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Pseudo-lattices: Theory and applications

By Ia-caine Hsu and H. L. BENTLEY

The notion of a partially ordered set is well-known. It is also known that a quasi-
ordered (pre-ordered) set is a system consisting of a set X and a binary relation >
satisfying the following laws:

P;: For all zin X, > = (Reflexive); Py: If > y and y > 2, then 2>z (Trausitive).

In a quasi-ordered set if a least upper bound or a greatest lower bound of some
subset exists it may not exist uniquely, since we do not necessarily have antisym-
metry for the quasi-ordering. This motivates the following:

Definition 1. 4 quasi-ordered set is called a pseudo-lattice iff any two elements have
at least one least upper bound and af least one greatest lower bound.

Before we construct new pseudo-lattices from given ones, we need more defini-
tions:

Definition 2. Let > and > be two guasi-orderings on a given set X, then > is stronger
than = iff x>y implies x>y.

Definition 3. Let (X, =) and (¥, =) be two quasi-ordered sets, f : XY a mapping.
f is order-preserving iff a =>b implies f(@) = f(b). f 45 called bi-order-preserving iff

(1) a>b implies {a)>f(b) and
(2) fa)=f(b) implies a >b.

Definition 4. Two quasi-ordered sets (X, =) and (Y, =) are called isomorphic iff
there exists a bijective bi-order-preserving mapping f of X onto Y, i.e., iff there-exists -
a one-to-one-mapping f of X onto Y such that f(a) = f(b) iff a >b.

Theorem 1. Let X be a set, (Y,>) a quasi-ordered set and f: X — Y a mapping. Then
there exists a strongest quast ordering > ; on X under which f preserves ordering. Further-
more, (X, 2) is a pseudo-lattice if (Y,>) is a pseudo-lattice and f an onto mapping.

Proof A binary relation > ;on X is defined by setting a >, b iff f(a)>f(b). Evidently
2, is a quasi-ordering on X under which f preserves ordering. Suppose f preserves
ordering under a quasi-ordering > on X. Then a>b implies f(a)>f(b). This in turn
implies ¢ >, b. Thus >, is the strongest quasi-ordering on X under which. f preserves
ordering.
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Suppose (Y,>>) is a pseudo-lattice and f is an onto mapping. Let a and b be any
two elements in X. Let y be a Lu.b. of f(a) and f(b), then there exists ¢ in X such that
f(c)=y and ¢ is a Lu.b. of a and b. Since f(c)>f(a) and f(¢)>f(b), ¢ is an upper bound
of @ and b. Suppose d is an upper bound of @ and b. Then f(d)>f(a), {(d)>f(b) and
f(@) >f(c), because f(c) is a L.u.b. of f(a) and f(b). This implies & >, ¢ and ¢ is therefore
a lLub. of a and b. The existence of a g.l.b. of ¢ and b can be proved similarly. Thus
(X, =) is a pseudolattice.

Definition 8. Let X be a set, Y a quasi-ordered set and {: XY a mapping. The
strongest quasi-ordering on X under which f preserves ordering s called the quasi-order-
ing induced by f.

- Theorem 2. Let X, Y, Z be quasi-ordered sets and f: X—Y, g: Y—~Z be mappings.
Suppose further that Y has the induced quasi ordering relative to g. Then f is order-
preserving iff gof is order-preserving.

Proof. Suppose that f preserves ordering, then gof preserves ordering, since g
preserves ordering. Conversely suppose that gof preserves ordering. Assume that
a and b are in X with a>b. Then (gof)(a)=(gof)(d), i.e., g(f(a))=g(f(b)). Hence
f(a@) =f(b), since Y has the quasi-ordering induced by g. Thus f preserves ordering.

Corollary 1. Suppose that Y has the induced quasi-ordering relative to g: Y —>Z. Then
the quasi-ordering induced on X by f: X— Y coincides with the quasi-ordering induced
by gof.

- Proof. This corollary follows directly from Theorem 2.

More theorems on construeting quasi-ordered sets will be given after the following

Definition 6. Given quasi-ordered sets (Z, =) and (W,>). Let F:Z~W be an onlo
mapping. F-1, as a set function, is called orderpreserving iff x >y whenever x€ F-1(u)=
F-1({u}), y€ F-Y(v)=F-Y({v}) and w>v.

Theorem 3. Let (Z, =) be a quasi-ordered set and F :Z > W an onto mapping. Then
there exists a strongest quasi-ordering >on W under which F-1 preserves ordering.
Further, (W,>) is a lattice 3sf (1)(Z, =) 1s a pseudo-latiice and (2) F(x)=F(y) iff x>y
and y>zx. ‘

Proof. Define a binary relation > on W by setting 4> iff x>y whenever z € F-(u)
and y € F-1(v). Clearly > is a quasi-ordering on W under which F-* preserves orde-
ring. Suppose F-1 preserves ordering under a quasi-ordering >, on W. If u>>,v,
then x>y whenever z € F~1(u) and y € F-1(v). This implies u>v. Thus > is the stron-
gest quasi-ordering on W under which F-! preserves ordering.

We shall now prove that (W,>) is a lattice under the further assumptions (1)
and (2). First, we notice that the antisymmetry of > follows from (2). Let % and v
be any two elements in W. Then there exist « and y in Z such that F(x)=u and
F(y)=v. There also exists z, a lu.b. of  and y, since (Z, >) is a pseudo-lattice.
Let t=F(z), then clearly {>u, t>v and ¢ is an upper bound of » and v. Suppose w
is also an upper bound of » and v. Then { >z, { >y and { >z whenever { € F-1(w)
and z€ F-1(t). Therefore, F({)=w>t=F(z) and ¢ is the L.u.b. of » and v. Similarly
we can prove the unique existence of the g.lb. of  and ». Thus (W,>>) is a lattice.
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Definition 7. Let (Z, >) be a quansi-ordered set, W a set and F:Z->W an onio
mapping. The strongest quasi-ordering on W under which F-1 preserves ordering is
called the identification quasi-ordering relative to F. If W is considered to have this
quasi-ordering, then F is called an identification mapping.

Theorem 4. Let Z, W, S be quasi-ordered sets, F:Z->> W an identification mapping,
and G : W8 a mapping. Then G-! preserves ordering iff (Go F)~! preserves ordering.

Proof. Let s and ¢ be in S with s>¢. Let w€G-1(s) and let v €G~1(¢). Then u >v iff
Vz, z€ F-Yu); Vy, y€ FYv), z=y. That is to say G~ preserves ordering iff Yz,
€ F-Y(G~Ys)), Yy, yEF-YG1(t)), x>y, whenever s>{. That means G~ preserves
ordering if and only if (G'o F')~1 preserves ordering.

Corollary 1. Let Z be a quasi-ordered set and F :Z - W be an identification mapping.
The identification quasi-ordering on S relative to G : W -8 coincides with the identi-
fication quasi-ordering relative to Go F.

Proof. The proof follows directly from Theorem 4.

Theorem b. Suppose that (X, =) is a pseudo-lattice and Y is a set. Let F: XY
be an onto mapping such that F(a)=F(b) iff a=>b and b=a. Then the lattice (¥,>)
is tsomorphic to the lattice (X[~, =|~) where > is the identification partial order-
ing on Y relative to ¥, X[~ is the quotient set of X over the equivalence relation ~
a~biff a>=b and b=a, and > |~ is the identification partial ordering on X[~ relative
to the quotient mapping from X onto X[~ .

Proof. By Theorem 3, it is clear that both (Y,>) and (X/~, >/~) are lattices.
To prove that they are isomorphic, define F': X/~ —Y by setting F(d)=F(a). It is
well-known that F is a bijection .Apply Theorem 4 twice, to infer that both ¥ and
F-1 preserve ordering. Therefore, F' is a lattice isomorphism.

To trace the correlation between the induced quasi-ordering and the identification
quasi-ordering, we present the following:

Theorem 6. A quasi-ordered set (X, =) is a pseudo-lattice iff there exists o surjective
bi-order-preserving mapping F from (X, 2) onto some lattice (Y,>).

Proof. For necessity, the quotient lattice (X/~, >/~) and the quotient mapping
¢=F: X->X|~ will apparently serve the purpose. To prove the sufficiency, assume
F is a surjective bi-order-preserving mapping from (X, >) onto some lattice (¥, >>).
If we can prove that the quasi-ordering > on X coincides with the quasi-ordering
induced by F, then by Theorem 1, we know that (X, >) is a pseudo-lattice. Let >5
be the induced quasi-ordering on Y relative to F, then clearly a=>b implies a> b,
since >y is stronger than >. Suppose >, b, then F(a)> F(b). This implies a>),
since F' is bi-order-preserving. Thus > coineides with > and the theorem is proved.

Corollary 1. A quasi-ordered set (X, =) is a lattice iff there exists a bijective bi-order-
preserving mapping F from (X, =) onto some lattice (Y ,>).

Corollary 2. Suppose that there exists a surjective bi-order-preserving mapping F
from a quasi-ordered set (X, =) onto some lattice (Y,>>). Then there exists a unigue
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lattice-isomorphism G :(X[~, 2 [~)—>(Y,>) such that F =Gogp, where ¢ is the quo-
tient mapping from (X, =) onto (X[~, Z2[~) and ~ i3 such an equivalence relation
that a~b iff a=b and b>a.

Proof. Define G: (X[~, =[/~)—(Y,>) by G(d@) = F(a). It is easy to verify that G
is a well-defined onto function. If G(@)=@(b), then F(a)>F(b) and F(a)LF(b). The
bi-order-preserving of F implies a >b, b>a and & =>b. Therefore, G is one-to-one. We
shall now prove that 3> on Y coincides with >, the identification quasi-ordering
on Y relative to F. Since > is stronger than >, F(a)>F(b) implies F(a)>7F(b).
Suppose F(a)>;F(b), then a>b and in turn F(a)>F(b). That means > coincides
with the identification quasi-ordering >,. Apply Theorem 4, to infer that both @
and G~! preserve ordering. @ is therefore a lattice-isomorphism. The uniqueness of
such an isomorphism follows directly from the requirement F =Goep.

Applications

I. Let F be the set of all non-negative real-valued functions on a non-empty set X.
Define a binary relation > on F by setting f>¢ iff g(x) =0 implies that f(z)=0.
Clearly > is a quasi-ordering which does not have the antisymmetry property.
Notice that f and any positive constant multiple af have the same zeros but af +f if
a=1. To prove (¥, =) is actually a pseudo-lattice, we give two different methods.

Method I-A. Denote the collection of all subsets of X by 2%, It is well-known that
under set inclusion 2% is a lattice, therefore, a pseudo-lattice. Define function ¢: F 2%
by setting ¢(f) = {z|x € X, f(x) =0}. Clearly ¢ is an onto function. It is also clear that
the quasi-ordering induced by ¢ coincides with >. By Theorem 1, (F, >) is therefore
a pseudo-lattice.

Method I-B. Let f and g be any two elements in F. Define functions A and § by
setting respectively

{ 0, if fz)glx)=0
h{z)= ]
(f+9) (@), if fl=)g(x)+0.
0, if flx)g(x)=0
j@)=1 P, for those z’s elsewhere, where

P is a positive constant.

It can be verified easily that both A and j are least upper bounds of f and g. On the
other hand, define k by setting

0, if flx)=0 and g(x)=0

k(z)= @, for those z’s elsewhere, where
@ is a positive constant.

We can easily verify that both f+g¢ and k are greatest lower bounds of f and g.
Therefore, (F, >) is a pseudo-lattice. By Corollary 2 to Theorem 6, the quotient
lattice (F/~, >/~) is isomorphic to the lattice (2%, U, n).
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II. A non-empty set X together with a g-algebra a of subsets of X is called a mea-
surable space. A measure m on a is said to be absolutely continuous with respect to
a measure # on @, in symbols, m<n, iff B €qa and n(#)=0 imply m(Z)=0.

Let T denote the set of all finite non-negative measures on a. Evidently (M, <)
is a quasi-ordered set without antisymmetry, since m<€am, am<<m but m=+am if «
is a positive real number different from 1. Given m and #» in M. Different least upper
bounds of m and n can be constructed by two distinet methods.

Method II-A. Let m and n be any two elements of M. Since (m-n)(E)=0 iff
m(E)=0=n(E), it can be verified easily that m +n is a L.u.b. of m and =, that any
linear combination am +bn, with positive coefficients @ and b, is also a lu.b. of m
and ».

Method 11-B. Given m and n in M. Clearly m<m +n and n<m +n. Put m+n=v.
By Radon-Nikodym Theorem, there exist non-negative finite-valued measurable
functions f and g such that for every E€a

m(E)=f fdv and n(E’)=f gdv.
4 E
Let h(x) =sup {f(x), g(xr)}. Then the measure 3 defined on a by
pE)= f hdy VEE€a
E

is finite, since A{x) < f(z) +¢(x).

It is well-known that f(#)=0 implies A=0» —a.e. on E. This in turn implies f =0
v—ae. on B, g=0v—a.e. on E, and m(E)=0=n(E). Therefore m<p, n<p and p
is an upper bound of m and n. It follows from 0 <h(x) <f(z) +g¢(z) that f<LKm +n. In
Method II-A, we have shown that m +n is a Lu.b. of m and n. Hence § must be equi-
valent to m+mn, i.e., fKm +n and m +n<p. Later on an example will show that 8
i8 not equal to any positive linear combination of m and n.

We shall also give two methods of constructing a g.L.b. for m and ».

Method II-C. By one version of the Lebesgue Decomposition Theorem [1], for
any two finite measures m and n on the same g-algebra q, there exists a decomposi-
tion of X into mutually disjoint measurable sets 4, B, C such that m =0, np=0;
meLng, ngLmg; where m, is a measure on a defined by m,(E)=m(4 n E) for all
Ee€aq, ng, mc and ng are defined similarly.

Define a finite measure 4 on a by A(E)=(m+n)(C n E) for all E€a.If m(E)=0,
then my(E) =ng(E)=0 and A(E)=(m+n)(C N E)=0. Hence A<Lm, similarly A<n.
Suppose that ! is a lower bound of m and n. Also suppose A(F)=(m+n)(C N F)=0,
then m(C N F)y=0=n(C n F). This implies {(C N F)=0. Furthermore,

(F) = F\C)+lCn F)
=I[(F\.C) n A]+I[(F\C) n Bl.

It follows from m, =0 that m[(F\ C) N 4]=0. This in turn implies J[(F\ C) N 4]=0,
since [<€m. Similarly, we have I[(F\ C) N B]=0. Therefore, I(F)=I[(F\0) N 4]+
[(F\C)n B]=0, <4, and 1 is a g.1.b. of m and ».
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Method I1-D. Our second method will show its importance in some later result.
Given finite measures m and %, then by Radon-Nikodym Theorem, there exist non-
negative finite-valued measurable functions f and g such that for every E€a.

m(E)=f fdv and n(E)=f gdv
E E
where ¥ =m +n. Let k(x) = inf {f(z), g(x)}, then the measure y defined on a by

y(E)=f kdv VE€a
E

is obviously finite. If m(E)=0, then f=0v—a.e. on E and k=0 v —a.e. on E. Hence
y(E) = [z kdv =0 and y<m. Similarly,y<n. To prove y is actually a g.1.b. of m andn,
let I be a lower bound of m and n. Then I<€m, [<€n and I<m +n=v. Apply Radon-
Nikodym Theorem a gain, to infer the existence of some non-negative measurable
function § such that for every E€qa

(E)= f jdv.
E

If y(E)=[zkdv=0, then k=0 v—a.e. on E, i.e., »{z€E|k(z)>0}=0. Since k(z)=
inf {f{(z), g(z)}, {x€E|kiz)>0}={z€E|f(z)>0} n {zx€E|g(x)>0}. Put G={=z€
E|f(z)>0}, H={x€E|g(z)>0}. Evidently G and H are measurable sets with
»(G n H)=0,i.e.,(m+n)(H N @)=0.This givesm(G N H)=0=n(G N Hyand (G N H) =
0, since /<<m. Noticing G N H< E and

E=(GnHU[BEN\@GNH)]=(GnHUE\GU (E\H),
we have UE) <UG N H)+UEN\G) +E\ H)
<UENG)+UE\ H).

By the construction of G and H, f(x)=0 Vz€EE\ G, g(z)=0 Yz € E\ H. Consequ-
ently, m{E\ @) =0=n(E\ H)=0. In turn, [(E\ G)=0=l(E"\ H), since I<m and
I<Ln. Therefore, I E) =0, I<y, and y is a g.1.b. of m and =.

So we know that (M, <) is a pseudo-lattice. Let us define an equivalence relation
~ on M by setting m~n iff m<n and n<m. Then by Theorem 3, M/~ together
with the identification ordering </~ relative to the quotient mapping is a lattice.

It should be pointed out that in [5] there is an indirect proof of the existence of
the Lu.b. and the g.1b. of any two elements 7 and % in T/ ~.

In our proof, we have both m--n and B, B(E)= [z sup {f, g} dv, as least upper
bounds for m and n. We are ready to give a negative answer to the following natural
question: Is § always a positive linear combination of m and n?

Let X =[O0, 1], a=the set of all Lebesgue measurable sets on [0, 1]. Let measures
m and n be defined by

0 O<sz<i
m(E)=J.E<p(x)dx VE€a where ¢@(x)= 1 j<o<l
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w(E)= fzp(x)dz VE€a where

VAN
]

e e O
FAN
8
N N A
Gas

p(x)=

S = O

H
L.

A

xr

By Radon-Nikodym Theorem, there exist non-negative measurable functions f and
¢ such that

m(E)=ffdv VE€x where y=m+n,
E
n(E)=Jgdv YEE€aq.

E

Let h=sup{f, g}, B(E)=[zhdy VE€0. On (3, 1], p(@) =0, n((3, 1)) = foy, ypdz=0.
On the other hand, n([$, 1]) = fi;.1194v =0 hence g=0 » —a.e. on [, 1]. This gives
rise to h=sup{f,g}=f v—a.e. on [%,1]. By a similar argument we obtain that
h=gv—a.e.on[0, 3].Suppose § = am + bn for some a > 0,5 > 0. 8([0, 1) = am([0, £]) +
([0, §]),i.e., 3 =(a/6) + (b/3), 2=a +2b. On the other hand, S([%, 1) =am([3,1]) +
bn([%, 1)), i.e., $=(a/3). We have a=1, b=}. But ([0, 1]) = am([0, }]) + bn([0, })),
ie., B0, 3]) = (b/6) = f0, 30 hdv> [0, ygdv=n([0, }]) = }. Therefore, b>1 which con-
tradicts b= 4. This shows that §=am +bn for any a >0, b=0.

IIL. Given a measurable space (X, a) together with a finite measure u on a. (X, a, u)
is called a measure space. Let X be the set of all non-negative integrable functions f
such that [xfdu <oo. A binary relation > on X is defined by f>g iff E€a and f=0
p—a.e. on F imply g=0 u—a.e. on E. Clearly (X, >) is a quasi-ordered set without
antisymmetry. We have two ways to prove that (X, >) is actually a pseudo-lattice,
one is suggested by Theorem 1, the other is probably more constructive.

Method III-A. Let N be the set of all finite measures which are absolutely con-
tinuous with respect to the given measure 4 on qa, i.e., ={m|m, finite measure,
m<u}. Then as a direct consequence of the results in I, (¥, <) is also a pseudo-
lattice. A function @ from X to 7 can be defined as follows:

O(f) =m, where m, is such a measure on a that m,(E)= [z fdu ¥ E €a. By Radon-
Nikodym Theorem, ® is an onto function. If we can prove that > on X coincides
with the induced quasi-ordering >4, then by Theorem 1, (¥, >) is a pseudo-lattice.
First, f >g implies f >4 ¢,since =g is stronger than >. Secondly, assume f >4¢, then
by the construction of the induced quasi-ordering ®(g)=m, < m,=®(f). If f=0
p—a.e. on B, then my(E)= [z fdu=0.And ¢g=0 y—a.e.on E is implied by m,<m;.
Therefore, f>g¢. The induced quasi-ordering > 4 is exactly the same as > and (X, >)
is a pseudo-lattice. Furthermore, it is easy to see that ¢ <f iff m,<<m,. This shows
that @ is bi-order-preserving. Consequently, Po® is surjective and bi-order-pre-
serving, where P is the quotient mapping from # onto #/~. By Corollary 2 to
Theorem 6, the lattice (¥/~, >/~) is isomorphic to the lattice (U/~, </~). We
also have the following commutative diagram:
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]

(%, <) >> 1, <)
P
M \
(X~ <fm) > 2o St~ < ~)
Fig. 1

Method 111-B. To exhibit explicitly a l.u.b. and a g.l.b. of any two elements f
and g in X, we first prove the following

Lemma. In (X, =), >g iff there exists a finite-valued measurable function ¢ such
that g=¢f u—a.e. on X.

Proof. The sufficiency is immediate. For necessity, suppose f>g. Define measures
m and n by

m(E)= L fdu VEe€a

n(E)=f gdu VYEE€a.
E

It is clear that m<u and n<yu. Furthermore, g <f implies that n<<m<u. Under the
condition nm<yu, a theorem on the Radon-Nikodym derivative [4] guarantees
the existence of a non-negative finite-valued measurable function ¢ such that g=¢f
#—a.e. on X, where g is such a function that

n(E)=f pdm VEE€a.
E

‘We shall now prove that (X, >) is a pseudo-lattice. Let A{z) = sup {f(), g(x)} for
any two elements f and g in X. Evidently % is in X. Using the fact that A=0 u —a.e.
on E, E€q, iff f=0 y—a.e. on F and g=0 gy —a.e. on E, we can easily verify that
his alub. of f and g. Let k(z) = inf {f(z), g(z)}, then kisin X. If f=0 u —a.e. on &,
Ee€q, then k=0 g —a.e. on E. Thus f>%. Similarly, g >%. Suppose that j is a lower
bound of f and g, i.e., f>4 and g>4. By the preceding Lemma there exist finite-
valued measurable functions ¢ and y such that

j=¢f u—ae on X and
j=1g u—ae. on X.

If k=0 u—a.e. on E, then f=0 y—a.e. on E or g=0 g —a.e. on E. This implies j =0
u—a.e. on K. Hence k>7 and k is a g1.b. of f and g. We complete the proof that
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(%, =) is a pseudo-lattice. One final remark: Let us look back at the proof of Theo-
rem 1. Under suitable assumptions, we proved that (X, >,) together with the guasi-
ordering >, induced by f is a pseudo-lattice. We found that ¢ is a sup of @, b in X
where ¢ has the property that f(c) is a sup of f(a) and f(b) in Y. Therefore, it is not
surprising at all that Method II-B and Method ITI-B are closely related by the follow-
ing equality:

B(E) = Lsup {habdv= Lhdv=<1>h(E>=<Dsup<f.,> ().

IV. Let X be a Hausdorff, completely regular topological space. (f, Y) is called a
Hausdorff compactification of X iff
(1) Y is a compact Hausdorff space.
(2) f: X-Y is a homeomorphism onto f(X) and f(X) is dense in Y.

Let K(X)={(f, Y)|(f, Y) a Hausdorff compactification of X}. A binary relation >
on K(X) can be defined as follows: (f, Y)>(g, Z) iff there exists a continuous sur-
jection h: Y —+Z such that g=hof i.e., the following diagram is commutative.

X
/\
7 € 5 Y

Fig. 2

It can be proved easily that (K(X), =) is a quasi-ordered set without antisymmetry
[8]. Using Stone-Cech compactification and assuming that X is a locally compact
Hausdorff space, we are able to prove that (K(X), >) is a pseudo-lattice. If (f, Y)
is & Hausdorff compactification of X, we frequently identify X with f(X)< Y. Now
let (4, B(X)) be the Stone-Cech compactification of X, where 1: X—~B(X) is the in-
clusion mapping. Then we have the following well-known facts [3]:

(1) For each compact Hausdorff space ¥ and each continuous f: XY, there exists
a unique continuous ff: f(X)—+Y such that f=gfo4.

(2) p(X) is the “largest” Hausdorff compactification of X: if Z is any Hausdorff
compactification of X, then Z is a quotient space of §(X).

Given (f, Y) and (g, Z) in K(X). In order to find a Lu.b. of (f, ¥) and (g, Z), an
equivalence relation on X is suggested by fact (2), Define an equivalence relation
~ on BX as follows: a~b iff Sf(a)=pf(b) and Bg(a)=Fg(b), where ff:fX Y and
fg: X >+Z are the continuous surjections extended by f and g respectively. Let
@:pX->>fX|~ be the quotient mapping onto the quotient space. Let h: X >pX/~
be defined by & =geoi. We claim that (h, X/~ )isa Lu.b. of (f, Y) and (g, Z). Clearly,
(b, BX|~) is a compactification of X. That X/~ is a Hausdorff space is implied
by X being a Hausdorff locally compact space. There exists a surjection y such that
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Bf=vwog, since ff:BX ~»Y is compatible with the equivalence relation ~ on fX.
(i.e., Bf is relation-preserving.) A theorem on quotient space [7] implies that y is
continuous. Furthermore, f =ffoi =yo@oi=yoh. Thus (h, fX[~)>(f, Y). Similarly,
we can prove (k, X/~)>(g, Z). The following commutative diagrams may illy-
strate how (h, §X/~) is constructed.

Yéé——w—ﬂX/~

Fig. 3

To prove that (h, BX/~) is a lu.b. of (f, ¥) and (g, Z), assume that (j, U) is a
Hausdorff compactification of X such that (j, U)=(f, Y) and (j, U)>(g,Z). Then
there exist continuous surjections &: U~>Y and 5: U—>Z such that f=£oj and
g=noj. We now define a mapping {: U—BX/~ as follows: {(Bj(x)) =¢(x). It fol-
lows from f=£ej, g=noj and a theorem on quotient space [7] that { is well-
defined and continuous. Therefore, h=goi=C_ofjoi=(oj and (j, U)=(h, fX/~)
which complete the proof that (h, fX/~) is a Lu.b. of (f, ¥) and (g, Z). The fol-
lowing commutative diagram may indicate what was going on.

X i > pX Bi > 7

Fig. 4

The construction of a g.l.b. of (f, ¥) and (g, Z) is quite similar to the preceding
work. The equivalence relation is defined this time by a~b iff Sf(a) =pf(b) or fg(a) =
Bg(b).

We omit the rest of the details of the proof that (K(X),>) is a pseudo-lattice.
On the other hand, we raise the following open question: Is (E(X), >) a pseudo-
lattice? Where E(X) is the collection of all extensions of a given topological space
X and > is defined similarly as in (K(X), >). By an extension of X we mean
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a pair (f, Y) such that (1) Y is a topological space; (2) f: X—Y is a homeomorphism
onto f(X) and f(X) is dense in Y.

V. Given two quasi-ordered sets (X,>) and (Y, >). Let F be the set of all func-
tions f from X to Y. A binary relation > on F is defined by setting f =g iff for every
ain X there exists b in X such that a>b and f(a) > f(b). Apparently, (F, >) is a quasi-
ordered set.

Following this general idea, we are able to ask lots of open questions. For example,
let F be the set of all real-valued functions defined on the real line R which has the
usual order. Open question: Is (F, >) a pseudo-lattice? We give a related result in
the following

Theorem 7. Suppose that (X, >>) is & given quasi-ordered set. Let F be the set of all
real-valued functions defined on X, and suppose that the quasi-ordering> on F is de-
fined by setting f=g iff for every x in X there exists y in X such that x>y and f(z) >
(). Finally, let

G-{res

for every x in X there exists t in X such that t<x and}
f(¢) = infy f(y) )

Then

(1) (G, =) is a pseudo-lattice with k(x)=min {f(z), g(x)} as a g.l.b. of f and g; with
h(x) =Imax {infil«r f(?J), infy«:: g(y)} as a lu.b. Of f and g.

(2) For every f€G, there is one and only one p€G such that f <@ <f and ¢ is a mono-
tone decreasing function.

Proof. Let f and g be in §. Define function & by k(z) =min {f(z), g(»)}. If z is in
X, then there exist r and ¢ in X such that r<z, i<z, f(r) = inf, f(y) and ¢(t}=
inf,; g(y). To prove k€G, we consider the following:

Case 1: f(r)<g(t). We claim k(r)=inf,. k(y). Since r<z, inf,. ky) <k(r). On
the other hand, y<z implies f(r)<g(t)<g(y) and f(r)<f(y). This gives k(r) < k(y),
since k(y) =min {f(y), g()}. Thus k(r) < inf, ., k(y). We have k(r) =inf, k().

Case 2: f(r)>g(t). We claim k(t) = inf,., k(y). We omit the proof which can be
carried out as similarly as in Case 1.

Combine Case (1) and Case (2), to infer that k is an element of §. Furthermore,
it is clear that % is a g.l.b. of f and g. Now let function h be defined by h(z) = max
{inf, & f(¥), infy.- g(y)}. We shall now prove that A is monotone decreasing and
therefore an element of §. If z<z, then

inf f(y) <inf f(y) < h(z)

and inf g(y) < inf g(y) < h(2).

Yz yuz

Thus z<z implies k(z)<h(z), i.e., b is monotone decreasing. Further, inf, . h(y) =
h(z), hence h is an element of §.

If 2 is in X, then there esists ¢ in X such that t<x and f(f) = inf,; f(¥). Thus
f(t) <h(z) and f <h. Similarly, g <k. Let j be an upper bound of f and g. Then for every
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z in X there exist y and z in X such that y<z, f(y) <j(x), 2Lz and g(z) <j(z). This
implies

inf f(u) <fly) <j()

and inf g(u) <g(z) < §(x).

“Haz

Therefore, A(x) <j(z). Since z <z, whe have A<j and A is a Lu.b. of f and ¢.

To prove part (2) of our theorem, for every f in G let function ¢ be defined by
@(x) = inf, . f(y). Clearly, ¢ is monotone decreasing and is therefore an element of
G. It follows from the definition of G and > that f>¢>f. To prove the uniqueness
of such a function, let ¢ be a monotone decreasing function in § such that >y >f.
By the transitivity of the quasi-ordering >, we have p >y >¢. If 2isin X, then there
exists y in X such that 3>y and p(x) >¢@(y). Also, there exists z in X such that 23>z
and @(z) >p(2). Since ¢ and p are monotone decreasing, () >y(z) >y(x) and y(r) >
@(y) = @(z). Therefore for every z in X ¢(z) =y(z) and p=y.

One last remark: Let an equivalence relation ~ be defined on. § by setting f~g
iff f>¢ and g>{. Then by Corollary 2 to Theorem 6, (G/~, >/~ ) is a lattice which
is isomorphic to (L, >) where L is the set of all monotone decreasing functions in
G and (L, >) is a lattice under the same quasi-ordering (in £ it becomes a partial
ordering) defined on .

Northern Illinois University, De Kalb, ILL. 60 115, USA (1. H.) and Bucknell University,
Lewisburg, Pennsylvania 17837, USA (H. L. B.).
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