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Summary 

In this paper, we present a Bayesian analysis of the bivariate exponential distribution 
of Block and Basu (1974) assuming different prior densities for the parameters of the 
model and considering Laplace's method to obtain approximate marginal posterior 
and posterior moments of interest. We also find approximate Bayes estimators for the 
reliability of two-component systems at a specified time to considering series and para- 
llel systems. We illustrate the proposed methodology with a generated data set. 
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1. Introduction 

In many application of life testing, we usually have two life time X and Y 
associated to each unit. Among the different bivariate life models to be used 
in these applications, one family of models has been extensively explored in 
the last 30 years: the bivariate exponential distribution. There  are many 
different versions of bivariate exponential distributions: the exponential  
models of Gumbel  (1960), Freund (1961), Marshall and Olkin (1967), Down- 
ton (1970), Hawkes (1972), Block and Basu (1974), Sarkar (1987), and 
others. Among all these versions of bivariate exponential distribution, one 
model has been very well explored in applications: the Block and Basu ex- 
ponential distribution. 

In this paper, we present a Bayesian analysis of the Block and Basu bivari- 
ate exponential distribution, working with Laplace's method for approxima- 
tion of integrals (see for example, Tierney and Kadane, 1986; or Kass, Tier- 

1. Address for correspondence: ICMSC, USP, Caixa Postal 668, 13560-970, S~o 
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hey and Kadane,  1990), since the marginal posterior densities or  posterior 
moments  of interest are not analytically tractable. 

2. The Model 

Assume that we have two failure times X and Y associated to each observa- 
tional unit with a bivariate exponential distribution (BVED)  of Block and 
Basu with parameters )`1, )`2 and )`3, and joint density function given by 

f / x , y ) =  )̀ 1 )`123 )`23 
).12 

f (x ,y)  "-~ )`2 )`123 )`13 
f2(x'Y) = )`12 

exp{-) ` l  x-)`23 Y} if x < y 

exp{-)`13 x-)`2 y} if x t> y 

(1) 

where )`12 = )`1 + )`2,)`13 = )`1 + )`3,)`23 = )`2 + )`z and )`123 = )`1 -I'- )`2 + )`3" 
The joint generating function for the BVED is given by 

m(s ,O=E(dx+tr)  = )`123 [ )̀1)̀2_._._.3_33.3 + )`2)`13] 
)`12()`123__t__S ) )`23__t )`13__S . (2) 

From (2), we get the moments of interest for X and Y. The correlat ion coeffi- 
cient of X and Y is given by 

) `d() `2  + )`2) )`12~ + )`1)`2)`31 
o ( x , Y ) =  2 2 2 1/2 2 2 2 1 / 2 .  [)`12)`13+)`2()`2+2)`1))`123] [)`12)` 23+)`1()`1 +2)`2))`123] 

(3) 

We have 0 ~< Q(X, Y) <. 1 and Q(X, Y) = 0 only for the trivial cases )`3 = 0 or 
)`1=)`2=0. 

Considering a random sample of size n, (X1, I:1) .. . . .  (Xn, Y,,) of the B V E D ,  
the likelihood function for ),1, )`2 and )`3 is given by 

L ()`1,)`2,)`3) = h f i  b` (xi, y'~ f21-6' (xi, yi) (4) 
i=l 

where ~ii = 1 if Xi < Yi and ~5i = 0 if Xi >~ Yi. 
That  is, 

L()`1,)`2,)`3) = )`5 )`323 )`ff-r )`~3 )`/~--r X 

)`~2 (5) 
x exp{-) ` :c~-Zzn2-) `3R} 
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where/112,3.13,3.23 and 3.123 are given in (1), ns = ~ x, ,n# = ~ y,,r = ~ Oi and 
i=l i~1 i=l 

R = ~ [riYi + (1 - 6i)xd. 
i=l 

3. The maximum likelihood estimators for 3.1, 3.2 and 3.3- 

The maximum likelihood estimators (MLE) ftl, f~2 and ~,3 are solutions of the 
likelihood equations, 

r n ( n - r )  n 
- -  + - -  + - -  - -  n . ~ ,  

~'1 /1123 3.13 3.12 

n + ( n - r )  r n = ny, (6) 
/1123 ~ + 3.23 /112 

and n + r_f_ + ( n - r )  - R. 
/1123 3.23 3.13 

To find the MLE for/11,3.2 and 3.3, we should use an iterative procedure; for 
example, the Newton-Raphson procedure. To construct hypotheses tests or 
confidence intervals for the parameters 3.1,/12 and /13, we usually use the 
asymptotic normality of the MLE, 

(~1,)L2,~3) s N {(3.,,/12,3.3)," I - I } ,  (7) 

where I is the Fisher information matrix for/1~,3.2 and/13- 
For small or moderate sample sizes, usually the asymptotic normality of 

the MLE 3.1,3.2 and ~3 can be very poor. In this case, we could explore an 
appropriate reparametrization (see for example, Anscombe, 1964; Sprott, 
1973, 1980; or Kass and Slate, 1992), or use the asymptotic distribution of the 
likelihood ratio statistic to get better inferences on/1~,3.2 and/l  3 (see for exam- 
ple, Lawless, 1982). 

4. A Bayesian analysis of the BVED model 

For a Bayesian analysis of the BVED with density (1), we observe that the 
marginal posterior densities or posterior moments of interest are not analyti- 
cally tractable. Therefore, we should consider one among different strategies 
to solve the integrals for a Bayesian analysis of the model: the use of numer- 
ical methods (see for example, Naylor and Smith, 1982), the use of approx- 
imation methods (see for example, Tierney and Kadane, 1986; or Lindley, 
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1980), the use of Monte Carlo methods (see for example, Kloek and Van 
Dijk, 1978), or the use of Gibbs sampling (see for example Gelfand and 
Smith, 1990). In this paper, we use Laplace's method for approximation of 
integrals (see for example, Kass, Tierney and Kadane, 1990) to get approxi- 
mate marginal posterior densities or posterior moments of interest, consider- 
ing different prior densities for the parameters. 

4.1. The Laplace's method for approximation of integrals 

Assuming h is a smooth function of an m-dimensional parameter t9 with - h  
having a maximum at 1), the Laplace's method approximates an integral of 
the form, 

I = / f(O)exp[-nh(O)]dO (8) 

by expanding h and f in a Taylor series about 1) (see for example, Kass, 
Tierney and Kadane, 1990). 

Considering first the case in which t~ is one-dimensional, the Laplace's 
method gives the approximation, 

t-~ ( 2____~ )l/2af (~) exp{-nh(O)} (9) 
n 

where a = {h" 0))} -m .  
In the multiparameter case, with 0 e R 'n, we have 

] -~ (2~r)"~Z{det (nD2h(O))}-l/2f(O)exp{-nh(~)} (10) 

where ~) maximizes -h(t~) and D2h(~) is the Hessian matrix of h evaluated 
at 0. 

In Bayesian applications, we get inferences on the parameters based on the 
posterior density z~(tg[data) oc :r(O)L(O), where L(O) is the likelihood func- 
tion based on n observations and zt(0) is a prior density. One important prob- 
lem is to compute the posterior expectation of a real-valued function g(O) 

/ g(t~)L(t~)sr(t~)dO 
E {g(O)[data} = (11) 

f LCO) CO)d(O) 
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By applying Laplace's method with L(O)~(O) = exp{-nh(O)} for both the 
numerator and denominator of (11) (with f defined in (8) respectively equal 
to g and 1), we get 

{g(O)ldata } ~- g (0) {1 + o (n-l)}.  (12) 

This approximation usually is called modal approximation because 0 is the 
mode of the posterior density. Considering f equal to 1 for both integrals in 
(11), that is, 

f e-nh" (O)dO 
E {g(O)ldata } - (13) 

e-nh(O)dO 

where g(O) is a positive function, -nh*(O) = lng(O) + lnz(O) + lnL(O) and 
-nh(O)  = lint(O) + lnL(O), we get more accurate Laplace approximations 
for the posterior expectation of g(t~), given by 

1~ (g(O)]data} -~ (o* / o) exp(-[h*(O*) - h(O)]} (14) 

where 0 maximizes -h(O),  O* maximizes - h  * (O), o = { det (nDeh( O)) } -1/2 
and a* = (det (nDeh*(O*))} - m .  

The approximation (14) satisfies, 

E {g(O)[data} = E (g(O)ldata) (1 + o (n-2)). (15) 

(see for example, Tierney and Kadane, 1986; or Tierney, Kass and Kadane, 
1989). 

4.2. Prior density for 3.~, 3,2 and 3.3 

When engineers or users of the BVED have opinions about ~1, ~2 and Z3 (see 
appendix, for some considerations about the derivation of BVED), it is 
appropriate to consider informative prior densities for the parameters. The 
joint density for 3.z/3.123,3.2/3.123 and ;~123 can be written in the form, 
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~r (4d4123,42/4123,4123) = 

= ,Tg (41]4123,42[4123 I 4123) "7"['0 (4123)" 
(16) 

Assuming a Gamma prior density for 4123, 

a ' - I  ~ro (4123) oc 4 123 exp {-fl4123} (17) 

and given 4123, a Dirichlet joint prior density for 4114123 and 42]4123, 

(41/4123,42/412314123) 

41 42 )a~-I 
4123 4123 

(18) 

we have (from (16)), a Gamma-Dirichlet joint prior density for 41/4123,42/4123 
and 4123, given by, 

~r (Xd4123,X2/4123, 4123) o: 
(19) 

oc 4T-2Jexp{-f14123}( 4, I ' - ' (  42 I a~-I ( 1 41 42 )a~-, 
4123 / \~-~231 \ 4123 4123 

where 4123 ~ O~ 41/4123 ~ O~ 42/4123 ~.~ 0 and 0 ~< 41/4123 "at" 42/4123 ~ 1. C o n -  

s i d e r i n g  a transformation of variables, we get a joint prior density for 41,42 
and 43 given by, 

l~a~r3 ~a,-l~-/~x, (20) ~r ( 4 1 , 4 2 , 4 3 )  ~ ,~123 i = v , i  

where 41,42,43 >I 0 and a = al + a2 + a3. 
The prior density (20) was introduced by Pefia and Gupta (1990) for a 

Bayesian analysis of another bivariate exponential distribution: the distribu- 
tion of Marshall and Olkin (1967). Observe that if a = a, we have prior 
independence, where 4i is Gamma distributed with parameters ai and ft. 

Assuming prior independence, we also consider 4i with Gamma distribu- 
tion with shape parameter ai and different scale parameters bi, i = 1,2,3, that 
is, 

3 

(41,42,43) oc 1 I  4'2'-1e -b'x' (21) 
i=l 

where 41,42,43 ~> 0. 
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When we do not have prior opinion, we could consider a noninformative 
reference prior for the parameters. Using Jeffreys multiparameter rule (see 
for example, Box and Tiao, 1973), we have the prior density, 

Jr (2.1,2.2,2.3) oc (detI()~l,A2,X3) } m (22) 

where 1(2.1,2.2,2.3) is the Fisher information matrix. 

4.3. A p p r o x i m a t e  m a r g i n a l  pos t e r ior  densi t ies  f o r  2.1,),2 a n d  3.3 

To obtain approximations for the marginal posterior densities of ~q,~.2 and 2.s, 
we could consider different choices for f(t~) and h (~) ,  where ~ = (2.1, 2.2, 2.3), in 
the Laplace's approximation (10). As a special case, we could consider 
fA3(2.1,~2) • 975 (~1,~2,~3) and - h x  3 (2.1,X2) = l (~l,,~2,~3), where 1 (Zl,2.2,~3) is 
the logarithm of the likelihood function to get a simple form for an approx- 
imation of the marginal posterior density for 2.3- Another  possibility, is to 
consider the fully exponential form fx3 (2.1,)~2) = 1 and -hx~  (2.1,,~2) = l n ~  
(2.1,2.2,A3) + l (2.1,2.2,)~3), in the Laplace's approximation (10), to get an 
approximate marginal posterior density for 3-3- In the same way, we get 
approximate marginal posterior densities for 2.1 and 2.2- 

4.4. B a y e s  es t imators  f o r  the m e a n  life t imes  

With the BVED density (1), the mean life times of X and Y are given from 
(2) by, 

#1 = E ( X )  = 

and #2 = E ( Y )  = 

(2.123 2.12 + 2.2 2.3) 
2.12 2.13 2.123 (23) 

(2.123 2.12 -~- 2.1 2.3) 
2.12 2.23 2.123 

The Bayes estimators for the mean life times of components #t and ~Ue with 
respect to unidimensional squared error are given by 

f~i = E (#i ldata} = 

where 0 = 0~l,)~e,2.3), i = 1,2. 

(24) 
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From (12), we get Laplace's approximations, 

til --- 

and /i2 

(1,~ i,~ + L i~ 
1~2 i13 i ~  

( i~  i,~ + 1~ i~) 
(25) 

where lz, i 2 and i3 is the mode o f  the.jointposterior density for ~q,~-2 and ~-3; 
i12 ~--- i l  "}- i2; i13 -~" i l  "[- i3;  ~23 = Z2 "l- ~3 and 112 3 "~ i I -]" i 2 + i 3. 

If we use (14), we usually get more accurate approximations for the post- 
erior expectations of/~, i = 1,2, especially for small sample sizes. 

5. Reliability function estimators for two-component systems 

Assuming the BVED with density (1), the reliability function at time to for a 
two-component system is given by Rs (to) = exp (-A123to} for a series system 
and Re (to) = (~.m3 ( ex't~ + e x2t~ - 1) - ~.3} / (~.12 ex'z~t~ for a parallel system. 
The Bayes estimators for Rs (to) and Re (to) with respect to unidimensional 
squared error loss, are given by 

and 

R~ (to) = E ( R s  (to) l data} = 
Rs (to) sr(O)L(O)dO 

/ ~(#)L(#)dO 
(26) 

I R e  (to) ~r(O)L(O)dO 
t~t, (to) = E {Re (to) ] data} = (27) 

f :r(O)L(O)dO 

where 0 = (~1,~.2,~3), ~c(O) is a prior density and L(O) is the likelihood func- 
tion (5). 

From (12), we get the modal Laplace approximations, 

t~s (to) = exp {-fq23to} (28) 

and 

l~p (to) ~ {112 3 (e ~''t~ -]- e ~zt~ --  1) - ~3} / {~12 exmt~ 
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where ~.,,~2 and ~3 is the mode of the joint posterior density for Z,,3-2 and )3- 
We also could use (14) to get more accurate approximations for E ( R s  (to) I 

data} and E { R e  (to) I data} .  

6. An example 

In table 1, we have 30 bivariate observations (X,  Y)  generated from a B V E D  
with density (1) and parameters 3-1 = 0.25, 3-4 = 0 .16 and 3-3 = 0. From table 

30 30 
1, we have r = 16, n - r = 14, n = 30, Z xi = 114.51,  Z Yi = 165 .67  and 

i=1 i=1 

R = 207 .77  (see (5)). The MLE for 3-1,3-2 and 3-3 obtained using Newton- 
Raphson method in the likelihood equations (6) are given by 3-1 = 0.2485, fte 
= 0 .1698 and 3-3 = 0.0164. 

Table 1 

Genera ted  Bivariate Life Time Data with a B V E D  with 3-1 = 0 . 2 5 ,  3-2 = 0.16 
and 3.3 = 0 

i x y i x y 

1 3.73 2.54 16 3.42 1.09 
2 5.83 7.74 17 7.71 0.33 
3 8.44 9.89 18 6.92 2.59 
4 7.95 2.47 19 7.76 3.77 
5 7.66 8.77 20 0.16 6.07 
6 3.47 1.86 21 7.79 6.98 
7 2.75 1.30 22 0.66 0.49 
8 0.57 5.04 23 10.83 4.03 
9 3.48 1.13 24 4.23 2.71 

10 4.12 7.24 25 3.23 18.74 
11 2.08 9.40 26 1.00 9.10 
12 4.19 1.50 27 3.08 12.43 
13 0.82 6.29 28 0.55 13.50 
14 1.14 2.61 29 0.37 5.52 
15 0.18 8.17 30 0.39 2.37 
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Considering the normal limiting distribution for the MLE ~2,~2 and ~3 
given in (7), we get approximate 95% confidence intervals for ~.1,~.2 and ).s 
given by (0.0710;0.4260), (0.0090;0.3310) and (-0.1830;0.2160), respective- 
ly. 

For a Bayesian analysis of the BVED with the data of table 1, we consider 
two different prior densities: the noninformative Jeffreys prior (22) and the 
informative prior (21) with at = 125, a 2 = 64, a3 = 4, b l  = 500,  b2 = 400 and 
bz  = 200 ,  by observing that the independent Gamma prior densities for ).b i 
= 1 ,2 ,3  have means ai/bi and variances ai/~, and we known the true values 
for ).1,).2 and )-z. In figures 1, 2 and 3, we have the graphs of the approximate 
marginal posterior densities for ).1,).2 and A3 considering Laplace's approx- 
imation (10) with f equals to the prior density and - n h  equals to the log- 
likelihood function l().1,).2,).3). 

In table 2, we have a summary of the point and interval estimators for the 
parameters ).1,).2 and ).s- We observe better Bayesian intervals for ).1, ).2 and 
).3 considering the informative prior (21). We observe that using the asymp- 
totical normality of the maximum likelihood estimators, we get similar results 
considering the noninformative prior (22), especially for ).1 and ).s. 

We also could use any other density indicating prior opinion of the resear- 
cher, that is, our approximate Bayesian approach is very flexible to be used 
in applications of the BVED with bivariate life data. 

In table 3, we have Laplace's approximate Bayes estimators with respect to 
unidimensional squared error for the mean life t imes/h and/z2 (see (23)). 

. . . .  P R I O R  ( 2 2 )  

" P R I O R  (21)  

j j .~ .  S ~  ' ~  

I I I 

0 0.2 0.4 "X1 
Fig. 1 - Marginal Posterior for ~z- 
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s ~ 

s s l  / 
I I I 

0 0.1 0.2 

. . . .  PRIOR ( 22 ) 

PRIOR (21) 

I I m 

0.3 0.4 
)'2 

Fig. 2 - Marginal Posterior for 3. 2. 

. . . .  PRIOR ( 2 2 )  

- - P R I O R  (21 )  

l J I I 

- 0 . 3  - 0 .1  0 .1  0 . 3  -X3  

Fig. 3 - Marginal Posterior for 3`3- 

I f  is in teres t ing to obse rve  that  the Bayes  es t imators  for  #1 and/Ze with 
pr ior  (21) consider ing Mon te  Car lo  p rocedure  with M = 200 g e n e r a t e d  sam-  
ples are  given by #1 = 3.7914 and fi2 = 5.6213. T h a t  is, we have  close resul ts  
with Lap lace ' s  app rox ima t ion  (14). 
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Table 2 

Point and Interval Estimators for )-1, 3-2 and 3.3 

Mode of Posterior 95% Confidence 95% I-IPD Interval 

MLE Prio~ (22) Prior (21) Interval Prior (22) Prior (21) 

X~ 
0.2485 0.2480 0.2480 (0.0710;0.4260) (0.0700;0.4360) (0.2120;0.2920) 
0.1698 0.1460 0.1600 (0.0090;0.3310) (0.0500;0.3360) (0.1330;0.1990) 
0.0164 0.0200 0.0150 (-0.1830;0.2160) (-0.1820;0.2100) (0~0060;0.0440) 

Table 3 

Bayes Estimators for #1 and #2 

Laplace's Approximation (12) Laplace's Appr. 
True for E(#t [ Data) (14) 

for E(~ [ Data) 
Values MLE Prior (22) Prior (21) Prior (21) 

#1 4 3.8328 3.7981 3.8552 3.8057 
#2 6.25 5.4909 6.2073 5.8374 5.7001 

In table 4, we have Laplace's approximate Bayes estimators with respect to 
unidimensional squared error for the reliability function of two-component 
systems at some values of to considering series and parallel systems. 

We observe in tables 3 and 4, close results considering the two forms of 
Laplace's approximations (12) and (14) (see in particular the last four col- 
umns of table 4). 

It is important to point out that prior density (21) should be used only 
when the researcher or engineer has a clearly prior opinion about A1,).2 and 
,~s, since with different values for (aj, b~), j = 1,2,3 in (21) we could get very 
different inferences for the parameters. In figure 4, we have the graphs of 
Laplace's approximate marginal posterior densities for ),1 with prior (21) and 
values for (aj, bj), j = 1,2,3 given in table 5. 
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Table 4 

Bayes Estimators for Rs (to) and Re (to) 

True Values Laplace's Approximation (12) Laplace's Approx.  
(14) 

Jeffreys Prior (22) Prior (21) Prior (21) 

to Rs(to) Rp(to) Rs(to) Re(to) Rs(to) Re(to) Rs(to) Re(to) 

1 0.6636 0.9673 0.6610 0.9657 0.6551 0.9641 0.6499 0.9624 
2 0.4404 0.8922 0.4369 0.8874 0.4291 0.8826 0.4226 0.8780 
3 0.2923 0.7989 0.2888 0.7907 0.2811 0.7825 0.2751 0.7748 
4 0.1940 0.7012 0.1909 0.6903 0.1841 0.6792 0.1792 0.6694 
5 0.1287 0.6071 0.1262 0.5943 0.1206 0.5810 0.1168 0.5699 

10 0.0166 0.2674 0.0159 0.2543 0.0145 0.2393 0.0139 0.2299 
15 0.0021 0.1121 0.0020 0.1038 0.0017 0.0933 0.0017 0.0884 

i = 6  izl, ~ �9 '=2 
. I 4 

iz 71~ t 

1 1 1 I I 
.10 .20 .30 .40 .50 "X 

Fig. 4 - Marginal Posterior density for ).~ considering prior (21) 
for (dp, ~!)), j = 1, 2, 3. 

. 6 0  
1 

and different values 
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Table 5 

Values for (af O, bS~ i = 1,2,3 in prior (21) 

i a ~  aJ i) a ~  b ~  b ~  bJ 0 

1 125 64 4 500 400 200 
2 245 100 25 700 500 500 
3 122.5 40 2.5 350 200 50 
4 250 90 64 500 300 �9 800 
5 156.8 81 4 560 450 200 
6 78.4 100 2.5 280 500 50 
7 62.5 10 2.5 250 50 50 

7. Some conclusions 

The use of Laplace's method could be a suitable alternative to develop a 
Bayesian analysis of the BVED with density (1), since all Bayesian solutions 
for this model requires the solution of integrals that are not analytically tract- 
able. The Laplace's approximations to marginal posterior densities and post- 
erior moments of interest are very simple to be obtained with no need of 
computer expertise and also is very flexible in terms of choice of priors. We 
can justify the use of Laplace's approximation to marginal posterior densities 
for the parameters of BVED, by comparing Monte Carlo integrated post- 
eriors to Laplace's approximations. In table 6, we have the values of the 
marginal posterior density for )-1 considering the prior density (21) with at = 
125, a 2 = 6 4 ,  a 3 = 4, bl = 500, b 2 = 400 and b 3 = 200 using Monte Carlo with 
M = 400 generated pairs 0.2,).3) and Laplace's approximation (10). As we see 
in figure 5, the accuracy of Laplace's approximation is very good. Observe 
that using Laplace's method, we only need to find maximums and second 
derivatives. The use of Monte Carlo procedure requires some computational 
expertise, choice of an appropriate <dmportance density>> (see for example, 
Kloek and Van Dijk, 1978) and a long time in computer. It is very important 
to point out that the Laplace's approximations are not invariant to different 
parametrizations (see for example, Achcar and Smith, 1990) and a good re- 
parametrization could improve the approximate results, especially for small 
sample sizes (see for example, Sprott, 1973, 1980; or Kass and Slate, 1992). 
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Table 6 

Some value of marginal posterior density for 3.1 considering prior density (21) 

3.z Laplace's Monte Carlo 
Method Procedure 

0.15 0.0000 0.0000 
0.16 0.0001 0.0001 
0.17 0.0017 0.0017 
0.18 0.0208 0.0207 
0.19 0.1609 0.1596 
0.20 0.8224 0.8173 
0.21 2.8917 2.8783 
0.22 7.2404 7.2153 
0.23 13.3009 13.2794 
0.24 18.3945 18.3787 
0.25 19.5988 19.6131 
0.26 16.4164 16.4314 
0.27 11.0040 11.0265 
0.28 5.9992 6.0151 
0.29 2.6983 2.7072 
0.30 1.0143 1.0182 
0.31 0.3224 0.3237 
0.32 0.0876 0.0879 
0.33 0.0205 0.0207 
0.34 0.0042 0.0042 
0.35 0.0007 0.0008 
0.36 0.0001 0.0001 
0.37 0.0000 0.0000 
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Fig. 5 - Marginal Posterior density for 3.1 using Monte Carlo and Laplace's method. 
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Appendix 
A derivation of  the B V E D  

The BVED can be derived using a model suggested by Freund (1961). Let 
(X, Y) denote the life length of a two component system. Consider X and Y 
individually having exponential distributions with means ai-l(a2, ~1 > O) 
when they are free from external forces. If component 1 fails before compo- 
nent 2, an additional strain is placed on component 2 reducing its mean life 
time from fll - t  to f l[- t ,  when f l / >  ill- Similarly, if component 2 fails before 
component 1, an additional strain is placed on component 1 reducing its 
mean lifetime from a~ -1 to a / - t ,  when a / >  at.  Using Freund's  derivation 
for at  = )̀ 1 + )`3)`1/)`12, a/  = )`1 + )`3, fit = A2 + )`3)`2[)`12, f l ]  = )`2 "1- )`3, where 
3.b)`2,3.3 > 0, )`re = )̀ 1 + ),2, it follows that at  < a], ,61 < f l / and  (X, Y) has 
density (1) (see Block and Basu, 1974). 

In applied work, engineers could have prior opinions about the mean life- 
times of X and Y when the units are free or not from external forces. Thus, 
having prior opinion on at, a[, fit and flz', they have an informative prior 
density for the parameters )`t,)`z and 3.3, as it was considered in (21). 

248 



APPROXIMATE BAYESIAN METHODS 

R E F E R E N C E S  

ACHCAR, J. A., Sirra ,  A. F. M. (1990), Aspects of reparametrization in approximate 
Bayesian inference, in Essays in honor of George A. Barnard, ed. J. Hodges, 
Amsterdam: North-Holland, 431-452. 

ANSCOr, mE, F. J. (1964), Normal likelihood functions, Ann. Inst. Star. Math., 16, 1-19. 
BLOCK, H., BASU, A. P. (1974), A continuous bivariate exponential extension, Jour- 

nal of the American Statistical Association, 69, 1031-1037. 
Box, G. E. P., TtAO, G. C. (1973), Bayesian Inference in Statistical Analysis, 

Addison-Wesley. 
DowrrroN, F. (1972), Bivariate exponential distributions in reliability theory, Journal 

of the Royal Statistical Society, series B, 34, 408-417. 
FREUND, J. E. (1961), A bivariate extension of the exponential distribution, Journal 

of the American Statistical Association, 56, 971-977. 
GELFANO, A. E., SMITH, A. F. M. (1990), Sampling-based approaches to calculating 

marginal densities, Journal of the American Statistical Association, 85,398-409. 
GUblBEL, E. J. (1960), Bivariate exponential distributions, Journal of the American 

Statistical Association, 55,698-707. 
HAwra~s, A. G. (1972), A bivariate exponential distribution with applications to re- 

liability, Journal of the Royal Statistical Society, series B, 34, 129-131. 
KASS, R. E., SLATE, E. H. (1992), Reparametrization and diagnostic of posterior 

non-normality. In Bayesian Statistics 4 (eds. J. M. Bemardo, J. Berger, A. P. 
Dawid, and A. F. M. Smith), Oxford: Oxford University Press. 

KASS, R. E., TIERNEY, L., KADANE, J. B. (1990), The validity of posterior expansions 
based on Laplace's method, in Essays in Honor of George A. Barnard, ed. J. 
Hodges, Amsterdam: North-Holland, 473-488. 

KLOEK, T., VAN DUK, H. K. (1978), Bayesian estimates of equation system para- 
meters: an application of integration by Monte Carlo, Econometrika, 46, 1-19. 

LAWLESS, J. F. (1982), Statistical Models and Methods for Lifetime data, New York: 
John Wiley. 

LINDLEY, D. V. (1980), Approximate Bayesian Statistics methods, in Bayesian Statis- 
tics, J. M. Bernardo, M. H. de Groot, D. V. Lindley, and A. F. M. Smith, eds., 
Valencia, Spain: Valencia Press, 223-245. 

MARSHALL, A. W,, OLKIN, I. (1967), A multivariate exponential distribution, Journal 
of the American Statistical Association, 62, 30-44. 

NAYLOR, J. C., SMITH, A. F. M. (1982), Applications of a method for the efficient 
computation of posterior distributions, Applied Statistics, 31 (3), 214-225. 

PEIqA, E. A., Gupta, A. K. (1990), Bayes estimation for the Marshall-Olkin exponen- 
tial distribution, Journal of the Royal Statistical Society, series B, 52, 2, 379-389. 

SAP~,AR, S. K. (1987), A continuous bivariate exponential distribution, Journal of  the 
American Statistical Association, 82, 667-675. 

249 



J. A. ACHCAR �9 L. A. MELGAR SANTANDER 

SPROTT, D. A. (1973), Normal likelihoods and relation to a large sample theory of 
estimation, Biometrika, 60, 457-465. 

SPROTr, D. A. (1980), Maximum likelihood in small samples: estimation in the pre- 
sence of nuisance parameters, Biometrika, 67, 515-523. 

TIERNEY, L., KADANE, J. B. (1986), Accurate approximation for posterior moments 
and marginal densities, Journal of the American Statistical Association, 81, 82-86. 

TmRNEY, L., KASS, R. E., KADANE, J. B. (1989), Fully exponential Laplace approx- 
imations to expectation and variances of nonpositive functions, Journal of the 
American Statistical Association, 84, 710-716. 

250 


