Pseudo-lattices: Theory and applications

By IH-CHING HSU and H. L. BENTLEY

The notion of a partially ordered set is well-known. It is also known that a quasi-ordered (pre-ordered) set is a system consisting of a set X and a binary relation \geq satisfying the following laws:

 P_1 : For all x in X, $x \ge x$ (Reflexive); P_2 : If $x \ge y$ and $y \ge z$, then $x \ge z$ (Transitive).

In a quasi-ordered set if a least upper bound or a greatest lower bound of some subset exists it may not exist uniquely, since we do not necessarily have antisymmetry for the quasi-ordering. This motivates the following:

Definition 1. A quasi-ordered set is called a pseudo-lattice iff any two elements have at least one least upper bound and at least one greatest lower bound.

Before we construct new pseudo-lattices from given ones, we need more definitions:

Definition 2. Let \geq and \gg be two quasi-orderings on a given set X, then \gg is stronger than \geq iff $x \geq y$ implies $x \gg y$.

Definition 3. Let (X, \ge) and (Y, \ge) be two quasi-ordered sets, $f: X \to Y$ a mapping. f is order-preserving iff $a \ge b$ implies $f(a) \ge f(b)$. f is called bi-order-preserving iff

- (1) $a \ge b$ implies $f(a) \ge f(b)$ and
- (2) $f(a) \ge f(\bar{b})$ implies $a \ge b$.

Definition 4. Two quasi-ordered sets (X, \ge) and (Y, \ge) are called isomorphic iff there exists a bijective bi-order-preserving mapping f of X onto Y, i.e., iff there exists a one-to-one-mapping f of X onto Y such that $f(a) \ge f(b)$ iff $a \ge b$.

Theorem 1. Let X be a set, (Y,\gg) a quasi-ordered set and $f:X\to Y$ a mapping. Then there exists a strongest quasi-ordering \geq_f on X under which f preserves ordering. Furthermore, (X,\geq_f) is a pseudo-lattice if (Y,\gg) is a pseudo-lattice and f an onto mapping.

Proof A binary relation \geq_f on X is defined by setting $a \geq_f b$ iff $f(a) \gg_f(b)$. Evidently \geq_f is a quasi-ordering on X under which f preserves ordering. Suppose f preserves ordering under a quasi-ordering \geq on X. Then $a \geq b$ implies $f(a) \gg_f(b)$. This in turn implies $a \geq_f b$. Thus \geq_f is the strongest quasi-ordering on X under which f preserves ordering.

Suppose (Y,\gg) is a pseudo-lattice and f is an onto mapping. Let a and b be any two elements in X. Let y be a l.u.b. of f(a) and f(b), then there exists c in X such that f(c) = y and c is a l.u.b. of a and b. Since $f(c) \gg f(a)$ and $f(c) \gg f(b)$, c is an upper bound of a and b. Suppose d is an upper bound of a and b. Then $f(d) \gg f(a)$, $f(d) \gg f(b)$ and $f(d) \gg f(c)$, because f(c) is a l.u.b. of f(a) and f(b). This implies $d \ge f(a)$ and f(a) is therefore a l.u.b. of f(a) and f(a) a

Definition 5. Let X be a set, Y a quasi-ordered set and $f: X \rightarrow Y$ a mapping. The strongest quasi-ordering on X under which f preserves ordering is called the quasi-ordering induced by f.

Theorem 2. Let X, Y, Z be quasi-ordered sets and $f: X \rightarrow Y$, $g: Y \rightarrow Z$ be mappings. Suppose further that Y has the induced quasi-ordering relative to g. Then f is order-preserving iff $g \circ f$ is order-preserving.

Proof. Suppose that f preserves ordering, then $g \circ f$ preserves ordering, since g preserves ordering. Conversely suppose that $g \circ f$ preserves ordering. Assume that a and b are in X with $a \ge b$. Then $(g \circ f)(a) \ge (g \circ f)(b)$, i.e., $g(f(a)) \ge g(f(b))$. Hence $f(a) \ge f(b)$, since Y has the quasi-ordering induced by g. Thus f preserves ordering.

Corollary 1. Suppose that Y has the induced quasi-ordering relative to $g: Y \rightarrow Z$. Then the quasi-ordering induced on X by $f: X \rightarrow Y$ coincides with the quasi-ordering induced by $g \circ f$.

Proof. This corollary follows directly from Theorem 2.

More theorems on constructing quasi-ordered sets will be given after the following

Definition 6. Given quasi-ordered sets (Z, \ge) and (W, \gg) . Let $F: Z \to W$ be an onto mapping. F^{-1} , as a set function, is called orderpreserving iff $x \ge y$ whenever $x \in F^{-1}(u) \equiv F^{-1}(\{u\})$, $y \in F^{-1}(v) \equiv F^{-1}(\{v\})$ and $u \gg v$.

Theorem 3. Let (Z, \ge) be a quasi-ordered set and $F: Z \to W$ an onto mapping. Then there exists a strongest quasi-ordering \ge on W under which F^{-1} preserves ordering. Further, (W, \ge) is a lattice if $(1)(Z, \ge)$ is a pseudo-lattice and (2) F(x) = F(y) iff $x \ge y$ and $y \ge x$.

Proof. Define a binary relation \gg on W by setting $u\gg v$ iff $x\geqslant y$ whenever $x\in F^{-1}(u)$ and $y\in F^{-1}(v)$. Clearly \gg is a quasi-ordering on W under which F^{-1} preserves ordering. Suppose F^{-1} preserves ordering under a quasi-ordering \gg_0 on W. If $u\gg_0 v$, then $x\geqslant y$ whenever $x\in F^{-1}(u)$ and $y\in F^{-1}(v)$. This implies $u\gg v$. Thus \gg is the strongest quasi-ordering on W under which F^{-1} preserves ordering.

We shall now prove that (W,\gg) is a lattice under the further assumptions (1) and (2). First, we notice that the antisymmetry of \gg follows from (2). Let u and v be any two elements in W. Then there exist x and y in Z such that F(x) = u and F(y) = v. There also exists z, a l.u.b. of x and y, since (Z, \geq) is a pseudo-lattice. Let t = F(z), then clearly $t \gg u$, $t \gg v$ and t is an upper bound of u and v. Suppose w is also an upper bound of u and v. Then $\zeta \geqslant x$, $\zeta \geqslant y$ and $\zeta \geqslant z$ whenever $\zeta \in F^{-1}(w)$ and $z \in F^{-1}(t)$. Therefore, $F(\zeta) = w \gg t = F(z)$ and t is the l.u.b. of u and v. Similarly we can prove the unique existence of the g.l.b. of u and v. Thus (W,\gg) is a lattice.

Definition 7. Let (Z, \ge) be a quansi-ordered set, W a set and $F: Z \rightarrow W$ an onto mapping. The strongest quasi-ordering on W under which F^{-1} preserves ordering is called the identification quasi-ordering relative to F. If W is considered to have this quasi-ordering, then F is called an identification mapping.

Theorem 4. Let Z, W, S be quasi-ordered sets, $F:Z \rightarrow W$ an identification mapping, and $G:W \rightarrow S$ a mapping. Then G^{-1} preserves ordering iff $(G \circ F)^{-1}$ preserves ordering.

Proof. Let s and t be in S with $s \ge t$. Let $u \in G^{-1}(s)$ and let $v \in G^{-1}(t)$. Then $u \ge v$ iff $\forall x, x \in F^{-1}(u)$; $\forall y, y \in F^{-1}(v), x \ge y$. That is to say G^{-1} preserves ordering iff $\forall x, x \in F^{-1}(G^{-1}(s)), \forall y, y \in F^{-1}(G^{-1}(t)), x \ge y$, whenever $s \ge t$. That means G^{-1} preserves ordering if and only if $(G \circ F)^{-1}$ preserves ordering.

Corollary 1. Let Z be a quasi-ordered set and $F:Z \to W$ be an identification mapping. The identification quasi-ordering on S relative to $G:W \to S$ coincides with the identification quasi-ordering relative to $G \circ F$.

Proof. The proof follows directly from Theorem 4.

Theorem 5. Suppose that (X, \ge) is a pseudo-lattice and Y is a set. Let $F: X \to Y$ be an onto mapping such that F(a) = F(b) iff $a \ge b$ and $b \ge a$. Then the lattice (Y, \ge) is isomorphic to the lattice $(X/\sim, \ge/\sim)$ where \ge is the identification partial ordering on Y relative to F, X/\sim is the quotient set of X over the equivalence relation \sim , $a \sim b$ iff $a \ge b$ and $b \ge a$, and $\ge |\sim$ is the identification partial ordering on X/\sim relative to the quotient mapping from X onto X/\sim .

Proof. By Theorem 3, it is clear that both (Y,\gg) and $(X/\sim, \gg/\sim)$ are lattices. To prove that they are isomorphic, define $\overline{F}:X/\sim\to Y$ by setting $\overline{F}(\bar{a})=F(a)$. It is well-known that \overline{F} is a bijection .Apply Theorem 4 twice, to infer that both \overline{F} and \overline{F}^{-1} preserve ordering. Therefore, \overline{F} is a lattice isomorphism.

To trace the correlation between the induced quasi-ordering and the identification quasi-ordering, we present the following:

Theorem 6. A quasi-ordered set (X, \ge) is a pseudo-lattice iff there exists a surjective bi-order-preserving mapping F from (X, \ge) onto some lattice (Y, \gg) .

Proof. For necessity, the quotient lattice $(X/\sim, \geqslant/\sim)$ and the quotient mapping $\varphi \equiv F \colon X \to X/\sim$ will apparently serve the purpose. To prove the sufficiency, assume F is a surjective bi-order-preserving mapping from (X, \geqslant) onto some lattice (Y, \geqslant) . If we can prove that the quasi-ordering \geqslant on X coincides with the quasi-ordering induced by F, then by Theorem 1, we know that (X, \geqslant) is a pseudo-lattice. Let \geqslant_F be the induced quasi-ordering on Y relative to F, then clearly $a \geqslant b$ implies $a \geqslant_F b$, since \geqslant_F is stronger than \geqslant . Suppose $a \geqslant_F b$, then $F(a) \geqslant F(b)$. This implies $a \geqslant b$, since F is bi-order-preserving. Thus \geqslant_F coincides with \geqslant and the theorem is proved.

Corollary 1. A quasi-ordered set (X, \ge) is a lattice iff there exists a bijective bi-order-preserving mapping F from (X, \ge) onto some lattice (Y, \gg) .

Corollary 2. Suppose that there exists a surjective bi-order-preserving mapping F from a quasi-ordered set (X, \ge) onto some lattice (Y, \gg) . Then there exists a unique

lattice-isomorphism $G:(X/\sim, \geqslant/\sim)\rightarrow(Y, \gg)$ such that $F=G\circ\varphi$, where φ is the quotient mapping from (X, \geqslant) onto $(X/\sim, \geqslant/\sim)$ and \sim is such an equivalence relation that $a\sim b$ iff $a\geqslant b$ and $b\geqslant a$.

Proof. Define $G: (X/\sim, \geqslant/\sim) \to (Y, \gg)$ by $G(\bar{a}) = F(a)$. It is easy to verify that G is a well-defined onto function. If $G(\bar{a}) = G(\bar{b})$, then $F(a) \gg F(b)$ and $F(a) \ll F(b)$. The bi-order-preserving of F implies $a \geqslant b$, $b \geqslant a$ and $\bar{a} = \bar{b}$. Therefore, G is one-to-one. We shall now prove that \gg on Y coincides with \gg_F , the identification quasi-ordering on Y relative to F. Since \gg_F is stronger than \gg , $F(a) \gg F(b)$ implies $F(a) \gg_F F(b)$. Suppose $F(a) \gg_F F(b)$, then $a \geqslant b$ and in turn $F(a) \gg F(b)$. That means \gg coincides with the identification quasi-ordering \gg_F . Apply Theorem 4, to infer that both G and G^{-1} preserve ordering. G is therefore a lattice-isomorphism. The uniqueness of such an isomorphism follows directly from the requirement $F = G \circ \varphi$.

Applications

I. Let \mathcal{F} be the set of all non-negative real-valued functions on a non-empty set X. Define a binary relation \geq on \mathcal{F} by setting $f \geq g$ iff g(x) = 0 implies that f(x) = 0. Clearly \geq is a quasi-ordering which does not have the antisymmetry property. Notice that f and any positive constant multiple af have the same zeros but $af \neq f$ if $a \neq 1$. To prove (\mathcal{F}, \geq) is actually a pseudo-lattice, we give two different methods.

Method I-A. Denote the collection of all subsets of X by 2^x . It is well-known that under set inclusion 2^x is a lattice, therefore, a pseudo-lattice. Define function $\varphi \colon \mathcal{F} \to 2^x$ by setting $\varphi(f) = \{x \mid x \in X, f(x) = 0\}$. Clearly φ is an onto function. It is also clear that the quasi-ordering induced by φ coincides with \geqslant . By Theorem 1, (\mathcal{F}, \geqslant) is therefore a pseudo-lattice.

Method I-B. Let f and g be any two elements in \mathcal{F} . Define functions h and j by setting respectively

$$h(x) = \begin{cases} 0, & \text{if} \quad f(x)g(x) = 0 \\ (f+g)(x), & \text{if} \quad f(x)g(x) \neq 0. \end{cases}$$

$$j(x) = \begin{cases} 0, & \text{if} \quad f(x)g(x) = 0 \\ P, & \text{for those } x\text{'s elsewhere, where} \\ P \text{ is a positive constant.} \end{cases}$$

It can be verified easily that both h and j are least upper bounds of f and g. On the other hand, define k by setting

$$k(x) = \begin{cases} 0, & \text{if } f(x) = 0 \text{ and } g(x) = 0 \\ Q, & \text{for those } x\text{'s elsewhere, where } Q \text{ is a positive constant.} \end{cases}$$

We can easily verify that both f+g and k are greatest lower bounds of f and g. Therefore, (\mathcal{F}, \geq) is a pseudo-lattice. By Corollary 2 to Theorem 6, the quotient lattice $(\mathcal{F}/\sim, \geq/\sim)$ is isomorphic to the lattice $(2^x, \cup, \cap)$.

II. A non-empty set X together with a σ -algebra $\mathfrak a$ of subsets of X is called a measurable space. A measure m on $\mathfrak a$ is said to be absolutely continuous with respect to a measure n on $\mathfrak a$, in symbols, $m \ll n$, iff $E \in \mathfrak a$ and n(E) = 0 imply m(E) = 0.

Let \mathcal{M} denote the set of all finite non-negative measures on \mathfrak{a} . Evidently (\mathcal{M}, \ll) is a quasi-ordered set without antisymmetry, since $m \ll \alpha m$, $\alpha m \ll m$ but $m + \alpha m$ if α is a positive real number different from 1. Given m and n in \mathcal{M} . Different least upper bounds of m and n can be constructed by two distinct methods.

Method II-A. Let m and n be any two elements of \mathfrak{M} . Since (m+n)(E)=0 iff m(E)=0=n(E), it can be verified easily that m+n is a l.u.b. of m and n, that any linear combination am+bn, with positive coefficients a and b, is also a l.u.b. of m and n.

Method II-B. Given m and n in \mathfrak{M} . Clearly $m \ll m+n$ and $n \ll m+n$. Put m+n=v. By Radon-Nikodym Theorem, there exist non-negative finite-valued measurable functions f and g such that for every $E \in \mathfrak{a}$

$$m(E) = \int_{E} f dv$$
 and $n(E) = \int_{E} g dv$.

Let $h(x) = \sup \{f(x), g(x)\}$. Then the measure β defined on α by

$$\beta(E) = \int_E h d\nu \quad \forall E \in \alpha$$

is finite, since $h(x) \leq f(x) + g(x)$.

It is well-known that $\beta(E) = 0$ implies h = 0 $\nu - a.e.$ on E. This in turn implies f = 0 $\nu - a.e.$ on E, g = 0 $\nu - a.e.$ on E, and m(E) = 0 = n(E). Therefore $m \ll \beta$, $n \ll \beta$ and β is an upper bound of m and n. It follows from $0 \leq h(x) \leq f(x) + g(x)$ that $\beta \ll m + n$. In Method II-A, we have shown that m + n is a l.u.b. of m and n. Hence β must be equivalent to m + n, i.e., $\beta \ll m + n$ and $m + n \ll \beta$. Later on an example will show that β is not equal to any positive linear combination of m and n.

We shall also give two methods of constructing a g.l.b. for m and n.

Method II-C. By one version of the Lebesgue Decomposition Theorem [1], for any two finite measures m and n on the same σ -algebra \mathfrak{a} , there exists a decomposition of X into mutually disjoint measurable sets A, B, C such that $m_A = 0$, $n_B = 0$; $m_C \ll n_C$, $n_C \ll m_C$; where m_A is a measure on \mathfrak{a} defined by $m_A(E) = m(A \cap E)$ for all $E \in \mathfrak{a}$, n_B , m_C and n_C are defined similarly.

Define a finite measure λ on a by $\lambda(E) = (m+n)(C \cap E)$ for all $E \in \mathfrak{a}$. If m(E) = 0, then $m_C(E) = n_C(E) = 0$ and $\lambda(E) = (m+n)(C \cap E) = 0$. Hence $\lambda \ll m$, similarly $\lambda \ll n$. Suppose that l is a lower bound of m and n. Also suppose $\lambda(F) = (m+n)(C \cap F) = 0$, then $m(C \cap F) = 0 = n(C \cap F)$. This implies $l(C \cap F) = 0$. Furthermore,

$$\begin{split} l(F) &= l(F \setminus C) + l(C \cap F) \\ &= l[(F \setminus C) \cap A] + l[(F \setminus C) \cap B]. \end{split}$$

It follows from $m_A = 0$ that $m[(F \setminus C) \cap A] = 0$. This in turn implies $l[(F \setminus C) \cap A] = 0$, since $l \leqslant m$. Similarly, we have $l[(F \setminus C) \cap B] = 0$. Therefore, $l(F) = l[(F \setminus C) \cap A] + l[(F \setminus C) \cap B] = 0$, $l \leqslant \lambda$, and λ is a g.l.b. of m and n.

Method II-D. Our second method will show its importance in some later result. Given finite measures m and n, then by Radon-Nikodym Theorem, there exist nonnegative finite-valued measurable functions f and g such that for every $E \in \mathfrak{a}$.

$$m(E) = \int_{E} f d\nu$$
 and $n(E) = \int_{E} g d\nu$

where v = m + n. Let $k(x) = \inf \{ f(x), g(x) \}$, then the measure γ defined on α by

$$\gamma(E) = \int_{E} k d\nu \quad \forall E \in \mathfrak{a}$$

is obviously finite. If m(E) = 0, then f = 0 ν -a.e. on E and k = 0 ν -a.e. on E. Hence $\gamma(E) = \int_E k d\nu = 0$ and $\gamma \ll m$. Similarly, $\gamma \ll n$. To prove γ is actually a g.l.b. of m and n, let l be a lower bound of m and n. Then $l \ll m$, $l \ll n$ and $l \ll m + n = \nu$. Apply Radon-Nikodym Theorem a gain, to infer the existence of some non-negative measurable function j such that for every $E \in \mathfrak{a}$

$$l(E) = \int_{\mathbb{R}} j d\nu.$$

If $\gamma(E) = \int_E k dv = 0$, then k = 0 $\nu - \text{a.e.}$ on E, i.e., $\nu\{x \in E \mid k(x) > 0\} = 0$. Since $k(x) = \inf\{f(x), g(x)\}, \{x \in E \mid k(x) > 0\} = \{x \in E \mid f(x) > 0\} \cap \{x \in E \mid g(x) > 0\}$. Put $G = \{x \in E \mid f(x) > 0\}$, $H = \{x \in E \mid g(x) > 0\}$. Evidently G and H are measurable sets with $\nu(G \cap H) = 0$, i.e., $(m+n)(H \cap G) = 0$. This gives $m(G \cap H) = 0 = n(G \cap H)$ and $l(G \cap H) = 0$, since $l \ll m$. Noticing $G \cap H \subset E$ and

$$E = (G \cap H) \cup [E \setminus (G \cap H)] = (G \cap H) \cup (E \setminus G) \cup (E \setminus H),$$

we have

$$l(E) \leq l(G \cap H) + l(E \setminus G) + l(E \setminus H)$$

$$\leq l(E \setminus G) + l(E \setminus H).$$

By the construction of G and H, f(x) = 0 $\forall x \in E \setminus G$, g(x) = 0 $\forall x \in E \setminus H$. Consequently, $m(E \setminus G) = 0 = n(E \setminus H) = 0$. In turn, $l(E \setminus G) = 0 = l(E \setminus H)$, since $l \ll m$ and $l \ll n$. Therefore, l(E) = 0, $l \ll \gamma$, and γ is a g.l.b. of m and n.

So we know that (\mathfrak{M}, \ll) is a pseudo-lattice. Let us define an equivalence relation \sim on \mathfrak{M} by setting $m \sim n$ iff $m \ll n$ and $n \ll m$. Then by Theorem 3, \mathfrak{M}/\sim together with the identification ordering \ll/\sim relative to the quotient mapping is a lattice.

It should be pointed out that in [5] there is an indirect proof of the existence of the l.u.b. and the g.l.b. of any two elements \bar{m} and \bar{n} in M/\sim .

In our proof, we have both m+n and β , $\beta(E) = \int_E \sup \{f, g\} d\nu$, as least upper bounds for m and n. We are ready to give a negative answer to the following natural question: Is β always a positive linear combination of m and n?

Let X = [0, 1], a =the set of all Lebesgue measurable sets on [0, 1]. Let measures m and n be defined by

$$m(E) = \int_{E} \varphi(x) \, dx \quad \forall E \in \mathfrak{a} \quad \text{where} \quad \varphi(x) = \begin{cases} 0 & 0 \leqslant x < \frac{1}{2} \\ 1 & \frac{1}{2} \leqslant x \leqslant 1 \end{cases}$$

 $n(E) = \int_E \psi(x) dx \quad \forall E \in \mathfrak{a}$ where

$$\psi(x) = \begin{cases} 0 & 0 \leqslant x < \frac{1}{3} \\ 1 & \frac{1}{3} \leqslant x \leqslant \frac{2}{3} \\ 0 & \frac{2}{3} < x \leqslant 1. \end{cases}$$

By Radon-Nikodym Theorem, there exist non-negative measurable functions f and g such that

$$m(E) = \int_{E} f d\nu \quad \forall E \in \alpha \quad \text{where} \quad \nu = m + n,$$

$$n(E) = \int_{E} g d\nu \quad \forall E \in \alpha.$$

Let $h=\sup\{f,g\},\ \beta(E)=\int_E h dv\ \forall E\in\mathfrak{a}.$ On $(\frac{2}{3},1],\ \psi(x)=0,\ n([\frac{2}{3},1])=\int_{[\frac{3}{4},1]}\psi dx=0.$ On the other hand, $n([\frac{2}{3},1])=\int_{[\frac{3}{4},1]}g dv=0$ hence $g=0\ v-a.e.$ on $[\frac{2}{3},1].$ This gives rise to $h=\sup\{f,g\}=f\ v-a.e.$ on $[\frac{2}{3},1].$ By a similar argument we obtain that h=gv-a.e. on $[0,\frac{2}{3}].$ Suppose $\beta=am+bn$ for some $a\geqslant 0,b\geqslant 0.$ $\beta([0,\frac{2}{3}])=am([0,\frac{2}{3}])+bn([0,\frac{2}{3}]),i.e.,\frac{1}{3}=(a/6)+(b/3),\ 2=a+2b.$ On the other hand, $\beta([\frac{2}{3},1])=am([\frac{2}{3},1])+bn([\frac{2}{3},1]),i.e.,\frac{1}{3}=(a/3).$ We have $a=1,\ b=\frac{1}{2}.$ But $\beta([0,\frac{1}{2}])=am([0,\frac{1}{2}])+bn([0,\frac{1}{2}]),i.e.,\ \beta([0,\frac{1}{2}])=(b/6)=\int_{[0,\frac{1}{4}]}h dv\geqslant \int_{[0,\frac{1}{4}]}g dv=n([0,\frac{1}{2}])=\frac{1}{6}.$ Therefore, $b\geqslant 1$ which contradicts $b=\frac{1}{2}.$ This shows that $\beta\neq am+bn$ for any $a\geqslant 0,\ b\geqslant 0.$

III. Given a measurable space (X,\mathfrak{a}) together with a finite measure μ on \mathfrak{a} . (X,\mathfrak{a},μ) is called a measure space. Let \mathfrak{X} be the set of all non-negative integrable functions f such that $\int_X f d\mu < \infty$. A binary relation \geqslant on \mathfrak{X} is defined by $f \geqslant g$ iff $E \in \mathfrak{a}$ and f = 0 μ —a.e. on E imply g = 0 μ —a.e. on E. Clearly $(\mathfrak{X}, \geqslant)$ is a quasi-ordered set without antisymmetry. We have two ways to prove that $(\mathfrak{X}, \geqslant)$ is actually a pseudo-lattice, one is suggested by Theorem 1, the other is probably more constructive.

Method III-A. Let \mathcal{N} be the set of all finite measures which are absolutely continuous with respect to the given measure μ on \mathfrak{a} , i.e., $\mathcal{N} = \{m \mid m$, finite measure, $m \ll \mu\}$. Then as a direct consequence of the results in II, (\mathcal{N}, \ll) is also a pseudo-lattice. A function Φ from \mathcal{X} to \mathcal{N} can be defined as follows:

 $\Phi(f) = m_f$ where m_f is such a measure on a that $m_f(E) = \int_E f d\mu \ \forall E \in a$. By Radon-Nikodym Theorem, Φ is an onto function. If we can prove that \geqslant on \mathcal{X} coincides with the induced quasi-ordering \geqslant_{Φ} , then by Theorem 1, (\mathcal{X}, \geqslant) is a pseudo-lattice. First, $f \geqslant g$ implies $f \geqslant_{\Phi} g$, since \geqslant_{Φ} is stronger than \geqslant . Secondly, assume $f \geqslant_{\Phi} g$, then by the construction of the induced quasi-ordering $\Phi(g) = m_g \ll m_f = \Phi(f)$. If f = 0 μ -a.e. on E, then $m_f(E) = \int_E f d\mu = 0$. And g = 0 μ -a.e. on E is implied by $m_g \ll m_f$. Therefore, $f \geqslant g$. The induced quasi-ordering \geqslant_{Φ} is exactly the same as \geqslant and (\mathcal{X}, \geqslant) is a pseudo-lattice. Furthermore, it is easy to see that $g \leqslant f$ iff $m_g \ll m_f$. This shows that Φ is bi-order-preserving. Consequently, $P \circ \Phi$ is surjective and bi-order-preserving, where P is the quotient mapping from \mathcal{N} onto \mathcal{N}/\sim . By Corollary 2 to Theorem 6, the lattice $(\mathcal{X}/\sim, \geqslant/\sim)$ is isomorphic to the lattice $(\mathcal{N}/\sim, \ll/\sim)$. We also have the following commutative diagram:

Method III-B. To exhibit explicitly a l.u.b. and a g.l.b. of any two elements f and g in \mathcal{X} , we first prove the following

Lemma. In (\mathfrak{X}, \geq) , $f \geq g$ iff there exists a finite-valued measurable function φ such that $g = \varphi f \mu - a.e.$ on X.

Proof. The sufficiency is immediate. For necessity, suppose $f \ge g$. Define measures m and n by

$$m(E) = \int_{E} f d\mu \quad \forall E \in \mathfrak{a}$$

$$n(E) = \int_{E} g d\mu \quad \forall E \in \mathfrak{a}.$$

It is clear that $m \ll \mu$ and $n \ll \mu$. Furthermore, $g \ll f$ implies that $n \ll m \ll \mu$. Under the condition $n \ll m \ll \mu$, a theorem on the Radon-Nikodym derivative [4] guarantees the existence of a non-negative finite-valued measurable function φ such that $g = \varphi f$ $\mu - \text{a.e.}$ on X, where φ is such a function that

$$n(E) = \int_{E} \varphi dm \quad \forall E \in \mathfrak{a}.$$

We shall now prove that (\mathfrak{X}, \geq) is a pseudo-lattice. Let $h(x) = \sup \{f(x), g(x)\}$ for any two elements f and g in \mathfrak{X} . Evidently h is in \mathfrak{X} . Using the fact that h = 0 μ —a.e. on E, $E \in \mathfrak{a}$, iff f = 0 μ —a.e. on E and g = 0 μ —a.e. on E, we can easily verify that h is a l.u.b. of f and g. Let $k(x) = \inf \{f(x), g(x)\}$, then k is in \mathfrak{X} . If f = 0 μ —a.e. on E, $E \in \mathfrak{a}$, then k = 0 μ —a.e. on E. Thus $f \geq k$. Similarly, $g \geq k$. Suppose that j is a lower bound of f and g, i.e., $f \geq j$ and $g \geq j$. By the preceding Lemma there exist finite-valued measurable functions φ and ψ such that

$$j = \varphi f \mu - \text{a.e. on } X$$
 and $j = \psi g \mu - \text{a.e. on } X$.

If k=0 μ -a.e. on E, then j=0 μ -a.e. on E or g=0 μ -a.e. on E. This implies j=0 μ -a.e. on E. Hence $k \ge j$ and k is a g.l.b. of f and g. We complete the proof that

 (\mathcal{X}, \geq) is a pseudo-lattice. One final remark: Let us look back at the proof of Theorem 1. Under suitable assumptions, we proved that (X, \geq_f) together with the quasi-ordering \geq_f induced by f is a pseudo-lattice. We found that c is a sup of a, b in X where c has the property that f(c) is a sup of f(a) and f(b) in Y. Therefore, it is not surprising at all that Method II-B and Method III-B are closely related by the following equality:

$$\beta(E) = \int_{E} \sup \{f, g\} \, d\nu = \int_{E} h d\nu = \Phi_{h}(E) = \Phi_{\sup \{f, g\}}(E).$$

IV. Let X be a Hausdorff, completely regular topological space. (f, Y) is called a Hausdorff compactification of X iff

- (1) Y is a compact Hausdorff space.
- (2) $f: X \to Y$ is a homeomorphism onto f(X) and f(X) is dense in Y.

Let $K(X) = \{(f, Y) | (f, Y) \text{ a Hausdorff compactification of } X\}$. A binary relation \geq on K(X) can be defined as follows: $(f, Y) \geq (g, Z)$ iff there exists a continuous surjection $h: Y \rightarrow Z$ such that $g = h \circ f$ i.e., the following diagram is commutative.

It can be proved easily that $(K(X), \ge)$ is a quasi-ordered set without antisymmetry [8]. Using Stone-Čech compactification and assuming that X is a locally compact Hausdorff space, we are able to prove that $(K(X), \ge)$ is a pseudo-lattice. If (f, Y) is a Hausdorff compactification of X, we frequently identify X with $f(X) \subseteq Y$. Now let $(i, \beta(X))$ be the Stone-Čech compactification of X, where $i: X \to \beta(X)$ is the inclusion mapping. Then we have the following well-known facts [3]:

- (1) For each compact Hausdorff space Y and each continuous $f: X \to Y$, there exists a unique continuous $\beta f: \beta(X) \to Y$ such that $f = \beta f \circ i$.
- (2) $\beta(X)$ is the "largest" Hausdorff compactification of X: if Z is any Hausdorff compactification of X, then Z is a quotient space of $\beta(X)$.

Given (f, Y) and (g, Z) in K(X). In order to find a l.u.b. of (f, Y) and (g, Z), an equivalence relation on βX is suggested by fact (2). Define an equivalence relation \sim on βX as follows: $a \sim b$ iff $\beta f(a) = \beta f(b)$ and $\beta g(a) = \beta g(b)$, where $\beta f: \beta X \to Y$ and $\beta g: \beta X \to Z$ are the continuous surjections extended by f and g respectively. Let $\varphi: \beta X \to \beta X/\sim$ be the quotient mapping onto the quotient space. Let $h: X \to \beta X/\sim$ be defined by $h = \varphi \circ i$. We claim that $(h, \beta X/\sim)$ is a l.u.b. of (f, Y) and (g, Z). Clearly, $(h, \beta X/\sim)$ is a compactification of X. That $\beta X/\sim$ is a Hausdorff space is implied by X being a Hausdorff locally compact space. There exists a surjection φ such that

 $\beta f = \psi \circ \varphi$, since $\beta f : \beta X \to Y$ is compatible with the equivalence relation \sim on βX . (i.e., βf is relation-preserving.) A theorem on quotient space [7] implies that ψ is continuous. Furthermore, $f = \beta f \circ i = \psi \circ \varphi \circ i = \psi \circ h$. Thus $(h, \beta X/\sim) \geq (f, Y)$. Similarly, we can prove $(h, \beta X/\sim) \geq (g, Z)$. The following commutative diagrams may illy-strate how $(h, \beta X/\sim)$ is constructed.

Fig. 3

To prove that $(h, \beta X/\sim)$ is a l.u.b. of (f, Y) and (g, Z), assume that (j, U) is a Hausdorff compactification of X such that $(j, U) \geqslant (f, Y)$ and $(j, U) \geqslant (g, Z)$. Then there exist continuous surjections $\xi \colon U \to Y$ and $\eta \colon U \to Z$ such that $f = \xi \circ j$ and $g = \eta \circ j$. We now define a mapping $\zeta \colon U \to \beta X/\sim$ as follows: $\zeta(\beta j(x)) = \varphi(x)$. It follows from $f = \xi \circ j$, $g = \eta \circ j$ and a theorem on quotient space [7] that ζ is well-defined and continuous. Therefore, $h = \varphi \circ i = \zeta \circ \beta j \circ i = \zeta \circ j$ and $(j, U) \geqslant (h, \beta X/\sim)$ which complete the proof that $(h, \beta X/\sim)$ is a l.u.b. of (f, Y) and (g, Z). The following commutative diagram may indicate what was going on.

The construction of a g.l.b. of (f, Y) and (g, Z) is quite similar to the preceding work. The equivalence relation is defined this time by $a \sim b$ iff $\beta f(a) = \beta f(b)$ or $\beta g(a) = \beta g(b)$.

We omit the rest of the details of the proof that $(K(X), \geq)$ is a pseudo-lattice. On the other hand, we raise the following open question: Is $(E(X), \geq)$ a pseudo-lattice? Where E(X) is the collection of all extensions of a given topological space X and \geq is defined similarly as in $(K(X), \geq)$. By an extension of X we mean

a pair (f, Y) such that (1) Y is a topological space; (2) $f: X \to Y$ is a homeomorphism onto f(X) and f(X) is dense in Y.

V. Given two quasi-ordered sets (X,\gg) and (Y,\geqslant) . Let $\mathcal F$ be the set of all functions f from X to Y. A binary relation \geqslant on $\mathcal F$ is defined by setting $f\geqslant g$ iff for every a in X there exists b in X such that $a\gg b$ and $f(a)\geqslant f(b)$. Apparently, $(\mathcal F,\geqslant)$ is a quasi-ordered set.

Following this general idea, we are able to ask lots of open questions. For example, let \mathcal{F} be the set of all real-valued functions defined on the real line R which has the usual order. Open question: Is (\mathcal{F}, \geq) a pseudo-lattice? We give a related result in the following

Theorem 7. Suppose that (X, \gg) is a given quasi-ordered set. Let $\mathcal F$ be the set of all real-valued functions defined on X, and suppose that the quasi-ordering \geqslant on $\mathcal F$ is defined by setting $f \geqslant g$ iff for every x in X there exists y in X such that $x \gg y$ and $f(x) \geqslant f(y)$. Finally, let

$$\mathcal{G} = \left\{ f \in \mathcal{F} \middle| \begin{array}{l} \text{for every } x \text{ in } X \text{ there exists } t \text{ in } X \text{ such that } t \ll x \text{ and} \\ f(t) = \inf_{y \ll x} f(y) \end{array} \right\}.$$

Then

- (1) (G, \ge) is a pseudo-lattice with $k(x) = \min\{f(x), g(x)\}\$ as a g.l.b. of f and g; with $h(x) = \max\{\inf_{y \in x} f(y), \inf_{y \in x} g(y)\}\$ as a l.u.b. of f and g.
- (2) For every $f \in G$, there is one and only one $\varphi \in G$ such that $f \leq \varphi \leq f$ and φ is a monotone decreasing function.

Proof. Let f and g be in G. Define function k by $k(x) = \min\{f(x), g(x)\}$. If x is in X, then there exist r and t in X such that $r \ll x$, $t \ll x$, $f(r) = \inf_{y \ll x} f(y)$ and $g(t) = \inf_{y \ll x} g(y)$. To prove $k \in G$, we consider the following:

Case 1: $f(r) \leq g(t)$. We claim $k(r) = \inf_{y \ll x} k(y)$. Since $r \ll x$, $\inf_{y \ll x} k(y) \leq k(r)$. On the other hand, $y \ll x$ implies $f(r) \leq g(t) \leq g(y)$ and $f(r) \leq f(y)$. This gives $k(r) \leq k(y)$, since $k(y) = \min \{ f(y), g(y) \}$. Thus $k(r) \leq \inf_{y \ll x} k(y)$. We have $k(r) = \inf_{y \ll x} k(y)$.

Case 2: $f(r) \ge g(t)$. We claim $k(t) = \inf_{y \le x} k(y)$. We omit the proof which can be carried out as similarly as in Case 1.

Combine Case (1) and Case (2), to infer that k is an element of G. Furthermore, it is clear that k is a g.l.b. of f and g. Now let function h be defined by $h(x) = \max \{\inf_{y \ll x} f(y), \inf_{y \ll x} g(y)\}$. We shall now prove that h is monotone decreasing and therefore an element of G. If $z \ll x$, then

$$\inf_{y \ll x} f(y) \leqslant \inf_{y \ll z} f(y) \leqslant h(z)$$

and

$$\inf_{y \ll x} g(y) \leqslant \inf_{y \ll z} g(y) \leqslant h(z).$$

Thus $z \ll x$ implies $h(x) \leq h(z)$, i.e., h is monotone decreasing. Further, $\inf_{y \ll x} h(y) = h(x)$, hence h is an element of G.

If x is in X, then there exists t in X such that $t \ll x$ and $f(t) = \inf_{y \ll x} f(y)$. Thus $f(t) \leq h(x)$ and $f \leq h$. Similarly, $g \leq h$. Let j be an upper bound of f and g. Then for every

x in X there exist y and z in X such that $y \ll x$, $f(y) \leq j(x)$, $z \ll x$ and $g(z) \leq j(x)$. This implies

$$\inf_{u \leqslant x} f(u) \leqslant f(y) \leqslant j(x)$$

and

$$\inf_{u \ll x} g(u) \leqslant g(z) \leqslant j(x).$$

Therefore, $h(x) \le j(x)$. Since $x \le x$, whe have $h \le j$ and h is a l.u.b. of f and g.

To prove part (2) of our theorem, for every f in G let function φ be defined by $\varphi(x)=\inf_{y\ll x}f(y)$. Clearly, φ is monotone decreasing and is therefore an element of G. It follows from the definition of G and φ that $f\geqslant \varphi\geqslant f$. To prove the uniqueness of such a function, let φ be a monotone decreasing function in G such that $f\geqslant \psi\geqslant f$. By the transitivity of the quasi-ordering φ , we have $\varphi\geqslant \psi\geqslant \varphi$. If x is in X, then there exists y in X such that $x\geqslant y$ and $\varphi(x)\geqslant \varphi(y)$. Also, there exists z in X such that $x\gg z$ and $\varphi(x)\geqslant \psi(z)$. Since φ and φ are monotone decreasing, $\varphi(x)\geqslant \psi(z)\geqslant \psi(x)$ and $\varphi(x)\geqslant \varphi(y)\geqslant \varphi(x)$. Therefore for every x in X $\varphi(x)=\psi(x)$ and $\varphi=\psi$.

One last remark: Let an equivalence relation \sim be defined on G by setting $f \sim g$ iff $f \geqslant g$ and $g \geqslant f$. Then by Corollary 2 to Theorem 6, $(G/\sim, \geqslant/\sim)$ is a lattice which is isomorphic to (\mathcal{L}, \geqslant) where \mathcal{L} is the set of all monotone decreasing functions in G and (\mathcal{L}, \geqslant) is a lattice under the same quasi-ordering (in \mathcal{L} it becomes a partial ordering) defined on G.

Northern Illinois University, De Kalb, ILL. 60 115, USA (I. H.) and Bucknell University, Lewisburg, Pennsylvania 17837, USA (H. L. B.).

REFERENCES

- Berberian, S. K., Measure and Integration, pp. 158-159. The Macmillan Co., New York, 1965.
- 2. BIRKHOFF, G., Lattice Theory (3rd ed.). Am. Math. Soc., Providence, R. I. (1967).
- 3. Dugundji, J., Topology, p. 243. Allyn and Bacon, Inc., Boston, 1965.
- Halmos, P. R., Measure Theory, pp. 128-129, p. 133. D. Van Nostrand Co., Princeton, N. J., 1950.
- Halmos, P. R., Introduction to Hilbert Space (2nd ed.), pp. 79-80. Chelsea Publishing Co., New York, 1957.
- 6. Hsv, I., Pseudo-lattices whith Applications, Dissertation. The University of New Mexico, 1969.
- 7. Kelley, J. L., General Topology, p. 95. D. Van Nostrand Co., Princeton, N. J., 1955.
- Thron, W. J., Topological Structures, pp. 135-136. Holt, Rinehart and Winston, New York, 1966.

Tryckt den 18 februari 1971