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Disjunctive Programs can often be transcribed as reverse convex constrained problems with 
nondilterentiable constraints and unbounded feasible regions. We consider this general class of 
nonconvex programs, called Reverse Convex Programs I RCPt, and show that under quite general 
conditions, the closure of the convex hull of the feasible region is polyhedral. This development 
is then pursued from a more constructive standpoint, in that, for certain special reverse convex 
sets, we specify a finite linear disjunction whose closed convex hull coincides with that of the 
special reverse convex set. When interpreted in the context of convexity/intersection cuts, this 
provides the capability of generating any (negative edge extensionl facet cut. Although this 
characterization is more clarifying than computationally oriented, our development shows that if 
certain bounds are available, then convexity/intersection cuts can be strengthened relatively 
inexpensively. 

Key words: Disjunctive programming, convexity/intersection cuts, facet inequalities, reverse 
convex programs. 

1. Introduction 

T h e  p a p e r  c o n s i d e r s  m a t h e m a t i c a l  p r o g r a m s  in t he  p r e s e n c e  o f  r eve r s e  c o n v e x  

c o n s t r a i n t s .  By a r eve r s e  c o n v e x  c o n s t r a i n t ,  we m e a n  a c o n s t r a i n t  g(x)<~ O, w h e r e  

g ( . )  is a real  v a l u e d  c o n c a v e  f u n c t i o n .  T h e  ea r l i e s t  w o r k  o n  p r o b l e m s  w i t h  s u c h  

c o n s t r a i n t s  m a y  be  t r a c e d  to R o s e n  (1966) ,  Avr ie l  a n d  W i l l i a m s  (1970) ,  D e m b o  

(1972)  a n d  Avr ie l  (1973) .  M o s t  o f  th i s  w o r k  was  m o t i v a t e d  b y  c o m p l e m e n t a r y  

g e o m e t r i c  p r o g r a m s .  S p e c i a l i z e d  r eve r s e  c o n v e x  p r o g r a m s  h a v e  b e e n  i n v e s t i g a t e d  

by  B a n s a l  a n d  J a c o b s e n  (1975a ,  b)  a n d  by  H i l l e s t a d  (1975) .  T h e  m o t i v a t i o n  for  

t h e s e  p a p e r s  were  e c o n o m i c  m o d e l s  w i th  b u d g e t  c o n s t r a i n t s  in  t he  p r e s e n c e  o f  

e c o n o m i e s  o f  scale .  P e r h a p s  the  m o s t  s i g n f i c a n t  c o n t r i b u t i o n s  fo r  th i s  c lass  o f  

p r o b l e m s  a p p e a r  in H i l l e s t a d  a n d  J a c o b s e n  (1980a ,  b) ,  w h e r e i n  a c h a r a c t e r i z a t i o n  

o f  o p t i m a l  s o l u t i o n s  a n d  g l o b a l  a l g o r i t h m s  for  s ing le  a n d  m u l t i p l e  r e v e r s e  c o n v e x  

c o n s t r a i n e d  p r o g r a m s  are  p r o v i d e d .  A s s u m i n g  d i f f e r e n t i a b i l i t y  o f  c o n s t r a i n t s  a n d  
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compactness of the feasible region, Hillestad and Jacobsen (1980a) show that 
the convex hull of the feasible region is polyhedral. 

The class of problems we will consider may be written as follows: 

where 

RCP Min {cx: x ~ S} 
x 

S = { x ~  R": g~(x)<~O, i~ I = { 1 , . . . , p , p + l  . . . .  , p+m}} ,  (1.1) 

and where g i :R  n--,R are concave functions for i c I, and in particular, for i=  

p +  1 , . . . , p + m ,  g i ( ' )  are affine functions. We will also assume that the linear 

constraints include nonnegativity restrictions on the x-variables. When convenient, 

we will also denote 

P = { x :  g~(x)<~O, i = p + l  . . . .  , p +  m}=- {x: Ax<~b}. (1.2) 

The above form of stating problem RCP with additional linear constraints is quite 
convenient for a discussion of cutting plane algorithms. Thus Ax  <~ b may often be 

interpreted as containing previously generated cuts. 
This paper first exhibits some connections between disjunctive programs (DP), 

and reverse convex programs (RCP). This connection turns out to be fruitful for 

both DP and RCP. As for DP, deep cuts can be obtained as a result of viewing 

them as RCP. On the other hand, several results from DP, especially on convergence 

of cutting plane methods and derivation of valid inequalities, can be generalized 

for RCP. 
Crucial to the exploitation of the above connection, is a study of nonditterentiable 

RCP. To appreciate this, note that DP's can be transcribed as RCP's, mainly through 

the use of nonditterentiable reverse convex constraints. Indeed, a wide class of DP's 

called Facial Disjunctive Programs can be represented as RCP's by using only one 

reverse convex constraint. We term problems with one reverse convex constraint 
( p =  1) as Barely RCP (BRCP). Section 2 of the paper motivates the study of 
nonditterentiable RCP's by illustrating some applications in DP. These connections 

also serve to illustrate that known instances of nonconvergence in DP can also be 

utilized for RCP, thus answering some convergence issues raised by Hillestad and 

Jacobsen (1980a) 
The task of generalizing previously known results to the nondifferentiable case 

is undertaken in Section 3. Under the assumption that gi are differentiable (actually 
pseudoconcave), and S is compact, Hillestad and Jacobsen (1980a) have established 
that the convex hull of S is polyhedral. We show that this result is easily extended 

to the case of interest, namely problems with nondiIterentiable concave functions 

and an unbounded feasible region. We also generalize certain algebraic concepts 
introduced by Hillestad and Jacobsen (1980a). In particular, we introduce an 

appropriate concept of a quasi Basic Feasible Solution (QBFS) under nondilIerentia- 

bility, which is algebraically characterized through any system of supports (of S) 
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whose vectors form a matrix of rank 77. Some results related to the properties of 

QBFS are also proven. 

The orientation of the paper in Sections 2 and 3 is to study nondifferentiable 

RCP, with the understanding that these results are also applicable to DP. In Section 

4, our outlook is reversed. In this section we show how results from DP may impinge 

upon RCP. We provide a useful and very clarifying construction that can provide 

the closure of the feasible region of a particular elementary reverse convex set 
through a f ini te disjunction. Thus our study also provides new constructions for 
RCP, that are based on DP. Finally, Section 5 integrates both points of view by 

examining an application to a general linear complementarity (GLC) problem. A 

GLC problem, which is basically a DP, is reformulated as an RCP. Consequently, 

the developments of Section 4 are applicable. The main advantage of this representa- 

tion is that it permits us to derive cuts that simultaneously consider multiple 

disjunctions. This is in contrast to the conventional algorithmic use of Balas" 
Disjunctive Cut Principle (Balas (1975)), wherein cut derivation utilizes only one 

violated disjunction at a time (Ramarao and Shetty (1984)). Hence, we are able to 

derive cuts that are stronger than any of the conventional cuts. 

2. The unifying role 

The earlierst connection between a subclass of disjunctive programs and problem 

RCP was established by Raghavachari (1969), who observed that a zero-one integer 

requirement could be replaced by the constraints 

0~<xj~< 1, g ( x ) = Z X j ( 1 - x i ) < ~ O .  (2.1) 
J 

Consequently, valid inequalities that may be generated for BRCP via (2.1) may 
be used within the framework of implicit enumeration algorithms for zero-one linear 
integer programs. Moreover, the structural properties for BRCP therefore also apply 

for this class of problems, and we may also conclude that the class of problems 

BRCP is at least as difficult as a zero-one linear integer program. The following 

proposition identifies a large class of disjunctive programs that may be formulated 

as problem BRCP. 

Proposition 2.1. Let S = P c~ X,  where P is a convex polyhedron and 

where Q~ are f inite index sets, and i = 1, 2 , . . . ,  m. Assume  that P c_ {x: o~hx ~>/71,}, .for 

all h e Q~, and all i. ( A D P  with this property is called a Facial Disjunctive Program 

( F D P ) . )  Define 

g i ( x ) = M i n { c ~ h x - ~  '} and g ( x ) = ~ g ~ ( x ) .  
h ~ Q, i 

Then S = P ~ {x: g ( x )  ~ 0}. Hence every F D P  is a BRCP.  [] 



172 S. Sen, H.D. Sherali / Di.~junctit:e arid reverse convex programs 

We have illustrated above that while problem BRCP appears to be somewhat 

unpretentious, it is quite a general nonconvex progam and is consequently at least 

as difficult as some of its special cases. 

Zero-one linear integer programs and generalized linear complementarity prob- 

lems are important facial disjunctive programs. Thus to model complementarity 

restictions xsv s = 0, xj > 0, v, >- 0, j c Q, one may utilize v Min{xs, yj} ~< 0. Disjunc- 
�9 . ~ L . j ~  O �9 

tire programs that do not possess the facial property required in Proposition 2.1 
may of course be formulated by requiring each g~(x )  <~ O, where g~ is as defined in 
the proposition. However for FDP, we recommend the use of Proposition 2.1 in 

deriving cuts. This is because such a formulation allows one to derive cuts using 

all disjunctions in the problem. This is in contrast to conventional disjunctive 

methods for FDP (see for example Ramaro and Sherry (1984)) where each cut is 

derived by using one violated disjunction. Hence cuts from the BRCP formulation 

may be expected to be deeper than those obtained by using conventional methods 
using one disjunction. We illustrate this point in Section 5, by an application to 

linear complementarity problems�9 

The above connections also imply certain negative results. For example, Hillestad 

and Jacobsen (1980a) propose the solution of RCP by a cutting plane algorithm 

utilizing convexity cuts�9 They pose the question whether such an algorithm converges 

for problem BRCP. The examples of Sen and Sherali (1985a), which are discussed 
in the context of DP, indicate that in the absence of additional hypotheses, the 
answer to this question is no. Sen and Sherali (1985a) also provide a convergence 

theorem for DP, which indicates the kind of sufficient conditions that are required 
to ensure convergence. We note finally that since such diverse nonconvex problems 

as integer programs, signomial geometric programs etc. can be studied under the 

umbrella of RCP, this class of problems plays an important unifying role�9 

3. Characterizations of feasible regions and optimal solutions under 
nondifferentiability 

The properties of the feasible region developed here are applicable to problems 

in which gi(" ) are simply concave and hence the nondifferentiable functions describ- 

ing feasible sets of certain important disjunctive and related nonconvex programs 

are admissible. We also permit unbounded feasible regions�9 Hence, the results of 
this section are a generalization of those of Hillestad and Jacobsen (1980a). To 
account for nondifferentiability our developments utilize some elementary construc- 

tions from convex analysis (Rockafellar (1970), Stoer and Witzgall (1970)). 

We begin by giving the following lemma which characterizes the essential 

difference between convex and reverse convex constraints. 
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Lemma 3.1. Le t  g ( x )  <~ 0 denote  a reverse convex  constraint  with g(  �9 ) concave .Le t  x ~, 

x 2 sat is fy  g ( x  ~ ) = g ( x  2) = O. Then ever3, alf ine combinat ion  x(A ) = x l +  (1 - A )x  2, with 

ei ther A >1 1 or A <~ O, also satisf ies g (x (A) )  <~ 0. 

Proof.  If  A i> 1, then x I = [ x ( h ) + ( h  - 1)x2] /h ,  so that  

g ( x  ~) >~ [g(x(A )) + (A - 1)g (x2 ) ] /A .  

Now uti l iz ing the fact that  g ( x  ~) = g ( x  2) = O, we have g (x (A ) )  <~ O. The case for A ~< 0 

fol lows in an ana logous  manner .  [ ]  

Remark  3,1. The d is junct ive  nature  of  reverse convex const ra ints  is qui te  readi ly  

appa ren t  from the cond i t ion  that h i> 1 or  h ~< 0. It is this observa t ion  that  leads us 

to cons ide r  extens ions  o f  d is junct ive  p r o g r a m m i n g  as a m e t h o d o l o g y  for these 

problems.  

In our  deve lopment ,  we will uti l ize the fol lowing 

Definit ion 3.1 (Hi l les tad  and Jacobsen  (1980a)).  Let X ___ R". . '~e  X is said to be a 

quasi  ver tex  o f X  if.~ canno t  be writ ten as a convex combina t ion  o f  two o ther  poin ts  

in X. Fur ther ,  Y c X  is said to be a quasi  local ver tex  o f  X if  there is an open  ball  

B(:L e), e > 0 ,  such that  ~ is a quasi  vertex of  B(g ,  e ) ~ X .  

While  the defini t ion o f  a quasi  vertex given above  coincides  with the defini t ion 

o f  an ex t reme poin t  or  a vertex in the case of  a convex set, the two are d i s t inguished  

in that  a vertex is a po in t  that  cannot  be writ ten as a convex combina t i on  of  any 

number  of  poin ts  in X (Hi l les tad  and Jacobsen  (1980a)). 

The next result is a genera l iza t ion  of  Hi l les tad  and Jacobsen  (1980a). Hi l les tad  

and  Jacobsen  (1980b) p rov ide  a s imi lar  result  for BRCP, where g is quas i -concave .  

Also to in t roduce  some nota t ion ,  cons ider  S given by (1.1) and  for g r  let 

l ( . f )  = { i r  I :  g~(g)=0}.  

Theorem 3.1. Let  S ~ R "  be given as in (1.1). Then c lconv(S)  is po lyhedra l  

Proof. Arguments  s imi lar  to that in Hi l les tad  and Jacobsen  (1980a) can be used to 

show that the number  o f  quasi-ver t ices  o f  S are b o u n d e d  above  by 2 .... ~. Now to 

account  for unboundednes s ,  define S ( M ) = S c ~ { x : ~ I ' =  ~ x~<~M}.  Since S is im- 
b e d d e d  in the nonnega t ive  or thant ,  note that for all M > 0, S ( M )  is compact ,  and  

the number  o f  vertices of  c l c o n v [ S ( M ) ]  ~ 2 p ....... ~. Consequen t ly ,  since the ext reme 

points  o f  c l c o n v [ S ( M ) ]  remain  b o u n d e d  by a . fixed integer as M ~ c c . ,  c lconv[S]  

must  have a finite number  o f  ext reme direct ions .  Hence,  c lconv(S)  is po lyhedra l ,  

and the p r o o f  is comple te .  []  

Unfor tuna te ly ,  a compu ta t i ona l l y  convenien t  charac te r iza t ion  of  the vertices of  

S is not readi ly  avai lable .  However ,  such a charac te r iza t ion  is indeed  ava i lab le  for 
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a superset  of  such points,  namely,  for the set of  quasi local vertices. Toward  this 
end, for any )~ ~ S and i ~ / ,  let 

J2~()7) = {_~c R~: ~ is a subgradient  o f  g , ( . )  at .~}. 

Fur thermore ,  for .g e S, define a family of  (m + p ) x  n matr ices as follows: 

'~q(2) -a {G: G is a matrix of  size ( m + p ) x  n, i.e. there is one row for 
every constraint  in (1.2); such that for  each i =  1 , . . . ,  re+p,  

G,, the ith row of G, is some ~e  S2~(ff) if i~ I(,~), and 0 
otherwise.} 

Def in i t ion  3.2. Let S c R ~. x ~ S is said to be a Quasi Basic Feasible Solution (QBFS) 
if G c  ~3( .~ )~ rank(G)  = n. 

The equivalence between QBFS and quasi local vertices is stated below. The p roof  
is fashioned along the basic lines of  the p roof  in Hillestad and  Jacobsen  (1980a), 
a l though the considerat ion of  nondifferentiabil i ty requires a somewhat  different 
approach .  

Theorem 3.2. Let S c_ R ~. ~ c S is a Q B F S  iff  Y is a quasi local vertex o f  S. 

Proof.  Al though our  definition of  a QBFS is different f rom that  in Hillestad and 
Jacobsen (1980a), the p roo f  that ~ is quasi local vertex implies that .~ is a QBFS 
follows essentially the same arguments.  We therefore omit  this part  of  the proof.  
Hence  consider  the converse and let ff be a QBFS of  S. I f  ~ is not a quasi local 
vertex of  S, then there exists a positive real sequence {ek}--'0 and associated 
sequences {x~} and {x~} in S n  B(~, ek) and {Ak} in (0, 1) such that 

s  for all k. 

Over  some appropr ia te  subsequence,  if necessary,  let 

x~-~ ~im x~-.~ 
Y=~im I1~-~11 .... IIx~--~ll 

Consider  any i ~ I ( s  Since g~(. ) is concave,  Y2i(~) is a convex,  compac t  set, and 

gi(~) = 0, we obtain that  (over appropr ia te  subsequences  if necessary) 

inf  ~ Y -  inf  l i m ( X ~ - r  inf  
( x ~ - ~ ) ~  

1 
= lira g~(xk)  -- g , (~ )  --IIxL --'~llla funct ion approach ing  zero as x~ ~ .~} 

= lira g~(x~) 
k .... IIx/, -~11" 
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Hence, since g~(x~k)<~ 0 for all k, the directional derivative of g i ( ' )  at ff in the 

direction 37, which is inf{~37/llPll: .~n,(~)}=~:IUII3711, say, must be nonpositive. 
Similarly, the directional derivation of g~(. ) at .~ in the direction -37 is nonpositive, 

i.e., there exists a ~:~cg2~(ff) such that -~c~.s Consequently, since J2~(ff) is 

convex, there exists a G~ c .O_i(ff) such that G~37 = 0. Now using such vectors G~ for 

all ic  l(ff), and using 0-vectors for i~ I(.~) in order to construct a G =  G c  ~(~), 

we obtain that rank (~ < n since there exists a 37 r 0 such that G37 = 0. This contradicts 
that .g is a QBFS and the proof is complete. [] 

It is interesting to note that in the nondifferentiable case, an algebraic characteriza- 

tion of quasi local vertices may be obtained by using any system of supports 

G c ~(.~). For problem BRCP, the quasi local vertices satisfy a very special property. 

We state this interesting property as a Corollary to the next theorem. 

Theorem 3.3. Let S c_ R", let the matrix A in (1.2) be m x n, m > n, and let II1 = p + m. 

Then every quasi local vertex o f  S belongs to a d-dimensional face  o f  P = {x: A x  <~ b}, 
where d = Min{p, n}. 

Proof. Let .~cS be a quasi local vertex. Hence from Theorem 3.2, G~ ~ ( f f ) ~  

rank(G)  =n. If d =n,  there is nothing to prove. If d = p < n ,  then the rank of the 

last m rows of G cannot be less than n - d ,  for otherwise, r a n k ( G ) < n .  Hence .'~ 
must belong to a d-dimensional face of P. [] 

Corollary 3.1. For problem BRCP, ever), quasi local vertex o f  S belongs to an edge o f  

the polyhedral set P = {x: A x  <~ b}. 

Proof. Apply Theorem 3.3 with p = 1. [] 

Remark 3.2. Hillestad (1975) proved a special case of Corollary 3.1, and Hillestad 

and Jacobsen (1980b) generalized this to Corollary 3.1. The algorithms developed 

in these papers search the edges of the set P in an attempt to solve problem BRCP. 

We believe that a more fruitful approach to solving BRCP is by combining Corollary 

3.1 with branch and bound (B&B) methodology. In particular, B&B methods based 

on a facial decomposition of P (Sen and Sherali (1985b)) should be quite effective. 
In the case of the general problem RCP however, B&B principles based on facial 
decomposition are somewhat more difficult to apply. The reason is as follows. For 

problem BRCP, when the face corresponding to a particular node (on the B&B 

tree) is an edge, quasi local vertices (at most two) on the edge are easily enumerated. 

Hence a simple fathoming procedure becomes available. However, when quasi local 
vertices belong to d/> 2 dimensional faces (Theorem 3.3), these are no longer easily 

enumerated. Hence fathoming rules are not as straightforward. A more effective 
branching principle for the general RCP problem is based on cone splitting (Sen 
and Whiteson (1985)). 
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4. Valid inequalities and facetial convexity cuts 

In this section we depart from the work of Hillestad and Jacobsen (1980a) and 

address the derivation of valid inequalities for problem RCP and, more importantly, 

provide a finite disjunctive characterization which is capable of generating all 

associated facets cuts. As far as a rudimentary strategy for solving RCP is concerned, 

one may solve the following relaxation LP,, at iteration u, 

LP,.: Min{cx:xeP"={A"x<~b"}}, (4.1) 

where pl_= p = {x: Ax <~ b} and P"~' = P"m~{a"x~> a~;}, u/> 1. Here a " x ~  a~' is a 

valid cutting plane that is derived if the solution x" to LP,. does not belong to 5:. 

Note that by treating x" as the origin, one may derive cutting planes that are valid 

inequalities for the set 

T ~={x: g(x)<~O,x>~O}, (4.2) 

where g(.  ) is some reverse convex constraint indexed by I, rewritten with respect 

to x" as the origin, such that g (0 )>  0. Clearly one may attempt to derive stronger 

inequalities by deriving cuts that are valid for more complicated sets, for example, 
by utilizing all violated constraints. However, such inequalities will be considerably 

more difficult to derive. By using a single violated inequality, one can derive the 

usual convexity cut (see Glover (1973)) by using the following convex set C in the 

fundamental convexity cut lemma. 

C = {x: g(x) >~ 0}. (4.3) 

Of course, as in Hillestad and Jacobsen (1980a), the convergence of such an algorithm 

would be a principal issue. However, as noted earlier, Sen and Sherali (1985a) have 

recently provided illustrations of nonconvergence, unless some additional properties 

are satisfied by the procedure. 
Below, we define a finite disjunction, which stems from the use of the set C in 

(4.3) in the spirit of convexity cuts, and which is capable of yielding all related 
facet inequalities. The existence of such a disjunction follows from the fact that 

clconv(T) has been shown to be polyhedral via Theorem 3.1. However, in order to 

be able to derive the facet cuts, one needs a more constructive approach which 

actually specifies such a finite disjunction. Besides primarily being a theoretical 

contribution, the immediate advantages of this approach over the conventional use 

of convexity/intersection cuts is that not only do we have access to cuts with negative 
cut coefficients, but more importantly, the methodology allows a variety of  deep 

cuts to be derived. The former attribute may be regarded as an extension of the 

polyhedral negative edge extension cut of Glover (1974), and the more recent 
contribution of Sherali and Shetty (1980b). For a discussion of why such capabilities 

are important, see Sen and Sherali (1986). A relatively inexpensive cut strengthening 

scheme for convexity cuts is also validated by our development. 
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Let us first note that since we assume that the current linear p rogramming  solution, 

which may be considered as the origin in the t ransformed nonbasic variable space, 

satisfies g(0) > 0, we may represent every support  of  C in this space by an inequality 

7rx~ < 7to, such that ~o>  0. Hence there is no loss of  generality in assuming that C 

can be written as the intersection o f  (perhaps uncountably  infinite) inequalities of  

the form 7rx ~ 1 in the nonbasic  variable space. For convenience,  we will assume 

that the index set J of  nonbasic  variables is simply { 1 , . . . ,  n}, so that the nonbasic 
variables are being designated as x ~ , . . . ,  x,,, and all functions and sets are trans- 

formed into this nonbasic  variable space. Now, for each j c J, determine 

/3J= Sup{x/: ( 0 , . . . , X i , . . . , 0 )  c C} (4.4) 

in the usual manner  as with convexity cuts, where the xj appears in the j th  position 

in (0 . . . . .  x i . . . . .  0) above. Define 

J~ = { . j c J :  j3i<oo}, J + = J - J + ,  (4.5) 

and note that the usual convexity cut is 

2 xJ/3,/> 1. (4.6) 
j ~ ./  " 

Hence, if J+ = (3, the problem is infeasible; therefore, assume J+ r 0. For each j c J ', 
let 

c~Jx ~< 1 (4.7) 

be a support ing hyperplane for C at (0 . . . . .  /3i . . . .  ,0) ,  derived via any subgradient 

o f  g ( . )  at (0 . . . . .  /3j . . . .  ,0).  Next, for the pairs j E  ]+  and k c  J+ compute  (using 

the nonbasic  variable space representation of  C)  

f l ik=lnf{(--yj /yk):Sup(y.x)=l ,  y k ~ O , y ~ R  "} f o r j c ] + , k c J  +. 
.x~ C 
x~O 

(4.8) 

In connect ion with (4.8), first of  all observe that the problem is feasible since 

Y---- crk is a candidate solution in (4.8). Second, note that since any feasible solution 

y must satisfy 7x ~< I for all x c C, x >~ 0, we must have yj <~ 0 or else some point on 

the ray ( 0 , . . . ,  x~ , . . . ,  0), x i/> 0 will violate 7 x ~  < 1, contradict ing that j ~ ] + .  Con- 
sequently, ~jk is bounded  from below by zero. Hence, if there exists a support ing 

hyperplane for C c~{x c R":x>lO} with 7k > 0 and 7j =0 ,  then this is optimal in 
(4.8). Now define 

Q = {(j, k): j ~ .J*, k ~ d + and an op t imum solution exists in (4.8)} 

and let 

yJkx~<l for all (j, k) c Q (4.10) 

denote the supports  of  C c~ {x c R":  x/> 0} which are determined as optimal solutions 
in (4.8). 
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The following theorem is the key to deriving facet inequalities for the polyhedral 

set clconv(T). 

Theorem 4.1. Let T be defined by (4.2) and assume that x =-- (xj, j c J = { 1 . . . . .  n }) 
represents the nonbasic variables. Consider the disjunctive set D given by 

D = {x ~ R": x >! O, and at least one o f  the following hold: 

aix>~ 1, j ~ J +  (4.11) 

yikx>~ 1, (j, k ) e  Q}, (4.12) 

where (4.1 1) and (4.12) are respectively (4.7) and (4.10) with the inequalities reversed. 

Then clconv(T) = clconv(D). 

Proof. First observe that clconv(D) c_ clconv(T). To see this, note that every x that 
satisfies any single constraint in (4.11) or (4.12) belongs to T. Hence De_ T, so that 

clconv(D) _~ clconv(T). 
Next, let us show that clconv( T) c_ clconv( D). Note by Corollary 3.1 and the 

form of T in (4.2), that all quasi local vertices of T must lie on the edges of the 

nonnegative orthant. Since for j 6  ]*,  the entire edge is infeasible to T (the edge 
being contained in the interior of C), and for j c J+, since only the section of the 
edge (0 . . . .  , xj . . . . .  0) with a)./>/3j is feasible to T from (4.4), the quasi local vertices 

of T are of the form (0, . . . , / 3 j , . . . ,  0), j c  J+. Since c~J(0 . . . . .  /3 j , . . . ,  0 ) '=  1 from 
(4.7), the quasi local vertices of T belong to D and so, {the vertices of clconv( T)} c_ 

{quasi local vertices of T}~_ D _~ clconv(D). 
Therefore, in order to complete the proof, it is sufficient to show that the recession 

directions of clconv(T) are also recession directions of clconv(D). Toward this end, 

consider any supporting hyperplane of the type 7rx <~ 1 of C c~ {x c R": x/> 0}, and 

let T.~={x: Trx>~l,x>~O}. Let J ~ = { j :  r ( i>O}c_J + and let J+={j: ~j~O}~_J. 
Observe that clconv(T) is described by the closure convex hull of the union of sets 

of the type T~. defined over all such possible supports of C. Hence, if T~ = 0, we 
may disregard such a set, and to complete the proof, it is sufficient to show that if 

T= ~ 0, then its extreme directions are also recession directions of clconv(D). Observe 

in this case, denoting e,. as the unit vector ( 0 , . . . ,  1 , . . . ,  0) with the 1 in position 

r, that the extreme directions of T~ are given by 

d J = e j  f o r j e J  +, (4.13) 

d ik=( - - vO/~ ' k ) ek+e i  f o r j c Y ~ ,  k c J ~ , .  (4.14) 

Now, for d i, j c J~. ~_ J+, d j = e, is also an extreme direction of {x t> 0: aJx >~ 1} r 

of (4.11), and so, it is a recession direction of clconv(D). 
Next, consider the pair j  c ]+, k E J+ ~_ J+. I f j  c J+ also, then d jk can be generated 

by ek and ej which are both recession directions of clconv(D) as above. On the 

other hand, suppose that j  ~ J+. Three cases arise in this situation. Case (i): (j, k) c Q. 

In this case, consider the nonempty set {x~>0: 7ikx>~ 1} of (4.t2). Since yjk<~O, 
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y{k> 0 in (4.10), it fol lows that D jk=  (--Tjk/y~k)ek+ej is a recession direction of  

this set and hence of  c lconv(D) .  However ,  f rom (4.8), 0 ~  (--Tjk/y~k)<~ (--1rJrrk),  

and since ek is also a recession direction of  c l conv(D) ,  once again we obtain that  
d jk of  (4.14) may be genera ted using D jk and ek and is therefore a recession direction 
o f  c lconv(D) .  Case (ii): (j, k ) ~  Q, but there exists a (j, r ) e  Q such that  ~ , = 0  in 

(4.8). In this case, 7 f  = 0 in the inequali ty 7 J~x >/1 in (4.12), and since {x ~> 0: 7Jrx >t 
1} ~ f~, ej is a recession direct ion of  c lconv(D) .  Since ek is also a recession direction 
of  c lconv(D) ,  we obtain as above that  so is d jk. Case (iii): (j, k )~  Q and for any 

(j, r) e Q, Bj~ > 0 in (4.8). Let us show that  this case cannot  arise. Since (j, k) ~ Q, 
there must  exist suppor ts  7x = 1 of  C c~ {x c R n : x ~> 0} feasible in (4.8) with 7j = 0 

and fur thermore ,  for all such supports ,  we must have Yk = 0 as well. But by the 
enuncia t ion of  Case (iii), we must in addi t ion have 7,. ~ 0 for all r c J ~. For if there 
is r ~ J4 ,  such that Yr > 0, then we would have (j, r) c Q with ~i~ = 0. Not ing that 

",/j <~0 for all j e J§ it follows that  7 ~< 0, which contradicts  that  7x = 1 supports  
C c~ {x e R n: x I> 0}, and completes  the proof .  

The construct ive nature of  Theorem 4.1 provides the facility to generate  facets of  
c lconv(T)  by generat ing facets of  c lconv(D) ,  and further any facet is accessible by 
using the me thodo logy  of  Sen and Sherali (1986). Of  course the computa t iona l  
at tract iveness of  using (4.8) is quite ques t ionable  in that  it requires the solution of  

semiinfinite programs,  in general. Note,  however ,  that  (4.8) can be written as a 
convex semiinfinite p rog ram by utilizing the inequali ty Sup{Tx: x e  C , x ~ > 0 } ~ l  
instead of  the cor responding  equality used in (4.8). When an op t imum is obta ined 
for the inequali ty const ra ined semiinfinite p rogram,  one must,  however ,  rescale the 

inequali ty 7x ~< 7o in the manner  (7 /70)x  ~< 1, where 0 < 7o = Max{Tx: x c C, x/> 0} ~< 
1. Upon  rescaling, we may  utilize the form in (4.12). At any rate, it is the semiinfinite- 
ness that  poses the actual computa t iona l  difficulty, a l though for some special cases 
(e.g. when C is polyhedra l ) ,  (4.8) may be computa t iona l ly  tractable.  Alternatively,  
f rom the viewpoint  of  generat ing only a single valid deep cut, the foregoing develop-  
ment  asserts that the fol lowing modificat ion of  (4.6) is valid. 

2 ~ -  2 xJ>~l (4.15) 

where for j c J~, 

~j /- {intercept o n j t h  axis made  by any suppor t ing  hyperp lane  
�9 r x ~  1 to C for  which the set {x~>0: 7rz~ > 1}#~}.  (4.16) 

(Here,  /3j could be infinitely large, where l//3j is to be taken as zero.) To explain 
the validity of  (4.15), note f rom the appl ica t ion of  the fundmenta l  disjunctive cut 
principle (Balas (1975)) to the disjunction D defined in (4.11) and (4.12) that a 
valid cut obta ined  has coefficients 1/13j for . /~ J+, by virtue of  (4.4) and (4.7). Further,  
f o r j  c ]+,  the coefficient of  xj would be the (algebraically) largest, or with a negative 

sign, the numerical ly  smallest  of  the coefficients appear ing  in (4.11) or (4.12). Hence  
it is valid to take /3j as the numerical ly  largest of  the inverse of  these coefficients 
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(where 1/0-= co). Since taking/3j larger than this is also valid, the validity of (4.15) 
is established. The advantage of (4.15) over (4.6[) is that it is deeper since it permits 
negative cut coefficients, and its advantage over the computational use of  Theorem 
4.1 in general situations is that the bound (4.16) may be more accessible. 

5. A numerical illustration using a linear complementarity problem 

The fruitfulness of the approach of studying connections between DP and RCP 
is illustrated in this section, by an application to a general linear complementarity 
problem ( Balas { 1975) and Jeroslow (1978)). In general, complementarity conditions 
arise in numerous disjunctive programs (see Sherali and Shetty (1980a)). It is well 
known that certain other nonconvex programs like the bilinear program, Gallo and 

Ulkucu (1977), and the linear bilevel program, Bard and Falk (1982a), and the 
indefinite quadratic programming problem, Van de Panne (1974), can be transformed 
to problems with complementarity restrictions. 

Consider the following linear complementarity problem, taken from Bard and 
Falk (1982b). Find x, ,  x_., x3, x4 that satisfy 

x~ + .x~ -.,% = -1 ,  (5.1 a) 

2.xl--Xe --X4 = 1, (5.1b) 

x~ . . . . .  x , .>0 (5.1c) 

and 

X I X  3 = O, X 2 X  4 = 0 .  (5.2) 

As noted by Bard and Falk (1982b), both Lemke's  method, Lemke (1965), and the 
principal pivoting algorithm, Cottle and Dantzig (1968), fail to solve the above 
problem. Let us illustrate the development of cutting planes via the use of a reverse 
convex constraint. Let us use some linear form, say Min x, + x2 to obtain the first 
extreme point of 5.51). The resulting extreme point is Xl = I ,  x2 =0,  x3=~, x4 = 0  
and the corresponding tableau rrepresentation is 

x~ =~+~x~+�89 (5.3) 

x3 = ~ + ~x: - Ix4. (5.4) 

Since 1 x,x3 =3:g 0, we derive a cut by using the reverse convex constaint 

g(x)& Min{xl, x3}+ Min{x2, x4}<~0 

o r  

min{~ + ~x2 + �89 ~ + ~x_, - ~x4} ~- min{.,%, x4} <~ 0. 

Formulating the set C, we obtain /34- 1, and the corresponding inequality oe4x t> 1 
is given by (corresponding to the subgradient (3, _~) at the point (x2, x4)-= (0, 1)) 

--3X2 + X4 ~> 1. (5.5) 
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Next, to obtain the term /3,,4 and the corresponding inequality y24x/> 1, we solve 

the semiinfinite program 

I n f { - y 2 / y 4 :  t7 (72 ,  3'4) <~ 1, y4>~ 0}, 
T 

where h(y2,  y4) = Sup{y2x2 + y4x4: (xz, x4) >1 O, (x2, Xa) ~ C}. Recall that the solution 

to the above problem will have to be scaled to conform to the form (4.12). We note 

here that the set C may be written as 

c = {x: 0, 

1+3 ~ >~0, ~X~ - -  ~X 4 

I l - - 3  ::> ~Aff ~X t 2 x 4 ~  O, 

Of course, there are other equivalent representations. Clearly the polyhedral  nature 
of  C ensures that a cutting plane algorithm of  the type given in Gustafson and 

Kortanek (1973) is finite. In any case, the solution to the above problem yields the 
inequality 

-3x2+x4>~ 1. (5.6) 

Utilizing (5.5) and (5.6) to formulate the disjunction, and then applying the disjunc- 

tive cut principle as in Balas (1975), we obtain the cut 

--3X2-{- X4 ~ 1. (5.7) 

It is interesting to note that the above cut uniformly dominates the convexity cut 

x4 ~> l. Furthermore,  if one simply utilizes the disjunctive cut principle on the 

disjunction: xz ~<0 or x 3 ~ 0 ,  then utilizing (5.3), (5.4) and the fact that x2, x4>~0, 

we obtain the disjunctive cut -x~ + x4/> 1. Note once again that (5.7) dominates  this 

cut. Note that on including (5.7) as a cut, the only point that remains feasible is 

the point x~ = 1, x2 = 0, x3 = 0 and x4 = 1, the solution to the linear complementar i ty  
problem. (The other two alternative cuts above still admit  infeasible points, a l though 

the minimization of  x~+x2 obtains the solution to (5.1), (5.2).) 

Conclusion 

Reverse Convex Programs (RC P) form an important  class of  nonconvex programs 
which subsume such diverse problems as signomial geometric programs and disjunc- 
tive programs. The latter class o f  problems, which itself subsumes facial disjunctive 

programs such as zero-one integer programs and linear complmentar i ty  problems, 

gives rise to reverse convex constraints which are almost invariably nondifferentiable. 
Our  development  allows us to consider such disjunctive programs as special cases 

of  RCP. Through  appropr ia te  generalizations of  earlier results, we show that the 
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c l o s u r e  o f  t he  c o n v e x  hu l l  o f  t he  f e a s i b l e  r e g i o n  o f  E C P  is p o l y h e d r a l  a n d  we p r o v i d e  

a n  a l g e b r a i c  c h a r a c t e r i z a t i o n  fo r  a set  o f  s o l u t i o n s  w h i c h  c o n t a i n  t h e  set  o f  o p t i m a l  

s o l u t i o n s .  F u r t h e r ,  we s h o w  t h a t  c e r t a i n  spec i a l  r e v e r s e  c o n v e x  sets  c a n  b e  r e p r e s e n t e d  

b y  m e a n s  o f  a f ini te  l i n e a r  d i s j u n c t i v e  s t a t e m e n t .  T h i s  c h a r a c t e r i z a t i o n  p r o v i d e s  t he  

m a c h i n e r y  fo r  g e n e r a t i n g  s t r o n g ,  f ace t i a l ,  c o n v e x i t y  o r  i n t e r s e c t i o n  o r  d i s j u n c t i v e  

c u t t i n g  p l a n e s .  W e  h a v e  i l l u s t r a t e d  by  a n  e x a m p l e  t h a t  t he  cu ts  o b t a i n e d  t h r o u g h  

o u r  d e v e l o p m e n t  c a n  d o m i n a t e  t he  c o n v e n t i o n a l  d i s j u n c t i v e  a n d  c o n v e x i t y  cu t s ;  

h o w e v e r ,  t he  a c t u a l  c o m p u t a t i o n  o f  t h e s e  m a y  be  t i m e  c o n s u m i n g .  C o m p u t a t i o n a l  

m e t h o d s  fo r  p r o b l e m  R C P  are  a d d r e s s e d  in Sen  a n d  W h i t e s o n  (1985) .  
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