Alex Meeraus for encouragement and helpful discussions during the many
years it took to develop CONOPT.

References

[l] J. Abadie, "'Optimization problems wit h coupled blocks", Economic Cybernetics Studies and Research
(1970b).

[2] J. Abadie, "'Application of the GRG algorithm to optimal control problems", in: J. Abadie, ed.,
Nonlinear and integer programming (North-Holland, Amsterdam, 1972) pp. 191-211.

[3] J. Abadie and J. Carpentier, "Generalization of the Wolfe reduced gradient method to the case of
nonlinear constraints", in: R. Fletcher, ed., Optimization (Academic Press, New York, 1969) pp.
37-47.

[4] P.O. Beck and L.S. Lasdon, "'Scaling nonlinear programs", Operations Research Letters 1 (198I) 6-9.
[5] J. Bisschop and A. Meeraus, "On the development of a general algebraic modeling system in a

strategic planning environment", Mathematical Programming Study 20 (1982) 1-29.
[6] T. Cauchois, "'The world coffee model", M.Sc. Diss., Massachusetts Institute of Technology

(Cambridge, MA, 1980).
[7] C.F. Coleman and J.J. More, "'Estimation of sparse jacobian matrices and graph coloring problems",

SIAM Journal of Numerical Analysis (1983) 187-209.
[8] A.R. Colville, "A comparative study of nonlinear programming codes", in: H.W. Kuhn, ed.,

Proceedings of the Princeton Symposium on Mathematical Programming (Princeton University Press,
1970).

[9] A.R. Curtis, M.J.D. Powell and J.K. Reid, "On the estimation of sparse jacobian matrices", Journal
o]" the Institute t)/ Mathematics and its Applications 13 (1974) 117-119.

[10] R.S. Dembo and S. Sahi, "'A globally convergent framework for linearly constrained nonlinear
optimization", Working Paper B69, Yale School of Organization and Management, Yale University
(New Haven, CT, 1983).

[11] A. Drud, "'Optimization in large partly nonlinear systems", in: J. Cea, ed., Optimization techniques.
Modeling and optimization in the service Of Man, Part 2, Lecture notes in computer science, Vol. 41
ISpringer-Verlag, Berlin, Heidelberg, New York, 1976) 312-329.

[12] A Drud and A. Meeraus, "CONOPT A system for large-scale dynamic optimization - User's
guide", Technical note 16, Development Research Center, World Bank (Washington, DC, 1980).

[13] R. Fourer, "'Solving staircase linear programs by the simplex method, Part 1 : Inversion", Mathemati-
cal Programming 23 (1983) 274 313.

A. Drud / Large-scale GRG code 191

[14] C.B. Garcia and W.I. Zangwill, Pathways to solutions,)qxed points, and equilibria (Prentice-Hall,
NJ, 1983).

[15] A. Gelb, "'Oil rent and development strategies: A model for Indonesia +', Development Research
Department, World Bank (Washington, DC, 1983].

[16] P.M.]. Harris, "'Pivot selection methods of the devex LP code", Mathematical Programming 5
i1973) 1-28.

[17] E. Hellerman and D. Rarick, "+Reinversion with the preassigned pivot procedure", Mathematical
Programming I (1971) 195-216.

[18] E. Hellerman and D. Rarick, "The partitioned preassigned pivot procedure", in; D.J. Rose and
R.A. Willoughby, eds., Sparse matrices and their applications (Plenum Press, New York, 1972) pp.
67-76.

[19] J.E. Kalan, "Aspects of large-scale in-core linear programming", in: Proceedings oJ'ACM conference,
Chicago, 1971, pp. 304-313.

[20] L.S. Lasdon, A.D. Waren, A. Jain and M+ Ratner, "'Design and testing of a generalized reduced
gradient code for nonlinear programming", ACM Transactions on Mathematical Software 4 11978)
34-50.

[2i] L.S. Lasdon and N.H. Kim, "+SLP User's Guide "+, Department of General Business, School of
Business Administration, University of Texas (Austin, Texas, 1983).

[22] J.B. Mantell and L.S. Lasdon, "A GRG algorithm for econometric control problems", Annals of
Economic and Social Measurement 6 (1978) 581-597.

[23] B.A. Murtagh and M+A. Saunders, "Large-scale linearly constrained optimization", Mathematical
Programming 14 ('1978) 41-72.

[24] B.A. Murtagh and M.A. Saunders, "MINOS/AUGMENTED user's manual", Report SOL 80-14
(1980/, Department of Operations Research, Stanford University, Stanford, CA.

[25] B.A. Murtagh and M.A. Saunders, "'A projected lagrangian algorithm and its implementation for
sparse nonlinear constraints", Mathematical Programming Study 16 (1982) 84-117.

[26] B.A. Murtagh and M.A. Saunders, "'MINOS 5.0 User's Guide", Report SOL 83-20 ([983t. Depart-
ment of Operations Research, Stanford University, Stanford, CA.

[27] R.S. Pindyck, "'Gains to producers from the cartelization of exhaustible resources", Review of
Economics and Statistics 60 (1978) 238-251.

[28] M.J.D. Powell, "+A hybrid method for nonlinear equations", and "A FORTRAN subroutine for
solving systems of nonlinear algebraic equations", in: P. Rabinowitz, ed., Numerical methods for
nonlinear algebraic equations (Gordon and Breach, London, 1970).

[29] K. Schittkowski, Nonlinear programming codes, Lecture Note in Economics and Mathematical
Systems, vol. 183 (Springer-Verlag, Berlin, Heidelberg, New York, 1980).

[30] "'APEX II1 Reference Manual Version 1.2 'L, CDC Manual 76070000.
[3I] "'Mathematical Programming System-Extended (MPSX), and Generalized Upper Bounding

(GUB)", IBM manual SH20-0968-1.

