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A model for diffusion-controlled spherical particle growth is presented and solved numerically,
showing how, on cooling at a sufficient rate from a given fraction solid, growth velocity first increases
and then decreases rapidly when solute fields of adjacent particles overlap. An approximate analytical
solution for the spherical particle growth velocity is then developed and shown to be valid until the
solute fields begin to overlap. A particle stability model is next presented, building on the preceding
analytic solution. This model permits prediction of the maximum cooling rate at which a semisolid
slurry or reheated semisolid billet can be cooled while still retaining the spherical growth morphol-
ogy. The model shows that particle stability is favored by high particle density, high fraction solid,
and low cooling rate. The predictions of the stability model are found to be in good quantitative
agreement with experimental data collected for Al-4.5 wt pct Cu alloy. Engineering applications of
the results obtained are discussed.

I. INTRODUCTION

THE desired starting material for semisolid forming is a
partially solidified (or partially melted) alloy in which the
solid is present as nearly perfect spheroidal solid particles.
Typically, the spheroidal structure, or something approach-
ing it, is obtained by agitation during the initial dendrite
formation as the alloy is cooled through the liquidus. The
agitation ‘‘breaks’’ the fragile dendrites, creating multiple
new grains, and therefore a fine grain structure. In the usual
case in practice today, the grains then grow dendritically,
but will ‘‘ripen’’ into spheroids of greater or lesser perfec-
tion on slow cooling, holding in the liquid-solid region or
solidifying and reheating into the liquid-solid region.

It is now understood that if initial grain density is suffi-
ciently high, growth can be perfectly spheroidal throughout
the growth process, obviating the need for ripening of a
dendritic structure. A concomitant advantage is that sphe-
roids obtained in this way have none of the entrapped sec-
ond phase present in most ripened dendrites.[1,2]

From a practical point of view in semisolid forming, the
important basic issue is understanding the conditions of
grain density, fraction solid, and cooling rate that permit
solidification in a fully nondendritic, spheroidal mode. This
work outlines those conditions, specifically comprising a
modeling and experimental study of stability of the spher-
oidal particle interface in semisolid Al-4.5 wt pct Cu alloy
as a function of solid fraction and cooling rate.

A. Growth Model, Numerical Solution

A spherical particle growth model was developed for the
semisolid Al-4.5 wt pct Cu alloy. The model assumes equi-
librium at the spherical solid-liquid interface and no solid
diffusion; the local solidification velocity is limited by solute
diffusion away from the interface. The model is hereafter

referred to as the ‘‘liquid diffusion controlled’’ (LDC) model.
It assumes growth of a spherical particle of radius R, located
at the center of a spherical volume of radius RT. The value of
RT represents the radius of a sphere that would occupy the
same volume as will the fully solidified grain. Thus, overall
solute contained within the volume element of radius
RT is conserved, and the model permits determining the
effect of solute field overlap on the particle growth velocity.
Figure 1 shows the model schematically, illustrating the
solute profile in liquid and solid, at a time when solute
diffusion fields have overlapped, so that the liquid concen-
tration at R 5 RT is above the initial liquid concentration,
C0/k. The following system of equations comprises the
mathematical model:
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where the variable r refers to the radial coordinate, and R is
the changing particle radius. The variable T is the temper-
ature of the system during cooling. For Al-4.5 wt pct Cu
alloy, the constant DL is solute diffusivity in the liquid
phase (3 � 10�9 m2 s�1), mL is the slope of the liquidus line
(�3.4 °C wt pct Cu�1), mS is the slope of the solidus line
(�17.9 °C wt pct Cu�1), k is the alloy partition coefficient
(0.19), TL is the liquidus temperature (649 °C), C0 is the
bulk solute concentration (4.5 wt pct Cu), C�

L is the liquid
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composition at the solid-liquid interface, C�
S the solute con-

centration of the solid at the solid-liquid interface, and G is
the Gibbs–Thompson coefficient (2.4 � 10�9 m °C).

Equations [1] through [4] are readily solved numerically,
giving the temporal dependence of the particle radius, growth
velocity, and solute concentration in both the liquid and solid
phases for each point contained within a sphere of radius RT.

As an example of the solutions obtained, Figure 2 shows
liquid concentration vs radial distance, where R , r , RT

and where RT 5 50 mm. The example assumed the particle
was allowed to grow to a 20-mm radius during slow cooling
at a rate of 0.28 °C s�1, followed by a sudden increase in
cooling rate to 375 °C s�1. During the initial slow cool,
there is only a very small composition gradient in the liquid
(i.e., solidification essentially follows the Scheil relation).
However, after the rapid cooling begins (at R 5 20 mm), a
steep solute boundary layer builds in the liquid, the boun-
dary layer not reaching RT until R � 40 mm.

Because the temperature across the volume element is
uniform, the maximum solute undercooling at any time
during solidification is at r 5 R, and is the solute difference
between that at R and that RT multiplied by the liquidus
slope, mL; this is plotted in Figure 3. It is a maximum just
as overlap of the diffusion fields occurs.

Figure 4 plots growth velocity as a function of particle
radius for the same example of a particle allowed to grow to
a 20-mm radius during slow cooling at a rate of 0.28 °C s�1,
followed by a sudden increase in cooling rate to 375 °C s�1.
When the fast cooling begins, the growth velocity first

increases to almost 500 mm s�1, and then decreases
abruptly at the onset of solute field interaction, at R �
40 mm. Growth velocity vs time is shown in Figure 5.

B. Growth Model, Analytical Solution

In order to develop an analytic model for interface stabil-
ity in semisolid alloys, in this section, we first obtain an
analytic expression for the growth velocity of a spherical
particle. We consider, as in Section A, a particle of initial
radius Ri, present in a volume element of radius RT, the
liquid being essentially uniform in composition and in equi-
librium with the solid concentration at the liquid-solid
interface. We then make the additional assumptions that
cooling is constant and takes place sufficiently fast that
the thickness of the solutal diffusion boundary layer sur-
rounding the particle is much smaller than the particle

Fig. 1—Schematic of a solidifying particle in rheocast alloy according to
the LDC solidification model. The dashed hexagon represents the size of
the actual grain after solidification is complete. The sphere of radius RT is
used in the model to approximate this size.

Fig. 2—The LDC model of liquid composition as a function of radial
distance with slow cooling (0.28 °C s�1) for growth up to 20-mm particle
radius, followed by fast cooling (375 °C s�1). When the particle reaches
40 mm in radius, the composition in the liquid at radius RT (50 mm) begins
to rise, marking the onset of solute field overlap.

Fig. 3—Undercooling in the liquid during solidification with slow cooling
(0.28 °C s�1) for growth up to 20-mm particle radius, followed by fast
cooling (375 °C s�1). When the particle reaches 40 mm in radius, the
undercooling begins to diminish due to a rise in the solute concentration
in the liquid at radius RT (50 mm), marking the onset of solute field overlap.
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radius, thus allowing the particle interface to be treated
locally as a planar interface.

The basic equation to solve is the one-dimensional dif-
fusion equation for the solute in the liquid
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where _T is the rate of temperature change, V is the particle
growth velocity, and all other variables are defined in the
same way as in the LDC model. The boundary condition far
from the interface is

Cð‘Þ 5 C0 [8]

It is convenient to define the dimensionless concentration,
u, as

u 5
CðrÞ � C0
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and the time rate of change of the dimensionless super-

saturation in the liquid, _V, as
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With these definitions, Eqs. [5] through [8] become,
respectively,
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A major simplification in solving this problem is that the
particle radius is found to change very little during the rapid
period of increase of growth velocity, as found in the sim-
ulations of the LDC model. We show self-consistently sub-
sequently that this is a direct consequence of the fact that
the particle velocity increases initially as the square root of
time after the sudden change in cooling rate, and hence the
particle radius increases initially slowly as the 3/2 power of
time. Therefore, it is reasonable to assume that the particle
radius stays constant during the initial rapid increase of the
velocity. This assumption allows us to seek a self-similar
solution to Eq. [11] of the form

uðr,tÞ 5 Vtf
ðr � RÞ
ðDLtÞ1=2

 !
[15]

to calculate the time-dependent diffusion field around the
particle of radius R. Once it is obtained, the growth velocity
of the particle is found using Eq. [12]. To solve for the
time-dependent diffusion field around the particle, Eq.
[15] is substituted into Eq. [11] and a new scaling variable

y 5
ðr � RÞ
ðDLtÞ1=2

 !
is defined, which transforms Eq. [11] into

the form

Fig. 5—The LDC model prediction of growth velocity as a function of
time for the case of slow cooling (0.28 °C s�1) for growth up to 20-mm
particle radius, followed by fast cooling (375 °C s�1). The growth velocity is
shown to decrease suddenly, marking the time when solute field overlap begins.

Fig. 4—The LDC model prediction of growth velocity as a function of
particle radius for the case of slow cooling (0.28 °C s�1) for growth up to
20-mm particle radius, followed by fast cooling (375 °C s�1). The growth
velocity is shown to decrease suddenly due to solute field overlap when the
particle reaches 40 mm in radius.
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Equation [16] is solved subject to the boundary condi-
tions f(0) 5 1 and f(‘) 5 0, which follow directly from
Eqs. [13] and [14] together with the definition of Eq. [15].
The particle growth velocity is then obtained from Eq. [12]:
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Eq. [17] is a second-order differential equation that has
a unique solution subject to the boundary conditions
given by Eqs. [12] and [14]. Solving Eq. [17] numeri-
cally yields

� df
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5 1:12 5 A [18]

The final analytical expression relating the growth veloc-
ity of the particle subjected to a sudden increase in cooling
rate is found to be

V 5 1:12
_T

mLj jC0ð1� kÞ
� �

ðDLDt0Þ1=2 [19]

where _T is assumed to be constant and Dt0 is the time
starting from when the cooling rate is increased. Note that
the velocity grows as the 1/2 power of this time, and hence
the particle radius as the 3/2 power, as discussed previously.

To test the accuracy of Eq. [19], the predicted growth
velocity of a particle was compared with the growth veloc-
ity given by the LDC particle growth simulation in Figure 4
(in which RT 5 50 mm, Ri 5 20 mm, and cooling rate is
376 K s�1) . This is done in Figure 6. Note that Eq. [19]
follows the LDC simulation of the particle growth velocity
very well from the time fast cooling begins to the time
where solute field overlap begins (marked by the decrease
in the LDC growth velocity).

Other comparisons of the analytic with the numerical
model were carried out to assure agreement over the
range of practical interest. Figure 7 shows one such simu-
lation, for RT 5 150 mm, Ri 5 100 mm, and cooling rate
2 °C s�1.

C. Interface Stability Model

In this section, a model is developed to predict the rela-
tionship between the initial solid fraction in a semisolid
alloy slurry and the maximum cooling rate at which a stable
spherical morphology can be maintained. This is done by
employing the basic theory of interface stability during
alloy solidification developed by Mullins and Sekerka[3,4]

and later treated for a spheroidal interface (for example,
Langer[5]). The treatment assumes that the solid particle is
growing into an infinite liquid, an assumption that is valid
in our case until diffusion fields overlap.

It was previously shown in the LDC model simulations
that solute field overlap leads to a dramatic decrease in

particle growth velocity. Thus, it is reasonable to assume
that a particle in a slurry cooled at a given rate will always
be stable if solute field overlap occurs before the interface
has time to become fully unstable. The variable Dt0 will be
defined as the time it takes for solute fields to interact, and
Dtu will be the time it takes for a particle interface to
become morphologically unstable. Both Dt0 and Dtu are
measured from when the time the cooling rate is increased.
If Dt0 , Dtu, the particle interface will always be stable,
and if Dt0 . Dtu, the particle interface will become unsta-
ble. Therefore, the maximum cooling rate that maintains

Fig. 6—Comparison of the derived relationship between particle growth
velocity and cooling rate with the LDC model prediction for the case of
slow cooling (0.28 °C s�1) for growth up to 20-mm particle radius, fol-
lowed by fast cooling (375 °C s�1). The derived expression follows the
LDC growth velocity curve very well up until the maximum growth veloc-
ity, which occurs when solute field overlap begins.

Fig. 7—Comparison of the derived relationship between particle growth
velocity and cooling rate with the LDC model prediction for the case of
cooling at 2 °C s�1. The initial particle radius is 120 mm, growing to a final
particle radius of 150 mm. The derived expression slightly underestimates
the growth velocity but again approximates the growth of the particle until
the time when solute field overlap begins.
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stable particle growth must be when the two times are
equal:

Dt0 5 Dtu [20]

Expressions for Dt0 and Dtu will now be developed.
The time it takes for solute fields surrounding identical

neighboring particles to interact is proportional to the
square of half the distance separating the particles divided
by the solute diffusivity in the liquid, or

Dt0 5 a
ðDRÞ2
DL

[21]

where DR is half the distance separating a particle from its
neighbor, and a is the prefactor of the proportionality,
which is of order unity.

To obtain an expression for Dtu, standard expressions for
the morphological stability of a flat solid-liquid interface
were employed.[4] The amplification rate, v, of a linear

perturbation of wave-vector K5
2p

l
on an initially flat

solid-liquid interface is

v 5 VK � DLG

mLC0ðk � 1ÞK
3 [22]

where l is the wavelength of the perturbation. By differ-

entiating Eq. [22], setting
dv

dK
5 0 and V5 Vmax, the wave-

vector for the perturbation being amplified the fastest, Kmax,
can be obtained:

Kmax 5
VmaxmLC0ðk � 1Þ

3DLG
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[23]

where Vmax is the velocity of the fastest growing perturba-
tion. Substituting Eq. [23] into Eq. [22] gives the maximum
amplification rate for the perturbation:

vmax 5
2

3

Vmaxð Þ3mLC0ðk � 1Þ
3DLG
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[24]

The time required for the initially flat interface to
become morphologically unstable, Dtu, must be inversely
proportional to the amplification rate of the fastest growing
perturbation. This results in the expression

Dtu 5 B
3DLG

Vmaxð Þ3mLC0ðk � 1Þ

 !1=2

[25]

where B is a prefactor for the proportionality.
Now that expressions for both Dt0 and Dtu have been

developed, the final step is to express the maximum growth
velocity in terms of the bulk cooling rate of the slurry. This
is achieved with the use of Eq. [19] developed in Section B.
As has been shown, the maximum growth velocity is

reached just before the solute fields of neighboring particles
begin to interact, which is precisely at the time Dt0 given in
Eq. [21]. Substituting Eq. [21] into Eq. [19] gives the max-
imum particle growth velocity

Vmax 5 b
0 _Tmax

mLj jC0ð1� kÞ
� �

ðDRÞ [26]

where b
0

is the new prefactor combining the prefactors a and
A, and _Tmax is the maximum cooling rate that will allow
stable growth. Substituting Eqs. [21], [25], and [26] into
[20], and solving for DR, yields

DR 5 C
DLð Þ3 G mLC0ðk � 1Þ½ �2

ð _TmaxÞ3
" #1=7

[27]

where C is a prefactor that combines the prefactors of the
previous equations. It is expected to be of order unity by
virtue of the fact that all these prefactors are also expected
to be of order unity.
If Ri is defined as the initial radius of the particle when

the cooling rate is increased, and RT is again defined as the
maximum radius the particle can grow to before impinging
on neighboring particles, substituting (RT � Ri) for DR and
solving for Ri gives the expression

Ri 5 RT � C
DLð Þ3 G mLC0ðk � 1Þ½ �2

ð _TmaxÞ3
" #1=7

[28]

Dividing both sides of the equation by RT gives
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The solid fraction in a solidifying metal slurry, fs, can be
estimated by the expression

f s 5
Ri

RT

� �3

[30]

Combining Eq. [29] and [30] gives a relationship
between the solid fraction and the maximum cooling rate
for interface stability:

f s 5 1� C

RT

DLð Þ3 G mLC0ðk � 1Þ½ �2
ð _TmaxÞ3

" #1=72
4

3
5
3

[31]

Alternatively, the relationship may be written in terms of
grain density in the slurry, N, which is the number of par-
ticles per unit volume

N 5
1

4

3
p RTð Þ3

[32]

yielding the final result
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Figure 8 plots Eq. [33] as fraction solid vs cooling rate
for Al-4.5 wt pct Cu alloy for several values of particle
density, assuming a prefactor C 5 1.2. As noted earlier,
the prefactor is expected to be on the order of unity, and the
value of 1.2 is selected here because of agreement with
experiment, to be discussed in a later section of this article.
Each curve is a stability boundary. The region to the left of
each curve represents combinations of solid fraction and
cooling rate that will maintain particle stability, and the
region to the right of the curve represents combinations
leading to unstable particle growth. Stability is favored by
a low cooling rate, high fraction solid, and high particle
density. Figure 9 plots the particle radius vs cooling rate
for different values of particle density by combining Eqs.
[31] and [32]. For a given grain density, stability is seen to
be favored by a large initial particle radius.

Figures 8 and 9 now may be used to determine casting
parameters needed to assure formation of a fully spheroidal
microstructure at, or after, casting. This is done by consid-
ering also the ripening relationship, which may be written,
for Al-4.5 wt pct Cu alloy,[2] as

R � 5t1=3 [34]

where t represents the time in seconds in the liquid-solid
temperature zone during heating, cooling, or isothermal
holding, and R is in micrometers. The method of determin-
ing casting parameters is illustrated by two examples given
in Section II.

D. Experiments Performed

In preliminary experiments to test the model, a slurry of
semisolid Al-4.5 pct Cu alloy was produced and then rap-
idly solidified by drawing the slurry into a thin copper
mold, as described in previous literature.[2,6] Measured sol-
ute content within the actual particles was then compared
with that predicted by the LDC model. Figure 10(a) shows
a particle from a specimen that was cooled for 20 seconds
to just below the liquidus, while being vigorously stirred,
and then quenched. During this 20 seconds, the bulk melt
cooling rate was measured to be 0.28 °C s�1. The quench
rate during solidification in the copper mold was estimated
to be 375 °C s�1. Figure 10(b) shows the solute concen-
tration profile across the diameter of the particle. During
the initial slow cooling, solute fields of the growing par-
ticles almost completely overlapped, and so solute distribu-
tion in the solid during this period is as would be predicted
by the Scheil equation. Then, there is an abrupt increase in
solute content beginning at a radial distance of approxi-
mately 20 mm, the radius at which the quench was initiated.
This abrupt increase is clear qualitative evidence of solute
buildup in the liquid, since, in the absence of such buildup,
solute increase from microsegregation according to the
Scheil equation would be gradual and small until well past
the 30-mm radius.

Quantitative agreement of the model calculation with
this experiment is seen by the close match of the experi-
mental data with calculated curves in Figures 2, 3, and 10,
all based on the LDC model. From the experimental data in
Figure 10, it is seen that solid solute content in the particle
at a radius of 40 mm is about 0.9 wt pct above that at radii
within the 20-mm original spheroid. Dividing this by
k yields an increase of 4.7 wt pct Cu in the liquid, close
to that given in Figure 2 for r 5 40 mm. Multiplying the
solute increase in the liquid by mL to get the increase in
liquid content at the interface yields an undercooling of
16 °C, close to the calculated value in Figure 3 of about

Fig. 8—Particle stability model for rheocast Al-4.5 wt pct Cu alloy, which
considers solute field overlap during solidification. Curves for slurries with
varying particle densities are given. For a given particle density, the region
to the left of the curve represents combinations of solid fraction and cool-
ing rate that will lead to stable particle growth, and the region to the right
of the curve represents combinations that will lead to unstable particle
growth. All curves were produced using a prefactor of C 5 1.2.

Fig. 9—Relationship between cooling rate and minimum particle radius
for rheocast Al-4.5 wt pct Cu alloy according to the stability model, which
considers solute field overlap during solidification. For a given particle
density, the region to the left of the curve represents particle radii that will
be stable at corresponding cooling rates, and the region to the right of the
curve represents combinations that will lead to unstable particle growth.
All curves were produced using a prefactor of C 5 1.2.
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18 °C. Finally, as shown in Figure 10(c), the calculated curve
in Figure 10 matches well the experimental data. The solute
content predicted by the Scheil equation is also given for
comparison with the LDC model and experimental data.

In a second series of experiments, small samples of fully
solidified Al-4.5 wt pct Cu alloy were cut from a small
ingot produced with spheroidal microstructure. This initial
structure is shown in Figure 11.

Each cylindrical sample was roughly 1 cm in diameter
and 1.5 cm in height. A small hole, slightly larger than
0.1 cm in diameter and 1-cm deep, was drilled in the top
of each sample, along the axis of the cylinder. A K-type
thermocouple (0.1-cm diameter) was inserted in the hole to
measure sample temperature. Samples were placed on a
holder and inserted into a preheated furnace. They were

reheated to three temperatures that corresponded to solid
fractions of 0.25, 0.45, and 0.63 (approximated using the
Scheil relation). For samples reheated to a solid fraction of
0.25, the metal was too fluid to hold its shape. These sam-
ples were held together during reheating by a thin-walled
steel sleeve coated with boron nitride spray. The time to
heat and equilibrate each samples at one of the three tem-
peratures was always between 9 and 12 minutes.
After equilibrating at one of the three temperatures,

the samples were cooled at various rates, ranging between
1 °C s�1 and 50 °C s�1. The Biot number for the samples
was approximated to be about 0.08; thus, the entire sample
cooled uniformly. After each sample had solidified com-
pletely, it was polished and etched with Keller’s reagent.
Between five and ten micrographs were taken from each

Fig. 10—(a) Backscattered electron image of a particle in rheocast Al-4.5 wt pct Cu alloy, (b) the copper content within the particle measured by a
microprobe line scan, and (c) comparison of the microprobe data with the predicted values given by the LDC model with slow cooling (0.28 °C s�1) for
growth up to 20-mm particle radius, followed by fast cooling (375 °C s�1).
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sample. The stability of the particles in each sample was
assessed qualitatively by looking at the final morphology of
what had been the solid-liquid interface.

As an example of the qualitative assessment of particle
stability, Figures 12(a) through (e) show the microstructure
of samples reheated to a fraction solid of 0.25 and cooled at
1.1 °C s�1, 2.8 °C s�1, 4.2 °C s�1, 9 °C s�1, and 38 °C s�1.
The microstructures in Figures 12(a) show stable parti-
cle interfaces that resulted from cooling the samples at
1.1 °C s�1, and all other cooling rates produced unstable
particle interfaces.

Figure 13 is a summary of all the interface stability
experiments conducted. The y-axis of the graph is solid
fraction, and the x-axis is cooling rate, plotted on a loga-
rithmic scale. The solid fraction-cooling rate combinations
that produced samples with mostly stable or unstable par-
ticle interfaces are labeled as either circles or triangles, res-
pectively. A clear trend line separating stable and unstableFig. 11—Rheocast Al-4.5 wt pct Cu showing the nondendritic, spheroidal

solid morphology.

Fig. 12—Microstructures of rheocast Al-4.5 wt pct Cu alloy reheated to a solid fraction of 0.25 and then cooled at (a) 1.1 °C s�1, (b) 2.8 °C s�1, (c)
4.2 °C s�1, (d) 9 °C s�1, and (e) 38 °C s�1.
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combinations of solid fraction and cooling rate is evident in
Figure 13.

To compare experimental results with theory, RT was
estimated from the micrographs of experimental samples
(some of which are shown in Figures 12(a) through (e)).
The average distance separating particle centers in the
micrographs was estimated to be about 300 mm, yielding
an RT of 150 mm. This value for RT was converted to a
particle density estimate of 70 particles mm�3 by using
Eq. [32]. These experimental data inserted in Eq. [32], with
a prefactor C of 1.2 result in exactly the curve separating
the stable from the unstable points in Figure 13. This value
of the prefactor C is consistent with the expectation that it
is near unity, as stated previously.

II. DISCUSSION

A solidification model has been presented for alloy solid-
ification assuming spheroidal morphology of growing
grains. The model considers the effect of limited diffusion
of solute in the liquid, and can be used to calculate con-
centration gradients and undercoolings in solidifying
alloys. The model is first solved numerically. At low cool-
ing rates and high grain density, solute fields around solid
particles overlap extensively and solidification obeys the
well-known Scheil relation. However, in special cases, sub-
stantial solute gradients and hence undercoolings result,
and if sufficiently great, the spheroidal morphology breaks
down, forming dendrites. For example, in one calculated
example, the cooling rate of a slurry of particles 20 mm
in diameter was suddenly increased from 0.28 °C s�1 to
375 °C s�1, at which time calculated undercooling in the
liquid rose rapidly to a maximum of 18 °C and then grad-
ually decreased due to solute overlap. In this calculation,
a ‘‘volume element’’ of radius 50 mm was assumed (RT =
50 mm), corresponding to a grain density of 1900
particles mm�3.

Of considerable practical importance for semisolid metal
processing is determining the maximum rate at which a

slurry of known grain density, fraction solid, and particle
diameter can be cooled. This is done in this article by first
obtaining an approximate analytical solution to the preced-
ing numerical model, and then combining that with the
stability theory. Following are two examples.
Consider first a semisolid (thixocast) alloy billet reheated

to a temperature where it is 50 pct liquid. The total time
during casting and reheating that the billet is in the liquid-
solid zone is 25 minutes, so the grain radius, Ri, at our
starting point is approximately 120 mm, an estimate made
using the ripening relation given by Eq. [34]. From Eqs.
[30] and [32], the grain density is approximated to be
roughly 70 grains mm�3. Now, from either Figure 8 or 9,
it is seen that the cooling rate from the reheating temper-
ature and before entering the die can be as high as about
6 °C s�1 while maintaining the spherical morphology desir-
able for homogeneous flow and formability. Of course,
more rapid cooling during solidification in the die might
well result in a dendritic periphery of the otherwise spher-
ical grains, resulting in much poorer formability.
Consider now cooling the alloy from the melt with vig-

orous agitation and rapid initial heat extraction to about
6 pct solid and then holding for the short time of 8 seconds.
The cooling and agitation results in copious nucleation of
small spheroids or perhaps nascent dendrites. The 8-second
holding time ripens the grains to spheroids (if they were not
already spherical) with a particle radius of approximately
10 mm (Eq. [34]). From Eqs. [30] and [32], the grain den-
sity is now approximated to be about 15,000 grains mm�3.
From either Figure 8 or 9, it is seen that cooling during
processing and before entering the die can be as high as
about 25 °C s�1 while maintaining the desired spherical
morphology for formability.

III. CONCLUSIONS

1. Spheroidal growth is favored in semisolid alloys by high
grain density, high fraction solid, and low cooling rate.

2. An analytic model for stability of spheroidal growth is
presented and shown to agree with experiments on
Al-4.5 wt pct Cu alloy.

3. The grain size and hence the grain density of a rheocast
alloy can be estimated by the ripening relation and
knowledge of the solidification time. Then, with this
initial structure and known temperature, the stability
model developed permits direct calculation of the
maximum cooling rate that may be employed in subse-
quent processing while still maintaining the spheroidal
structure.
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Fig. 13—Comparison of the stability model prediction with experimental
data for rheocast Al-4.5 wt pct Cu alloy. A particle density of 70 particles
mm�3 was obtained from experimental data and input into the stability
model along with the prefactor of C 5 1.2.
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