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Pseudo-lattices: Theory and applications 
By IH-CHING HSU and H. L. BENTLEY 

The notion of a partially ordered set is well-known. I t  is also known tha t  a quasi- 
ordered (pre-ordered) set is a system consisting of a set X and a binary relation >/ 
satisfying the following laws: 

PI: For  all x in X, x ~> x (Reflexive); P2: I f  x >1 y and y >1 z, then x>~z (Transitive). 

In  a quasi-ordered set if a least upper bound or a greatest lower bound of some 
subset exists it may  not exist uniquely, since we do not necessarily have antisym- 
met ry  for the quasi-ordering. This motivates the following: 

Definition 1. A quazi-ordered set is called a pseudo-lattice iff any two elements have 
at least one least upper bound and at least one greatest lower bound. 

Before we construct new pseudo-lattices from given ones, we need more defini- 
tions: 

Definition 2. Let >1 and >~ be two quasi-orderings on a given set X ,  then >~ is stronger 
than >1 iff x >i y implies x>~y. 

Definition 3. Let (X, >1) and (Y, >/) be two quasi.ordered s e t s , / : X ~ Y  a mapping. 
/ is order-preserving iff a>~b implies/(a) >~/(b). / is called bi-order-preserving iff 

(1) a>~b implies f(a)>~f(b) and 
(2) /(a)>~/(b) implies a>~b. 

Definition 4. Two quasi-ordered sets (X, >1) and (Y, ~>) are called isomorphic ill 
there exists a bi]ective bi-order-preserving mapping ] of X onto Y, i.e., i]/ there~¢xists " 
a one-to-one-maTTing f o / X  onto Y such that/(a) >~](b) iff a >~b. 

Theorem 1. Let X be a set, (Y,>~) a quasi-ordered set and [ : X ~ Y a mapping. Then 
there exists a strongest quasi ordering >~ f on X under which I preserves ordering. _~urther. 
more, (X, >~f) is a pseudo-lattice i I (Y,>~) is a pseudo-lattice and / an onto mapping. 

Proo I A binary relation t> r on X is defined b y  setting a >~ I b iff/(a)>~/(b). Evident ly  
>~r is a quasi-ordering on X under which 1 preserves ordering. Suppose I preserves 
ordering under a quasi-ordering >~ on X. Then a>~b implies l(a)>~](b). This in turn  
implies a 1> s b. Thus >/I is the strongest quasi-ordering on X under which /preserves  
ordering. 
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Suppose (Y,>~) is a pseudo-lattice and / is an onto mapping. Let  a and b be any 
two elements in X. Let  y be a 1.u.b. of/(a)  and/(b),  then there exists c in X such tha t  
/(c) =y  and c is a 1.u.b. of a and b. Since/(e)>>/(a) and/(c)>~/(b), c is an upper bound 
of a and b. Suppose d is an upper bound of a and b. Then/(d)>~f(a),/(d)>>/(b) and 
)t(d) >>/(c), because ](c) is a 1.u.b. of f(a) and/(b).  This implies d >/r c and e is therefore 
a 1.u.b. of a and b. The existence of a g.l.b, of a and b can be proved similarly. Thus 
(X, >/I) is a pseudolattice. 

Definition 5. Let X be a set, Y a quasi-ordered set and [ : X ~ Y a maloping. The 
strongest quasi-ordering on X under which / preserves ordering is called the quasi.order- 
ing induced by/. 

Theorem 2. Let X ,  Y,  Z be quasi-ordered sets and / : X ~ Y,  g: Y ~ Z be mappings. 
Suppose/urther that Y has the induced quasi ordering relative to g. Then / is order- 
Treserving i// go / is order-preserving. 

Proo/. Suppose tha t  [ preserves ordering, then go/ preserves ordering, since g 
preserves ordering. Conversely suppose tha t  9o[ preserves ordering. Assume tha t  
a and b are in X with a>~b. Then (go/)(a)>~(go/)(b), i.e., g(/(a))>~g(/(b)). Hence 
[(a) >~[(b), since Y has the quasi-ordering induced by  g. Thus [ preserves ordering. 

Corollary 1. Suppose that Y has the induced quasi-ordering relative to g : Y ~ Z. Then 
the quasi-ordering induced on X by / :  X ~ Y coincides with the quasi-ordering induced 
by go/. 

Proo/. This corollary follows directly from Theorem 2. 

More theorems on constructing quasi-ordered sets will be given after the following 

Definition 6. Given quasi-ordered sets (Z, >/) and (W, >>). Let F : Z ~  W be an onto 
mapping. F -1, as a set/unction, is called orderpreserving i H x >~y whenever xE F-l(u)  =- 
F-l({u}), y e F-l(v) - F-~({v}) and u>>v. 

Theorem 3. Let (Z,/> ) be a quasi.ordered set and F : Z ~ -  W an onto mapping. Then 
there exists a strongest quasi-ordering >> on W under which F -x preserves ordering. 
Further, (W, >>) is a lattice q (1) (Z,/> ) is a pseudo-lattice and (2) F(x) = F(y) i// x >1 y 
and y>~x. 

Proo/. Define a binary relation >> on W by  setting u>>v iff x >~ y whenever x e F- l (u)  
and y e F-l(v). Clearly >> is a quasi-ordering on W under which F -1 preserves orde- 
ring. Suppose F -x preserves ordering under a quasi-ordering >>0 on W. I f  u>>ov, 
then x >/y whenever x E F-l(u) and y e F-~(v). This implies u>>v. Thus >> is the stron- 
gest quasi-ordering on W under which F -1 preserves ordering. 

We shall now prove tha t  (W,>>) is a lattice under the further assumptions (1) 
and (2). First, we notice tha t  the an t i symmetry  of >> follows from (2). Let  u and v 
be any  two elements in W. Then there exist x and y in Z such tha t  F(x) =u and 
F(y) =v. There also exists z, a 1.u.b. of x and y, since (Z, t>) is a pseudo-lattice. 
Let  t = F(z), then clearly t>>u, t>>v and t is an upper  bound of u and v. Suppose w 
is also an upper  bound of u and v. Then ~>x ,  $~>y and ~ > z  whenever ~e_~-~(w) 
and zeF-~(t).  Therefore, F(~)=w>>t=F(z) and t is the 1.u.b. of u and v. Similarly 
we can prove the unique existence of the g.l.b, of u and v. Thus (W,>>) is a lattice. 
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Definition 7. Let (Z, >~ ) be a quansi-ordered set, W a set and .F : Z--~ W an onto 
mapping. The strongest quasi-ordering on W under which F -1 preserves ordering is 
called the identification quasi.ordering relative to F. I f  W is considered to have this 
quasi-ordering, then F is called an identification mapping. 

Theorem 4. Let Z, W, S be quasi-ordered sets, F :Z~+ W an identification mapping, 
and G: W-+S a mapping. Then G -1 preserves ordering i f / (GoF)  -1 preserves ordering. 

Proof. Let  s and t be in S with s >~t. Let  u E G-l(s)and let v E G-l(t). Then u >~v iff 
Vx, xEF-l(u);  ¥y, yEF-l(v),  x>~y. That  is to say G -1 preserves ordering iff ¥x, 
xeF-~(G-~(s)), Vy, yEF-I(G-I(t)), x>~y, whenever 8>~t. That  means G -1 preserves 
ordering if and only if (GoF) -1 preserves ordering. 

Corollary 1. Let Z be a quasi-ordered set and F : Z--~ W be an identification mapping. 
The identification quasi-ordering on S relative to G : W--~ S coincides with the identi- 
fication quasi-ordering relative to Go F. 

Proof. The proof follows directly from Theorem 4. 

Theorem 5. Suppose that ( X,  >1 ) is a pseudo-lattice and Y is a set. Let F : X -->+ Y 
be an onto mapping such that F(a)=F(b) i/f a>~b and b >~a. Then the lattice (Y,>~) 
is isomorphic to the lattice ( X / ~ ,  >1/,., ) where >~ is the identification partial order- 
ing on Y relative to iF, X/.. ,  is the quotient set o / X  over the equivalence relation N,  
a N b iff a >~ b and b >1 a, and >1/~., is the identification partial ordering on X/~., relative 
to the quotient mapping from X onto X/ ,~ .  

Proof. By Theorem 3, it is clear tha t  both (Y, >~) and (X/,,~, >1/_,.,) are lattices. 
To prove that  they are isomorphic, define _~ : X / N  ~ y by setting F(5) = F(a)_I t  is 
well-known that  _~ is a bijection .Apply Theorem 4 twice, to infer that  both F and 
~-1 preserve ordering. Therefore, F is a lattice isomorphism. 

To trace the correlation between the induced quasi-ordering and the identification 
quasi-ordering, we present the following: 

Theorem 6. A quasi.ordered set (X, >1 ) is a pseudo-lattice i/f there exists a sur]ective 
bi.order.preserving mapping F from (X, >/) onto some lattice ( Y, >~). 

Proof. For  necessity, the quotient lattice (X/, . , ,  >1/N) and the quotient mapping 
ep - F: X--~  X / ~  will apparently serve the purpose. To prove the sufficiency, assume 
F is a surjective bi-order-preserving mapping from (X, >/) onto some lattice (:Y, >~). 
If  we can prove that  the quasi-ordering ~> on X coincides with the quasi-ordering 
induced by  F,  then by Theorem 1, we know that  (X, >~) is a pseudo-lattice. Let  >~F 
be the induced quasi-ordering on Y relative to F, then clearly a>~b implies a>Fb, 
since ~>~ is stronger than >/. Suppose a>~Fb, then F(a)>~F(b). This implies a>~b, 
since F is bi-order-preserving. Thus ~>F coincides with >1 and the theorem is proved. 

Corollary 1. A quasi.ordered set (X,/>) is a lattice if/there exists a bi]ective bi-order- 
preserving mapping F from (X, >~) onto some lattice "( Y, >~). 

Corollary 2. Suppose that there exists a sur]ective bi-order-preserving mapping F 
from a quasi-ordered set (X, >1) onto some lattice ( Y, >~). Then there exists a unique 
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lattice-isomorphi~n G: (X/~ ,  >~/~)-~( Y,>~ ) such that _~=Gog, where q~ is the quo- 
$ient mapping from (X, >/) onto (X/N , >1 ] N ) and ~ is such an equivalence relation 
that a,.,b iff a>~b and b>~a. 

Proof. Define G: (X /~ ,  >~/~)~(Y,>~) by G(5)=F(a). I t  is easy to verify that  G 
is a well-defined onto function. If  G(ei)=G(~), then F(a)>~F(b) and _F(a)~F(b). The 
bi-order-preserving of F implies a >/b, b >~a and 5 = $. Therefore, G is one-to-one. We 
shall now prove tha t  >~ on Y coincides with >~,  the identification quasi-ordering 
on Y relative to F. Since >~p is stronger than >~, F(a)>~F(b) implies F(a)>~FF(b). 
Suppose F(a)>~F(b), then a>~b and in turn F(a)>~F(b). That means >~ coincides 
with the identification quasi-ordering >~F. Apply Theorem 4, to infer that  both G 
and G -~ preserve ordering. G is therefore a lattice-isomorphism. The uniqueness of 
such an isomorphism follows directly from the requirement F = Gee. 

Applications 

I. Let ~: be the set of all non-negative real-valued functions on a non-empty set X. 
Define a binary relation >/ on ~: by setting f>~g iff g(x)=0 implies tha t / (x )=O.  
Clearly >/ is a quasi-ordering which does not have the antisymmetry property. 
Notice that  f and any positive constant multiple a / h a v e  the same zeros but a/=~] if 
a 41.  To prove (:~,/>) is actually a pseudo-lattice, we give two different methods. 

Method I-A. Denote the collection of all subsets of X by 2 x. I t  is well-known that  
under set inclusion 2 x is a lattice, therefore, a pseudo-lattice. Define function ~: :~-~2 x 
by setting ~([) ={x l x6X  ,/(x) =0}. Clearly ~ is an onto ftmction. I t  is also clear that  
the quasi-ordering induced by ¢ coincides with />. By Theorem 1, (:~, >I) is therefore 
a pseudo-lattice. 

Method I-B. Let f and g be any two elements in :~. Define functions h and ?" by 
setting respectively 

~0,  if /(x)g(x) = 0 
h(x)= [ if+g) (~), if /(x)g(x).0. 

0, 
i ( z ) =  p ,  

if /(x)g(x) = 0 

for those z's elsewhere, where 
P is a positive constant. 

I t  can be verified easily that  both h and ] are least upper bounds of / and g. On the 
other hand, define k by setting 

0, if /(z)=O and g(x)=O 

k(z) = Q, for those x's elsewhere, where 
Q is a positive constant. 

We can easily verify that  both / + g  and ]¢ are greatest lower bounds of / and g. 
Therefore, (:~, ~>) is a pseudo-lattice. By Corollary 2 to Theorem 6, the quotient 
lattice (:~/~, />/~ ) is isomorphic to the lattice (2 x, 0 , N ). 
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H. A non-empty set X together with a a-algebra (I of subsets of X is called a mea- 
surable space. A measure m on a is said to be absolutely continuous with respect to 
a measure n on a, in symbols, m ~ n ,  iff E6(I and n(E) =0 imply re(E)=0. 

Let 7~/ denote the set of all finite non-negative measures on a. Evidently ( ~ ,  ~ )  
is a quasi-ordered set without antisymmetry, since m ~ a m ,  ~ m ~ m  but m d ~ m  if 
is a positive real number different from 1. Given m and n in ~ .  Different least upper 
bounds of m and n can be constructed by two distinct methods. 

Method I I .A .  Let m and n be any two elements of ~ .  Since (m+n)(E.)=O iff 
m(E)=O=n(E), it can be verified easily that  m + n  is a 1.u.b. of m and n, that  any 
linear combination am +bn, with positive coefficients a and b, is also a 1.u.b. of m 
and n. 

Method I I -B.  Given m and n in ~ .  Clearly m ~ m + n  and n ~ m + n .  Put m+n=v.  
By Radon-Nikodym Theorem, there exist non-negative finite-valued measurable 
functions / and g such that  for every E 6 a 

m(E)= fE/d~, and n(F~)= fEgd,. 
Let h(x) = sup {/(x), g(x)}. Then the measure fl defined on a by 

#(E) = fE M~, vE 6 a 
I 

is finite, since h(x) ~</(x) + g(x). 

I t  is wen-known that  fl(E) =0  implies h =0  v - a . e .  on E. This in turn implies/--0 
v - a . e ,  on E, g = 0  v - a . e ,  on E, and re(E)=O=n(E). Therefore m~fl ,  n ~ f l  and fl 
is an upper bound of m and n. I t  follows from 0 <.h(x) <.fix) +g(x) that  f l ~ m  + n. In  
Method ILA,  we have shown that  m + n  is a 1.u.b. of m and n. Hence fl must be equi- 
valent to re+n, i.e., f l ~ m + n  and m+n ~f l .  Later on an example will show that  fl 
is not equal to any positive linear combination of m and n. 

We shall also give two methods of constructing a g.l.b, for m and n. 

Method II.C. By one version of the Lebesgue Decomposition Theorem [1], for 
any two finite measures m and n on the same a-algebra a, there exists a decomposi- 
tion of X into mutually disjoint measurable sets A, B, C such that  m A =0, n s=0 ;  
mv~nc, nc~mc; where mA is a measure on a defined by mA(E)=m(A N E) for all 
E E a, nB, mc and nc are defined similarly. 

Define a finite measure t on a by t ( E ) = ( m + n ) ( C  fi E) for all EEa. If m(E)=0, 
then mc(E) =nc(E) =0  and t (E)=(m+n)(C N E) =0. Hence t ~ m ,  similarly ~ n .  
Suppose that  1 is a lower bound of m and n. Also suppose I(F)=(m+n)(C N F ) = 0 ,  
then m(C N F) =0  =n(C A F). This implies l(C N F) =0.  Furthermore, 

~(F) = Z(F\C) +~(C n P) 

= ~[(F\c) n A]+Z[(F\C) n B]. 

I t  follows from mA =0  that  m[(F~C) n A] =0.  This in turn implies I[(F~C) N A] =0, 
since l ~ m. Similarly, we have l[ ( F ~ C) N B] = O. Therefore, l( F) = l[ ( F \ C) N A ] + 
l[(F~C) N B] =0, l < t ,  and t is a g.l.b, of m and n. 
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Method II-D. Our second method will show its importance in some later result. 
Given finite measures m and n, then by  Radon-Nikodym Theorem, there exist non- 
negative finite-valued measurable functions / and g such that  for every E fi a. 

m(E)= f /dv and n(E)-- fsgdv 

where v = m  + n .  Let  k(x)= inf {/(x), g(x)}, then the measure ? defined on tI by  

is obviously finite. If  re(E) =0, then ] =0  v - a . e ,  on E and k = 0  v - a . e ,  on E. Hence 
?(E)  = j'~ kdv = 0  and 7 ~ m .  Similarly, ? ~ n .  To prove ? is actually a g.l.b, of m and n, 
let 1 be a lower bound of m and n. Then l~m, l~n and l~m+n=~,. Apply Radon- 
Nikodym Theorem a gain, to infer the existence of some non-negative measurable 
function i such that  for every E q a 

1(E) = f~ ~'dv. 

If ?(E)=~Ekdv=O, then k = 0  v - a . e ,  on E, i.e., v{xeE]k(x)>O}=O. Since k(x)= 

E]/(x)>O}, H={xEEIg(x)>O }. Evidently (7 and H are measurable sets with 
v(G N H) =0,i.e.,  (m+n)(H N (7) =0.This  gives m(G f3 H) =0  =n(G N H) and l(G f3 H) = 
0, since l~m. Noticing (7 N H c E and 

= ( a n  H) U [ E \ ( G  n H)] = (G n H) ~ ( E \ G )  U ( E \ H ) ,  

we have ~(E) < ~(a n H) +Z(E\a)  + ~ ( ~ \ H )  

< z (E \a )  + ~(E\H).  

By the construction of G and H, / (x)=0  VxEE\G, g(x)=O VxEE~H. Consequ- 
ently, m(E~G)=O=n(E\H)=O. In  turn, I(E~G)=O=I(E~H), since l~m and 
l~n. Therefore, l(E) =0, l~?, and ? is a g.l.b, of m and n. 

So we know tha t  ( ~ ,  ~ ) is a pseudo-lattice. Let  us define an equivalence relation 
N on )7l by  setting m,~n iff m~n  and n~m. Then by Theorem 3, )71/~ together 
with the identification ordering ~ / N  relative to the quotient mapping is a lattice. 

I t  should be pointed out tha t  in [5] there is an indirect proof of the existence of 
the 1.u.b. and the g.l.b, of any two elements ~ and ~ in ~ / N .  

In  our proof, we have both m+n and fl, fl(E)=SE sup {/, g} dr, as least upper 
bounds for m and n. We are ready to give a negative answer to the following natural 
question: Is fl always a positive linear combination of m and n? 

Let  X= [0, 1], a = the  set of all Lebesgue measurable sets on [0, 1]. Let  measures 
m and n be defined by  

re (E)= f(x)  dx ¥ E E a  where ~o(x)= ½-N<x~<l 
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where 

~(~)= ~<~<~ 

~ < x < l .  

By  Radon-Nikodym Theorem, there  exist  non-negat ive measurable functions / and 
g such t ha t  

m(E)= [ / d v  ¥E6~ where ~ = m + n ,  

I 

JE 

n(E)= f g&, ¥EEa. 

Let h=sup{/,g}, fl(E)=SEhd~ ¥E6a. On (~,1], ~)(x)=0, n([~,l])=SEi.~v2dx=O. 
On the  other  hand,  n([] ,  1]) = ~c~.1] gdv = 0 hence g = 0 v - a.e. on [~, 1]. This gives 
rise to  h= sup{/ ,  9 } = /  v - a . e ,  on [~, 1]. B y  a similar argument  we obta in  t ha t  
h = gv - a.e. on [0, ]] .  Suppose fl = am + bn for  some a/> 0, b i> 0. fl([0, ~]) = am([0, ~]) + 
bn([0, ~]), i.e., ~ = (a/6) + (b/3), 2 = a + 2b. On the other  hand,  fl([~, 1]) = am([~, 1]) + 
bn([~, 1]), i.e., ~ = (a/3). We have a =  1, b = ½. Bu t  ~([0, ½]) = am(J0, ½]) + bn([0, ½]), 
i.e., fl([0, ½]) = (b/6) --- ~c0. ½] hdu >/~t0. ½]gdv = n([0, ½]) = ~. Therefore,  b/> 1 which con- 
t radic ts  b = ½. This shows t ha t  fl 4= am + bn for  any  a t> 0, b >/0. 

HI.  Given a measurable space (X, a) together  with a finite measure # on a. (X, a,/z) 
is called a measure space. Le t  ~ be the  set of all non-negat ive integrable functions / 
such tha t  Sx/d/a< ~ .  A binary relat ion t> on :~ is defined by />~g  iff E6a a n d / = 0  
] z - a . e .  on E imply g=O ~u-a.e. on E. Clearly (~,  >/) is a quasi-ordered set without  
an t i symmetry .  We have two ways to  prove t ha t  (:~, >~) is actual ly a pseudo-lattice, 
one is suggested by  Theorem 1, the  other  is probably  more constructive. 

Method III-A. Let  7 / b e  the set of all finite measures which are absolutely con- 
t inuous with respect  to  the given measure 1~ on a, i.e., ~ = {mira, finite measure, 
m~ju}.  Then  as a direct consequence Of the results in II ,  (7/, ~ )  is also a pseudo- 
lattice. A funct ion (I) f rom :~ to 7 / c a n  be defined as follows: 

(I)(/) = m r  where m r is such a measure on a t ha t  m1(E)=~/d[~ ¥EEc. B y  Radon-  
Nikodym Theorem, ¢ is an onto function. I f  we can prove t ha t  >/ on :~ coincides 
with the  induced quasi-ordering >~¢, t hen  by  Theorem 1, (:~,/> ) is a pseudo-lattice. 
~irst,  / ~> g implies / ~> ~ g, since t> v is stronger than  >7. Secondly, assume / 7> ¢ !t, then  
b y  the  construct ion of the induced quasi-ordering ¢(g)=ma~mr=¢(/). If /=0 
/ ~ - a . e .  on E, then  mr (g  ) =SE/d/~=O. And g - - -0 /~ -a . e ,  on E is implied by  mg~mp 
Therefore,  //>!7. The  induced quasi-ordering >/~ is exact ly  the  same as ~> and (:~, >/) 
is a pseudo-lattice. Fur thermore ,  it  is easy to  see t ha t  g~</ i f f  m a i m  r. This shows 
t h a t  (I) is bi-order-preserving. Consequently,  P o ¢  is surjective and bi-order-pre- 
serving, where P is the  quot ient  mapping from ~/ onto ~ / N .  By  Corollary 2 to  
Theorem 6, the  latt ice (:~/N, >~/~) is isomorphic to  the latt ice ( ~ / ~ ,  ~ / - - ) .  We 
also have the following commuta t ive  diagram: 
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(:~, < ) >> (~, <)  

P 

(I)* (:~/~, < / ~ )  > >> ( ~ / ~ , < / ~ )  

Fig. 1 

Method III-B. To exhibit explicitly a 1.u.b. and a g.l.b, of any two elements / 
and 9 in ~,  we first prove the following 

Lemma. In (~ , />  ), //> 9 if/there exists a/inite-valued measurable/unction q) such 
that g =qD//~ -a.e. on X. 

Proof. The sufficiency is immediate. For necessity, suppose />~g. Define measures 
m and n by  

re(E) = | / d / ~  v E  e a 
dE 

n(E)= fEgd~ vEea.  

I t  is clear tha t  m~/~ and n~/~. l~urthermore, 9 </ impl ies  tha t  n~m~/a.  Under the 
condition n~m~/a,  a theorem on the Radon-Nikodym derivative [4] guarantees 
the existence of a non-negative finite-valued measurable function ~0 such tha t  9 = ~0/ 
/ z -a . e .  on X, where ~0 is such a function that  

n(E)= f ~odm ¥EEa .  

We shall now prove that  (~, >/) is a pseudo-lattice. Let  h(x) = sup {/(x), g(x)} for 
any two elements / and 9 in ~.  Evident ly h is in X. Using the fact tha t  h =0/~ - a . e .  
on E, EEa, i f f /=0/~-a.e ,  on E and 9=0 p - a . e ,  on E, we can easily verify tha t  
h is a l.u.b, of / and g. Let  k(x) -- in/{/(x), 9(x)}, then b is in ~. If  / =0/~ - a . e .  on E, 
EEa,  then b = 0 / z - a . e ,  on E. Thus/>~b. Similarly, g~>k. Suppose that  ~" is a lower 
bound of / and g, i.e., /~>j and g~>j. By  the preceding Lemma there exist finite- 
valued measurable functions ~ and ~0 such that  

=q~//z-a.e. on X and 

~" -- ~xj/~-a.e.  on X. 

If  k = 0 / ~ - a . e .  on E, t h e n / = 0 / z - a . e ,  on E or 9 = 0  p - a - e -  on E. This implies ~ =0  
/~-a .e .  on E. Hence/c>~" and k is a g.l.b, of / and 9- We complete the proof that  
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(:~, >/) is a pseudo-lattice. One final remark: Let  us look back at the proof of Theo- 
rem 1. Under suitable assumptions, we proved that  (X, ~>I) together with the quasi- 
ordering ~>r induced by / is a pseudo-lattice. We found that  c is a sup of a, b in X 
where c has the property that / (c)  is a sup of/(a) and/(b) in Y. Therefore, it is not 
surprising at  all that  Method II-B and Method III-B are closely related by the follow- 
ing equality: 

fl(E) = f , sup {/, g} d~' = f Ehd~, = ¢,,( ~) = Cso~.cr.o> (E). 

IV. Let X be a Hansdorff, completely regular topological space. (/, Y) is called a 
Hausdorff compaetification of X iff 

(1) Y is a compact Hausdorff space. 

(2) / :  X-~ Y is a homeomorphism onto /(X) and /(X) is dense in Y. 

Let K ( X ) =  ~(/, Y)l (], :Y) a Hausdorff compactification of X~. A binary relation /> 
on K(X)  can be defined as follows: (/, Y) >/(g, Z) iff there exists a continuous sur- 
jection h: :Y-~Z such that  g=ho]  i.e., the following diagram is commutative. 

Z < <  Y 
h 

Fig. 2 

I t  can be proved easily that  (K(X), >~) is a quasi-ordered set without antisymmetry 
[8]. Using Stone-~ech compactification and assuming that  X is a locally compact 
Hausdorff space, we are able to prove that  (K(X), >1) is a pseudo-lattice. If  (], Y) 
is a Hausdorff compactification of X, we frequently identify X with/(X) c Y. Now 
let (i, fl(X)) be the Stone-~ech compactification of X, where i : X ~ f l (X )  is the in- 
clusion mapping. Then we have the following well-known facts [3]: 

(1) For each compact Hausdorff space Y and each continuous ] : X-~ Y, there exists 
a unique continuous ill: fl(X)---)- Y such that  / =fl/oi. 

(2) fl(X) is the "largest" ttausdorff compactification of X:  if Z is any ttausdorff 
compactifieation of X, then Z is a quotient space of fl(X). 

Given (/, Y) and (g, Z) in K(X). In  order to find a 1.u.b. of (/, Y) and (g, Z), an 
equivalence relation on fiX is suggested by fact (2). Define an equivalence relation 

on f i x  as follows: aNb iff ill(a)=ill(b) and flg(a)=flg(b), where fl/:flX--~ Y and 
fig: f lX~*.Z are the continuous surjections extended by f and g respectively. Let 
qg:flX.-'.-~-flX/~ be the quotient mapping onto the quotient space. Let h:X-+flX/,.., 
be defined by h-=q~oi. We claim that  (h, fiX/,..) is a 1.u.b. of (/, Y) and (g, Z). Clearly, 
(h, fiX/,-., ) is a compactification of X. That fiX/,.., is a Hausdorff space is implied 
by X being a Hausdorff locally compact space. There exists a surjection ~ such that  
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f[=v2o~, since f t : ~ X - ~  Y is compatible with the equivalence relation ~ on fX.  
(i.e., f / i s  relation-preserving.) A theorem on quotient space [7] implies tha t  V is 
continuous. Furthermore, ~=#]oi  =Vo~0oi=~voh. Thus (h, f X / N  )>1 (/, Y). Similarly, 
we can prove (h, #X/N)>~ (g, Z). The following commutative diagrams may  illy- 
strate how (h,/~X/~ ) is constructed. 

i 
~x < 

s ~ 
t 

i 
x >~x 

y ~ ~ ~Xl ~ 
v 

Fig. 3 

To prove that  (h, fX/ , - , )  is a 1.u.b. of (f, Y) and (g, Z), assume that  (], U) is a 
Hausdorff eompaetification of X such that  (?', U)/> (/, Y) and (], U)~>(g, Z). Then 
there exist continuous surjeetious ~: U-++ Y and ~: U--++Z such that  f = ~ o ]  and 
g=~/o i. We now define a mapping ¢: U---,.+fX/N as follows: ~(fli(x))=~(x). I t  fol- 
lows from /=~o~', g=~o]  and a theorem on quotient space [7] that  ~ is well- 
defined and continuous. Therefore, h = ~ o i  =~ofl]oi  =~o I and (], U) t> (h, fX/,,~) 
which complete the proof tha t  (h, fiX~,,,) is a 1.u.b. of (t, Y) and (g, Z). The fol- 
lowing commutative diagram may indicate what was going on. 

x i > f ix  fli >> u 

Fig. 4 

The construction of a g.l.b, of (f, Y) and (g, Z) is quite similar to the preceding 
work. The equivalence relation is defined this time by a ~ b iff f](a) =f/(b) or Big(a) = 
fg(b). 

We omit the rest of the details of the proof that  (K(X), >1) is a pseudo-lattice. 
On the other hand, we raise the following open question: Is (E(X), ~>) a pseudo- 
lattice? Where E(X) is the collection of all extensions of a given topological space 
X and ~> is defined similarly as in (K(X), >~). By an extension of X we mean 
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a pair (f, Y) such tha t  (1) Y is a topological space; (2) f : X ~  Y is a homeomorphism 
onto f(X) and f(X) is dense in Y. 

V. Given two quasi-ordered sets ( X , ~ )  and (Y, >~). Let ~ be the set of all func- 
tions f from X to Y. A binary relation >/ on :~ is defined by setting f ~> g iff for every 
a in X there exists b in X such that  a>~b and f(a) >~/(b). Apparently, (~,/> ) is a quasi- 
ordered set. 

Following this general idea, we are able to ask lots of open questions. For example, 
let :~ be the set of all real-valued functions defined on the real line R which has the 
usual order. Open question: Is (:~, >/) a pseudo-lattice? We give a related result in 
the following 

T h e o r e m  7. Sul~pose that (X, >~ ) is a given quasi-ordered set. Let :~ be the set of all 
real.valued functions defined on X,  and suppose that the quasi-ordering >~ on :~ is de- 
fined by setting ]>~g i f / /or  every x in X there exists y in X such that x>~y and f(x)>1 
/(y). Finally, let 

~ = I  /E~ l fo r  every x in X there exists t in X such that t ~ x  and t 
f(t)= inf~,,x/(y) 

Then 

(1) (~, >1) is a pseudo.lattice with k(x) = rain (/(x), g(x)} as a g.l.b, of / and g; with 
h(x) = max (inf~,,~ /(y), infy,(x g(y) } as a l.u.b, o] / and g. 

(2) For every f E ~, there is one and only one q~ e ~ such that /<. ~ <~ f and q) is a mono. 
tone decreasing function. 

Proof. Let f and g be in ~. Define function/¢ by b(x)=rain {f(x), g(x)}. If  x is in 
X, then there exist r and t in X such that  r ~ x ,  t ~ x ,  f(r)= inf~,,~/(y) and g(t)= 
inf~,,~ g(y). To prove b E ~, we consider the following: 

Case 1: /(r) <g(t). We claim k(r)=infy,~x b(y). Since r ~ x ,  inf~,,~ ]c(y) <~b(r). On 
the other hand, y ~ x  implies /(r) <~g(t) <~g(y) and f(r) </(y). This gives b(r) ~< b(y), 
since k(y) = rain (f(y), g(y)}. Thus/c(r) ~ infy,~x k(y). We have/c(r) =infy,,x b(y). 

Case 2: f(r)~g(t). We claim k(t)= inf~,,~ k(y). We omit the proof which can be 
carried out as similarly as in Case 1. 

Combine Case (1) and Case (2), to infer that  b is an element of ~. Ftu~hermore, 
it is clear that /¢ is a g.l.b, of f and g. Now let function h be defined by h(x)- -max 
{inf~(,x f(y), inf~,,~ g(y)}. We shall now prove that  h is monotone decreasing and 
therefore an element of ~. If  z ~ x ,  then 

in/f(y) <~ in//(y) <. h(z) 
y~X ll((Z 

and in/g(y) <~ in/g(y) <<. h(z). 
y((3¢ y(~2 

Thus z ~ x  implies h(x) <~h(z), i.e., h is monotone decreasing. Further, inf~((x h(y) = 
h(x), hence h is an element of ~. 

If x is in X, then there csists t in X such tha t  t ~ x  and/( t )  = infy,,x/(y). Thus 
f(t) ~ h(x) and ] ~< h. Similarly, g ~ h. Let ] be an upper bound of f and g. Then for every 
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x in X there exist y and z in X such that  y ~ x ,  f(y) ~<j(x), z ~ x  and g(z) <~j(x). This 
implies 

inf /(u) < I(Y) < j(z) 
'M(gX 

and inf g(u) ~< g(z) < j(x). 
lt~(x 

Therefore, h(x)~<j@). Since x<~x, whe have h~<j and h is a 1.u.b. of [ and g. 
To prove part (2) of our theorem, for every t in ~ let function ~ be defined by 

q~(x) = inf,,~ ](y). Clearly, ~ is monotone decreasing and is therefore an element of 
~. I t  follows from the definition of {~ and > / tha t  ]~>~v~>t. To prove the uniqueness 
of such a function, let v/he a monotone decreasing function in ~ such that  ] ~>v 2 I>[. 
By the transitivity of the quasi-ordering 1>, we have ~ >~  >t ~. If  x is in X, then there 
exists y in X such that  z>>y and ~(z) >~q(y). Also, there exists z in X such that  x>>z 
and q(x) ~>~(z). Since q and ~ are monotone decreasing, ~(x) >~(z) ~>~(x) and ~(x)/> 
~(y) ~>T(x). Therefore for every x in X q(x) =~/(x) and q =v2. 

One last remark: Let an equivalence relation ~ be defined on ~ by setting [ ~ g 
iff [~>g and g~>/. Then by Corollary 2 to Theorem 6, (~/.,,, >1/,.,) is a lattice which 
is isomorphic to (E, t>) where E is the set of all monotone decreasing functions in 

and (E, >/) is a lattice under the same quasi-ordering (in E it becomes a partial 
ordering) defined on {~. 

Northern Illinois University, De Kalb, ILL. 60 115, USA (L H.) and Bucknell Unegersity, 
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