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Summary 

Nonsymmetric correspondence analysis is a model meant for the analysis of the de- 
pendence in a two-way contingengy table, and is an alternative to correspondence 
analysis. Correspondence analysis is based on the decomposition of Pearson's qrd_ 
index. 

Nonsymmetric correspondence analysis is based on the decomposition of 
Goodman-Kruskal's r-index for predictability. 

In this paper, we approach nonsymmetric correspondence analysis as a statistical 
model based on a probability distribution. We provide algorithms for the maximum 
likelihood and the least-squares estimation with linear constraints upon model para- 
meters. 

The nonsymmetric correspondence analysis model has many properties that can be 
useful for prediction analysis in contingency tables. Predictability measures are intro- 
duced to identify the categories of the response variable that can be best predicted, as 
well as the categories of the explanatory variable having the highest predictability 
power. We describe the interpretation of model parameters in two examples. In the 
end, we discuss the relations of nonsymmetric correspondence analysis with other 
reduced-rank models. 
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1. Introduction 

Canonical models can be useful for studying the relation between the row 
variable and the column variable in a two-way contingency table. Different 
types of models can be used depending on the type of relation between the 
row and the column variables. The case in which both variables play a sym- 
metric role has received much attention, under such names as canonical 
analysis (Kendall and Stuart, 1979; Gilula and Haberman, 1986), corres- 
pondence analysis (Greenacre, 1984; Nishisato, 1980; Escoufier, 1988), and 
the RC canonical correlation model (Goodman, 1985, 1986). However, if 
variables play an asymmetric role, and the column variable depends on the 
row variable, so-called nonsymmetric correspondence analysis (Lauro and 
D'Ambra, 1984; D'Ambra and Lauro, 1989) seems more appropriate. 

Nonsymmetric analysis of contingency tables has a long tradition in the 
Italian statistical research (see, for example, Gini, 1912; for more recent 
overviews see D'Ambra and Lauro, 1992; Siciliano, 1992). So far nonsym- 
metric correspondence analysis has been studied mainly as an exploratory 
method for the decomposition of contingency tables (Lauro and D'Ambra, 
1984; D'Ambra and Lauro, 1989; Lauro and Siciliano, 1989; Siciliano, Lauro 
and Mooijaart, 1990). In this paper, we approach nonsymmetric correspond- 
ence analysis as a statistical model based on a probability distribution. 

Let us first introduce the nonsymmetric correspondence analysis model. 
Let ~rij be the expected probability corresponding to cell (i, ]) in a contingency 
table with I rows and J columns (i = 1 . . . . .  1; j = 1, . . . ,  J ) .  T h e  usual dot 
notation is used for summation: ~ ~rq = :ri.. For the case where the column 
variable depends on the row variable, nonsymmetric correspondence analysis 
provides the following reduced-rank decomposition of the matrix with prob- 
abilities: 

Yri/Jl~i. = Jg.j + .r AmrimCjm, (1) 

for m = 1, . . . ,  M <~ M *  = rn in ( I  - 1, J - 1 ) ,  and A1/>... I> AM I> 0. The score 
parameters rim and Cim satisfy the following centering and orthonormality 
conditions: 

~---~i rim~ri. = O, ~ Cjm = O, (2a) 

~---~i r i m r ~  * ari. = 6 , , ~ . ,  ~ cp,cp, , .  = from' ,  (2b) 
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where fro,,,, is Kronecker's delta. Decomposition (1) is due to Lauro and 
D'Ambra (1984). A probability matrix can always be decomposed with (1) if 
M = M * .  Equation (1) shows that nonsymmetric correspondence analysis is 
concerned with the conditional probabilities ~ri/~ri., and the departure from 
the column margin ~r# is modeled as a sum of M products of the form 
;~,,,r~cjm. When the column variable is independent of the row variable then 
J'gi/Jgi. = 3~.j. 

Nonsymmetric correspondence analysis is motivated by the relation of the 
values X~ with the predictability index r proposed by Goodman and Kruskal 
(1954). We give attention to this index, because it plays a crucial role in 
nonsymmetric correspondence analysis. The r index measures the relative 
increase in probability of correctly predicting the column variable when 
knowledge about the level of the row variable is used. Explicitly, the r index 
is defined as 

(3) 

The numerator of (3) gives the variance of the conditional probabilities 
around the average ~4, so it specifies the variance of the prediction of the 
column variable when we know the level of the row variable. The denomina- 
tor gives the variance of the prediction of the column variable if we have no 
information about the level of the row variable. It is clear that 0 ~< r ~< 1, with 
r = 0 in case of independence and r = 1 in case of perfect prediction (Good- 
man and Kruskal, 1954). 

The relation between the values Z,, and the r index is 

#I - =  ',2j - = 2., x,d. (4) 

This shows that nonsymmetric correspondence analysis decomposes the pre- 
dictability as measured by the z" index into a number of dimensions. The 
proportion of r decomposed in each dimension is given by ;~m z. 

The maximum likelihood estimate of the r index under product- 
multinomial sampling is equivalent to the R 2 measure of association for the 
analysis of variance of categorical data proposed by Light and Margolin 
(1971). The R z measure is the ratio of the 'between' and 'total' variation (the 
latter being proposed by Gini, 1912; also, see Margolin and Light, 1974), 
thus giving the 'explained' variation of the column variable attributable to the 
row variable. 
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The nonsymmetric correspondence analysis is closely related to the RC 
canonical correlation model (Gilula and Haber, 1986; Goodman, 1986). The 
two models differ in the weighting systems of row and column scores. In 
nonsymmetric correspondence analysis, the scores of the response variable 
are weighted in a different way from the scores of the explanatory variable. 
This is motivated by a geometrical consideration by Lauro and D'Ambra 
(1984). Consequently, nonsymmetric correspndence analysis decomposes the 
predicability r index whereas canonical analysis decomposes ~ coefficient of 
contingency. Gilula and Haberman (1988) also consider asymmetric versions 
of canonical analysis by simply defining the model (1) for the conditional 
probabilities with the same weighting systems as in canonicalanalysis. But 
their approach leads to a decomposition of the ~ contingency coefficient 
which is used for symmetric relationships and so it is not a nonsymmetric 
analysis. 

This distinct between canonical analysis and nonsymmetric correspond- 
ence analysis justifies further interest in nonsymmetric correspondence 
analysis as a model. 

Whereas linear restrictions upon canonical scores have been considered in 
canonical analysis (Gilula and Haberman, 1988; Wasserman and Faust, 1989; 
B6ckenholt and B6ckenholt, 1990; Takane, Yanai and Mayekawa, 1991), 
they have not been considered in nonsymmetric correspondence analysis so 
far. In this paper, we describe how to incorporate linear constraints in non- 
symmetric correspondence analysis under both the maximum likelihood 
method and the least-squares criterion. Using the maximum likelihood 
method allows to test restricted versions of model (1) if certain assumptions 
about the observations are fulfilled. In section 2 we provide an algorithm for 
maximum likelihood estimation of nonsymmetric correspondence analysis 
that is different from algorithms used in similar estimation situations, such as 
those used for canonical analysis (Goodman, 1985; Gilula and Haberman, 
1986). In section 3 we give a least-squares estimation procedure to impose 
linear constraints upon row and column scores. 

Apart from the relation to the r index, nonsymmetric correspondence 
analysis has many more aspects that make it a useful model for prediction 
analysis (for a general introduction to prediction analysis we refer to Hildeb- 
rand, Laing and Rosenthal, 1977). This is discussed in detail in section 4 
where we introduce some predictability measures and we show the inter- 
pretation of model parameters in terms of prediction analysis in two exam- 
ples. 

We end with a comparison of nonsymmetric correspondence analysis with 
canonical analysis and latent class analysis, finding that in important classes 
of applications they are equivalent. 
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2. Maximum likelihood estimation with linear constraints 

There is more than one way to estimate the nonsymmetric correspondence 
analysis model by maximum likelihood. We propose an estimation procedure 
with two parts. In the first part an iterative algorithm (Siciliano, Mooijaart 
and van der Heijden, 1990; Siciliano and Moojaart, 1991) gives unique esti- 
mates of a rank M matrix with elements z i /=  (:ri/:ti. - :r.i). In the cycles of 
the algorithm we use parameters x/m and Yjm that satisfy zij = ~--------:~,, XimYjm. 
These parameters satisfy centering conditions similar to (2a) as the model 
parameters rim and Cjm, but do not follow orthonormality conditions. Thus 
Xim and Yjm are not identified, whereas the scalar product z i /=  ~,m XirAYjm is 
identified. Experience with the algorithm in many examples has shown that 
convergence will be reached without imposing constraints during the itera- 
tion process. In the second part of the estimation procedure, after converg- 
ence, we identify the estimates of the parameters Am, rim and Cjm from the 
estimated reduced-rank matrix zij using a generalized singular value decom- 
position. 

The algorithm minimizes the objective function F = - log  L,  where log L is 
the kernel of the loglikelihood under product multinomial sampling: 

Log L = ,~i~j  Pij log :ri/:ri. = Z, iZi  pij log(:~4 + z~,m XimYjrn), (5) 

where Pii are the observed proportions. Using the Lagrange multipliers 
method it can be proved that the maximum likelihood estimate of ~j  is equal 
to the observed margin P4" This simplifies the task of finding estimates for the 
parameters Xim and Yjm. The parameters are not estimated simultaneously, 
that is an alternating method is used. In the first step, the Xim are estimated 
for given Yjm scores, and then the Yim are estimated for given Xim scores. This 
process will be repeated until convergence has been reached. The first and 
second derivatives of F are 

aF/a . = (6a) 

aF/aYjl : - - '~ i  PijXil/ti], (6b) 

a'e/a(x,f = z j  e.yj?/ti!. (6c) 

 e/a(yj  2 = Z,  . : i2 / t i ! ,  (6d) 

for 1 = 1 . . . .  M, where tij = P4 + Z,,, XimYjm. The interesting point is that 
~F/~xiF3xi,1 = 0 for i 4: i', and that 02F/3yjlOyi,l --- 0 for j :/: j '  whereas 
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a2F/(aXil) 2 > 0 and O2F/(Oyfl)2 > O. This means that for each dimension m of 
the row parameters  and for each dimension m of the column paramete r s  the 
corresponding block-diagonal matrices of the Hessian are diagonal. Each 
block-diagonal matrix of  second derivatives is positive-definite since it is di- 
agonal with positive elements and thus a necessary condition for  the converg- 
ence is fulfilled. We can make  use of  this proper ty  by choosing a multi- 
dimensional Newton algorithm to est imate the parameters .  The  paramete rs  
of  each block are est imated alternatingly while the parameters  of  the other  
blocks remain fixed. By choosing each time another  block of pa ramete rs  to 
be est imated convergence to a (local) op t imum is guaranteed.  

Let  p be the column vector of one block of parameters  to ,be est imated.  
Each block of parameters  should satisfy centering conditions (2a) and even- 
tual linear restrictions. These side conditions are defined by the set of  equa- 
tions A ' p  = s, where the number  of  rows of the matrix A depend on the 
number  of  parameters  to be est imated,  and the number  of  columns of A is 
equal to the number  of  restrictions. Since the centering conditions (2a) 
should always be included, the first column of A consists of  unitary elements  
and the first e lement  of  s is equal to zero. The remaining columns of A and 
corresponding elements  of  s are fixed in such a way as to obtain linear restric- 
tions. 

Linear  restrictions often concern equality between two row/column scores 
for each dimension. This is used as a criterion to test collapsibility of  rows/ 
columns (see, for more  details, Breiger,  1981; Goodman ,  1981; Gilula, 1986; 
Gilula and Krieger,  1989). For  a restriction such as xi,,, = Xrm, for  
m -- 1 . . . .  , M, the matrix A has two columns of length I, column 1 consisting 
of ones and column 2 being zero except for elements  i and i '  that  are 1 and - 1 
respectively; s is a column vector with two zero elements.  

Another  type of restriction is that a row/column score is equal to zero for 
each dimension. This type of restrictions is used to test independence of the 
conditional probabilities of  a row/column. For  a restriction as xi, n = 0 for m = 
1 . . . .  , M, the first column of A consists of unitary elements,  and the second 
column is zero,  except for e lement  i which is one; s is a column vector  with 
two zero elements.  

A third and last important  type of restriction is that the row parameters  
and/or the column parameters  are equally spaced in a one-dimensional  
model.  We cannot restrict further dimensions in this way because the scores 
must  be or thonormal  due to (2b). With this type of restriction the interpreta-  
tion simplifies considerably: it can be tried out if the categories of  the row or 
the column variable follow some order  that is a priori known. Equal  spacing 
means that for instance the parameters  xit are known. In the algori thm each 
cycle then consists of  one step. 
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In iteration k let p(k) be the current estimate of p for which the appropriate 
restrictions hold, led qtk) be the search vector to be determined, and let o (k) 
be a step-size parameter .  A new estimate of p is found by 
p(k+l) = p(k) + o(k)q(k) .  Without loss of generality we fix o tk) = 1 although it 
can be reduced in case the function value increases or improper solutions are 
found. The search vector q(k) simply gives the direction in which the esti- 
mates of p(k) have to be improved. In iteration k an estimate p(k) for which 
the side conditions holds is found, so that A 'p  (k+~ = s iff A'q  (k) = 0. Using 
the Taylor expansion the function near the optimum can be written as 

F(p(k) + q(k)) = F(p(k)) + g(k),q(k) + (]/2)q(k),H(k)q(k), (7) 

where g(k) and H (k) are respectively the gradient vector and the Hessian mat- 
rix of F in the point p(k). The  procedure is now to find a q(k) which minimizes 
(7) under the side conditions A ' q  (k) = 0. By introducing a vector of Lagrange 
multipliers, the following function is minimized 

g(k)'q(k) + (1/2)q(k)'H(k)q(k) _ e,(k)'(A,q(k)), (8) 

where e '(k) is the column vector of Lagrange multipliers in the step k. In the 
optimum the first derivatives of (8) are equal to zero. As a result, the set of 
equations H(k)q (k) -- e'(k)A = _g(k) has to be solved together with the equa- 
tion A'q  (k) = 0. A solution for q(k) can be shown to be equal to 
q(k) = _W(k)  (H(k))-lg(k), where W (k) = I - (Hfk))-I A (  (A' (H(k))-I A ) - I  A ' .  
Because H (k) is diagonal the elements of q(k) can be easily written as 
(--gJk)/hs(k) + Ws (k)) for s = i or j ,  where gS k), hJ  k) and w~ (k) are the general 
terms of g(k), H(k) and W (k) respectively. Consequently,  the updating formula 
for the elements pjk+l)  of p(k+O includes the adjustment coefficient ws (k) 
that guarantees the side conditions to be satisfied for the step (k + 1). 

The algorithm requires an initial point from which a feasible search direc- 
tion can be computed.  Starting values of parameters which satisfy the side 
conditions and eventual linear restrictions can be the first M rescaled eigen- 
vectors of the constrained least-squares estimation of nonsyrnmetric corres- 
pondence analysis (see section 3). But for M < M* the approximation of the 
observed conditional proportions can be negative, in which case the loglikeli- 
hood function is not defined. A solution to this problem is to make the singu- 
lar values somewhat smaller in these instances. 

The algorithm described in this section is different from algorithms used in 
similar estimation situations, such as those used for canonical analysis. Good-  
man (1979, 1985) uses a unidimensional Newton approach for the estimation 
of  the parameters in the one-dimensional canonical model.  Gilula and 
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Haberman (1986; 1988) propose a scoring method for the canonical correla- 
tion model. The former is rather  simple although convergence of the proce- 
dure is slow. The latter method is more complicated but it has a higher con- 
vergence rate than Goodman 's  method.  The disadvantage of  the latter 
method is that in each step a (large) matrix has to be inverted. We propose a 
method which is a higher dimensional extension of the method used by 
Goodman that uses the fact that the matrices to be inverted are diagonal. 
This makes inverting a complete matrix not necessary. The difference with 
Goodman 's  algorithm is that we give an updating formula that includes an 
adjustment coefficient that guarantees the side conditions to be satisfied at 
each iteration. 

In the second stage of the estimation procedure,  we can identify the esti- 
mates of the parameters )-m, rim and Cjm from the estimated reduced-rank 
matrix zq by a suitable singular value decomposition. This is done as follows. 
Collect the estimates of the elements (~ri-r/~ri. - zr.i) into a matrix Z. Collect 
the estimates of the parameters xi,,, and Yjm in the matrices X and Y. Collect 
the estimates of the parameters rim and cp,, in the matrices R and C, the 
estimates of the parameters ~m in the diagonal matrix A, and the observed 
margins pi. in the diagonal matrix Dr. We aim to find that Z = RAC'  with the 
conditions in (2). This can be accomplished by taking the singular value de- 
composition 

Drl/2z = U/IV' ,  U'U = I, V'V = I, (9) 

and we find R as R = Dr-I/2U and C as C = V. This can be seen immediately 
by bringing Dr l/z to the right side of  equation (9). Then Z = Dr-1/2UAV ' = 
RAC' .  It follows that the conditions (2b) are satisfied since U'U = I = 
R'DrV2Drl /ZR = R'DrR. 

Although the columns of R and C are or thonormal  with respect to Dr and 
I, this is not imposed on the columns of X and Y to be used in the algorithm. 
This is not a problem for the linear restrictions that we can impose on model 
parameters.  That  is, we can impose such restrictions upon the parameters  X 
and Y, and then these restrictions will hold for R and C if we derive these 
from X and Y through (9). 

The goodnes s  of fit of  the model  (1) with only conditions (2) against the 
data can be assessed by the usual likelihood-ratio statistic G 2 (see for exam- 
ple Agresti, 1990) which is asymptotically x2-distributed with degrees of free- 
dom d f  = ( I  - M - 1 ) ( J  - M - 1) .  T h e  number  of degrees of f reedom in 
models (1) is equal to the difference between the number  of independent  
cells, being I ( J  - 1) ,  minus the number  of independent  parameters ,  being 
[ (J  - 1) + M ( !  - 1) + M ( J  - 1) + M - M ( M  + 1) 1. It is clear that when 
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M = M *  = m i n ( I  - 1 ) ( J  - 1 )  the model is saturated ( d r  = O) and when M --- 0 
(i.e. 3.,. = 0 for each m) there is statistical independence ( d r  = ( I  - 1 ) ( J  - 

1 ) ) .  

We can test model restrictions against the data by using the likelihood- 
ratio statistic G 2 with degrees of freedom d f  = [ ( I  - M - 1 ) ( J  - M - 1 )  + 

M ( s t  + s j ) ]  where st and sj are the number of restrictions upon row and 
column scores respectively. We can also assess the difference of the goodness 
of fit between two differently restricted models by using the conditional 
likelihood-ratio statistic (see for example Agresti, 1990). 

3. Least-squares estimation with linear constraints 

Nonsymmetric correspondence analysis has been initially introduced as a 
geometrical model to be used to represent an observed matrix graphically 
(Lauro and D'Ambra, 1984; D'Ambra and Lauro; Lauro and Siciliano, 
1989). A generalized singular value decomposition of the observed matrix 
with elements (Pi /Pi .  - P 4 )  in the metrics D, and I allows factorial representa- 
tions of row and column categories to be made. This is equivalent to (9) 
(where the estimates of the model parameters are now least-squares esti- 
mates). We can make M-dimensional graphical representation of the row 
points by using the rows of RA as coordinates, and for the column points by 
using the rows of CA as coordinates. These lower-dimensional representa- 
tions are optimal in the sense that I)rl/2Z is approximated in a least-squares 
sense by UAV' (compare with Escoufier, 1988). If all the dimensions are 
considered, the least-squares estimates of the scores obtained with this 
geometrical approach are identical to the maximum likelihood estimates for 
the saturated model. Of course, we can also make graphical representations 
using the maximum likelihood estimates for non-saturated models (Good- 
man, 1991). 

The main difference between the graphical representations made from 
least-squares estimates of expected probabilities and those made from max- 
imum likelihood estimates of expected probabilities is that in the latter case 
the dimensionality of the subspaces spanned by the clouds of points is chosen 
for M ~< M* = m i n ( I  - 1,  J - 1 )  so that it gives an acceptable fit to the 
observed proportions. Another difference is that maximum likelihood 
estimation allows to test the fit of restricted models where the restrictions 
concern the model parameters. 

Linear constraints on model parameters can be considered not only in the 
maximum likelihood estimation but also in the least-squares estimation. 
BOckenholt and BOckenholt (1990) have recently proposed a generalized 
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least-squares approach without using an iterative algorithm to incorporate 
linear constraints on the canonical scores of correspondence analysis. We use 
a similar approach in nonsymmetric correspondence analysis. Linear  con- 
straints can be defined as 

G ' R *  = 0,  H ' C *  = 0 ,  (10)  

where G has I rows and K columns, and H has J rows and L columns. The 
matrices G and H have rank respectively equal to K and L,  being K and L the 
number  of linear constraints upon row and column scores respectively. The 
estimates of the constrained row scores and column scores are collected in 
the matrices R* and C* respectively. These scores can be obtained from the 
singular value decomposition of 

{I -- Dr-1/2G(G'Dr-IG)-IG'Dr-I/2}Dr-1/ZZ{I - 

- H(H' I - I ) - IH  '} = M D ~ B ' ,  (11)  

with M'M = I = B'B, and D~ is a diagonal matrix with singular values in 
descending order.  The constrained scores are given by R* = Dr-V2M and 
C* = B. Note that the orthonormality conditions (2b) are satisfied since 
R*'DrR* = I. It can be shown that (11) is equivalent to (9) in the unrestricted 
case by setting G = Drl and H = I1 (where 1 is a unit vector).  

This procedure imposes the same constraints on the row and column scores 
of  each dimension. Another  procedure suggested by Bfckenho l t  and BOck- 
enholt (1990) can be used to define for each dimension a different set of 
linear constraints upon row and column scores. This can be done in nonsym- 
metric correspondence analysis in the following way. Suppose that we impose 
different constraints on the scores of the first singular value with respect to 
the scores of the second singular value. We apply initially the above proce- 
dure and we extract the orthonormalized row and column scores associated 
to the first singular value 3.1- Then we compute the rank-one reduced matrix 
Zt as 

Z l  = (I -- m l m ( ) D r - l / 2 Z ( I  --  b ib1 ' ) ,  (12) 

where m~ and b~ are the singular vectors corresponding to 3.1. The  matrix Z~ 
is substituted to the matrix Z in (11) and the new constraints are defined in 
the matrices G and H. These latter matrices are augmented by DrVZnh ' and bl  
respectively in order  to assure that the new scores are or thonormal ized .  In 
this way we extract the row and column scores by applying the (11) again. 
The procedure can be iterated when more dimensions are considered. 
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4. Parameter interpretation and prediction analysis 

Nonsymmetric correspondence analysis model has some properties that can 
be useful for prediction analysis, and we give some new results for the inter- 
pretation of model parameters.  If we consider the weighted average of the 
conditional probabilities :ri/~ri. for row i, where the weights are given by the 
column scores Cjm, using (2b), we find for m = 1, ..., M: 

~](;Tgi/Jgi.)Cjm -~ ~ ]  ~.l"C]m -]- ,~mrirn . (13) 

The left part ~-~j(~ri/ari.)cp,, of (13) can be interpreted as the predictability of  
the column variable attributed to the ith row category. When the column 
variable is n o t p r e d i c t e d  by the row category, :ti/:ri = :r j  so that 
~(:ri/_~ri.)cp,, = .?-,)~j cjm. As a result the first term on the right hand side of 
(13), ~,j ~Fjm, is a constant term that all rows have in common. The effect of  
the row category in the predictability of the column variable is measured by 
the second term of (13). The Am measures the increase in the predictability of 
the weighted average of the conditional probabilities given by the row categ- 
ory. In this respect, it can be interpreted as some type of regression coeffi- 
cient. 

The  row and column coordinates can be shown to be related to the predic- 
tability z-index as follows: 

Z(1 -- A~]~.f ) = ~ m  '~m 2 = "~i ~i. "~m(~mrim) 2 = "~--~i'~m(~mCjrn) 2. (14)  

Since the r-index is a measure for the predictability power of the row variable 
in a two-way table, and r is proportional to .~',,, Zm 2 through (4), (14) shows 
that we can partition this predictability power over the row categories, over  
the column categories, and over  dimensions. These relations allow us to de- 
fine the following predictability measures: 

pred(RJ = ~ri..~m(~mrim)2/ ~------~m ~.rn 2, 

pred(C~) = ,~m(,~mCjm)2/~m ~m 2, 

pred(Rim) = ~i. (~.mrim)2[.~m ~.m 2, 

pred(Cjm) = (~,mCjm)2/,~m ~.m 2, 

pred(Dm) = l~m2]~m Zm 2, 

.~i pred(Ri) = 1, (15) 

Y----~j pred(Cj) = 1, (16) 

Y'~m pred(Rim) = prea(Ri), (17) 

Z, .  pred(Cjm) = pred(Cp, (18) 

Y----~,,, pred(D,,O = 1, (19) 
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where R i and Cj denote the ith row category and the jth column category, 
respectively; Rim and Cjm denote the ith row category and the jth column 
category respectively represented in the ruth dimension; and Dm denote the 
mth dimension. Using (15) we can distinguish which row categories have 
most predictability power, whereas using (16) we can distinguish which col- 
umn categories are the best predicted. Such measures differ from the com- 
mon contributions used in correspondence analysis techniques (see, for ex- 
ample, Greenacre, 1984). Equations (17) and (18) show that we can measure 
the percentage of predictability power of each row/column category attri- 
buted to each dimension m = 1, ..., M. Using (19) we can distinguish which 
dimension retains the highest percentage of the predictability power mea- 
sured by the r-index. Note that equations from (17) to (19) are only used for 
models with more than one dimension. 

We describe the interpretation of parameters in terms of prediction analy- 
sis in two examples. As a first example we use a data set analysed by Agresti 
(1984) with logit-linear models. The example considers a cross-classification 
of police classification of a homicide, court classification of a homicide, race 
of defendant, and race of victim. The sample consists of 1017 individuals 
indicted for homicide in Florida between 1973 and 1977. Each case is classi- 
fied by the police and successively by the court as 'felony', 'possible felony', 
or 'nonfelony'. This refers to the judgement about whether the homicide was 
committed concurrently with another felony, such as robbery or rape. The 
race of the defendant and the race of the victim can be black or white. The 
matrix is given in Table 1. The rows are the categories of the explanatory 
variable (that is, a compound variable formed by two variables, namely the 
race of defendent/victim and the police judgement) and the columns are the 
categories of the dependent variable (namely the court judgement). 

We want to analyse whether the final judgement of the court is influenced 
by the previous report of the police as well as by the race of the defendant 
and the race of the victim. For this analysis we apply the nonsymmetric cor- 
respondence analysis model in (1), and find that a model with M = 1 dimen- 
sion fits the data adequately since the likelihood-ratio statistic is equal to 
G 2 = 15.24 (dr  = 10). T h e  r-index for the estimated table is r = .512 (for the 
observed table is .518). In Table 2 we show the estimates of row coordinates 
(ri121) and of column coordinates (c/12~) where 2 z = .  496 and the correspond- 
ing predictability power proportions (compare with (8) and (9)). If  we look at 
the proportions we see that the judgement about possible felony has a very 
low predictability power when it is expressed by the police (their proportions 
being .019, .039, .000, .002) and has no influence on the court decision being 
not predicted (with proportion .000); the police judgement about felony has 
an higher predictability power when the race of the victim is white in contrast 
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Table 1 

Police and Court Classifications of 1017 Homicides, 
by Races of Defendent and Victim (Agresti, 1984, p. 133) 

Race of 
Defendent/Victim 

Court Classification 

Police No Possible Felony Total 
Classification Felony Felony 

Black/White No Felony 7 1 3 11 
Possible Felony 0 2 6 8 
Felony 5 5 109 119 

Total 12 8 118 138 

White/White No Felony 236 11 26 273 
Possible Felony 7 2 21 30 
Felony 25 4 101 130 

Total 268 17 148 433 

Black/Black No Felony 328 6 13 347 
Possible Felony 7 2 3 12 
Felony 21 1 36 58 

Total 356 9 52 417 

White/Black No Felony 14 1 0 15 
Possible Felony 6 1 1 8 
Felony 1 0 5 6 

Total 21 2 6 29 

to being black (compare proport ions .337 and .209 with proport ions .038 and 
.013); when the victim is black, the police judgement  about  nonfelony has 
some influence on the court judgement  about  nonfelony only when the de- 
fendant  also is black (compare  proport ion .225 with proport ion .008). I f  we 
look at the signs and the absolute values of  the coordinates we can see two 
aspects: first, the court judgement  tends to confirm the police judgement  
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T a b l e  2 

Maximum Likelihood Estimation of 
Nonsymmetric Correspondence Analysis of  Data in Table I 

Unrestricted 
Race of Police 
Defendent/Victim Classification Dim 1 Pred(Ri) 

Restricted 

Dim 1 Pred(Ri) 

Black/White No Felony - . 030  .000 *.000 *.000 
Possible Felony .728 .019 .710 .018 
Felony .843 .337 .846 .339 

Total .356 .357 

White/White No Felony - . 317  .110 - . 3 2 2  .113 
Possible Felony .571 .039 .563 .038 
Felony .636 .209 .634 .208 

Total .358 .359 

Black/Black No Felony - . 4 0 4  .225 - . 4 0 5  .226 
Possible Felony - .011  .000 *.000 *.000 
Felony .404 .038 .401 .037 

Total .263 .263 

White/Black No Felony - .361 .008 - . 3 6 6  .009 
Possible Felony - . 2 4 4  .002 *.000 *.000 
Felony .690 .013 .677 .013 

Total .023 .022 

Total 1.000 1.000 

Court Classification 

Unrestricted 

Dim 1 Pred(Cj) 

Restricted 

Dim 1 Pred(Ci) 

No Felony - .355  .512 - . 3 5 1  .500 
Possible Felony .008 .000 *.000 *.000 
Felony .347 .488 .351 .500 

Total 1.000 1.000 
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when the decision is about felony or nonfelony; second, the police judgement 
varies with respect to the cases that the victim is white or black and it gives 
some preferences to felony. 

As some proportions of predictability are nearly equal to zero, we can test 
a one-dimensional model with restrictions r1,1 = 0, rs,~ = O, r11,~ = O, c2.1 = 
0. We find G 2 = 18 .43  ( d r  = 14) ,  so this model still has a good fit and these 
restrictions may be essentially imposed. 

As a second example we discuss an analysis of data published by Guttman 
(1971) on the principal worries of Israeli adults. Guttman (1971; see also 
Greenacre, 1984) analysed these data with canonical analysis. The matrix is 
given in Table 3. The rows consist of the categories of the explanatory vari- 
able; five groups of adults are specified by their place of residence and that of 
their fathers. The column variable is the dependent variable; eight possible 
principal worries of the adults are specified. 

The model with M = 1 does not fit well: G 2 = 29 .33  ( d r  = 18) .  T h e  model 
with M = 2 fits adequately: G 2 = 6 . 4 7  (dr  = 10) .  T h e  z-index for the esti- 
mates of expected probabilities as well as for the observed table is z" = .  013. 

The parameter estimates are given in Table 4. We present a plot of the 
parameters in Figure 1. We have used (ri,,,;~,,~) as coordinates for a row point 
and  (cp,).,,t) as coordinates for a column point, where A1 = . 088  and 
2~2 = .053.  Thus, the distances between the row points in the plot are also 
equal to the distances between the rows in the estimated table of general 
term (ari/~ri. - ~ j ) ,  and the distances between the column points in the plot 
are also equal to the distances between the columns in the estimated table. 
On the other hand, Figure 1 cannot be considered as a biplot (Gabriel, 1971), 
since the singular values ~,,, are 'used' twice, once in (ri,, ,~.~ and once in 
(cj,,,;~,,O. Thus we cannot reconstitute the estimated table from Figure 1 (for 
more details about graphical displays in contingency table analysis, see 
Goodman, 1991). In Table 4 we give the proportions of predictability associ- 
ated with the row and column points. This shows that the predictability pow- 
er of rows 1 (Asia/Africa), 2 (Europe/America), and 4 (Israel: father; 
Europe/America) is large, their proportions being .340, .324 and .214. Row 
categories 3 and 5 have a relatively small predictability power due to the fact 
that their weights pi. are relatively small. Column 8 (personal economics) is 
predicted best, with a proportion of r of .514, and columns 3 (military situa- 
tions), 4 (political situation), and 6 (other) are also relatively well-predicted 
by the place of residence of the adults and their fathers. Compared to the 
other categories, categories 1 (enlisted relative), 2 (sabotage), and 5 (econo- 
mic situation) and not well-predicted by the residence of the adults and their 
fathers. The way in which the place of residence of the adults and their 
fathers predicts the worries is clearly shown in Figure 1. Living in Asia/Africa 
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T a b l e  4 

Maximum Likelihood Estimation of  
Nonsymmetric Correspondence Analysis of  Data in Table 3 

Unrestricted Row Coordinates Restricted Row Coordinates 

Diml  Dim2 Pred(Ri) Dim1 Dim2 Pred(Ri) 

�9 115 - .028  .340 .116 - .025  .410 
- . 0 8 0  - .021  .324 - .081  - .019  .331 

�9 108 .032 .051 .106 .026 .049 
- .004  .140 .214 .000 .138 .207 

.042 .041 .011 .029 .000 .003 

Unrestricted Column Coordinates Restricted Column Coordinates 

Diml  Dim2 Pred(Cj) D iml  Dim2 Pred(Cj) 

- . 002  - . 004  .002 *.000 *.000 *.000 
- .001 - .005  .003 *.000 *.000 *.000 

. ~ 2  - .029  .178 - .037  - . 032  .233 
- . 036  .013 .139 - . 038  .011 .148 
- .002  .000 .000 *.000 *.000 *.000 

.007 .040 .158 .000 .035 .120 
- .006  - . 006  .007 *.000 *.000 *.000 

. ~ 3  - .011  .514 . ~ 1  - . 014  .500 

Unrestricted model 

pred(Ril) pred(Ri2) pred(Cjl) pred(Cj2) 

pred(Dm) 

.377 

.303 

.046 

.000 

.006 

.022 .000 .001 

.020 .000 .002 

.004 .010 .078 

.214 .122 .017 

.005 .000 .000 
.004 .154 
.004 .003 
.503 .010 

.732 .266 .643 .265 
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Fig. 1 - Principal worries of Israeli adults (Guttman, 1971), Nonsymmetric corres- 
pondence analysis model with two dimensions, explanatory categories lower-case. 

or having a father living there predicts the adults to be worried about their 
personal economy with a relatively larger probability, whereas living in 
Europe/America predicts the adults to be worried about the military and the 
political situations with a relatively larger probability. Living in Israel and 
having a father living in Europe/America (and, to a lesser extent, living in 
Israel and having a father also living there) predicts 'other' worries with a 
relatively larger probability. The graphical display dearly shows that the col- 
umn categories ENR (enlisted relative), ECO (economic situation), MTO 
(more than one worry), and SAB (sabotage) are not well predicted in terms 
of the r-index (i.e., they do not contribute much to its value). For 'economic 
situation' this is also the result from its low marginal proportion. 

The previous four column categories are close to the origin in Figure 1. We 
can test a two-dimensional model with restrictions c1,,, = 0, c2,,, = O, cs, , ,  = 0 
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and c7,,, = 0 to verify whether these short distances to the origin are signifi- 
cant, or in other words, the prediction of these column categories is indepen- 
dent from the information about row categories. We find G 2 = 10.67 (df  = 
18), so this model has still a good fit and the imposition of these restrictions 
may be reasonable. The column categories ENR (enlisted relative), ECO 
(economic situation), MTO (more than one worry), and SAB (sabotage) are 
not well predicted. 

5. Relation with canonical analysis and latent class analysis 

We end this paper by discussing the relationship between nonsymmetric cor- 
respondence analysis and other reduced-rank models for contingency tables, 
namely canonical correlation model and latent class model. 

The nonsymmetric correspondence analysis model is closely related to the 
canonical correlation model. As we have discussed in section 1 the two mod- 
els differ in the weighting systems. Consequently, reduced-rank approxima- 
tions of the observed proportions under the least-squares criterion are diffe- 
rent. Instead, the maximum likelihood estimates of expected probabilities 
are the same under the two models, and thus the nonsymmetric correspond- 
ence analysis model and the canonical correlation model provide the same fit 
to the data. 

Due to different weighting systems the two models differ in the orthonor- 
mality conditions used to identify the model parameters. The parameter esti- 
mates of the canonical correlation model can be identified by a singular value 
decomposition different from (9) at which we should add a diagonal matrix 
with the elements 1/V~4.  Therefore, the identified estimates of the model 
parameters and thus the geometrical representation of the relations between 
row and column categories will be in general different in the two models. 
They can be equivalent only in two cases: when M = I  since in such case the 
orthonormality conditions are not needed to identify the parameter esti- 
mates, and when P4 are equal to 1/J for each j so that the uniform marginal 
distribution does not provide any difference in the singular value decomposi- 
tions. 

Both canonical analysis and nonsymmetric correspondence analysis are 
also related to latent class analysis and latent budget analysis (for an over- 
view of these models see Clogg, 1982; van der Heijden, Mooijaart and de 
Leeuw, 1989). The latent budget model is a reparametrization of the latent 
class model to be used for the analysis of the dependence. 

All these models provide reduced-rank decompositions of a matrix with 
probabilities (Good, 1969; de Leeuw and van der Heijden, 1991; Siciliano, 
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1992). The latent class models and the latent budget models provides a non- 
negative rank-M approximation of the probability matrix. The canonical 
model and the nonsymmetric correspondence analysis model provide a rank- 
M approximation of the probability matrix using parameters that can also be 
negative. De Leeuw and van der Heijden (1991) show that for rank 2 the 
latent class model and the canonical model imply each other, that is they r 
provide identical maximum likelihood estimates of expected probabilities; 
for rank larger than 2, if the latent class model is true, then the canonical 
model is true, but the reverse does not necessarily hold. Because nonsym- 
metric correspondence analysis is equivalent to canonical analysis, these re- 
suits are directly relevant for nonsymmetric correspondence analysis also. 

So we conclude that there are four models providing a reduced-rank 
approximation of probabilites. Nonsymmetric correspondence analysis and 
latent budget analysis are models for the situation where the column variable 
is a response variable, and the row variable is an explanatory variable; the 
canonical model and latent class analysis are models for the situation where 
both variables play a simmetric role - although the latter models are regularly 
used in practice for the analysis of asymmetric tables. A choice between these 
models should be made, first, on the basis of the type of relation between the 
manifest variables, and, second, on the type of parameters that is considered 
to be most useful for the particular application. 
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