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On the asymptotic distribution of sums of independent
identically distributed random variables

By BencTt Ros&n

1. Introduction

Let X, (¢=1,2, ...) be independent random variables with the common distri-
bution function F(x). Let F,(x) be the d.f. of the sum §,=X,+ X, + - + X,.
We define the probabilities

a,=Prob (8,<0), n=12,....

Let I, be intervals on the w-axis. Theorem 1 is concerned with the problem

of giving upper bounds for the probabilities Prob (S, €1,) for some different types
of interval families.

In Theorem 2 we give an inversion formula for characteristic functions.
We derive the following result in Theorem 3. If EX,=0, EXZ=¢%>0, then
the series

$l@-b (L1)

is absolutely convergent. This strengthens the result, derived by F. Spitzer [2],
that (1.1) is convergent.

2. Asymptotic properties of F, (z)
Let @ (t) be the characteristic function of the d.f. F(z), i.e.

p(t)= J‘oo e d F (z).

- 00

Lemma 1. Let X be a nondegenerate r.v. with d.f. F (z) and c.f. ¢ (t). There exist
two constants § >0 and C >0 such that

lp@®)|<1-Ct for |t|<4.

Proof. (1) The Lemma is true for a variable with mean zero and finite second
moment = o%, because we then have

et)=1—%c*+0(1).
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B. ROSEN, Asymptotic distribuiion of sums of random variables
Thus lg@|<1-£(Fo*—[om)).
We now choose € and 8 such that
1ot —{o(1)|=0>0 for |¢]|<4.

This is possible because [0(1)]—>0 when >0 and ¢®>0, as X is nondegenerate.

(2) The Lemma is valid for any distribution with a finite second moment,
because the c.f. of such a distribution can be written

@By =€ p(t),

where u=FEX and () is the c.f. of a distribution with two finite moments
and mean zero. In virtue of (1) we thus get

lo®)|=]v@®)|<1—08 for |¢]|<é.

(3) The Lemma is true for any nondegenerate distribution

l(p(t)l=lfm e”‘dF(x)|<|f e”‘dF(x)l%—J\l AdF(x).
~ 00 |zi<4 z

>

We denote f dF (x)=m. According to (2)
lzi<4

<m(1—C#) for ¢|<6.

f e d F ()
lzi<a
Thus lo®)|<mQ—-C&H+1-m=1-mCt for |t|<

and m is positive if we choose A large enough.
Thus the Lemma is proved.

Theorem 1. Let X, (i=1, 2, ...) be independent random variables with the common
d.f. F(x), which is nondegenerate. Let F, (x) be the d.f. of the sum

S=X;+Xy+ -+ X,

1, is an interval on the x-axis and 1(I,) its length. C is a constant which is independ-
ent of n and I,.

@) If L) <n®, 0<p<}, then
Prob (S,€1,)<C/nt"".
() If 1) <eVn, £>0, then
Prob (8,€1,)<e(C+&(e, )
where & (e, n)—>0 when n— oo for every fixed ¢>0.
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(e) If 1(I,) < M (constant) then
Prob (8, €1,)<C/Vn.

(d) max Prob (S,=a)<C/Vn.

These results cannot be generally improved.
Proof. We use two auxiliary functions ,(f) and ¢,(x) with the properties

U | Imolae< o)<,
@ wnia= [ e
@) ¥n (2)>0.

The c.f. of F,(x) is ¢(t)". Thus

fw i?'n(x)dFu(x)=fm (B ()" dt. 2.1

As P, (£)>0, we can estimate

foo '{l)n (x)d F, (z) >f &)n (x)d F, (x) >miln 'Qi)n (%) fl dF,(z),
In TEly n

- 00

which combined with (2.1) gives

J;dF,;(x)S{min Pn (:v)}'lf_ o @)1 . (6)]de.

TE I

As |p®)|<1 and |y, (t)| <1, we get

den(xK{min %(x)}‘1 {f l¢(t)l"dt+J Iwn(t)ldt},
In zer, 1t1<o 1£]>6

where ¢ is the § in Lemma 1.
In virtue of this Lemma we have

s C
f ](p(t)["dtéf (1-0t2)"ds<J e‘c"‘dt<—f—1’
Iti<é 1t1<o |16 n

where O, is independent of n. Thus

flnan ()< {I;lelln Pn (:l;)}”1 {% + J-u x>a| v (B fdt}. 2.2)

We now choose the functions v, (f) and u,(z) conveniently.

325



B, ROSEN, Asymptotic distribution of sums of random variables
To prove (a) we choose
Pa (2) = (V270/n?) exp { — (@ — un)?/20°7}
and Ya(t)=exp (— 3 Bn®? —ipu,t),
where u, is the midpoint of I, It is easily verified that ,(x) and o, (t) are
functions with the desired properties.
As |z —p,|<}n®, for z€I, we get

e V/2n

np

min @, (x) >
zely,

and (2.2) gives

A N »
Joamors gl [ e v

For the last integral we have

J exp (—%-tz-nz")dtsc—f,
s Vn

where C, is independent of » and I, Thus

Y
J‘I,.d F,, (:t) < nT_-‘;

and (a) is proved.
In case (b) we choose

o) = 2 oxp (e p/26"0)
eVn
and Yo(t)=exp (—§ 13- €¥ - n—1iuyt).
Then

min P, (z)>e} Ver-(e Vo)™

and (2.2) gives

J an(x)<s{O‘1+ —iyj_ fwexp (—%-tz.‘g?-n)dt},
In e 27 Js

where the function
Vo [*
E(m,e)= -——f exp(—3%-2- n)di
(n, ) pv o p(—%
satisfies lim £(», £) =0 for every fixed £>0.
n->0
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This proves (b).

~ 3 l(s (x_lun) 2
Ch () =0 (Sliu____)
oose Yn () =0y 10— )
and (t)z{(l—“/éll) exp (s unt) for |¢|<d;,
¥ 0 for |t|>0,,

where g, is the midpoint of the interval I,. 8, is chosen so that §,<¢ and
M<25/8, which assures that

min ¢, (z) > >0.
rel,

Thus {2.2) gives f aF, (x)< ¢
171

Vf;/,
which proves (c).
We can choose I, so that it covers the maximal jump of F,(z). Then (d)
immediately follows from (c).

Let F(x) be the normal distribution with mean zero and variance 1. Then

Prob (| S, | <n? P)
Prob (1<) /2,y

This shows that the result in (a) cannot be generally improved. The same is
true for the result in (b). The proof is not difficult but somewhat laborious and
we omit it. An example which shows that the results in (¢} and (d) cannot be
improved is given in, e.g. [1], p. 53.

3. An inversion formula

Theorem 2. Let F(x) be a d.f. and ¢(t) its c.f. If f log (1+|z|)d F(x)< oo
then the following inversion formula holds:

Y
%[F(z—O)+F(x+O)]=%+13im 2—17;—1 , %{e"‘«p(—-t)—e"“zp(#)}dt.
Proof. We define
1 (y<=),
_1,1 Fsin(x—y)t _ _

r/)(%%)—frﬂf0 — o dt=) 1 y=2),
0 (y>2a).
Then %[F(x—O)+F(x+O)]=fw yly, x)d F(y)=

where the right-hand side is an L — 8 —integral
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1 11 t
=§+Lﬂ{w(y, x)-%}dF(y)=§+;tfH dF(y )f M_t?/) dt

= N _ 00 L3 _
=1+lf dF(y)f sin (2= 9)¢ y)tdt+£f dIf'(y)f =gty
24 0 t 7T N t

2 yET

=%+Il(N)+Iz(N)-

For I,(N) we have

nIII(N>|<f dF(y)fo

NizZ—¥]| ot
dF(y)fo o ds

sin (x —y)t (dt—fw
t

—oQ

<f dF (y){l+log (1+ N|z—y|}
In virtue of the assumption j log (1+|z|)dF(x) <o we thus have that

I,{N) is absolutely convergent. Therefore we can change the order of integra-
tion in I, (N). This gives

N) 271Z1/ f { i(r— y)t_e—l(l y)t}dF
1 Ny .
=551 {e"‘(p( —t)y—e T (t)}dt.

The following estimations are well known. For N >0

* gin zt C,
< 1
Joe ey 61
J smtxtdt!<02, (3.2)
N

where O, and C, are absolute constants.
Estimate I,(N) as follows

Arai<f  ar)| [

sin (x — y)

a

o0 : _ t
+J‘ dF (y) sin (x —¥)
0<|z-¥|<UN

t

dt’.
According to (3.1) and (3.2) we get

d F(y)

I,(N +Cf d F (y).
nl )I N {2z y|>1/~|x yl 0<]z—-¥{<l/N (y)
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We have f dF(y)—0 for N—oo
O<|z-y|<YN

and f - dF(y) —0 for N—>oo
te-wizyn V|2 —y|

by Lebesgue’s theorem on dominated convergence, as
(Nlz—y|)'<1 for |z—y|=1/N
and (N|z—y|)'>0 when N—>oo.

Thus I,(N)—0 when N->oco,
Summing up

N
%[F(x—O)+F(m+O)]=%+%@. L %{em(p(—t)—e"“qo(t)}dtJrIz(N).

N-—>oco gives the theorem.
We now apply the inversion formula to the d.f. F,(x) with c.f. ¢"(f).

(]
1[F, (x—0)+F,(x+0)] -—-%+ 2%”] %{em(p (—t)"—e @)} dt+ R(n,z,0), (3.3)
g

‘where J is a positive number and

o0

o0 b _ t
R, x, 6)=}IJ' an(x)f SEE("T@—M.
— o0 8

Lemma 2. R (n, z, 8) satisfies for fixed 0>0 the inequality
|R(n,z,8)|<COn"?
awhere C is independent of n and x.

Proof.

adF,(x)
<0, | « AF, (y)+ 0,

4
z-y[<VRE tr—y[ﬂ/ﬁ!x_?fi

n| R (n, =, 5)l<fw an(y)If:c SAin—(gitd—y)—talt’

according to (3.1) and (3.2). Theorem 1 (a) gives

|B(n, 2, 8)|<Cnt.
329



B. ROSEN, Asymptotic distribution of sums of random variables
=1
4. On the series > " (@n—1)
1
We introduce the notation a,=Prob (8, <0).

1
Theorem 3. If EX,=0 and EX;=¢% 0<a®< oo, then the series Y = (a,— %)
converges absolutely. 1

We first need a lemma. Let ¢(t) be the c.f. of the variables X;. ¢ (f) has the
Taylor expansion

pty=1-1c*E+E (R @) +11()),

where R(t) and I(t) are real functions such that R(t)—0, I({)—0 when ¢{—0.

s
Lemma 3. For every 6>0 the integral f |I—£t)| dt is convergent.
0

©0

zd F(z)=0, we

Proof. We put =1, which is no loss of generality. Asf

have I(t)=t1—2foo (sintzx—tz)d F (x)

1 0 1 H -
and we get f ll—t(t)'dtsf dF(x)f |_51£1_xti_xt| at,

£

the inversion of integration being justified by absolute convergence. Put

Vsin zt —xt
y(x, a)=f It—3|dt.
€
By using the inequalities
|sinwt—zt|<}|xt] for |xt|<1
and |sinzt—axt|<2|xt| for |xt|>1,

we get for 1<]z|<1/e

1|z} 1 1 1
(2, e)<f |x3|dt+f 2le-t—zdt=|x|3{——s}+2|x|{|x|—1}<3|x|2.
£ 1) z|

|z
1
For |z|<1 we get p (=, e)<f Hapdt< i}z
For |z|>1/e we have
1
1p(x,€)<f 2|x|-t12dt=2|z|(§—1)<27”|<2|x|2.
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Thus 0<y(z, £)<3|z|2, which gives
1 w0 .
f I_Ig)_ldtSI y)(x,e)dF(x)g?,f lezdF(x)=3o'z

3
We now let e—0 and get f !I%)—l dt < oo
[

and the Lemma is proved.

Proof of Theorem 3.
We put =0 in (3.3)
§[Fp(—0)+ F,(+0)]=a,+4 Prob {S =0}=
“stae: | - @R, @)

where & is a positive constant to be determined later.
For any cf. ¢(—1)=¢ () holds. Thus we can write

i L lewl _1 -
G-f=_ Lo sin {n arg ¢ (t)} dt+ R (n) — } Prob {8, =0},
0
which gives

lan—3|<~ f le®F |arg ¢ (t)|dt+| B (n)| + } Prob {S,=0}.
Thus

Q|

S _1 targ o0l _|@@)] _
; |, |<nJ‘0 p _I(p(t)ldt-f-z IR(n)I—i—éZ Prob{S 0}.

From Lemma 2 we conclude

|R(n)|=D;< oo

=M 3
|-

and Theorem 1 (d) gives

Prob {S,=0} =D, < co.

S|

$2
1
a t t .f_L
@ () arete 17y sE L e Ry
and for 6, sufficiently small, there exists a constant ;>0 so that
larg @ ()| < C,- |1 (t)| for |t]<é,.
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B. ROSEN, Asymptotic disiribution of sums of random variables
Let 8, be the § in Lemma 1. We choose é in (4.1) to be § =min (§,, J;). By
Lemma 1, 1—|g(t)|>C,t* for |t|<6. Thus

1 C s Il(t)]
t —1]g 2 A+ D, +
la,— 3] < e, fo dt+D,+ D,

A

I—‘MS

la'n_%|<°°

I |-

:

and Lemma 3 gives

and Theorem 3 is proved.
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