
W~irme-und Stofftibertragung II (1978) 241-254 Mrnie-uad StnffObertragung 
Iberiao-and Flaid gpaiaics 

by Spr in~er-Ver lag  1978 

Stability of Finite-Amplitude and Overstable Convection 
of a Conducting Fluid Through Fixed Porous Bed 
N. Rudraiah and D. Vortmeyer, Mtinchen 

Abstract. The stability of infinitesimal steady and oscillatory motions and finite amplitude steady motions of a 
conducting fluid through porous media with free boundaries which is heated from below and cooled from above 
is investigated in the presence of a uniform magnetic field. Infinitesimal steady motions are investigated us- 
ing Liapunov method and it is shown that the principle of exchange of stability is valid only when Pm/Pr ~< I 
with a restricted value of the Hartmann number. It is shown that overstable motions are due to the zonal cur- 
rent induced by the magnetic field. Finite amplitude steady motions are investigated using Veronis [I] analy- 
sis and it is shown that for a restricted range of Hartmann numbers and porous parameter PI, steady finite- 
amplitude motions can exist for values of the Rayleigh number smaller than that value corresponding to oscil- 
latory motions. Since the Busse number is greater than the wave number the horizontal scale of the steady 
finite-amplitude motions is larger than that of the overstable motions. 

Verschiedene Aspekte der Stabilit~it eines Fluids in por6sen Medien 

Zusammenfassung. Die Stabilit~it eines Fluids mit thermischer und elektrischer Leitf~ihigkeit wird in einem 
yon unten beheizten und yon oben gekiihlten Medium behandelt. 

Bei (iberlagertem magnetischen Feld k6nnen sich oszillatorische Instabilit~iten ausbilden, die sich auf zo- 
nale, vom Magnetfeld induzierte Str6me zuriickfiihren lassen. 

Andere Formen der Instabilit~t treten unter anderen Bedingungen auf. MaBgebend daftir sind die Werte 
der Hartmann- und Rayleighzahlen. 

Nomenclature K the thermal diffusivity 
the magnetic viscosity 

m 
(x, y, z) the cartesian Co-ordinates ~ the magnetic permeability 
t the time k the permeability of porous media 
d the depth of the porous media Pl = d2/k the porous parameter 

(u, v, w) the velocity field Pr = ~/K the Prandtl number 

(Hx, Hy, Hz) the magnetic field Pm = ~/Vm the magnetic Prandtl number 

P the pressure S = K/v the Busse number 
p the density m 
T the temperature R = ~g •Td3/Kv the Rayleigh number 
y the velocity s tream function 

the magnetic s tream function M = Hod ~/ ~ the Hartmann number 
v ~ the kinematic viscosity ~ P0~)m 

I I n t r o d u c t i o n  

When a horizontal layer of conducting flow through 

porous media is heated uniformly from below and 

cooled from above it has a tendency towards insta- 

bility because the hotter fluid is less dense and there- 

fore convects upwards. This is similar to the situation 

that exists in the geothermal regions where the sur- 

face liquid possesses a general upward convective 

drift due to the buoyancy induced by Joule heat and 

interior temperature. Since the rising liquid is cooled 

as it approaches the surface where heat is removed 

by evaporation, radiation and movement in surface 

streams an unstable state may be induced and com- 

plicated convective motions appear in the layers near 

the surface. A detailed study of such convections 

through porous media in the presence of a magnetic 

field is useful in the extraction of large energy in the 

geothermal regions. 

According to preliminary estimates the heat ac- 

cumulated in the crust to a depth of 6 to 8km is 

fivethousand times greater than the heat that could 

be liberated from all fuels available on the earth. On 

the basis of this, it has been estimated that geother- 
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real resources in the United States could supply 

395000 MW of electric power in the year 2000. One 

of the possible methods of extracting such large geo- 

thermal energy is by establishing a very large under- 

ground heat exchanger consisting of man made cir- 

culation systems with a filtration zone in porous me- 

dia formed by hydraulic and explosive fracturing of 

rocks surrounding a geothermal wall. This needs op- 

timising the draw-off rates and operating pressure 

of filtration zones. To achieve this a detailed under- 

standing of flow process in filtration zones, and in 

porous media in particular, in the presence a mag- 

netic field will be required. In addition to this geo- 

thermal application the results of this investigation 

are also useful in understanding the dynamo principle 

of earths core and other planetary interior. This is 

because convection through porous media is a likely 

candidate for the origin of the magnetic fields in these 

planets where the interaction of convective eddies in 

porous media with magnetic field appears in this case. 

The present study considers natural convection of a 

conducting fluid in an idealized porous layer in the 

presence of a magnetic field and determines the ef- 

fects of different modes of heating from below hav- 

ing free boundaries. 

Although the analysis presented in this paper was 

originally motivated by the problem of generation of 

magnetic field by convection through porous material 

we shall restrict our attention to the case of interac- 

tion of two-dimensional convection through porous 

material with homogeneous magnetic field imposed 

from outside. At the onset of instability, these con- 

vective motions are of two types. If they are inde- 

pendent of time it is usually said that the principle of 

exchange of stability is valid. If, however, instability 

manifests itself in the form of oscillatory (with re- 

spect to time) motion we have overstability. In the 

case of overstability, the convective velocity depends 

on time. After setting up the convection the tempera- 

ture decreases with decrease in temperature gradient 

so that the density and velocity decrease till the buo- 

yancy force balances the viscous force. At that stage 

the uniform heat supplied from below will again in- 

crease the buoyancy force which counterbalances 

the viscous and thermal dissipation and convective 

motion occurs. This process will continue and we 

have oscillatory convection as long as temperature 

and velocity fields are out of phase. This is usually 

the situation when the Prandtl number Pr is nearly 

unity. However, when the Prandtl number is suffi- 

ciently small the temperature and velocity fields will 

be in phase and no restoring force exists to execute 

the oscillatory convective motion. In this paper an 

externally applied uniform magnetic field will act as 

a restoring force which sets up the overstable motions 

when Pm/Pr is sufficiently greater than one, where 

Pm is the hydromagnetic Prandtl number. It is shown 

that overstable motions decrease the constraining ef- 

fect of magnetic field and it is for that reason that 

convection can arise at a value of the Rayleigh num- 

ber smaller than that which is required for steady 

convective motions. The same argument is valid for 

the existance of instability to finite amplitude mo- 

tions (Veronis [I]). Hence in this paper the finite 

amplitude study is also included. 

Most of the work on the onset of convection in a 

porous medium pertains to the hydrodynamic stabili- 

ty (see for example the review in the paper by Nield 

[2 ]). The linear hydrodynamic stability of steady 

convection through porous media has been investigat- 

ed for the first time, by Horton and Rogers [33 and 

Lapwood [4 ] and established the critical Rayleigh num- 

ber below which convective cellular flow, in an un- 

bounded horizontal porous stratum, cannot take place. 

Later, Elder [5] has investigated this problem nu- 

merically and found that the critical Rayleigh num- 

ber 4~ 2, obtained by Lapwood is indeed correct be- 

cause the numerical solutions for the Rayleigh num- 

ber less than 4w 2 are nonconvective and convection 

occurs only for the Rayleigh number greater than 

4w 2. Wooding [6 ] has extended Lapwood problem to 

include the effect of variable viscosity and explained 

the stability properties of the layer qualitatively from 

physical considerations. Westbrook [73 has extended 

Lapwood's infinitesimally small perturbation analy- 

sis to include arbitrary finite perturbation and inves- 

tigated the stability analysis using the energy method 

developed by Joseph [8 ]. Recently Gupta and Joseph 

[9] have investigated strongly non-linear heat trans- 

port across a porous layer using Howard's [103 vari- 

ational method. The linear and non-linear stability of 

a conducting flow through porous media has been in- 

vestigated for the first time, by Rudraiah [113 and 

by Prabhamani and Rudraiah [23 in the presence of 
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a uniform poloidal magnetic field. They have investi- 

gated the linear theory using the normal mode analy- 

sis and the criterical Rayleigh number derived by 

such a theory gives a necessary condition for stabil- 

ity (or, equivalently, a sufficient condition of insta- 

bility). The non-linear theory was investigated using 

the energy method developed by Joseph [8 ] and they 

have shown that the critical Rayleigh number provides 

a sufficient condition for stability of a motionless 

fluid. Their analysis shows that the critical Rayleigh 

number is independent of hydrodynamic and hydro- 

energetic Prandtl numbers. However, it is well known 

that for the analysis of overstable and finite amplitude 

motions one should obtain a stability criterion depend- 

ing on the hydrodynamic and hydromagnetic Prandtl 

numbers and this is done in this paper. 

To investigate these problems, the basic non-lin- 

ear equations are developed in section 2. In section 

3 the linear stability analysis is investigated using 

the Liapunov technique with a motive to answer the 

question whether the Liapunov technique gives more 

information on the stability analysis than the usual 

normal made technique or not. The condition for the 

existence of overstable motions is discussed in sec- 

tion 4 and a simple physical explanation for the os- 

cillatory convective motions is given. The finite 

amplitude steady convective motions through porous 

media in the presence of an external magnetic field 

is investigated in section 5 using Veronis [I] trunc- 

ated representation of five components. The method 

of solution is essentially the Galerkin, where the 

problem reduces, mathematically, to finding a solu- 

tion to algebraic cubic equation. To simplify the 

problem, we assume that the induced magnetic field 

and the current are such that they are small com- 

pared to the applied magnetic field, which is usually 

the situation in most of the practical problems. The 

final analysis shows that this assumption i s  equival- 

ent to setting c~ 2 = I/3. Here the trial function for 

velocity, temperature and magnetic fields are repre- 

sented by the marginal stable modes plus the first 

distortion of these modes by non linear interaction. 

As in Veronis [1], no other modes are admitted in 

the representation. The resuiting non linear equa- 

tions for the model amplitudes are then solved on the 

assumption that the motion is steady. We note that 

although such an approach involves a drastic over- 

simplification of the form of velocity, temperature 

and magnetic fields, especially if the analysis is ex- 

tended to values of the Rayleigh number far from the 

critical value, it does represent the simplest non- 

linear analysis for which the results can be applied. 

These results will be useful to discuss the general 

non-linear problem by considering many more com- 

ponents. The final section contains the general con- 

clusions and it is shown that finite amplitude solutions 

exist for subcritical values of the Rayleigh number as 

long as the Hartmann number is smaller than some 

maximum value (approximately unity for mercury 

with porous media made up of fibre material) and as 

long as the B usse number (for mercury theBusse num- 

ber is approximately 5) is greater than c~. This range 

of Hartmann and Busse numbers is readily accessible 

in a laboratory experiment with mercury and fibre ma- 

terial for porous media. 

2 Mathematical Formulation 

The configuration to be considered is shown in Fig. I 

which consists of a horizontal porous layer of per- 

meability k and of infinite extent filled with conduct- 

ing fluid heated from below and permeated by an ex- 

ternally applied uniform magnetic field H 0. The lay- 

er has thickness d and is bounded by two free sur- 

faces. The upper surface is at a constant tempera- 

ture T O - I/2AT and the lower at T O + I/2AT. We write 

the total temperature as 

Tto ta  1 = T O - a T -  ( z / d -  1 / 2 )  + T ( x ,  z ,  t )  ( 2 . 1 )  

w h e r e  T ( x ,  z ,  t )  i s  t h e  d e v i a t i o n  of  t h e  t e m p e r a t u r e  

f r o m  t h e  l i n e a r  p r o f i l e  and  we a s s u m e  t h a t  a l l  t h e  

p h y s i c a l  q u a n t i t i e s  a r e  i n d e p e n d e n t  of y .  In o t h e r  

words we consider here two-dimensional horizontal 

rolls. 

Then the basic equations are the two-dimensional 

Darcy-Boussinesq-MHD equations~ as set down by 

Prabhamani and Rudraiah [12], for the conservation 

of momentum 

bqbt + (~'V)~- p-~o (~'V)~: _ l__vp _.Q.__V_~po PO k 
(2.2) 

t h e  c o n s e r v a t i o n  of  m a s s  

b u / b x  + b w / b z  : 0 ( 2 . 3 )  

t h e  c o n s e r v a t i o n  of  m a g n e t  i c  l i n e s  
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Free surfoce,  T O - 1 / 2  A T 

Free surface, 

d z H o 

T o + 112 AT  

Fig. 1. Schematic illustration of a porous layer 

(~. v)~: (H- v)~ + VmV2~ (2.4) 
bt + 

the linear equation of state for the fluctuation density 

1 T ( 2 . 5 )  
p : - p0c~ 

and the conservation of energy 

bt ( q "  V)T - W : kv2T . ( 2 . 6 )  

H e r e  P : p + ~H2/2- i s  the  to t a l  p r e s s u r e ,  p i s  the  

p r e s s u r e  of  f lu id ,  q i s  t he  t w o - d i m e n s i o n a l  v e l o c i t y  

v e c t o r  wi th  c o m p o n e n t s  (u ,  w) in  t he  i n c r e a s i n g  d i r e c -  

t i ons  of (x ,  z)  ; t~ i s  the  t w o - d i m e n s i o n a l  m a g n e t i c  

f i e ld  wi th  c o m p o n e n t s  (Hx,  H 0 + H z )  in t he  r e s p e c t i v e  

d i r e c t i o n s  (x ,  z ) ,  ~ i s  t he  g r a v i t a t i o n a l  a c c e l e r a t i o n  

in the  n e g a t i v e  z - d i r e c t i o n ;  p 0 i s  the  d e n s i t y  at t e m -  

p e r a t u r e  T 0,  ~ i s  the  c o e f f i c i e n t  of t h e r m a l  e x p a n s i o n ,  

k i s  the  p e r m e a b i l i t y  of  t he  p o r o u s  m e d i u m  and v ,  

u rn (=  1 / ~ z )  and K a r e  r e s p e c t i v e l y  the  c o e f f i c i e n t s  

of  k i n e m a t i c  v i s c o s i t y ,  m a g n e t i c  v i s c o s i t y  and t h e r -  

m o m e t r i c  d i f f u s i v i t y ,  v t he  e l e c t r i c a l  c o n d u c t i v i t y  and 

i s  the  m a g n e t i c  p e r m e a b i l i t y .  

We c r o s s - d i f f e r e n t i a t e  t he  m o m e n t u m  E q .  ( 2 . 2 )  

and t h e  m a g n e t i c  i n d u c t i o n  E q .  ( 2 . 4 )  to  o b t a i n  

bH0 ~_[ bT v + (~. v)~-  ~ (~- ~)~ : - ~g 
bt  v DO bz bx k 

(2.7) 

and 

b.b.[+(~.bt V ) g - ( t ~ - v ) ~ =  pH 0 -~z + Vm v2~ - 

bHz bHz i bw (2.8) 

where 

bu bw bHx bHz 
= 5z bx ' ~ = bz bx ( 2 . 9 )  

are the y-components of vorticity and current density 

respectively. 

We introduce the stream function T and the mag- 

netic stream function ~p, through the definitions 

b~ ~ ( 2 . 1 0 )  U - W =  - ~  

bz ' bx 

~en 
H H =--:= 
x bZ ' Z bx 

so that 

= v2T and g v 2 = ~ .  ( 2 . 1 1 )  

Our  s y s t e m ,  u s ing  the  n o n - d i m e n s i o n a l  q u a n t i t i e s  

q = k / d q %  t : d 2 / k t %  I~= H0H %-~ T = (AT)T% 

(x ,  z)  : d ( x %  z* )  ( 2 . 1 2 )  

then becomes 

PrM 2 

bt  = S 

P r M  2 
+ S 

- - - J ( %  g) - PrR----- 

2 - -  v (-~z) 

bT -q + 

(2.13) 

1 2 / b ~  t A.g.=j(,~,~t g)-J(~'~)+ g v2g+v ~-E] - 

2[~2~ ~2~ ~__~_ 2[~2  ~2 ~ ~2~ 
- 2/ x z§ 2- 

(2.14) 

bT =j(LT)- b~ ~-F -~ + v2T (2.15) 

where, for simplicity, the asterisks (~) areneglected, 

J stands for the Jacobian, 

Pr = v/K is the Prandtl number 

Pm = v/v m the magnetic Prandtl number 

2 2 

M 2 = ~H0d the Hartmann number and 
P0VVm 

R = c~gATd3/Kv the Rayleigh number and S = K/v m 

is the Busse number (first appeared in the work of 

Busse [133). 

We also note that the Hartmann number and Pr/S 

appear in product form as 

Q M 2pr/S 2 2 2 
= = ~H0d /D0k 
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so that we could equally well have defined this combi- 

nation as the non-dimensional number containing the 

magnetic field. Only in the steady, linear stability 

problem M 2 appears independent of the Prandtl num- 

ber. 

The boundary conditions for the problem are 

straight forward. With the boundaries Z = 0 and 

Z = 1 taken as flat, magnetic and velocity stress- 

free, so that 

T : 0 ,  - -  b2T : 0 ,  T : 0  bb-~z : 0  a t  z = 0 , 1 .  ( 2 . 1 6 )  
bz 2 

C o n d i t i o n s  ( 2 . 1 6 )  r e p r e s e n t  t h e  s i m p l e s t  k i n d  of 

b o u n d a r y  c o n d i t i o n s  f o r  t h e  p r o b l e m .  They  a r e  d i s t i n -  

g u i s h e d  by t h e  p e r i o d i c  c o n t i n u a t i o n  of t h e  c o n v e c t i o n  

l a y e r  a b o v e  a n d  b e l o w .  In t he  a b s e n c e  of p o r o u s  m e -  

d i a  t h e s e  b o u n d a r y  c o n d i t i o n s  h a v e  b e e n  f a v o u r e d  in  

t h e  a n a l y s i s  of  c o n v e c t i o n  p r o b l e m s  ( B u s s e  [ 1 3 ] ) .  In 

t h e  a b s e n c e  of m a g n e t i c  f i e l d  t h e y  h a v e  b e e n  u s e d  by 

Lapwood  [ 4 ] .  C o n d i t i o n s  ( 2 . 1 6 )  r e p r e s e n t  n a t u r a l  

e x t e n s i o n  to t h e  p o r o u s  m e d i a  c a s e .  

3 Steady Linear Stability Analysis Using Liapunov 

Technique 

In this section, we investigate the linear steady sta- 

bility analysis using the Liapunov technique with the 

object of knowing whether this method gives more 

information on convective steady motions than the 

usual normal mode analysis (Prabhamani and Ru- 

draiah E12]) or not. Before doing this, let us first 

briefly explain the Liapunov technique. 

3.1 The Liapunov Method 

It is intuitively clear that if the total energy of a phy- 

sical system has a local minimum at a certain point, 

than that system is stable at that point. This idea 

was generalized by Liapunov E14] into a simple but 

powerful method for studying stability problems in a 

broader context. A formal discussion of this method 

was given by Pritehand [15]. We just summarize the 

results here briefly. 

Let r(= x, y, z) be the spatial coordinate defined 

over a fixed and finite domain ~ with bE denoting its 

boundary and t be the time. Our aim is to investigate 

the stability of the basic state qn(r) : 0 (i.e. a null 

soluhon), H = H 0 and d2T0/dZ = 0. For this, we 

suppose that a metric space X(a, B) be given such 

that the metric between any two states a and a' at 

time t be denoted by B(a, a' ). Let the basic and per- 

turbed states, both belong to Z, be denoted by a 0 and 

a respectively. 

The basic state is stable in the sense of Liapunov 

if for each real number r > 0 there exists a real num- 

ber 6(~) >0 such that for every a E E, B(a 0, a) < 6 

at the initial time t o implies that B(a0, a) < ~ for all 

t > t 0. The basic state is asymptotically stable if it is 

stable and in addition B -* 0 as t -~ cc. The basic state 

is unstable if it is not stable. Among unstable systems, 

we do not consider those that have finite escape time 

i.e. B -~oo for finite t. 

The following theorem follows by a straight for- 

ward extention of the method employed by Prite- 

hand [153. 

Theorem : There exist non-decreasing functions 

f(B) and g(B) such that 

f(o) = g(O) : o 

f(B) -~c, g(B) -~cc as B-*oe 

and a functional V, called Liapunov functional, such 

that 

0 < f(B) ~< V~< g(B) 

and 

dr<6<0 6(0) =o, 
dt 

then the basic state is uniformly and asymptotically 

stable in the large with respect to the metric B. 

3.2 Liapunov Functional and Stability Criterion 

To obtain a suitable Liapunov functional, we consider 

a small disturbance of the form 

u=u', v=v', w=w', P=P0+P', H= H 0 + 

((3.1) 
T : T O - AT(z/d- 1/2) + T'(x, y, z, t) . 

Here Zero suffix quantities denote the basic state, 

prime quantities and h denote the perturbed quanti- 
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ties which are assumed to be small compared to the 

basic state quantities and k denotes the unit vector 

in the Z-direction. 

Substituting (3.1) into the system (2.2) to (2.6), 

linearizing, assuming all the perturbed quantities 

vary of the form 

f(z) Expli(llX + mlY) + PIt } (3.2) 

and eliminating all the quantities except W and T 

(Prabhamani and Rudraiah [12]) we get 

[(n+I/P l)InP m-(D2-42)}-M2D 2] (D 2-42)w = 

( (3 .3)  
42R1/2  

= -  ~ [ n P m -  (D 2 - 4 2 ) ] w  

[nPr - (D 2 -42 ) ]T = Rl/2Pll/2w (3.4) 

where D : d/dZ, ~ is the dimensionless wave num- 

ber and other quantities are define in section 2. The 

scales for W and T have been chosen such that R 

appears symmetrically in the two Equations rather 

than in just one or the other. 

This ehoise is useful to establish a suitable Lia- 

punov functional to the problem. In deriving Eqs. 

(3.3) and (3.4) we have used the fact that the nor- 

mal components of current density and vorticity are 

identically zero due to our boundary conditions (2.16). 

From (3.3) and (3.4) we have to obtain theLia- 

punov functional, V, a positive definite functional 

such that 

0 < 4 0 ( B )  ~ < V < ~ ,  (B) 

and (3.5) 

dV 
d--t- < 5(B) < 0 

where V and B involve the volume integrals of lin- 

ear function of IWl 2, I Dwl 2 and soon, and can be 

expressed ,  using (3 .2 ) ,  as 

V = V" Exp(2nrt)  
. . . . .  (3.6) 

B 2 = ~2 Exp(2nrt ) 

where V and B are volume integrals of linear func- 

tions of IWi2 IDWi2 and so on. We assume that 

40(B) , 41(B) and 8(B) take the values ~0 B2,~1 B2 

and ~B 2 respect ive ly .  Then (3.5)  becomes 

0 < d  0 ~ 2 ~  V ~ 4 1 ~ - 2  

2n V ~  ~ - 2 ~  0 . 
r 

(3.7)  

Eliminating n between (3.3)  and (3 .4) ,  multiplying 

the result ing equation by W*, the complex conjugate 

of W, integrating over  the volume of fluid (Rudraiah 

[16, 17, 18]) using the boundary conditions (2.16) 

and considering only the real  par t ,  s ince n is com-  

plex, we get 

2nrV1 : - P  m (n2-n2)<r i IDWl 2 +421wl 2 > 

1 i~ <(I +M2PI) ID2Wl 2 

42(42 PIPm R + p ) l w l  2 - 
r 

- ~ 2 R 1 / 2 P l l / 2 ( P m / P r  - 1)R 1 (W*~) > 

(3.8) 

where 

= (D2 - 42)| (3.9) 

=1 2 + + V 1 ~ (  IDWl +(242 Pm/P1) IDWI 2 

+a,2(42 + Pm/P1 Iw12> 
and R 1 denotes the real part of the quantity. Simi- 

larly from (3.4), we get 

P n < [D|174 ' " = 
r r  I I t I 

= _ ( / t / 2 +  R 1 / 2 P l l / a R l ( W , ~ ) )  . . .  (3.10) 

We notethat the form of ~1 given by 43.9) is such 
that we cannot be sure of the sign of dVl/dt andhence 

we seek a new Liapunov functional. For this, we mul- 

typly (3.10) by an arbitrary positive constant k and 

adding the resulting equation to (3.8), we obtain 

2nrV= Pm(nr  Iowi2+ 

421w12>_ I + FII ((I+MZPI)ID2Wl 2 + 

+ 42(2 + M2p I)IDw12+42(42- PIPm R Pr )lwl 2 
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+ xa21'}'[2+ 2p1/2Pll /2 ( l+x_  

- Pm/Pr) RI(W~Y) } 
w h e r e  

(3.11) 

Here we choose RP l in such a way that 

P m  (X + 1 - P m / P r ) 2 [  
A - e 2 a P  1 - p y  + a-f ] > o . (3.19) 

V = V 1 ;<V2 ' V2 ~ 2 p r  2 2 + : 2p--- 7 < ID| + ~ 2 1 s l  > . 

This new Liapunov functional makes the integral to be a 

negative definite quadratic form. Since our aim in this 

section is to consider the marginal state, we set n i = 0 

in ( 3 . 1 1 )  and ob ta in  

1 
2nrV < - F11 ( (1 +M2P1 ) IDaWl 2+~2(2  +M2P1)I DW 12+ 

2 P 1 P m R  a2RP1 /4k  ( 2{c~2 c~ - 4 + 1 -  +c~ - F r  

- P m / P r ) 2 }  I wl 2 ) (3.13) 

We i n t r o d u c e  a quan t i ty  A s u c h  that  the  fo l l owing  i n -  

e q u a l i t y  i s  t r u e :  

< (1 + M 2 p  1 ) ID2WI 2 + 2 2 ( 2  +M2PI ) IDW 12 + 

+ ~ 4 1 w l 2 >  > A <  I W 1 2 >  ( 3 . 1 4 )  

By using calculus of variation, we find 

(I+M2PI)D4W-c~2(2+M2PI)D2W+(c~4-A)W=0 
(3.15) 

A solution of this equation, satisfying the boundary 

conditions (3.11), is 

W = W 0 Sin~z ( 3 . 1 6 )  

F r o m  th i s ,  u s ing  ( 3 . 1 7 ) ,  we get  

2 
~2(c~2+ 1) { 1 + M2PI + ~ __ 

R < c~2p 1 P ' m / P r  + (X + 1 - P m / P ~ ' ) / 4 >  = R . 

(3.20) 

Since }, is an arbitrary positive constant, we choose 

it in such a way that R becomes maximum. There- 

fore, we let 

f(X) = (1, + 1 - Pm/Pr)2 

then  

clf = (~, * p m / p  r _ 1)(X - P m / P r  + 1 ) / k  2 
dX 

d2f  _ 2(Pm/Pr - 1 ) 2 / ~  3 
d~ 2 

we choose 

~, = -'2 (1 - Pm/Pr) ( 3 . 2 1 )  

w h e r e  we c h o o s e  p o s i t i v e  s i g n  when P m / P r  < I and 

n e g a t i v e  s i g n  when  the  o p p o s i t e  i s  t r u e .  T h e r e f o r e ,  

f o r  P m / P r  < 1, the  m a x i m u m  v a l u e  of R i s  g i v e n  by 

-- ~2(c~2 + I) [M2Pl + c~2 + 1] . (3.22) 
Rlc = c2P1 

H o w e v e r  when  P m / P r  > 1, t he  m a x i m u m  v a l u e  of 

is  g i v e n  by 

where w 0 is an arbitrary constant. From (3.15), 

using (3.16), we obtain 

A = 4( 2 + 1)2 + 4 M 2 P l ( ~ 2  + 1) . ( 3 . 1 7 )  

Also from (3.13) and (3.14), we obtain 

1 I 2 PmPI R 
2nrV<-P-711A-~ Pr 

2 (k+ 1 - P m / P r ) 2  ] 
- c, 4k RPI < I w 1 2 >  . ( 3 . 1 8 )  

- _ P r  - ( 3 . 2 3 )  
R2c p R l c  - 

m 

In p a r t i c u l a r ,  when P m / P r  = 1, ~ = 0 and in that  

c a s e  R l c =  ~ 2 c "  Knowing  4, we u s e  ( 3 . 1 2 )  to get  

t he  r e q u i r e d  L iapunov  func t iona l  

- I in2wl2. V = -~ < (2c~ 2 + Pm/PI) IDWI 2 + 

2 
+~2(~2+Pm/P1) IwI2+ IPr-Pml ~ll ([D| + 

2 2) 
+0~ I| (3.24) 
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we suppose that the matric B is given by 

= 1 ID2WI2+ + 2+ 2+ 2) . g2 3< IDWl 2 Iwl ID~I I| 
(3.25) 

Then the conditions (2.16) are satisfied if we choose 

~0 =Mini1' 2~2 +Pm/P1 ' ~ 

~2/p I [pm-Prl, ~ IPm-Pr[ (3.26) 

and 

~1 = Max 1, + Pm/P1, + Pm/P1) ,  2e 2 Ol 2 ((~ 2 

2 or4 } 
~ - - - Ipm-Pr l  I P m - P r [  �9 
P1 ' ~ll 

(3.27) 

In order to obtain Rc, the critical Rayleigh number, 

we minimize R with respect to ~ and obtain the mi- 

nimum wave number c~ given by 
C 

= (1 + M2P1)1/4 (3.28) 

Substituting this ~c in (3.22) and (3.23),  we get 

2 2 P 
-- ~ [ V M2Pll  m alc = ~ 1 + 1 + for ~ < 1 (3.29) 

and 

P 
Pr  for m iR2c = ~ RIe ~ > I . (3.30) 

m 

4 Stability of Overstable Motions 

The analysis of section 3 reveals that there exist 

two Rayleigh numbers, one, Rlc for Pm/Pr < 1 and 

the other, R2c for Pm/Pr > 1. The former coincides 

with the Rayleigh number given by Prabhamani and 

Rudraiah E12] for steady marginal state, whereas 

the latter decreases Rlc by an amount of Pm/Pr. In 

other words in the case of Pm/Pr > I the principle 

of exchange of stability is not valid and we have a si t-  

uation analogous to the overstable motions. To sub- 

stantiate this we discuss in this section, following the 

analysis of Chandrasekhar [19 ], the stability of over- 

stable motions and try to answer the question whether 

or not instability can arise as oscillations of increas- 

ing amplitude. 

For this ,,,e obtain, from (3.3) and (3.4) after 
eliminating !', the stability Equation 

2 (D 2_r 2_nPr)[(n+l/P I)(D 2-r~-nP m) + (D2-r I ) 

+ M2D2]W = a r 2 ( D 2 - r 2 - n P m  ) W .  (4.1) 

The trial solution of (4.1), satisfying the boundary 
conditions (2.16),  is 

w = w0Sin~z , (4.2) 

where w 0 is an arbitrary constant. Substituting (4.2) 

into (4.1), we obtain the eigenvalue equation 

2(2+1) ( 2+l+nPr/~ 2)[(n+I/Pr)(2+l+nPm/W2) 

+ M 2] =e2R(~2 + 1 + nPm/rT2) (4.3) 

where n is complex. Defining 2 2 2 = rl/~ and n=inl, 
we can rewrite (4.3) in the form 

R=•2 (2~+21) I(  2 + l + i n l F r / , 2 ) ( i n  1 

M2(e2+ 1 + inlPr/.2) 1 
+ (c~ 2 + 1 + inlP m/rT 2 ) " 

+ lIP I) + 

(4.4) 

From (4.4) it is c lear  that for an arbi t rary  assigned 
nl ,  R will be complex. For  overstable motions we 
denote this R by R 0. The physical meaning of R 0 re -  
quires it to be real.  Consequently, the condition that 
R 0 be real implies a relation between the real M 

and the imaginary part of n 1. Since our interest is in 

oscillatory motion, it is enough if we seek solutions 

of (4.4) for which n I is real. Assuming, then, that 

n I is real and equating the real and imaginary parts 

of (4.4) and simplifying we get 

2 2+ I [M 2 o12)2 (1 +(~2)Pr 1 
nl=- -~- j~  [ - ~ ( P m - P r ) - ( l +  - ~2p1 

(4,5) 

R0 ='T2 (32;  1 ) ~  ' I (~ 1)(Pm+Pr)2-"~ § (~2+I)PmPrpi ~ " 

Pr(Pm* Pr)(l +~2)2 ~2+I 
+ pl ~ + F 1 (l+pr2/~)+ 
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/ P P r ( P 2  - P r k ) ( ~ 2 + l )  / ]  
+ M 2 1 -  m m P r  

2 P 1  n + 

(4 .6 )  

where 

& (2 2Pl : + l + P r /  . 

Equations ( 4.5 ) and ( 4.6 ) are the Eqs. which must be 

satisfiedfor overstability is to occur for a wave num- 

ber corresponding to c~ 2 and the magnetic field cor- 

responding to M 2. From (4.5) it is clear that over- 

stable motions occur if 

c~2+1 (l+c~2+pr/-2P l) (4 7) P m > P r ,  and M 2 > p  - P r  
m 

2 
otherwise n would be negative contrary to hypothe- 

sis. For a given M 2 overstable solutions are, there- 

fore, possible only for c~ 2 2 where 2 < ~ .  ~ .  is  s u c h t h a t  

~ .  ~.+2- = M 2 ( P m - P r ) - ( l + P r / ~ 2 P 1 )  ( 4 . s )  

when c~ 2 2 n 2 = 0 and f rom (4 .4 )  we have = ~ ,  

= 2 (~2+1)  [M 2 ~2+1 
2 * ] (4 .9 )  Rc ~ Yll 

which, as one would expect, is the same as the one 

given by (3.35) at which the steady convection will 

occur for a wave number corresponding to c~.. For 

c~ > c~., overstability is not possible and the principle 

of exchange of stability is valid. In the (c~, Rc)-plane 

the curve given by (4.9) defines the locus of states 

which are marginal with respect to stationary con- 

vection and the effect of permeability of the material 

is to increase the value of R c compared to that given 

by Chandrasekhar [19] for impermeable material. 

The overstable solutions branch off from the locus of 

marginal steady state at the point ~, and for c~ < c~. 

they are described by 

~2+1  P r +  m (4 .10 )  
a0:ac-n~ 7 Pro+ 2( 2+l)pl 

which shows that the Rayleigh number for overstable 

motions is always less than R c. Depending on Pm' 

Pr, M 2 and PI the branch point c can occur either 

before or after the point c at which R attains 
mln C 

c 
its minimum. If ~. > C~min, then it is clear that for 

all  a < c~. o v e r s t a b i l i t y  is  the p r e f e r r e d  manne r  of 

instability. 

In the remaining part of this section a simple phy- 

sical explanation (Veronis [1], Rudraiah and Srima- 

ni [20 ]) is given for overstable motions. 

In the hydrodynamic stability problem of Lapwood 

(1948) the horizontal temperature gradient of the per- 

turbed field releases potential energy which is sup- 

plemented by the Darcy resistance of the motion. This 

can be seen from the equation, 

"-~ bT _ ( v / k ) 9  (4 .11 )  Z + ( q .  v)~ : -g~ Z-~ 
~t 

which can be ob ta ined  f rom (2 .7 )  by l e t t ing  the m a g -  

net ic  f ie ld tend to z e r o .  T h e r m a l l y ,  the upward  con -  

vec t ion  of wa rm fluid is  ba l anced  by the d i f fus ion of 

excess temperature. In these simple balances the 

velocity and temperature fields are in phase and no 

restoring force exists ; and hence no overstable mo- 

tions are possible. In other words, the principle of 

exchange of stability is always possible in that case. 

However, in the present case (2.7) shows that the 

magnetic field introduces a Lorentz force with the result 

that a "magnetic wind" component, who ~ is gen- 
O0 bz 

erated. In the linear analysis the magnetic field de- 

scribes a balance between a horizontal temperature 

gradient supplemented by the Darcy resistance and 

the vertical shear of the current density (we shall 

call, in analogy with the zonal velocity (Veronis [I]), 

the zonal current) normal to the temperature gra- 

dient and Darc 5r resistance term. In (2.1), neglect- 

ing the non-linear terms, this balance is given by the 

aHo ~{/bz and 01 bT + (v/k)~. The inhibition terms -~0 g " ~  

of convection by magnetic field is c early traceable 

to the magnetic constraint which is energetically in- 

active. The larger the strength of the magnetic field, 

the larger the zonal current. Hence, less potential 

energy is released for a given horizontal temperature 

gradient and Darcy resistance. Thus oscillatory mo- 

tions are possible in a conducting fluid in the presence 

of a magnetic field because the Lorentz force can act 

as a restoring mechanism. This motion also involves 

a balance between the local acceleration and the Lo- 

rentz force. Therefore, in the steady convection the 

Lorentz force balances the force which releases the 

horizontal temperature gradient and Darcy resistance. 

Whereas, in the transient motion, a part of the Lo- 

rentz force can be balanced by the local acceleration 
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so that less of magnetic constraint is available to off- 

set the horizontal temperature gradient. Consequent- 

ly the cell must be distorted (i.e. shrunk) less by 

the magnetic field and there is less dissipation as- 

sociated with the somewhat larger cell. Convection 

can, therefore, be maintained for a smaller imposed 

temperature difference (i.e. smaller Rayleigh num- 

ber). 

In the process of balance, we note that a time de- 

pendent temperature field involves, as in the hydro- 

dynamic case (Veronis El ]), a perturbation temper- 

ature which is out of phase with the vertical velocity 

and hence is less efficient than the steady motion for 

convecting heat upward. Therefore, the overstable 

motions are prefered only when the effects of these 

out-of-phase temperature fluctuations are smaller 

than the effects of the time-dependent motions in the 

dynamical process because the latter enhance con- 

vection by offsetting the constraining force of magnet- 

ic field. In this process the ratio Pm/Pr, which 

measures the relative role of thermal conductivity to 

magnetic viscosity, plays a significant role. If 

Pm/Pr is greater than unity, magnetic diffusive pro- 

cesses are relatively less important than thermal 

diffusive processes and time-dependent motions are 

more important in the dynamical balance than in the 

thermal balance. Hence, the onset of convection as 

overstable motions for larger Pm/Pr. 

The same kind of qualitative argument can be used 

in connection with non-linear analysis including iner- 

tial process of velocity, temperature and magnetic 

fields. Thus, it is possible that motions with finite 

amplitude may exist at subcritical values of the Ray- 

leigh number because the inertial process ((~- V)~) 

in (2.7) may balance the constraining effect of mag- 

netic field namely 

wHo ~ ( ~ .  v ) g +  - -  
P0 P0 bz " 

This is c o n s i d e r e d  in the next s ec t ion .  

5 Finite Amplitude Analysis with a Limited 

Representation 

In this section we discuss, following Veronis El], 

the finite amplitude analysis by considering a trun- 

cated representation of velocity, magnetic and tem- 

perature fields and try to deduce certain general phy- 

sical results with a minimum amount of mathematical 

analysis. We note that the results obtained from such 

a simple analysis can be used as a starting value in 

solving a fully non-linear convection problem. 

In section 3, we have seen that the linear stability 

problem has a steady state solution whose form is 

given by (3.30) for velocity. The first effect of non- 

linearity is to distort the temperature field through 

the interaction of ~ and T and the zonal current 

field through the interaction of Y and cp. The distor- 

tion of temperature field will correspond to a change 

in the horizontal mean, i.e. a component of the form 

sin 2~Z will be generated. Similarly, the zonal cur- 

rent field will be distorted by a component of the form 

sin 2~ x. Thus, a minimal system which describes 

finite amplitude convection is given by 

Y = A ( t )  s i n r ~ x s i n w Z  (5 .1 )  

T = B ( t )  c o s ~ x S i n r T Z  + C ( t ) s i n 2 ~ Z  (5 .2 )  

~0 = D( t )  sinrT0~x cosrrZ + E ( t )  s i n 2 ~ x  (5 .3 )  

where  the ampl i tudes  A, B, C, D and E a r e  g e n e r a l -  

ly funct ions of t i m e  and a r e  to be d e t e r m i n e d  by the 

dynamics  of the s y s t e m .  Substi tut ing (5 .1 )  to (5 .3 )  

into (2 .13)  to (2 .15)  and equat ing the l ike  t e r m s ,  we 

get 

2c~ Q (3c~ 2 - 1 )  D E - ~ Q D -  P r  ~PrRB 
= c2+i ~II A rr(c~2 + i) 

( 5 . 4 )  

t~ : -~2(c~2+ 1)B - rrc~A - r~2~AC (5 .5 )  

2 
~ : w  -~- ~AB - 4~2C (5 .6 )  

~2 
f:) = ~2~AE + wA - -~- (a2 + 1)D (5 .7 )  

2 2 
= - -~- ~AD - 4rr2 -S-- E (5 .8 )  

where  the dot o v e r  c o r r e s p o n d s  to a t i m e  d e r i v a t i v e .  

This set  of n o n - l i n e a r  o r d i n a r y  d i f fe ren t ia l  equa-  

t ions is not amenab le  to ana ly t ica l  t r e a t m e n t  for  

the gene ra l  t ime -dependen t  v a r i a b l e s  and we have to 

so lve  it us ing a n u m e r i c a l  method.  However ,  in the 

case of steady motions these equations can be solved 

analytically. Such solutions are very useful because 
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they show that a finite amplitude steady solution to 

the system is possible for subcritical values of the 

Rayleigh number and that the minimum values of 

R for which a steady solution is possible lies below 

the critical values for instability to either a steady 

infinitesimal disturbance or an overstable infinitesi- 

mal disturbance. 

Thus, if the system is steady, Eqs.(5.4) to (5.8) 

take the form 

2 3 
(~2 + I)A + ,~ RB + ~--~ Q(~2 + 1)D - 

P1 

r~4Qo~(3c~ 2 -  1) DE 0 ( 5 . 9 )  
P r  

2~AC+~ A + 2( 2 + 1)B = 0 (5.1o) 

2 
zAB - 4~2C = 0 ( 5 . 1 1 )  

2 

2 
. 2~AE + ~A - ~ ( 2 + 1)D : o (5-12) 

2 2 c~ 2 
dAD + 4 E = 0 (5.13) T 7 

Equations (5.10) to (5.13) can be re-written in the 

form 

I 2A2 ) B = --~A/~2(~2+I+ -~ 

I 
C: ~ A B  

1 S2A 2) D = ~SA/~2(c~ 2 + 1 + 

g -- -SAD/8 c~ . 

Substituting (5.14) to (5.17) into (5.9) and after 

some simplification, we get 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

~2S2~2(~2 + 1) (A2/8)3  + [..r2S2(G2 + 1)2(1+ 2c~2/$2)/P1 
P1 

+[ 2(2+ 1)3(2+ 2/s2)/Pl_ 2 22(2+1)+ 

M2~2c~2(C~ 2 1) 4+ + + + 
+ S 2 -8- Pl 

+ M%2(~2+ 1) -~2R:0 (5.18) 

We have to look for real positive roots of this cubic 

equation in A2/8, otherwise the amplitude of the 

streamfunction becomes imaginary. We know that 

(Abramowitz and Segun [21]) the roots of (5.18) are 

real if q2 r 2 1 1 2 + ~<0 where q = -~ a I - ~ a 2 , 

1 _ 3a 0) _ 1 3 
r = ~ ( a l a  2 ~ a 2 , 

P1 [ TT2(~L+ 1)2 + M2~2(~ 2+1)  
a0 = "ngs2Gg(G2+ 1) [ P1 

-o~2R a1= [~2(G2 + 1)3(2+ ~2 /$2) /P  1 
' ~2S2(c~2 + 1) 

-2R~2(~2+ I).M2~2~2(~2+1)14+ (2+ 1)/S 2}3, 

Pl I =2S2(~2+1 )2 (1+2e2 /S  2) 
a2= ~2S2(u2  + 1)u 2 P l  

_ ~2S2 R + 4 ~ 2 ~ 4 M 2 {  . 

2 2 
The expression for q . r Is very complicated and 

difficult to arrive at definite conclusions on the 

Rayleigh number. However, we note that if a 0 = 0, 

one root of (5.17) is zero corresponding to pure 

conduction, which we know to be a possible solution 

although it is unstable for large R. The remaining 

solutions are given by 

A 2 PI 

8 2~2S2~2(~ 2 + 1) 
[2S2R2_ 2(2+1)2(1+2~2/S 2)- 

_4 2 4M2]+ {[ 2S2 R_ 2( 2+ 1)2(1+2~2/$2)/pi - 

_4 2 4M232+ 4~2S2~2(~2+I) [2R 2(~2+1) - 
PI 

- (c~ 2 + 1)3(2 +c~2/$2)/P l -  M2~2c~2(~ 2 + 1){4 + 

+ $2(~ 2 + 1 ) I } 1 / 2 ]  . ( 5 . 1 9 )  

Only the solution with the positive sign in front of the 

root of the discriminant is admissible since other- 

wise A 2 is negative implying the amplitude of the 

streamfunction is imaginary. Now, consider the case 

where finite solutions exist for Rf < IRc, Rf being the 

Rayleigh number for finite amplitude solution. The 
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minimum value of Rf for which solutions exist is 

that value of Rf which makes the disoriminent zero 

provided that the first form on the right-hand-side of 

(5.19) be non-negative. The discriminant is zero if 

R f = ~  (o~2+1)(1-2c~2/S 2) + 4M2Plo~4/$2 + 

+ 2e2(~2+1) /(ce2 1)+M2S2Pl(4-7o~2/S 2 
S 2 + + 

111/2 I (5.20) 

With this value of Rf the amplitudes are real pro- 

vided that the first term on the right-hand side of 

(5.19) be non-negative or equivalently 

1 1 [ 2c~2 + 14c~4M2/(c~ 2 I)I . (5.21) 
p--~ > y I+ W § 

This condition on porous parameter, I/P 1 = d2/k, is 

readily accessible in the laboratory experiment with 

sand (k ~ 0(10-4)ore 2) as porous media and with 

mercury (for which Pm = 0,17, Pr = 0,025, 

S 2 = 46. 277). The numerical values of (5.20)shows 

that Rf is less than R O - 

We note that setting the constant term in the cubic 

equation (5.18) equal to zero, is equivalent to re- 

stricting the value of R very near to R . However, 
c 

this can be avoided by assuming that the terms in- 

volving induced magnetic field and induced current 

are small compared to the applied magnetic field; 

which is usually the case in many practical prob- 

lems. In this case (2.7) takes the form 

~__~L+(~.V)~ = ~Ho ~__~ _ ~g ~T 
~t P0 ~z 00 ~x k ~ (5.22) 

and all other equations remain the same. Now, sub- 

stituting (5.1) to ( 5.3 ) into these Eqs. and assum- 

ing, as before, the steady case we get 

2 3 M 2 
~---- (c~2+l)A+w~RB+u --~-(c~2+ 1)D=0 (5.23) 
Pl 

and the other Eqs. are the same as (5.10) to (5.13). 

As before, substituting (5.14) to (5.16) into (5.23), 

we get 

2 [ u2 A ~82C(~2+1)(A218)2+ ~S2(C+1) 2 + ~4ao 

I" 1 ~2S2R -~-+0~2(0c 2 + l)(a c - R) = 0.  (5.24) 

The solution A = 0 corresponds to the pure conduction 
and the other solutions are given by 

A 2 P1 
-8-= 2u2c~2S2(~2+I) [ct2S2(R-Rc) -cr4Rc 

+~2S2(c~2+I) M2• {[~2S2(R-R c)-~4R e + 

+ 2S2(c2+I)M212+4S2 4[c2R _ 2( 2+ 1M2]II/2]. 
e 

(5.25) 

To ensure the amplitude of the stream function to be 

real, we have to take the positive sign in front of the 

root of the discriminant in (5.25). 

Consider the case where finite solutions exist for 

R < R . We know that (Veronis [1]) the minimum 
c 

value of R for which solutions exist is that value of 

R which makes the discriminant zero provided that 

the first term on the right-hand side of (5.25) be non- 

negative. The discriminant is zero provided that 

.f -I 2 
c~2Pl (5.26) 

where R = Rf denotes the Rayleigh number for finite 

amplitude solutions. With this value of Rf, the am- 

plitudes are real provided that the first term on the 

right-hand side of (5.25) be non-negative; or equi- 

val ently 

M2 > ~2( 2 + 1) 
Pl(S 2 _ 2 )  

(5.27) 

Conditions ( 5.26 ) and (5.27) are meaningful only when 

We note that conditions ( 5.27 ) and (5.28) are readily 

accessible in a laboratory experiment with fibre ma- 

terial for porous media and with mercury flowing 

through it. For this model (5.21) is satisfied if M is 

greater than one when c~ = 1.2 and Pl = 0.1. In other 
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words finite amplitude steady convective motions are 

possible at small Hartmann numbers and small po- 

rous parameters. Whereas condition (4.7)shows 

that infinitesimal oscillatory motions are possible 

only at moderately high Hartmann numbers (for ex- 

ample M > 14 when PI = .001, M > 10 when Pl ='01 

with ~ = 0.5, Pr=.025, Pm=0.17 i.e. formercury). 

The physical reason for this is discussed in the 

next section. 

6 Conclusions 

Infinitesimal steady and oscillatory convective motions 

and steady finite-amplitude convective motions are in- 

vestigated. It is shown that the existence of these con- 

vections will depend on the parameters M 2, PI and 

~, and the following conclusions are drawn: 

I. The Liapunov technique, applied to investigate 

the infinitesimal steady motions, gives two critical 

Rayleigh numbers, Rlc and R2e for Pm/Pr ~ 1 and 

Pm/Pr > I respectively. The former coincides with 

the Rayleigh number given by normal mode technique 

(Prabhamani and Rudraiah [12]) and the latter is al- 

ways less than Rlc. Therefore, we conclude that the 

principle of exchange of stability is valid only when 

Pm/Pr ~ 1 and Pm/Pr > I gives the results similar 

to the overstable motions. 

If. To substantiate the result of Pm/Pr > I given 

by Liapunov technique, the stability of infinitesimal 

oscillatory motions through porous media is investi- 

gated using Chandrasekhar [19] analysis. The re- 

sults show that overstable motions are possible only 

Pm/Pr > I with M 2 satisfying Eq.(4.7). when 

This condition (4.7) imposes the condition on Pl and 

(~ and it shows that overstable motions are possible 

only for moderately large values of M (i.e. M > 14 

for Pl = .01 and M > I0 for P1 = .001 for mercury). 

In other words, for smaller values of M 2 the motion 

should be steady, infinitesimal or finite, rather than 

overstable and the scale of the motion should be com- 

parable to that which occurs for hydrodynamic con- 

vection through porous media (Lapwood E4]). We 

find that the generation of zonal current by the mag- 

netic field is responsible for oscillatory motions 

which exist at a Rayleigh number smaller than that 

of infinitesimal steady motions. This zonal current 
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Fig. 2. Curves of Re, Ro and Rf as function of the 
Hartmannnumber M for P~= 10 -3 and ~ = 0,3 

is also responsible for the existence of steady finite 

amplitude motions. 

Ill. Therefore, finite amplitude steady convection 

is investigated using Veronis El] truncated represen- 

tation. We find that for large values of the Hart- 

mann number M finite amplitude steady convections 

are not possible because they occur only in a subcri- 

tical range of R as long as they can reduce the con- 

straint of magnetic field. When M is large, the mo- 

tions must have large amplitudes to offset the effect 

of magnetic field. This is because greater amplitudes 

require more release of potential energy which in turn 

requires a larger value of R. Hence when M becomes 

large enough to offset the constraint the motion must 

have an amplitude which cannot be achieved for 

R < R 0. We also find that no finite amplitude motions 

are possible when the Busse number is smaller than 

~. Since finite amplitude motions are possible for 

S >~ (i.e. small ~), the preferred scale of finite 

amplitude motions is larger than the corresponding 

scale for infinitesimal oscillatory motions. These gen- 

eral results are shown in Fig. 2, for mercury with 

P = 0.025, Pr = .17, S 2 = 46.277 and PI = 0.001. 
m 

From this figure it is clear that the oscillatory mo- 

tions are possible only for large Hartmann numbers, 

while the marginal state and the steady finite ampli- 

tude motions are possible even at the low Hartmann 

numbers. Similar behaviour is also observed for 
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