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The purpose of this article is to review analytical models of the anisotropy of segregation to grain
boundaries (GBs) and surfaces, and to evaluate their predictions. A summary of Gibbsian interfacial
thermodynamics is provided as an introduction to the topic. This is followed by a historical overview
of previous analytical models. A recently developed model of the dependence of GB segregation on
the five macroscopic parameters of GB orientation is outlined, and illustration of how this formulation
reduces to the particular cases of segregation to simpler types of interfaces is provided. In addition,
some specific aspects of interfacial segregation, which have either been problematic or have lacked
satisfactory explanation, are addressed. These include (a) the relationship between the compositions
on the two sides of a given GB; (b) the difficulty of meaningful definitions of segregation-free energy
(and related thermodynamic quantities such as enthalpy and entropy); (c) the so-called compensation
temperature, at which the anisotropy of interfacial segregation seems to vanish; (d) the relationship
between surface and GB segregation; and finally (e) an attempt to determine whether segregation
increases or decreases interfacial energy anisotropy, and the consequences thereof on the equilibrium
crystal shape of alloys. Where possible, comparisons are made with the results of experiments or
computer simulations.

I. INTRODUCTION

THERE has been continuing interest in various phenom-
ena associated with interfacial segregation, since the ther-
modynamic description of adsorption phenomena by
Gibbs[1] over a century ago. From a materials perspective,
interest has been driven by the impact of interfacial segre-
gation on many important materials properties. For exam-
ple, in the context of polycrystalline materials, grain
boundary (GB) segregation can play a role in controlling
such characteristics as crystallographic texture, the GB
energy distribution, GB mobility, GB embrittlement, and
electromigration processes. Segregation at materials surfa-
ces can modify catalytic properties, influence equilibrium
crystal shape, affect the work function, accelerate the rate
of surface diffusion, and control sintering rates as well as
other kinetic phenomena.

However, certain shortcomings of the Gibbsian ther-
modynamics of adsorption (described in more detail
subsequently) prompted the later development of comple-
mentary analytical models of interfacial segregation, based
on the concepts of statistical mechanics.[2–5] In the context
of materials behavior, McLean[4] was the first to develop a
model of that type, to deal explicitly with the phenomenon
of GB segregation. Since that time, there has been a steady
effort to develop improved analytical models for the pre-
diction and interpretation of phenomena related to interfa-
cial segregation in materials. Following the approach of
McLean, the majority of these efforts have made use of
the regular solution approximation, because of the simplic-
ity it provides in the definition of the relevant model param-
eters, although other more sophisticated models have also
been used from time to time.

One factor that has played a significant role in prompting
the formulation of new analytical models of GB segregation
has been the development of orientation imaging micro-
scopy (OIM).[6] This technique has made it possible to
characterize vast sets of grain boundaries (GBs) with
respect to the five macroscopic degrees of freedom (DoFs)
of GB orientation, sometimes referred to as the GB char-
acter. Whereas computer simulation remains an important
approach for predicting GB properties,[7] it cannot currently
be used to predict the behavior of GBs over the vast five-
dimensional space represented by the five DoFs, hence, the
need for analytic techniques with the capability of calculat-
ing GB properties.
Although OIM studies cannot directly reveal the presence

or absence of segregation at GBs, they do provide indirect
information in the form of GB orientation frequency distri-
butions.[8,9] Furthermore, it is now well established that the
GB frequency distribution in a material is inversely related
to the prevailing GB energy anisotropy,[6,10,11] which de-
pends in turn on the anisotropy of segregation through the
Gibbs adsorption isotherm. Thus, the recent development of
analytical models that are capable of evaluating both GB
energy and GB composition, as a function of the macro-
scopic orientation parameters,[12,13] has yielded new tools
for interpreting the connection between OIM data and GB
segregation.[9] Whereas these models are somewhat simplis-
tic, in that they rely on nearest-neighbor bond concepts, they
have been shown to predict GB segregation behavior that
agrees surprisingly well with more sophisticated Monte-
Carlo–based computer simulations.[13]

The purpose of this article is to review analytical models
of interfacial segregation and to illustrate their value by
comparing the predictions to results obtained by either
experimental or computer simulation techniques.
The topic will be introduced by providing a summary of

Gibbsian interfacial thermodynamics, as well as a historical
overview of analytical models. The most recent analyti-
cal model for GBs will be outlined, and it will be shown
that this formulation reduces to the particular cases of
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segregation to simpler types of interfaces (such as liquid-
vapor interfaces and solid-vapor interfaces with aniso-
tropy). In addition, some specific aspects of interfacial
segregation, which have either been problematic or have
lacked satisfactory explanation, will be addressed. These
include the following:

the relationship between the compositions on the two sides
of a given GB;

the difficulty of meaningful definitions of segregation free
energy (and related thermodynamic quantities such as
enthalpy and entropy);

the so-called compensation temperature, at which the aniso-
tropy of interfacial segregation seems to vanish;

the relationship between surface and GB segregation; and,
finally,

an attempt to determine whether segregation increases or
decreases interfacial energy anisotropy, and the conse-
quences thereof on the equilibrium crystal shape of alloys.

II. INTERFACE THERMODYNAMICS

A. Interfacial Excess Properties

The interfacial energy is denoted by g and is defined as
the reversible work needed to create unit area of surface, at
constant temperature, volume (or pressure), and chemical
potentials. We begin by reviewing the thermodynamics of
interfaces, using the liquid-vapor surface as an example,
and ignoring effects of surface curvature. Thus, this treat-
ment applies strictly only to planar fluid surfaces.

Following Gibbs,[1,14,15] we consider a system composed
of a liquid and a vapor phase at equilibrium, separated by
an interface. Physical interfaces are generally not perfectly
sharp on an atomic scale. Thus, any property we measure in
the two phases and across the interface will show some
transition region, e.g., in a plot of density across the inter-
face, as shown in Figure 1.

We define a hypothetical system, which consists of two
phases that are uniform in properties up to a plane called
the dividing surface. The properties of the real system fol-
low the solid lines and the hypothetical system properties
follow the dashed lines. Thus, the properties of each phase
in the hypothetical system take on values corresponding to
the bulk values, far from the interface, and each phase is
assumed to be homogeneous up to the dividing surface. The
thermodynamic properties of the real system over and
above those of the hypothetical system are termed surface
or interfacial excess properties, i.e., we assign to the inter-
face any excess of the thermodynamic properties of the real
system over those of the hypothetical system.

As an example, we write the interfacial excess internal
energy of the system, Es, as

Es ¼ E� E0 � E00 [1]

where E is the real system internal energy, E9 is the internal
energy of phase 9, and E0 is the internal energy of phase 0.
This shows how the excess property is just the property of
the real system, less the properties of the bulk phases
(hypothetically extended to the dividing surface). It is

important to note that the position of the dividing surface
is arbitrary. It can be placed at any convenient location
within the bounds of the physically diffuse region. Some
consequences of this arbitrariness are addressed subse-
quently.

Every thermodynamic property of the system can be
written in the same way as in Eq. [1], e.g., the number of
moles of component i in the real system is expressed as:
ni ¼ n0i 1 n00i 1 nsi : The only exception is that the volume
of the system is written V 5 V9 1 V0; i.e., there is no
volume associated with the surface.*

*The Gibbsian approach, which deliberately ignores interfacial excess
volume, may seem to pose a problem in the case of GBs where free volume
is often considered to be an important property. This apparent problem can
be circumvented by considering that the interface contains an excess
of vacancies, with vacancies treated explicitly as a component of the
system.[10]

The internal energy of any phase (say, phase 9) is con-
veniently considered to be a function of the extensive var-
iables entropy, S9, volume, V9, and number of moles, n0i:
Then,

dE05
@E0

@S0

� �
V 0,n0 i

dS0 1
@E0

@V 0

� �
S0,n0 i

dV 0

1 +
i

@E0

@n0i

� �
S0,V 0,n0 i6¼i

dn0i

or

dE0 5 TdS0 � PdV 0 1 +
i

m0
idn

0
i [2]

where T is the temperature, P is the pressure, and m0
i is the

chemical potential of component i in the 9 phase. This is the
standard expression for the internal energy of a single uni-
form phase containing more than one component. Simi-
larly, the energy of phase 0 is

dE00 5 TdS00 � PdV 00 1 +
i

m00
i dn

00
i [3]

Fig. 1—Schematic of density variation across a solid-vapor interface.
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For the surface, which does not have any volume, the
excess internal energy is written as

dEs ¼ TdSs 1 gdA1 +
i

ms
i dn

s
i [4]

This shows that in the expression for the surface excess
internal energy, the PdV term is replaced by a term consist-
ing of the surface energy multiplied by a change in area.
Since, for a system in equilibrium, the chemical potential
must be equal everywhere, we impose the condition
m0
i ¼ m00

i ¼ ms
i : Substituting for dE9, dE0, and dEs into Eq.

[1], we obtain

dE 5 T dS0 1 dS00 1 dSsð Þ � P dV 0 1 dV 00ð Þ1 gdA

1 +
i

mi dn
0
i 1 dn00i 1 dnsi

� �

or

dE 5 TdS� PdV1 gdA1 +
i

midni [5]

This is an important result. It shows that in the limit of a
system where the contribution of the surface energy is
small with respect to the bulk energy, the gdA term
becomes negligible and Eq. [5] reduces to the standard
thermodynamic expression for the internal energy. All other
thermodynamic properties of a system with a surface can be
derived from this expression.

The Helmholtz free energy is given by F 5 E � TS, and
its derivative may be written as

dF 5 dE� TdS� SdT ¼ �SdT

1PdV1 gdA1 +
i

midni [6]

The corresponding interfacial excess quantity is then

dFs ¼ �SsdT1 gdA1 +
i

midn
s
i [7]

Similarly, the Gibbs free energy, which is written G 5 E 1
PV � TS, yields

dG 5 dE1PdV1VdP� TdS� SdT

¼ �SdT1VdP1 gdA1 +
i

midni [8]

and

dGS ¼ �SSdT1 gdA1 +
i

midn
s
i [9]

B. Gibbs Adsorption Equation

We now go back to Eq. [4], in which dEs is expressed in
terms of extensive-independent variables only ðdSs, dA, dnsi Þ
while the intensive variables (T, g, mi) are constant in the

equilibrated system. Thus, we can integrate Eq. [4] to
obtain

Es ¼ TSS 1 gA1 +
i

min
s
i [10]

Redifferentiating this result yields

dES ¼ TdSS 1 SSdT1 gdA1Adg1 +
i

midn
s
i 1 nsi dmi

However, by Eq. [4],

dES ¼ TdSS 1 gdA1 +
i

midn
s
i

) SSdT1Adg1 +
i

nsi dmi ¼ 0 [11]

(This procedure for obtaining Eq. [11] is analogous to that
used in the derivation of the Gibbs–Duhem equation). We
now define the following new quantities:

ss [ Ss=A; and Gi [ nsi=A

Quantities expressed per unit area are known as specific
surface excess quantities, e.g., ss is known as the specific
surface excess entropy, and Gi is the specific surface excess
number of moles of component i. However, to avoid this
cumbersome nomenclature, Gi is generally referred to sim-
ply as the adsorption. With these definitions, we can rewrite
Eq. [11] as

dg ¼ �ssdT �+
i

Gidmi [12]

This is the well-known Gibbs adsorption equation. It
gives the variation of g with changes in T and mi, which
can easily be related to the composition of the bulk phases.
Now that adsorption has been defined, it is useful to

digress briefly on the relationship between interfacial
adsorption and segregation. This issue has been discussed
previously, for example, by Hondros and Seah.[16] The phe-
nomenon of adsorption from a gas phase onto the surface of
a solid was well known long before any knowledge about
phenomena such as surface or GB segregation was avail-
able. To illustrate the connection between adsorption and
segregation, consider the following two thought experi-
ments. In the adsorption thought experiment, a solid is
placed in contact with a gas whose atoms or molecules have
a tendency to stick to the solid surface. Under these con-
ditions, an excess of those molecules will build up at the
surface. Depending on the temperature at which this
adsorption process is observed, the gas species may or
may not be able to equilibrate with the solid, i.e., to diffuse
into the solid until the solid is saturated with the vapor
species at the pressure of the experiment. The Gibbsian
formalism described previously applies strictly only to sys-
tems in equilibrium, i.e., ones where the chemical potential
of the gas (or adsorbing) species is uniform throughout the
gas, the interface region, and the solid (refer to the discus-
sion on equality of chemical potentials preceding Eq. [5]).
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Under those circumstances, Eq. [12] will be valid, and the sur-
face excess of the adsorbed species, G, will be well defined.

Segregation is generally studied in cases where the seg-
regating species is present in the solid. In the segregation
thought experiment, a piece of solid containing the dis-
solved gas species is placed in an evacuated closed con-
tainer and is allowed to equilibrate. The dissolved species
will then redistribute between the gas phase, the interface,
and the solid. If by appropriate selection of the solute con-
centration, the volume of the container, etc., the final pres-
sure in the container is the same as in the adsorption
experiment, the excess of the gas species at the surface will,
of course, also be the same. From the standpoint of the
interface, it does not matter whether the adsorbed species
originated from the gas phase or from the solid. In this
sense, the terms segregation and adsorption mean exactly
the same thing. However, the energy changes associated
with the two processes will be different because they are
not defined in the same manner. The adsorption energy is
generally defined in terms of changes resulting from the
transfer of a gas atom or molecule to the interface, whereas
the segregation energy is defined in terms of changes asso-
ciated with transfer from the bulk of the condensed phase to
the interface.

We now return to Eq. [12]. At constant temperature, this
equation simplifies to the Gibbs adsorption isotherm. In the
case of a two-component system, we can write

dg ¼ �G1dm1 � G2dm2 [13]

Now, the Gibbs––Duhem equation for one of the two
bulk phases, say, phase 9, can be expressed as

n01dm1 1 n02dm2 ¼ 0 [14]

which is valid either at constant T and P or at constant T and
V. Equation [14] can be used to eliminate one of the chem-
ical potentials in Eq. [13]. By convention, the chemical
potential of the solvent (majority component, labeled 1)
is eliminated, and the Gibbs isotherm is rewritten in terms
of the solute (minority component, labeled 2):

Thus,

dg

dm2

5 G1
n02
n01

� G2

� �
[15]

Here, dg/dm2 is a measurable quantity, and therefore cannot
depend on an arbitrary choice of the dividing surface. On
the other hand, G1 and G2 do depend on the position of the
dividing surface. Thus, the right-hand side (rhs) of Eq. [15],
G1n

0
2=n

0
1 � G2ð Þ, i.e., this particular combination of

adsorption variables, must also be independent of the posi-
tion of the dividing surface.

In the case of interfaces between a condensed phase and
a vapor phase (e.g., liquid-vapor or solid-vapor interfaces),
the difference in density across the interface makes it pos-
sible to select the position of the Gibbs dividing surface so
as to make one of the adsorption terms vanish. In those
cases, Eq. [15] can be simplified, for example, by choosing
the position of the dividing surface so as to make G1 5 0.
Under these conditions, G2 is no longer arbitrary (since we

have now made a specific choice for the position of the
dividing surface) and is written G2,1 to indicate that the
choice G1 5 0 has been made:

dg=dm2 ¼ �G2;1 [16]

where G2,1 is sometimes referred to as the relative adsorp-
tion.[5] The value of G2,1 (or of any adsorption term) can be
either positive or negative. From Eq. [16], it can be seen
that if the adsorption of component 2 is positive (i.e., there
is a positive excess of component 2 at the surface of the
condensed phase), then dg/dm2 will be negative, and the
surface energy of the solid will decrease as the chemical
potential, and hence the bulk concentration of component 2,
increases. However, the simplification shown here for the
case of interfaces between a condensed phase and a vapor
cannot be applied to grain boundaries or other interfaces
between two condensed phases. Thus, in those cases, more
complete versions of the Gibbs adsorption isotherm, such
as Eqs. [13] or [15], must be used.

The term dm2 in Eq. [15] or [16] can be transformed
using the definition of chemical potential in terms of activ-
ity, a : m2 ¼ m281kT ln a2, where m28 is the chemical
potential in the standard state. In the case of ideal solutions,
Raoult’s law can be applied: a2 5 X2, where X2 is the atom
fraction (or mole fraction) of the solute; and in dilute sol-
utions, Henry’s law, a2 5 koX2, where ko is a constant, can
be applied. In either case, dm2 5 RT d(ln X2). Therefore, in
these particular limits, the preceding relationships may be
simplified as

1

RT

dg

d lnX2
5 G1

n02
n01

� G2

� �
[17]

or

1

RT

dg

d lnX2
¼ �G2;1 [18]

Thus, we can obtain the adsorption G2,1 (which is related to
the interfacial composition) from the dependence of the
surface energy on bulk composition. In principle, we can
also obtain the change in surface energy that results from
the adsorption of solute. To do this, it is necessary to inte-
grate the Gibbs isotherm, which requires some knowledge
of the dependence of G2,1 on X2. Unfortunately, Gibbsian
thermodynamics do not provide a suitable functional form
for G2,1(X2). In later sections, we will develop models that
provide this needed functional relationship.

C. Relation between g and Surface Free Energy

Integrating Eq. [7], and dividing by the area of the sur-
face, A, it is possible to write

f s ¼ Fs
�
A 5 g1 +

i

miGi [19]

where fs is the specific surface excess Helmholtz free
energy. Similarly, from Eq. [9],
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gs ¼ Gs
�
A 5 g1 +

i

miGi [20]

We see from these relations that, strictly speaking, the
surface energy of a multicomponent solution is equal to
neither the specific surface excess Gibbs nor the Helmholtz
free energies. However, for the surface energy of a liquid or
solid in a single component system (i.e., a pure substance),
it is possible to select the dividing surface such that G1 5 0.
For these cases only, g 5 fs 5 gs. Thus, in multicomponent
systems, it is best to avoid the terminology of interfacial
free energy. From the preceding expressions, it is possible
to write the surface energy of a multicomponent system in
terms of the free energies, as follows:

g ¼ f s �+
i

miGi [21]

g ¼ gs �+
i

miGi [22]

The thermodynamic potential (F � Si mini) is known as the
grand potential (it is also sometimes referred to as the
Kramer’s potential). Thus, we see from Eq. [21] that the
surface energy is equal to the surface excess grand potential
per unit area. This will prove to be a very useful definition
in subsequent sections.

III. BRIEF HISTORICAL OVERVIEW OF
ANALYTICAL MODELS

A. Background

We have seen that the Gibbs adsorption isotherm relates
the adsorption to the variation of interfacial energy with bulk
composition [G2,1 = –dg /dm2]. However, there are several
features that detract from the usefulness of this relation.

Neither g nor its variation with composition is easy to
measure in solids.
G2,1 is difficult to measure directly, because interfacial
composition profiles can extend some distance from the
interface, and one must determine the composition pro-
files of both components in the most general case.
Unless the relationship between G2,1 and m2 is known,
the Gibbs adsorption isotherm cannot be integrated.

For these reasons, alternative approaches have been
sought to complement the Gibbsian formalism. These
approaches have made use of the concepts of statistical
thermodynamics and go back to the work of Langmuir,[17]

Fowler and Guggenheim,[2] and Ono and Kondo.[3]

B. The McLean Model

In the materials literature, the first treatment of interfa-
cial segregation was put forward by McLean for the case of
GBs.[4] That formalism has also been used extensively to
interpret surface segregation phenomena. Like most other
treatments, McLean’s model used a monolayer representa-

tion of the interface. As was later pointed out by Defay
et al.,[5] models that employ a monolayer interface are
not strictly consistent with Gibbsian adsorption, i.e., inter-
faces must be represented by a multilayer formalism in
order to be compatible with the Gibbs formalism. In his
model, McLean also adopted a regular solution approxima-
tion, in which the free energy of the system (bulk plus
interface) was assumed to consist of an entropy of mixing
contribution, written in the ideal solution limit, and a non-
zero enthalpy (or energy) of mixing contribution. In the
regular solution approximation, the species in the interfa-
cial and bulk regions are thus assumed to be randomly
distributed, and the total entropy (in a binary system con-
sisting of a solvent and one solute) is written as

Sid ¼� R½nsxs ln xs 1 nsð1� xsÞ ln ð1� xsÞ
1Nx ln x1Nð1� xÞ ln ð1� xÞ� [23a]

where xs and x are the atom fractions,* and ns and N are

*We shall use the symbol xS to describe the atom fraction of segregant
whenever the interfacial deviation in composition is assumed to be
restricted to a single monolayer. When the variation is assumed to extend
over several atomic layers, the symbol xi will be used for the atom fraction
of segregant in the ith atomic layer.

the numbers of atoms, of the segregating component in the
interface and the bulk, respectively. Whenever this ideal
solution entropy approximation is used, the resulting
expression for the composition of the interface displays
the following form:

xs

1� xs
5

x

1� x
exp �DHseg

RT

� �
[23b]

where DHseg is the enthalpy of segregation. For a substitu-
tional solution, DHseg represents the enthalpy change asso-
ciated with the exchange of a segregant atom in the bulk
with an atom of the other species located at the interface. It
should be noted that xs is not identical with the Gibbsian G.
The relation between these quantities is

G ¼ ðxs � xÞ=s [24]

where s is the area per mole at the (monolayer) interface.

McLean assumed that the driving force for segregation
was the complete elimination of the bulk elastic strain
energy, DEel (defined as a positive quantity), associated
with a misfitting solute atom in the matrix of the solvent,
when a solute atom in the bulk is exchanged with a solvent
atom in the surface, i.e.,

DHseg ¼ �DEel [25]

Since only the solute can segregate to the interface in
McLean’s model, xs necessarily represents the atom frac-
tion of solute at the interface. However, the segregating
species is not always the solute, as it is possible for the
solvent to segregate (a case that is sometimes referred to as
desegregation, and which is equivalent in the Gibbsian
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description to a negative value of G for that component).
Expressions such as Eq. [23b], resulting from the McLean
model, are formally similar to the Langmuir isotherm. As a
result, the McLean model is often referred to as the Lang-
muir–McLean model.

C. The Defay and Prigogine Model

Defay et al.[5] applied a regular solution formalism to
the computation of the equilibrium composition of a liquid
surface. Their model employed a nearest neighbor bond
description to calculate the enthalpy of the system (bulk
plus interface) and assumed that the atoms of the liquid
resided on the points of a lattice, i.e., they chose a solidlike
model of the liquid. In addition, they took the surface to
consist of a single plane of atoms in equilibrium with a
semi-infinite bulk. Their result may be expressed as

DHseg ¼ ðgB � gAÞs1 2v z‘ðx � xsÞ1 zvðx � 1
2Þ

� 	
[26]

where gA and gB are the surface energies of the pure A and
B components in the binary solution (component B taken
to be the solute), and v is the regular solution parameter for
the AB solution. The term v is defined as v5 eAB – (eAA 1
eBB)/2, where eAB, eAA, and eBB (taken to be negative quan-
tities) are the energies of bonds connecting A-B, A-A,
and B-B neighboring pairs of atoms, respectively. The
terms z‘ and zv are the numbers of in-plane bonds and half
of the out-of-plane bonds of an atom in the surface plane,
such that the total coordination number of an atom in the
system is given by z 5 z‘ 1 2zv. Finally, the atom fractions
x and xS are also taken to relate to the solute, component B.
One important difference between Eqs. [25] and [26]
should be noted. In Eq. [26], the enthalpy of adsorption
depends on the fraction of segregated species at the inter-
face, whereas in Eq. [25], it is a constant. The origin of
expressions such as Eq. [26] will be discussed below in
Section IV.

D. The Wynblatt and Ku Model

As was pointed out by Burton and Machlin,[18] neither
the McLean nor the Defay et al. type models are able to
provide even qualitatively correct predictions of the segre-
gating component at binary solid alloy surfaces. The reason
is that the model of Defay et al. considers only ‘‘chemical’’
contributions to the heat of segregation, whereas McLean
ignores all but ‘‘elastic’’ contributions. While the neglect of
elastic effects by Defay and Prigogine was appropriate in a
model intended to represent the surface behavior of liquid
solutions, its application to solid solutions requires modifi-
cations to include the elastic effects considered by McLean.
These considerations were first recognized by Wynblatt and
Ku.[19,20] As a result, they proposed a combined model in
which the chemical and elastic contributions to the heat of
segregation of Eqs. [25] and [26] were simply added, to
yield

DHseg ¼ ðgB � gAÞs
1 2v z‘ðx � xsÞ1 zvðx � 1

2Þ
� 	� DEel [27a]

in which the elastic strain energy was written according to a
continuum linear elastic formalism due to Friedel:[21]

DEel ¼ 24pK2G1r2ðr1 � r2Þ2
3Kr2 1 4Gr1

[27b]

where K2 is the bulk modulus of the solute, G1 is the shear
modulus of the solvent, and r2 and r1 are the atomic radii of
the pure solute and solvent atoms, respectively. When this
combined form of the heat of segregation was inserted into
Eq. [23b], it produced predictions of the segregating com-
ponent in binary solid solutions that were qualitatively cor-
rect over the data available at that time.[20]

The combined model showed that there are three princi-
pal contributions responsible for segregation to the surfaces
of solid metallic alloys. The chemical driving force, illus-
trated in Eq. [26], really includes two distinct contributions,
a term that depends on the difference between the surface
energies of the pure components (i.e., a surface energy
driving force) and a term that depends on the regular sol-
ution constant (i.e., an interatomic interaction driving
force). The latter vanishes in the case of ideal solutions
(for which v 5 0). The third driving force is the one iden-
tified by McLean, namely, an elastic strain energy contri-
bution associated with the degree of misfit of the solute in a
solution. This term will also vanish in an ideal solution.

The extent of segregation depends not only on the mag-
nitude of the three contributions mentioned previously, but
also on their signs. Negative contributions to the heat of
segregation increase the value of xs in Eq. [23b], whereas
positive ones decrease xs. Since DEel (Eq. [27b]) is always
positive, the solute strain energy contribution to the heat of
segregation will always favor solute segregation. In con-
trast, the two chemical terms can be either positive or neg-
ative for the solute. The surface energy of the pure solute
can be either greater or smaller than that of the solvent, and
a smaller surface energy for a given component will tend to
promote segregation of that component. Similarly, a posi-
tive regular solution constant, v, will add to the driving
force for solute segregation. Thus, it is the sign of DHseg,
i.e., of the sum of the three contributions, that will deter-
mine whether the solute or the solvent will tend to segre-
gate to the interface. Furthermore, segregation will be
strongest when the three contributions are all negative.

E. The Lee and Aaronson Model

Several refinements of these models were subsequently
proposed. One important improvement was made by Lee
and Aaronson,[22,23] who first addressed the effects of sur-
face structural and energy anisotropy. Although the model
of Defay et al. displays some features of anisotropy,
through the coordination number terms, z‘ and zv, which
can change with surface orientation, their model is one in
which the broken bonds (that account for the surface
energy) are all associated with atoms in the first plane of
surface atoms. For example, in the case of fcc crystals, this
means that only (111) and (100) surfaces can be described
by the Defay et al. model, as all other (hkl) surface orien-
tations have atoms with broken bonds in deeper
atom planes. Lee and Aaronson developed a multilayer
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formalism, which accounts for all atoms with broken bonds
at any surface orientation (hkl) in an fcc crystal. This allows
the calculation of equilibrium near-surface composition
over any number of atom planes, for any surface orienta-
tion. Among others, it also means that the maximum seg-
regation is no longer restricted to one monolayer of
segregant, as was the case in models such as McLean’s.

F. Entropy Considerations

All of the regular solution-based models suffer from the
deficiency that the entropy is written in a form that assumes
ideal random mixing of the atoms (both in the bulk and in
each atom plane of the near-surface region). In addition, the
energy terms are also based on the assumption of a random
distribution of the different species. In this regard, the reg-
ular solution approximation is similar to the Bragg–Wil-
liams (BW)[24] treatment of long-range order in solids,
where the formulation of both energy and entropy assumes
a random distribution of the atomic species on each sub-
lattice; hence, the occasional reference to these models in
the literature as being based on the BW approximation.
Several attempts have been made at different times to intro-
duce more realistic entropy descriptions. Wynblatt and
Ku[20] proposed a method for calculating the excess entropy
change upon segregation, DSXSseg, so as to allow reformula-
tion of Eq. [23b] into the form

xs

1� xs
5

x

1� x
exp

DSXSseg
R

( )
exp �DHseg

RT

� �

5
x

1� x
exp �DFXS

seg

RT

( )
[28]

It should be emphasized that the excess entropy of seg-
regation reflects all entropy changes above and beyond the
ideal entropy of mixing, which is already included, and
which leads to the exponential form of Eqs. [23b] and
[28]. The excess entropy of segregation can be formulated
by an approach analogous to that used to write DHseg in Eq.
[27a], if one recognizes that the regular solution constant
may be expressed in terms of the enthalpy of mixing, DHm,
of the solution v 5 DHm/[zx(1�x)]; i.e.,

DHseg ¼ ðgB � gAÞs1
2DHm

zxð1� xÞ
zðx � xsÞ1 zvðx � 1

2Þ
� 	 � DEel [29a]

Then, the excess entropy of segregation may be written
as[19,20]

DSXSseg ¼ ðSB � SAÞ s1
2DSXSm

zxð1� xÞ
zðx � xsÞ1 zvðx � 1

2Þ
� 	 � Sel [29b]

where SA and SB are the temperature dependences of the
interfacial energies of the pure components (B taken to be
the solute), DSXSm is the excess entropy of mixing, and Sel is
an elastic entropy that may be computed from the temper-

ature dependence of the elastic constants of Eq. [27b].
Therefore, the excess entropy of segregation also has two
chemical contributions and one elastic contribution, just as
the corresponding enthalpy. These three terms can either all
be of the same sign, and reinforce each other, or have
different signs and partially cancel out. In general, the abso-
lute value of the excess entropy of segregation will be large
when the enthalpy of segregation has a large absolute value,
and vice versa.
Efforts were also made to account for deviations from

random mixing in segregated systems, for example, by
Kumar et al.[25] and by Moran-Lopez and Falicov.[26,27]

However, these formulations, as well as Eq. [29b], require
knowledge of parameters that are difficult to evaluate, and
have therefore not been used extensively. In this context, it
is also worth mentioning the development of approaches
using the cluster variation method.[28,29,30]

More recently, Polak and Rubinovich[31] have developed
a surface segregation formalism, referred to as the free
energy expansion method, in which they allow for devia-
tions from the random distribution of species on a site by
site basis in the near-surface region. This approach has
turned out to be very useful for describing both long- and
short-range order phenomena at segregated alloy surfaces.

G. Related Models

Several other models of interfacial segregation that have
employed a similar formalism, but which lie outside the
scope of this review, are worth mentioning for the sake of
completeness. They include models of segregation to inter-
faces in ionic materials, to surfaces and GBs in ternary
alloys, and to interphase boundaries in alloys.
Regular solution-type models have been used to treat

interfacial segregation in ionic solids. In general, there is
an electrostatic potential difference between an interface
and the bulk of an ionic crystal, as well as a space charge
in the near-interface region. As a result, it is necessary to
include consideration of these electrostatic effects when
computing the distribution of chemical species at and near
an interface.[32,33] The interfacial segregation of impurity
ions, especially those that differ in valence from the ions
of the host solvent, will be subject to the driving forces
similar to those mentioned previously for other materials
(interfacial energy differences between the pure solute and
solvent, interionic interactions, and solute misfit strain
energy) plus additional electrostatic terms.[34,35]

Some significant effort has been devoted to applications
of the regular solution approach to interfacial segregation in
ternary solid solutions.[36–38] Work on three component sys-
tems was pioneered by Guttmann and co-workers[36,37] and
was driven by interest in the possible interactions between
segregating solute species (such as cosegregation and site
competition effects) in the context of temper embrittlement
phenomena at GBs in steels. In this article, we will focus on
the segregation behavior of binary systems, and omit dis-
cussion of these multicomponent effects.
Finally, the regular solution formalism has been applied

to segregation at interphase boundaries in alloys. Because
of the phase diagram symmetry imposed on two-compo-
nent systems by the regular solution approximation, no
excess interfacial composition can be predicted by this
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approach in binary systems. Nevertheless, it is possible to
use this approach to produce useful predictions of inter-
phase boundary composition in ternary alloys.[38–41]

IV. A MODEL OF INTERFACIAL SEGREGATION

A. Introductory Comments

We begin by describing a model of the equilibrium com-
position of a GB characterized by the five macroscopic
orientation parameters. This model is based on two earlier
pieces of work: (1) a multilayer surface segregation
model[42] and (2) a semiempirical GB energy model in pure
materials written in terms of the five macroscopic DoF’s.[12]

The latter has recently been used with some considerable
success to rationalize the results of GB wetting experiments
in polycrystalline alloys.[12] Both of these earlier models
have relied on the prior work of Lee and Aaronson.[22,23]

Once expressions for the equilibrium composition of a GB
have been developed, the model can be particularized to
several of the other cases that have been treated previously,
such as segregation to crystalline surfaces of orientation
(hkl), to segregation at liquid surfaces, etc.

Two general approaches can be used to calculate the
composition of a near-interface region. In the first
approach, an expression is written for the free energy of
the entire system, consisting of bulk phases separated by an
interface. This expression is then minimized with respect to
the compositions of the bulk and interface regions. Since
the free energy is the appropriate thermodynamic potential
for a closed system, its minimization must be performed
under the constraints of atomic species conservation, using
variational calculus techniques such as Lagrangian multi-
pliers, to account for the transfer of atoms between the bulk
and the interface. Although minimization of the system free
energy has been used widely, it has sometimes not properly
accounted for mass conservation. As a result, it is probably
preferable to perform calculations of the equilibrium com-
position of the interface using the second approach, which
involves minimization of the interfacial excess grand poten-
tial, a quantity that was shown previously (Eq. [21]) to be
identical with the interfacial energy. This thermodynamic
potential is suitable for open systems. Conceptually then,
the system is considered to be the interface. The interface is
in contact with the bulk, which acts as an infinite reservoir
of the components, at a properly specified chemical poten-
tial. We shall employ the latter approach in Section B.

B. GB Segregation Model

Two semi-infinite fcc crystals are considered. Each crystal
consists of atoms located on the lattice points of planes of
orientation (hkl) terminating at the GB. In general, the crys-
tals on either side of the GB will be terminated by different
(hkl) planes (referred to as (hkl)1 and (hkl)2), and will be
rotated with respect to each other by a twist angle, f, about
an axis perpendicular to the GB plane. The five macroscopic
orientation parameters of the GB are then taken to be the two
variables required to define each of the two terminating (hkl)
planes, and the twist angle, as shown schematically in Figure
2. This method of defining the DoF’s has been referred to as
the interface plane scheme.[43,44,45]

The indices of the terminating planes must be chosen
such that h $ k $ l, and be reduced to the lowest integers.
The (hkl) planes in each crystal are numbered by an index i,
where i 5 1 identifies the terminating plane at the GB. It is
also necessary to define a second index, j, which counts the
planes from any given plane i. The maximum value of j
is denoted by Jmax, and represents the farthest plane con-
taining nearest neighbors of atoms in the ith plane. It is
defined by Jmax 5 (h 1 k)/2 when h, k, and l are all odd
and Jmax 5 (h 1 k) for mixed h, k, and l. The indices i and
j are illustrated in the schematic of Figure 3 and are
also explained in greater detail in the article of Lee and
Aaronson.[22,23]

We consider an fcc binary A-B substitutional solid sol-
ution in which the solute species is taken to be component
B. The composition of the ith atom plane on one side of the
GB will have the same form as that of Eq. [23b]:

ln
xi

1� xi
5 ln

x

1� x
� DHi

seg

RT
[30]

where xi and x are the atomic fractions of the component B
in the ith atomic plane and in the bulk, respectively, and

Fig. 2—Schematic of GB defined in the interface plane scheme showing
nearest neighbor bonds of one atom (solid lines) and a dangling bond
(dashed line).

Fig. 3—Schematic of (hkl) surface showing nearest neighbor (nn) bonds
(solid lines) and dangling nn bonds, as well as the relationship between the
indices i and j for a case where i 5 3 and j 5 3.
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DHi
seg is the enthalpy of segregation to the ith plane, which

includes both chemical and elastic energy terms.
For convenience, we also assume that the solute (B)

corresponds to the segregating species. Although the solute
is often the species that segregates to the interface, this is
not invariably the case. However, in the event that the sol-
vent is the segregating species, the enthalpy of segregation
for the solute calculated by the model will turn out to be
positive. From Eq. [30], it can be seen that a positive
enthalpy will produce a lower atom fraction for B in the
ith plane than in the bulk, thus correctly predicting solvent
segregation for such a case.

We write the GB energy using an approach first
employed to describe segregation to the free surface of a
liquid.[46] In this approach, the GB energy is expressed as
the interfacial excess grand potential, according to Eq. [21],
with the interfacial excess free energy written in terms of
the internal energy and the entropy, i.e.,

g ¼ es � Tss � mAGA � mBGB [31]

We now proceed to write each of the terms in Eq. [31], in
the regular solution approximation, with the internal energy
expressed in terms of nearest neighbor bonds. One impor-
tant difference between GBs and crystalline surfaces, in the
context of a nearest neighbor bond model, is that the rela-
tive locations of atoms across a GB are not compatible with
nearest neighbor distances. At a two-component crystalline
surface, the surface energy depends in part on the energy of
the dangling bonds. In contrast, at a GB, a certain fraction
of the dangling bonds of the atoms on one side of the GB
will be reconnected to the atoms on the other side of the
GB. Thus, a parameter, P, is used to represent the fraction
of broken bonds at a surface that are reconnected to the
other side of the GB when two surfaces are brought
together to form a GB. The value of P depends on the
Miller indices of the GB terminating planes, as well as
the twist angle. A detailed derivation of that parameter
has been given previously.[13]

We take each atom plane to contain n atoms per unit area
(n will of course depend on the Miller indices (hkl) of the
terminating plane), and for convenience, we write the inter-
nal energy for one side of the GB as follows:

where the bond energies eAA and eBB are computed from
the surface energies of the pure components and eAB from
the regular solution constant of the AB binary alloy; DEi

el
is the bulk elastic energy of a solute atom that is relieved
in layer i (and is computed as described in Reference 13); zi

is the number of nearest neighbors of an atom in the ith
plane, which also lie in the ith plane, and zj is the number of
nearest neighbors of an atom in the ith plane, which lie
in the jth plane (such that the total coordination of an atom
is given by z 5 zi12+Jmax

j 5 1 z
jÞ; x9 is a weighted average of

the near-GB composition of the crystal on the other side of
the boundary given by x0 5 +Jmax

i 5 1 +
Jmax
j 5 i z

jxi=+Jmax
i 5 1 +

Jmax
j 5 i z

j;
and N is the total number of planes, which have a composition
different from the bulk. The value of N is taken to be several
multiples of Jmax (3 or 4 times Jmax is generally sufficient to
ensure that the Nth plane composition has essentially con-
verged to that of the bulk). The first term in Eq. [32] repre-
sents the energy of in-plane bonds for all planes up to the
(N 1 1)th; the second term calculates the energy of interface-
directed bonds in planes i 5 2 to Jmax that are connected to
atoms in planes closer to the interface; the third term
accounts for (half of the) bonds that are connected to the
other side of the GB; the fourth term accounts for the energy
of bonds in the first Jmax planes that point away from the
interface; the fifth term represents the energy of out-of-
plane bonds for planes i = Jmax 1 1 to N 1 1; and, finally,
the sixth term subtracts the energy of N 1 1 planes of bulk
composition.
The surface excess entropy per unit area (for half the

GB) is given by

sS ¼� nR +
N

i 5 1

xi ln xi 1 ð1� xiÞ ln ð1� xiÞ�
�x ln x � ð1� xÞ ln ð1� xÞ	 [33]

The chemical potentials of the components in a binary
regular solution may be expressed as

mA ¼ z

2
½2x2v1 eAA�1RT ln ð1� xÞ [34a]

eS ¼ nzi

2
+

N1 1

i 5 1

½ðxiÞ2eBB 1 2xið1� xiÞeAB 1 ð1� xiÞ2eAA� � DEi
elx

i

1
n

2
+
Jmax

i 5 2

+
i�1

j 5 1

zj[xixi�jeBB 1 xið1� xi�jÞeAB 1 ð1� xiÞxi�jeAB 1 ð1� xiÞð1� xi�jÞeAA�

1
nP

2
+
Jmax

i 5 1

+
Jmax

j 5 i

zj½xix0eBB 1 xið1� x0ÞeAB 1 ð1� xiÞx0eAB 1 ð1� xiÞð1� x0ÞeAA�

1
n

2
+
Jmax

i 5 1

+
Jmax

j 5 1

zj[xixi1 jeBB 1 xið1� xi1 jÞeAB 1 ð1� xiÞxi1 jeAB 1 ð1� xiÞð1� xi1 jÞeAA�

1
n

2
+

N1 1

i 5 Jmax 1 1

+
Jmax

j 5 1

zj
xixi�jeBB 1 xið1� xi�jÞeAB 1 ð1� xiÞxi�jeAB 1 ð1� xiÞð1� xi�jÞeAA
1 xixi1 jeBB 1 xið1� xi1 jÞeAB 1 ð1� xiÞxi1 jeAB 1 ð1� xiÞð1� xi1 jÞeAA


 �

� nzðN1 1Þ
2

½ðxÞ2eBB 1 2xð1� xÞeAB 1 ð1� xÞ2eAA� [32]
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and

mB ¼ z

2
½2ð1� xÞ2v1 eBB�1RT ln x [34b]

and the adsorptions of the two components (on one-half of
the GB) are given by

GA ¼ n +
N

i 5 1

ðx � xiÞ [35a]

and

GB ¼ n +
N

i 5 1

ðxi � xÞ [35b]

Substituting Eqs. [32] through [35b] into Eq. [31] gives
the energy of one side of the GB energy. By writing Eq.
[31] for the second side of the GB, and adding it to the
expression for the first side, one obtains the total GB
energy. Minimizing the GB energy with respect to the atom
fraction of each plane i yields expressions for the equili-
brium atom fraction of solute in each atom plane. The
expressions for the equilibrium atom fractions will have
the form of Eq. [30], in which the heat of segregation of
the ith atom plane is given by

DHi
seg ¼ 2v zx � zixi � +

Jmax

j 5 1

zjxi1 j � +
i�1

j 5 1

zjxi�j

"

� P +
Jmax

j 5 i

zjx0 � 1

2
1� Pð Þ +

Jmax

j 5 i

zj

#

� 1

2
1� Pð Þ eBB � eAAð Þ +

Jmax

j 5 i

zj � DEi
el [36a]

for i # Jmax, i.e., planes with less than the bulk coordina-
tion, and by

DHi
seg ¼ 2v zx � zixi � +

Jmax

j 5 1

zj xi1 j 1 xi�j
� �" #

� DEi
el [36b]

for the planes N $ i . Jmax. Equations [36a] and [36b]
were actually derived by a different approach (Reference
13), but the resulting equilibrium plane compositions,
obtained by substituting DHi

seg into Eq. [30], were verified
numerically to be minima of the interfacial energy, Eq.
[31].

It should be noted that the equation for the composition
of a given plane i, obtained by substituting DHi

seg into Eq.
[30], is transcendental and must be solved for the equili-
brium plane composition by numerical methods. In addi-
tion, the equilibrium composition of a GB must be obtained
iteratively. The compositions of all planes on both sides of
the GB are initially set to the bulk composition, and the
compositions on one side are computed. This allows a first

approximation of x9 for the first side to be calculated and
used for the computation of compositions on the second
side. The procedure is iterated until compositions on both
sides converge.

Once the equilibrium plane compositions are known for
both sides of the GB, they can be used in Eq. [31] to com-
pute the GB energy. For the case of a symmetric boundary,
where the terminating planes have the same value, (hkl)1,
the energy of the GB is just twice the energy of one side of
the GB. For all other cases, the energies of the two sides are
also just added. However, because the composition of one
side depends on the composition of the other side through
the term x9, the near-boundary composition on one side with
orientation (hkl)1 will differ depending on the value of (hkl)2
on the other side of the GB.

Unfortunately, there are no suitable experimental data
sets on segregation to general GBs in fcc alloys that can
be used to test the predictions of the preceding model.
Nevertheless, it has been possible to test the model[13]

against data sets for special GBs obtained by Udler and
Seidman,[47,48] who conducted a series of consistent Monte
Carlo simulations, in conjunction with embedded atom
method (EAM) potentials,[49] on four alloys. These authors
investigated the compositions of symmetric ,100. twist
GBs in Pt-1 at. pct Au, Au-1 at. pct Pt, Pt-3 at. pct Ni, and
Ni-3 at. pct Pt. As an example, we show in Figure 4 a
comparison between the predictions of the preceding model
with the simulation results for the case of Pt-1 at. pct Au, in
the form of a plot of adsorption vs twist angle. The figure
shows good qualitative agreement, and reasonable quanti-
tative agreement, between model and simulation results,
both in terms of the dependence of adsorption on twist
angle and on the effects of temperature on adsorption.
Figure 4(b) displays a comparison of the plane-by-plane
composition across the most highly segregated GB at a
twist angle of ;43 deg. Here again, good agreement is
obtained. Similar agreement was also found in the compar-
isons with the three other alloys for which simulations were
performed,[13] thereby verifying that the model produces
predictions that are compatible with the results of more
sophisticated calculations.

C. Application to Other Interfaces

1. General (hkl) surfaces
The model for GBs can be particularized to several other

cases of interest. For a general surface of orientation (hkl),
the surface energy can be obtained from Eq. [31], with es

written as in Eq. [32], but with the parameter P set to zero.
Similarly, the equilibrium plane-by-plane near-surface
compositions can be obtained by inserting the enthalpy of
segregation of Eq. [36a], with P 5 0, into Eq. [30]. These
simplifications yield the expressions for the enthalpy
of segregation of a free surface obtained previously by
Steigerwald et al.:[42]

DHi
seg ¼ 2v zx � zixi � +

Jmax

j 5 1

zjxi1 j � +
i�1

j 5 1

zjxi�j � 1

2
+
Jmax

j 5 i

zj

" #

� 1

2
eBB � eAAð Þ +

Jmax

j 5 i

zj � DEi
el [37]
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for i # Jmax. Note that Eq. [36b] does not contain the
parameter P and is therefore unchanged for surfaces from
the form given previously in the case of a GB. In Eq. [37],

the term �1=2ðeBB � eAAÞ+Jmax

j 5 i z
j; when summed over all

atom planes for which i # Jmax, is just the molar surface
energy difference of the pure components, (gA � gB)s,
which appears in the Defay and Prigogine monolayer
expression (Eq. [26]) for the case Jmax 5 1. In the GB
model (Eq. [36a]), that term is multiplied by (1 � P) to
account for dangling bonds at a surface that are reconnected
to the other side of the GB when two surfaces are joined to
form a GB. Thus, rather than referring to that component of
the chemical contribution to the enthalpy of segregation as
the ‘‘surface energy’’ contribution, we will henceforth refer

to it as the contribution that arises from the difference in the
bond energies of the pure components.
Examples of results obtained for the surface energy and

surface composition of (hkl) surfaces will be discussed in
Section V.

2. Liquid surfaces
In the case of models aimed at describing segregation at

liquid surfaces, it has been convenient to place the atoms of
the liquid on an fcc lattice, in order to allow the use of a
nearest neighbor model,[5,50,46] and to assume a coordina-
tion similar to that at a (111) surface. This is reasonable,
since the coordination number in liquids is close to 12,[51]

and the topmost surface atom layer of liquids is more
highly ordered than the bulk of the liquid.[52] For simple
surfaces, such as fcc (111), all of the out-of-plane bonds of
a given atomic plane are connected to the adjacent atomic
plane. Under those circumstances, the out-of-plane coordi-

nation number for a general plane (hkl), +Jmax

j 5 1 z
j; can sim-

ply be replaced by zv (=3). In addition, the solute elastic
strain energy term should be omitted. With these simplifi-
cations, the energy and near-surface composition of a liquid
can be readily obtained.[46] We give here the relevant
expressions for the equilibrium compositions:

RT ln
xi

1� xi
5 RT ln

x

1� x

�
�
2v½ziðx� xiÞ 1 zvð2x� xi11 � 0:5Þ�

� zv

2
ðeBB� eAAÞ

�
; i5 1 [38a]

RT ln
xi

1� xi
5 RT ln

x

1� x

� 2v zi x� xi
� �

1 zv 2x� xi11� xi�1
� �� 	� 


i . 1 [38b]

In the case of the liquid surfaces, eAA and eBB are com-
puted from the pure liquid surface energies.
By way of historical perspective, it should be pointed out

that Eqs. [38a] and [38b] are quite similar to those obtained
byWilliams and Nason,[53] for equilibrium near-surface com-
position, in a first attempt to account for multilayer segrega-
tion in alloys.
As an example, we compare in Figure 5 the predictions

of the surface energy of liquid Ga-rich Ga-Pb alloys as a
function of bulk Pb content calculated from this type of
model, with experimental measurements of the surface
energy by the sessile drop technique.[54] The figure shows
a strong decrease of surface energy with increasing Pb atom
fraction, as a result of Pb segregation to the liquid sur-
face,[55] and indicates that there is good agreement between
the model and the experimental results.

3. Monolayer model
Equation [38a] can readily be reduced to the monolayer

model of Defay et al.[5] In that case, Eq. [38b] (for i . 1) is
ignored, and the term xi 1 1 in Eq. [38a] is replaced by x, the
bulk composition. It is also necessary to recognize that the
term �zv(eBB � eAA)/2 is just the energy of the dangling

Fig. 4—Comparison between the GB segregation model[13] and the com-
puter simulations of Udler and Seidman in Pt-1 at pct Au.[47,48] (a) Depend-
ence of GB adsorption on twist angle for symmetric,100. twist GBs and
(b) plane by plane composition for the GB at a twist angle of 43.6 deg.
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bonds (for simple fcc surfaces such as (111) and (100)), and
therefore represents the molar surface energy differen
(gB � gA)s. With these modifications, Eq. [38a] reduces to

RT ln
x1

1� x1
5RT ln

x

1� x

� ðgB�gAÞs1v ziðx� x1Þ1zvðx� 1
2Þ

� 	� 

[39]

where x1 is the composition of the monolayer, and leads to a
heat of segregation that is identical to that of Defay et al.,[5]

given in Eq. [26] for a liquid surface. For solids, where the
solute elastic strain energy adds to the driving force for
segregation, it is necessary to use expressions such as Eq.
[27a] to compute the enthalpy of segregation, and hence the
surface composition. As an example of the use of the mono-
layer model, we show in Figure 6 a comparison of its pre-
dictions with experimental surface segregation data obtained
by Auger electron spectroscopy from the surface of an equi-
librated Ni-0.05 at. pct Au polycrystalline alloy. The data are
reported as effective surface compositions, x1Au

�
x1Ni; aver-

aged over all surface orientations. These effective surface
compositions are compared with model predictions for a
(100) surface. Figure 6 also illustrates that the segregation
enthalpy alone (i.e., the use of a regular solution model) does
not always yield good quantitative agreement with measure-
ments. In general, quantitative agreement with experiment is
improved by the addition of an excess entropy of segrega-
tion, as in Eq. [28]. However, it should be mentioned that
this early approach to the interpretation of effective surface
compositions is no longer recommended, as discussed in
greater detail in Section V–B.

V. APPLICATIONS TO INTERFACIAL
SEGREGATION

In this section, we exercise the various forms of the
model described in Section IV to address several issues

related to the anisotropy of interfacial segregation at GBs
and surfaces. These include (a) the anisotropy of GB seg-
regation, and its relation to GB energy; (b) the dependence
of the composition of one side of a GB on the composition
of the other side; (c) the difficulty of meaningful definitions
of the segregation enthalpy and entropy; (d) the so-called
compensation effect, which can lead to a crossover in plots
of interfacial composition vs temperature for interfaces of
different orientations; (e) the relative magnitudes of segre-
gation at GBs and surfaces; and (f) the manner in which
changes in the anisotropy of surface segregation with tem-
perature can affect the temperature dependence of the equi-
librium shape of crystals.

In most of the following illustrations of model trends, we
use parameters obtained from embedded atom method
potentials for the Pt-Au system,[49] and apply them to com-
putations of segregation in Pt-Au alloys dilute in Au. This
is the same choice of parameters as in the case of Figure 4,
where model predictions were found to be in good agree-
ment with computer simulations. The parameters include
the pure component bond energies ePtPt 5 �38,237 J/mol
and eAuAu 5 �21,273 J/mol (computed from the (100) sur-
face energies), the regular solution constant v = 562 J/mol,
the lattice constants aPt 5 0.392 nm and aAu 5 0.405 nm,
the bulk modulus KAu 5 1.67 ergs/cm3, and the shear mod-
ulus GPt 5 0.68 ergs/cm3.[49] Calculations for Pt-Au are
conducted for a bulk composition of x 5 0.01. Occasion-
ally, parameters corresponding to a hypothetical ideal solid
solution will also be used, namely, eAA 5 �46,347 J/mol
and eBB 5 �23,173 J/mol (corresponding to (100) surface
energies of gA 5 2000 mJ/m2 and gB 5 1000 mJ/m2), and
a lattice constant a 5 0.392 nm (corresponding to Pt for
convenience). Illustrations using other values will be spe-
cifically identified.

A. Recent Results on GB Segregation Anisotropy

It is well established that GB segregation is aniso-
tropic.[7,56,57] However, most of the investigations of anisotropy

Fig. 6—Comparison of measured average surface segregation on a poly-
crystalline Ni-0.05 at pct Au alloy with monolayer model predictions for
DSseg 5 0 (regular solution) and with an added empirical entropy of
segregation, DSseg/R 5 –2.6.[19]

Fig. 5—Comparison of the surface energy of Ga-rich Ga-Pb alloys as a
function of atom fraction Pb (x) calculated by Eq. [31][46] and measured by
the sessile drop method[54]
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have tended to focus on ‘‘special’’ GBs. Thus, an adequate
picture of the variation of GB segregation over the entire
GB orientation space is still lacking. One of the more com-
plete studies has reported measurements on 166 GB planes
exposed by intergranular fracture in TiO2-2 mol pct Nb2O5,
and has addressed the manner in which Nb segregation
varies with GB plane orientation over the standard stereo-
graphic triangle.[58] Because both the compositions and the
orientations on both sides of each GB were determined, that
study provided a first evaluation of the possible variation of
GB composition over four of the five macroscopic param-
eters of the GB orientation space. However, before describ-
ing these results, we exercise the GB segregation model to
investigate its predictions with respect to general trends in
segregation anisotropy.

1. GB model trends
Figure 7 displays the composition at 1000 K of selected

GBs in an fcc Pt-1 at. pct Au alloy. The figure shows the
compositions of four GBs, all terminated by a (311) plane
on one side, and four different (hkl) planes on the other, as a
function of twist angle. The (311) plane lies on the (100)-
(111) edge of the stereographic triangle. The other sides of
the four GBs are terminated, respectively, by the (533),
which also lies on the (100)-(111) edge, the (744) plane,
which lies along the (110)-(111) edge, the (15 4 0) plane,
which lies on the (100)-(110) edge, and the (321), which
lies near the center of the triangle. Thus, the GB orienta-
tions are well distributed over the orientation space. Energy
cusps that arise for these GBs at specific values of twist
angle are indicated by arrows on the horizontal axis of the
figure. Although the model correctly predicts the values of
twist angle at which energy cusps are located, the depth of
energy cusps is calculated rather crudely.[12,59] As a result,
cusp values of the composition have been omitted. Never-
theless, Figure 7 indicates that the magnitude of composi-
tional anisotropy of the GBs in dilute Pt-Au alloys ranges

over a factor of about 3 for the selected GBs. Of course, a
larger anisotropy would be expected over the entire GB
orientation space. Furthermore, the range of compositional
anisotropy could be larger or smaller than in the specific
case of the Pt-1 at. pct Au alloy used here for the purposes
of illustration. Finally, it should be clear from the figures
that variation of the fifth GB orientation parameter (twist
angle) can also produce significant differences in GB seg-
regation.
Displaying GB compositional information for the com-

plete five-parameter space is impractical, as it requires a
very large number of figures. In what follows, we therefore
restrict the results displayed to a four-parameter space, in
which the twist angle parameter is fixed at a value that
corresponds to the maximum in GB composition for a given
pair of terminating GB planes.
In Figure 8(a), we show the profiles across four GBs

consisting of identical pairs of terminating planes, namely,
(530)-(530), (511)-(511), (221)-(221), and (111)-(111).
These profiles are all symmetric, as expected, and the figure
shows that segregation is strongest for the (530)-(530) GB
and weakest for the (111)-(111) GB. In Figure 8(b), the
four GBs shown are comprised of a (530) terminating plane
on the left-hand side (lhs), whereas the orientation on the
rhs is varied through the sequence (530), (511), (221), and
(111). The (530)-(530) boundary is of course identical in
both figures and is only shown in Figure 8(b) for compar-
ison. It can be seen in Figure 8(b) that the composition
profile on the (530) side, i.e., lhs of the GB, is dependent
on the orientation of the rhs terminating plane. If the rhs
plane is characterized by a weak segregation when it is
present in a symmetric boundary, as indicated in Figure
8(a), then it also lowers the segregation profile on the
(530) side of the GB in Figure 8(b). Similarly, the segre-
gation on the more weakly segregated rhs terminating
planes is raised when they are coupled with the strongly
segregating (530) plane on the lhs. This provides evidence
of the interaction of the segregant atoms across the GB,
which comes about in the model from the terms containing
the regular solution constant, v. Thus, for the case of an
ideal solution (i.e., v 5 0), the model predicts that the
composition profile on one side of the GB would depend
only on the orientation of the terminating plane on that side,
and would be independent of the orientation of the plane on
the other side of the GB. For nonzero values of v, the
degree of compositional interaction increases with increas-
ing v.
In order to illustrate the interaction across the GB over a

broader range of the orientation parameters, we show in
Figure 9(a) the variation over the standard stereographic
triangle of the composition on each side of GBs terminated
by identical (hkl) planes, and in Figure 9(b), the variation in
composition of a terminating (111) plane when the other
side of the GB varies over the stereographic triangle. This
example is also for the case of the Pt-1 at. pct Au alloy, but
for a temperature of 400 K. Figure 9(b) illustrates the
effects seen in Figure 8, namely, that the composition of
a (111) terminating plane is sensitive to the composition on
the other side of the GB, and increases with increasing
segregation on the other side. In Figure 9(a), the symmetric
GBs display an anisotropy in composition that varies by a
factor of 10 over the stereographic triangle, and Figure 9(b)

Fig. 7—Examples of model predictions for asymmetric twist GBs, as a
function of twist angle, for a Pt-1 at. pct Au alloy at 1000 K. All GBs are
terminated by a (311) plane on one side and by four different (hkl) planes
on the other. Arrows indicate the location of cusps.[13]
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shows that the composition of the (111) side of GBs can
range over a factor of 4 depending on the orientation of the
terminating plane on the other side of the GB.

Finally, we show that there is a strong correlation
between the level of segregation of a GB, and the energy
of the GB in the pure solvent and in the segregated alloy.
This is illustrated in Figure 10, which is a plot of adsorption
vs GB energy either in pure Pt or in the equilibrated Pt-1 at.
pct Au alloy at 400 K. The figure shows that segregation at
these GBs is strongest in the case of high-energy bounda-
ries and weakest in the case of low-energy boundaries. In
addition, it shows the decrease in GB energy that results
from segregation, which is most significant where the
adsorption is largest, as expected from the Gibbs adsorption
isotherm. However, a note of caution about the generality

of this result should be injected here, in view of the possible
reversal of the order of GB segregation with GB orientation
(and energy) that can result from the so-called ‘‘compen-
sation effect.’’[9] This issue will be discussed in more detail
below in Section V–C.

2. GB experimental results
The experimental results used for comparison with the

model predictions of the previous section were obtained in
a study of Nb segregation to TiO2 GBs in TiO2-2 mol pct
Nb2O5, after equilibration at ;1840 K.[58] These experimen-
tal results cannot be compared quantitatively to predictions

Fig. 9—Distribution of Au adsorption in Pt-1 at. pct Au at 400 K (a) on
one side of the GB for GBs terminated on both sides by the same (hkl)
orientation, and (b) on the (111) side of GBs terminated by the (111)
orientation on one side and all possible orientations on the other side.
The scale of the contour plots is in Au atoms/nm2.

Fig. 8—Composition profiles across GBs in Pt-1 at pct Au at 1000 K. (a)
GBs are terminated by identical pairs of planes, and (b) all GBs are
terminated by a (530) plane on the left, and by (530), (511), (221), and
(111), respectively, on the right.
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of the GB segregation model, as the model has not thus far
been extended to metal oxide systems, where electrostatic
effects need to be addressed. Nevertheless, a qualitative
discussion of the results in light of general trends described
previously can provide very useful insights.

Figure 11(a) summarizes the results of Nb GB segrega-
tion as a function of GB plane orientation, in which the GB
normals are displayed in a stereographic triangle appropri-
ate for tetragonal (rutile) TiO2. The figure shows that the
strongest segregation occurs for GB plane normals that lie
along the (001)-(011) edge of the triangle, whereas the
weakest segregation occurs for GB plane normals that lie
close to the (110)-(010) edge of the triangle. Thus, there is
a clear crystallographic separation of GB planes for which
segregation is either strong or weak. The orientations cor-
responding to strong segregation are reproduced in Figure
11(b) (solid symbols) together with orientations of planes
of the matching halves of those GBs (open symbols).
Although the matching halves of GB planes displaying

strong segregation are generally planes that show moderate
segregation in Figure 11(a), they tend to fall in a region of
orientation space that corresponds to strong segregation.
Thus, in order for a GB plane to show relatively strong
segregation, its matching half must also show relatively
strong segregation. This is exactly the behavior that is
expected from Figure 8, which shows that a given boundary
plane will display strong segregation only if its matching
half also displays relatively strong segregation.
Figure 11(c) is a plot similar to 11(b), but for the case of

GB planes exhibiting weak segregation. In this case, the
matching planes of GBs displaying weak segregation also
fall in a region of orientation space characterized by weaker
segregation. This is also consistent with the qualitative
trends predicted by the GB model in Figure 9, which shows
that the composition of a (111) terminating plane is only
low when segregation on the plane terminating the other
side of the GB is also low.
Finally, we turn to a comparison between the prediction

of stronger segregation to high-energy boundaries, shown
in Figure 10, and the experimental results on Nb-doped
TiO2. As a prelude to this comparison, it is worthwhile to
begin with a discussion of the relationship between GBs
and surface energies in pure materials. Wolf[43,44,45] per-
formed some important simulations aimed at understanding
the anisotropy of GB energy. These simulations employed
the interface plane scheme and showed that for a fixed pair
of terminating surfaces, the GB energy was essentially con-
stant over the entire range of twist angle, except for local-
ized narrow cusps that occur at values of twist angle where
the unit cell of the GB structure adopts a minimum size. In
addition, Wolf found that the GB energy over the essen-
tially constant ‘‘plateau’’ energy region was linearly related
to the mean surface energy of the two terminating surfaces
comprising the GB. The GB energy model that underlies
the present GB segregation model[12,13] was also designed
to reproduce this predicted trend. On the experimental side,
Wolf’s prediction of the relationship between mean surface
energy and GB energy was verified by Saylor et al.,[10,11] in
their measurements of the relative anisotropies of surface
and GB energies in MgO. If we accept the result that GB
energy scales with mean surface energy, then the results of
Figure 10 imply that segregation on given GB planes

Fig. 10—Au adsorption at Pt-1 at. pct Au GBs at 400 K vs GB energy of
pure Pt or of the segregated GB in the Pt-Au alloy. Calculation is for 78
different GBs with GB planes distributed over the stereographic triangle.

Fig. 11—(a) Orientation distribution of Nb segregation at TiO2 GBs planes, displayed in the standard stereographic triangle for tetragonal rutile, and
identifying orientations for which the Nb/Ti Auger peak ratio is high, moderate, or low. (b) GB plane orientations showing high levels of Nb segregation in (a)
and the orientations of the matching planes on the other sides of the same GBs. (c) GB plane orientations showing low levels of Nb segregation in (a) and the
orientations of the matching planes on the other sides of the same GBs.[58]
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should scale approximately with the surface energy of that
plane. In order to test these predictions in the case of Nb
segregation to TiO2 GBs, the anisotropy of surface energy
of TiO2 at 0 K was computed for all possible surface ori-
entations,[8] based on first principles total energy calcula-
tions due to Ramamoorthy et al.[60] The results are shown in
Figure 12. By comparing Figures 11(a) and 12, it can be
seen that the GB plane orientations displaying high levels
of Nb segregation in Figure 11(a) correspond to high-
energy surfaces in pure TiO2, and conversely, that low
levels of Nb segregation are found on low-energy TiO2

surfaces. These results are generally consistent with the
predictions of the model shown in Figure 10, where high
adsorption occurs on high-energy GBs, and vice versa.

B. Effective Enthalpies and Entropies of Segregation

There has been a great deal of confusion in the literature
on the topic of the enthalpies and entropies of segregation.
It is therefore worthwhile to address this topic here, in an
effort to clarify the issues.

These thermodynamic parameters are generally extracted
from measurements of interfacial composition as a function
of temperature. Then, by assuming that the experimental
results are described by means of a monolayer model, i.e.,
by expressions such as Eq. [28], the enthalpy of segregation
is obtained from the slope of ln {xs/(1 – xs)} vs 1/T and the
entropy from the intercept of the data at 1/T 5 0. However,
there are questions related to the method by which xs is
measured, and also about the significance of the value
extracted from such measurements.

For simplicity, we address this issue in the context of
surface segregation. In general, even in the case of a surface
where a single plane is lacking coordination (e.g., fcc
(111)), and for which the enthalpy of segregation may be
expressed as in Eq. [27a], the enthalpy of segregation is a
function of xs, and is therefore dependent on temperature
through the temperature dependence of xs. This is because
xs approaches 1 in the limit T / 0, and xs approaches x as
T/ ‘. In the temperature range where most of the temper-
ature dependence takes place, the slope of ln {xs/(1 – xs)} vs
1/Twill yield an effective enthalpy of segregation, which is
not equal to the value computed from Eq. [27a], and the
intercept at infinite temperature will give a finite effective

entropy of segregation, rather than the zero value consistent
with the regular solution model.[20] The issue is even more
complex in the case of a general (hkl) surface, where sev-
eral near-surface planes lack coordination. Here, each near-
surface atom plane will have a different characteristic
enthalpy of segregation, and thus a different temperature
dependence of composition. Such a ‘‘site dependence’’ of
the enthalpy of segregation was pointed out a long time ago
by White and Coghlan.[61] The net result is that the overall
interfacial composition will no longer display a simple
temperature dependence, with consequent effects on both
the effective enthalpies and entropies of segregation.

Matters are further complicated by the most common
method of measuring the interfacial composition, namely,
Auger electron spectroscopy (AES). The AES data are gen-
erally interpreted so as to yield an effective value of the
quantity xs/(1 � xs), which is a convolution of the actual
plane-by-plane composition and is given approximately by:

xs=ð1� xsÞ½ �eff5 +
N

i 5 1

xi exp [ 2d(i 2 1)/l]

+
N

i 5 1

ð1� xiÞ exp½�dði� 1Þ=l�
,

[40]

where xi is the solute atom fraction in the ith atom plane, d
is the interplanar spacing for the appropriate (hkl) surface,
l is a characteristic attenuation length related to the Auger
electron emission process (which is typically a few tenths
of a nanometer and can be different for the solute and
solvent species), and N is a suitable number of planes that
must be sufficiently large that the exponential attenuation
makes contributions from deeper layers negligible. Equa-
tion [40] thus produces an effective interfacial composition,
which is an average weighted by the exponential Auger
signal attenuation term, exp [�d(i � 1)/ l].

To illustrate these effects, we compare surface composi-
tions calculated by the model, with what might be mea-
sured by AES for the (111) and (511) surfaces. The
results shown in Figure 13(a) are obtained from the model
for the case of the ‘‘standard’’ ideal solution described at
the beginning of Section V. In this particularly simple case,
there is no composition dependence of DHi

seg (as this inter-
action only occurs for v 6¼ 0), and the only driving force for
segregation arises from the difference between the bond
energies of the pure solute and solvent. Figure 13(a) shows
that a plot of ln {xi/(1 – xi)} vs 1/T, for each near-surface
atom plane i, yields a straight line, as expected. The slope
of each line is directly related to the appropriate DHi

seg: To
compute the trends that would be inferred from an AES
measurement, we use Eq. [40], with l 5 0.2 nm, in order
to give maximum weight to the near-surface atom planes.
Those results are shown in Figure 13(b). Consider first the
simple case of the (111) surface, in which only one atom
plane differs in composition from the bulk (in the limit of
an ideal solution). Even in this simple case, the effective
value of the enthalpy of segregation, DHeff

seg; obtained from
the slope of Figure 13(b), would be quite different from the
DHi

seg calculated by the model, with deviations becoming
progressively more significant above ln {xs/(1 – xs)}eff ; �1
(i.e., xs ; 0.3). For the case of the (511) surface, whereFig. 12—Computed anisotropy of surface energy of TiO2 (rutile) at 0 K.[8]
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three planes differ in composition from the bulk, the value
of DHeff

seg; obtained from the slope of the effective surface
composition ln {xs/(1 – xs)}eff in Figure 13(b), bears no
relation to the actual DHi

seg calculated for each of the three
atom planes.

The apparent asymptotic behavior of ln {xs/(1 – xs)}eff in
Figure 13(b) comes about from the persistence of the AES
signal from the substrate (generally the solvent component
of the alloy), even when the surface layers are essentially
saturated by the segregating component. However, even if
this AES-specific problem could be avoided, it would be
necessary to measure the changes in composition of indi-
vidual atomic planes in the near-surface region as a func-
tion of temperature (as illustrated in Figure 13(a)) in order
to extract physically meaningful enthalpies or entropies of

segregation. Until such measurements are shown to be pos-
sible and reliable, the use of effective thermodynamic
parameters to interpret measurements of interfacial segre-
gation anisotropy should be avoided, as they lack any phys-
ical significance.

C. Compensation Effect

When the anisotropy of segregation has been studied,
either at surfaces[42] or at GBs,[62] it has been found that
the curves of interfacial composition vs temperature, for
different orientations, can sometimes intersect close to a
temperature that has been termed the compensation temper-
ature. This phenomenon has been referred to as the com-
pensation effect, because it has been interpreted as arising
from a linear relationship between the enthalpy and the
excess entropy of segregation. If such a relationship pre-
vails, it would lead to the crossover of experimental curves
at the compensating temperature, as described subse-
quently. It is worth recalling that a possible origin for the
scaling of the excess entropy of segregation with the
enthalpy of segregation was pointed out in Section III, in
connection with Eq. [29b]. In addition, it is worth noting
that similar compensation effects have also been reported
for certain rate processes (e.g., GB diffusion[63]).
In the context of equilibrium interfacial segregation, a

compensation effect has been found when effective enthal-
pies ðDHeff

segÞ and entropies ðDSeffsegÞ of segregation have been
extracted from relations such as

xS

1� xS


 �eff
¼ x

1� x
exp

DSeffseg

R

( )
exp �DHeff

seg

RT

( )
[41]

(i.e., an ‘‘effective’’ version of Eq. [28]) together with val-
ues of ln [xs/(1 – xs)]eff obtained from AES experiments via
Eq. [40]. If one supposes that the effective enthalpies and
entropies of segregation for different orientations are line-
arly related as follows:

DSeffseg ¼ DHeff
seg

.
Tcomp 1C [42a]

and

DGeff
seg ¼ DHeff

seg � TDSeffseg [42b]

where Tcomp is the compensation temperature and C is a
constant, then DGeff

seg vs T for all possible orientations will
intersect at Tcomp, and DGeff

seg will adopt a value of �C at
Tcomp, for all possible choices satisfying Eq. [42a]. How-
ever, in view of the lack of physical meaning of these
effective parameters, as discussed in Section V–B, this
argument does not provide a useful rationale for the origin
of the compensation effect.
To illustrate that the compensation phenomenon is con-

sistent with the predictions of regular solution type models,
we have calculated the adsorption for several surface ori-
entations in the limit of our standard ideal solution. The
ideal solution approximation is used here, because it has
been found, by exercising the model, that the compensation
effect essentially arises from the difference between the

Fig. 13—(a) Calculated plane-by-plane variation of lnfxi=ð1� xiÞgvs 1/T,
and (b) corresponding values of lnfxs=ð1� xsÞgeffvs 1/T, which would be
measured in an AES experiment, for (111) and (511) surfaces in a hypo-
thetical ideal solution.
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bond energies of the pure components, and not from the
interatomic interaction terms that depend on v, nor from
the elastic strain energy contribution to the driving force.
The latter contributions to the segregation driving force
may modify the temperature at which two orientations have
the same value of DGeff

seg; but do not, on their own, produce
the compensation effect. The plane-by-plane compositions
shown in these illustrations have been obtained by using the
enthalpies of Eq. [37], and these have been inserted into Eq.
[35b] to obtain the total solute adsorption.

The results are displayed in Figure 14 in the form of a
plot of adsorption vs temperature for seven surface orienta-
tions distributed around the stereographic triangle. The fig-
ure shows that most of the curves intersect over a relatively
limited temperature range in the vicinity of 800 K to give
an approximately equal surface composition for the various
orientations. Only the (100) orientation seems to behave
somewhat differently from the others. Apart from the
anomaly of the (100) orientation, an apparent ‘‘compen-
sation effect’’ is present, even though the enthalpy of seg-
regation is finite, but the excess entropy of segregation is
zero for these ideal solution calculations. Thus, the inter-
pretation of the intersection of composition curves at a
particular temperature is clearly unrelated to a compensa-
tion between the excess entropies and enthalpies of segre-
gation that might arise from some linear relationship
between these thermodynamic parameters.

In order to investigate the origin of the common surface
composition at about 800 K, we have plotted the plane-by-
plane contributions for the (111) and (211) surface orienta-
tions, in the ideal solution limit, in Figure 15. The (111)
orientation has only one atom plane that differs from the
bulk composition in the ideal solution limit. This plane is
characterized by three dangling bonds. In contrast, the
(211) orientation has five, three, and two dangling bonds
in the first, second, and third atom planes, respectively. The

planar site density is 15/nm2 for a (111) plane, but only
5.3/nm2 for a (211) plane (for an assumed lattice constant
of 0.392 nm corresponding to Pt). Figure 15 shows that the
first (211) surface plane saturates in segregant at ;800 K,
i.e., at a higher temperature than the others, because it has
the highest number of dangling bonds, and therefore the
strongest driving force for segregation. It is followed by
the second (211) surface plane with three dangling bonds,
which saturates at ;500 K, and the third plane with two
dangling bonds that saturates at ;300 K. The (111) surface
plane saturates at the same temperature as the second (211)
plane, since it has the same number of dangling bonds.
However, because of the stronger segregation to the first
plane of the (211) surface, total adsorption on (211)
exceeds that of the (111) surface plane at high temperature.
As one proceeds to lower temperatures, total adsorption on
the (211) surface is eventually overtaken by total adsorption
on the (111), at about 800 K, due to the ;3 times larger
number of atom (or adsorption) sites per (111) plane than
per (211) plane. The intersection in total adsorption at
;800 K thus reflects a complex interplay between the num-
bers of dangling bonds in each segregated plane, the num-
bers of planes that can contain excess solute, as well as the
number of atom sites per plane. These three variables are
listed in Table I for all of the surface orientations used in
the illustration in Figure 14.

One possible reason for the anomalous behavior of the
(100) orientation can be seen in Table I, which shows that
the single plane with broken bonds in the case of the (100)
surface orientation has four dangling bonds, whereas the
average number of broken bonds per atom plane for all
other orientations is much closer to three. Table I also shows
that the parameters responsible for crossover have a signifi-
cant range of values; thus, it is not surprising that crossovers
in total adsorption can occur for all orientations. However,
the origin of an almost universal crossover temperature of

Fig. 14—Solute adsorption vs temperature for seven different surface ori-
entations, for the hypothetical ideal solution of Fig. 13, illustrating the
intersection of most adsorption curves near 800 K (the lattice constant
for the solution has been taken as 0.392 nm).

Fig. 15—Solute adsorption as a function of temperature for the (111) and
(211) surface orientations of the hypothetical ideal solution of Fig. 13,
showing plane-by-plane adsorption contributions for the (211) surface.
(The lattice constant for the solution has been taken as 0.392 nm.)
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;800 K is still not obvious. Furthermore, it should be noted
that as temperature is decreased below ;800 K, Figure 14
shows that additional intersections of the adsorption curves
can occur. A second intersection point is also shown, for
example, between the adsorptions on (111) and (211) in
Figure 15 at ;500 K. The second intersection shown in
Figure 15, as well as some of those in Figure 14, are simply
the result of different numbers of adsorption sites for the
various surface orientations. Table I indicates that the (111)
surface plane has 15 adsorption sites/nm2, whereas the three
(211) surface planes have a total of ;15.9 adsorption sites/
nm2. Therefore, in the limit of low temperatures, the (211)
surface will necessarily saturate at a higher total adsorption
than the (111) surface, thereby leading to the second inter-
section. One important conclusion from this analysis is that
the intersection of adsorption curves for different orienta-
tions is not due to a compensation effect resulting from a
relationship between the excess entropy and enthalpy of
segregation. As a result, we prefer to refer to this phenom-
enon as the crossover effect.

Setting aside the (100) orientation anomaly of Figure 14,
it can be seen that above the crossover temperature of;800
K, the adsorption is lowest for the lowest-energy (111) sur-
face, but highest on that surface below the intersection
temperature. Indeed, at temperatures above the crossover
temperature, there is a reasonable correlation between
increasing adsorption and increasing surface energy. This
is illustrated in Figure 16(a), in the ideal solution limit, for
more than 30 surface orientations distributed over the ster-
eographic triangle. The few orientations that tend to lie off
the general trend are low index surfaces (noted on the fig-
ure). The trends displayed in Figure 16(a) are similar to
those previously shown for Pt-1 at. pct Au GBs in Figure
10. Because of the relatively small number of orientations
displayed in Figure 14, the adsorption below the crossover
temperature might be interpreted as indicating a systematic
trend of lower adsorption at higher energy surfaces. How-
ever, the relation between adsorption and surface energy is
not as simple below the crossover temperature. This is
illustrated in Figure 16(b) at a temperature of 600 K, for
the same set of surface orientations as Figure 16(a). This
figure shows that adsorption can vary significantly without
much change in surface energy. In the limit of very low
temperatures, where adsorption sites will tend to be satu-
rated with segregant, the last column of Table I indicates
that adsorption anisotropy will tend to disappear.

As mentioned previously, it has been shown experimen-
tally[62] that the crossover phenomenon described here for

surfaces also occurs at GBs. However, comparable calcu-
lations performed with the GB model, using realistic values

Table I. Variables Associated with the Different Surface Orientations of Figure 14

Surface
Orientation

Broken Bonds in the ith Plane
Average Number of
Broken Bonds/Plane

Adsorption
Sites/Plane (nm�2)

Total Number of
Adsorption Sites (nm�2)i = 1 i = 2 i = 3 i = 4 i = 5

(111) 3 3 15 15
(100) 4 4 13 13
(211) 5 3 2 3.3 5.3 15.9
(210) 6 3 1 3.3 5.8 17.4
(221) 5 3 3 1 3 4.3 17.3
(110) 5 1 3 9.2 18.4
(321) 6 4 3 2 1 3.2 3.5 17.5

Fig. 16—Variation of solute adsorption with surface energy for the hypo-
thetical ideal solution of Fig. 13. Both the pure solvent and segregated
surface energies are shown: (a) at 1000 K and (b) at 600 K.
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of the difference between the pure component bond ener-
gies, do not display the crossover effect. This is because the
contribution of the pure component bond energy difference
to the driving force for segregation is much smaller in the
case of GBs than in the case of free surfaces, as a result of
the much smaller number of broken bonds at a GB. Most of
the bonds that are broken at a free surface tend to be
reconnected when two surfaces are joined to form a GB,
thereby reducing the magnitude of the pure component
bond energy contribution that yields the crossover effect.
This result might be an artifact of the GB model, and may
therefore be worthy of further investigation.

Finally, it is worth noting that the existence of an almost
fixed crossover temperature for most orientations, illustrated
in this section for the case of an ideal solution, does not
occur for all values of the segregation parameters. An exam-
ple where the intersections of the adsorption curves vs tem-
perature, for different orientations, occur over a broad range
of temperatures will be shown below in Section E. Thus, the
significance, if any, of the crossover phenomenon is unclear.

D. Comparison between Surface and GB Segregation

The enthalpies of segregation for GBs (Eqs. [36a] and
[36b]) and surfaces (Eq. [37]) in metallic alloys contain the
same types of terms. For both types of interface, the enthal-
pies include terms arising from the difference in bond ener-
gies of the two pure components, which have been referred
to as a surface energy contribution; terms that arise from
the regular solution constant, v, which have been referred
to as alloy interaction contributions and which also depend
on the interfacial composition; and terms that depend on
the solute elastic strain energy. The terms related to the
pure component bond energies reflect the total numbers
of dangling bonds for the two interfaces. Since the numbers
of dangling bonds (per interface atom) at a GB are consid-
erably smaller than at a free surface, the driving force for
segregation arising from these terms will be much smaller
at a GB than at a surface. The alloy interaction terms
enhance segregation when v is positive (i.e., in systems
with a tendency to cluster), and their contribution to the
driving force is magnified by an increase in the number of
neighbors of an interface atom. Thus, since the coordina-
tion of an atom at a GB is larger than that at a free surface,
these terms can enhance the driving force for segregation at
a GB in relation to a surface. The solute strain energy terms
reflect the energy decrease that results from exchanging a
solute atom in the bulk with a solvent atom at the interface.
This is likely to be greater at a free surface than at a GB,
because the atomic environment of a solute atom at a free
surface is more open (i.e., less constrained) than it is at a
GB. However, when this hypothesis was tested by allowing
for an adjustable parameter in the comparison of model
predictions for GBs with the results of computer simula-
tions,[13] it was found that there is essentially no adjustment
needed to correct the solute strain energy term for GBs in
relation to free surfaces. Thus, in the present model, the
absolute weight of solute elastic strain energy contributions
is the same for GB and surface segregation (although the
relative weight may be different).

This discussion implies that surface segregation will gen-
erally be stronger at a free surface than at a GB when the

enthalpy of segregation is dominated by differences
between the bond energies of the pure solute and solvent.
Conversely, segregation could be stronger at a GB than at a
surface if the enthalpy of segregation is dominated by the
terms in v. Examples of these two cases are shown in Fig-
ures 17(a) and (b). Figure 17(a) shows a comparison
between segregation at a (321)-(321) GB and a (321) sur-
face, using Pt-1 at pct Au as the example, where the
enthalpy is dominated by bond energy differences. The
adsorption at the surface is higher over most of the temper-
ature range. However, even in this case, GB segregation
catches up to surface segregation as interface saturation
occurs at sufficiently low temperatures. This intersection
of the segregation curves results from the fact that the
number of adsorption sites at the GB is twice as large as
the number of surface adsorption sites. In Figure 17(b), the
model parameters have been changed by eliminating the
bond energy difference and the solute strain energy contri-
butions, and by increasing the value of v from 0.562 kJ/mol
for Pt-Au to 2kJ/mol. Since this higher value of v leads to a
lower bulk solubility, it has also been necessary to lower the
bulk solute content from 1 at. pct in Pt-Au to 0.05 at. pct.
Figure 17(b) shows that with this change in parameters, the
GB adsorption is always higher than the surface adsorption,
and is in fact more than twice that at the surface, thereby
ensuring that the stronger GB segregation does not merely
reflect the higher number of GB adsorption sites.

The preceding example serves to illustrate that surface
segregation need not always be stronger than GB segrega-
tion, although that has been the more common experimen-
tal observation when surface and GB segregation have been
compared.[64–67] Some of the work in this area has com-
pared the segregation behavior of surfaces and GBs in the
context of three or more component alloys, where the
behavior may be more complex due to possible solute-sol-
ute interactions at the interface.

E. Surface Segregation Anisotropy and the Equilibrium
Shape of Alloy Crystals

Two principal experimental approaches have been used
to measure surface energy anisotropy. The first has involved
studies of interfacial equilibrium at the intersection of
either twin boundaries[68] or general GBs[69] with surfaces.
The second approach has relied on direct observations of
the shapes of small crystals, since the anisotropy of surface
energy is related to the equilibrium crystal shape (ECS) by
the Wulff construction.[70,71] Whereas the ECS of pure fcc
metals has been the subject of significant study, e.g., in the
case of Pb,[72] Au,[73,74,75] and Cu,[76] there has been rela-
tively little comparable work performed on fcc alloys.
Some examples of fcc alloys where data have been obtained
on the effects of adsorption on surface energy anisotropy
include Cu-O,[77] Cu-Bi,[78] and Pb-Bi-Ni.[79] The work on
Cu-O falls outside the purview of the present model
approach, since Cu-O alloys cannot easily be described
within that framework. However, all of the experimental
observations display some common trends that are worthy
of discussion in light of model predictions.

In all of the experimental studies of alloys cited previ-
ously, solute adsorption is quite strong, and the surface
energy anisotropy of the pure solvent is increased as a result
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of the adsorption. This may appear to contradict the results
displayed in Figure 10 for Pt-Au GBs and in Figures 16 for
the surfaces of an ideal solution. In both those cases, the ratio
of maximum to minimum interfacial energy is larger for the
pure solvent interfaces than for the segregated interfaces. How-
ever, the behavior shown in those examples is not general,
and probably stems from the relatively weak segregation in
those cases. In Figure 18, we use the example of a more
strongly segregating alloy system, namely, Ni-Au, to illustrate
that surface energy anisotropy can be increased by solute
segregation. The model parameters used for Ni-Au alloys
are as follows: eNiNi 5 �36,258 J/mol, eAuAu 5 �26,352 J/
mol, v 5 2487 J/mol, aNi 5 0.352 nm, aAu 5 0.408 nm, KAu

5 1.77 ergs/cm3, and GNi 5 0.77 ergs/cm3.[42]

Figure 18 shows the calculated variation in surface
energy for the pure Ni solvent, as well as that for a Ni-
0.1 at. pct Au alloy at three temperatures, as the surface
orientation is varied around the edges of the standard ster-
eographic triangle (i.e., from (100) to (111) to (110) and
finally back to (100)). As can be seen, the anisotropy of
surface energy is significantly increased by Au segregation
to the Ni-alloy surface. Thus, by comparing Figure 18 to
Figures 10 and 16, we find that interfacial energy aniso-
tropy can either be decreased or increased, depending on
the values of the parameters that determine the driving
force for segregation.
Before proceeding to a further discussion of the conse-

quences of adsorption shown in Figure 18, it is useful to
begin with a discussion of the surface energy anisotropy of
pure fcc metals, and in particular of the occurrence of facets
on the ECS. The existence of cusps in the orientation
dependence of interfacial energy is a necessary, but not a
sufficient, condition for the appearance of facets on the
ECS.[71] In order for a facet to occur on the ECS, not only
must a cusp in surface energy be present, but the cusp must
also penetrate the inner envelope of Wulff planes that define
the ECS. Thus, the anisotropy of surface energy shown in
the upper curve of Figure 18 (labeled as g solvent) implies
that pure fcc metals can at most display facets only at
{111}, {100}, and {110} orientations. In pure Pb and Au,
experiments have shown[72–75] that the ECS consists pre-
dominantly of curved surfaces, with small facets at {111}
and {100} orientations. However, measurements of the
ECS can only be performed at high temperatures, in order
to avoid prohibitively long equilibration times. As a result,
shallow cusps that may exist in the orientation dependence
of surface energy at low temperatures can disappear at
higher temperatures due to entropy effects, by so-called
faceting-roughening transitions. For example, although {110}
facets were not seen on the ECS of pure Pb,[72] subsequent
crystal growth experiments showed that facets at {110}
orientations do eventually become stable at temperatures

Fig. 18—Surface energy variation with orientation around the edge of the
stereographic triangle. Curves are shown for the pure solvent and for a Ni-
0.1 at. pct Au alloy at three temperatures.

Fig. 17—Comparison of adsorption vs temperature (a) for a (321)-(321)
GB and a (321) surface in the Pt-1 at pct Au alloy, and (b) for a hypo-
thetical alloy with no bond energy difference between the pure compo-
nents, a regular solution constant of v 5 2 kJ/mol, and a bulk solute
concentration of x 5 0.05 at pct.
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below those where the ECS measurements were per-
formed.[80] In addition, studies of the ECS of pure Cu[76]

at 1240 K have shown that it also consists of predominantly
curved surfaces with small facets. However, in this case,
facets occur not only at {111} and {100}, but also at {110}
orientations. Thus, the prediction by the model of cusps at
{111}, {100}, and {110} in pure fcc metals is consistent
with available measurements. It should also be noted that
the present model predictions for the surface energy of pure
crystals does not account for temperature (i.e., entropy)
effects and cannot therefore provide predictions of facet-
ing-roughening transitions. This also means that the aniso-
tropy of pure fcc metals calculated by the model
corresponds to a temperature of 0 K, and is therefore typ-
ically larger than that measured experimentally. Finally,
since the model is for a ‘‘generic’’ fcc metal, it is unable
to identify differences in behavior among different fcc
metals. In light of all these limitations of the model, the
qualitative agreement with data on pure fcc metals is there-
fore comforting.

We return now to the results of Figure 18 relating to
solute adsorption. The most important result in this context
is that the anisotropic adsorption and the related changes in
surface energy anisotropy lead to the development of new
cusps at several orientations, notably at (311) and (210)
orientations. In the case of experiments on Pb containing
Bi and Ni additions, the ECS was studied as a function of
temperature.[79] At the highest temperatures, just below the
melting point, the ECS of a Pb-5 at. pct Bi-0.04 at. pct Ni
alloy was found to be similar to that of pure Pb and to
display small facets only at {111} and {100} orientations.
Upon cooling, the first change in anisotropy manifested
itself as an increase in {111}-facet size. This result is gen-
erally consistent with Figure 18, where the most significant
surface energy decrease occurs for the (111) orientation.
Upon further cooling, the first new facet to appear on the
Pb alloy ECS had an orientation somewhere between (311)
and (411) (which could not precisely be identified). This is
similar to the results of Figure 18, which shows the devel-
opment of a new cusp at (311). We will return subsequently
to a discussion of the factors that could lead to small differ-
ences in facet orientation. The next new facet to form on
the Pb alloy ECS, upon further temperature decrease, was
the {110}, which also displays increasing cusp depth with
decreasing temperature in Figure 18. A photomicrograph of
a Pb-5 at. pct Bi-0.04 at. pct Ni crystal after appearance of
the {110} facets is shown in Figure 19(a).

Measurements of the ECS of Bi-saturated Cu were only
performed at a temperature of 1223 K.[78] In this case, the
ECS was completely faceted (i.e., no curved surfaces were
present) and displayed only {111}, {100}, {110}, and
{320} facets, as shown in the partially equilibrated ‘‘neg-
ative’’ crystal displayed in Figure 19(b). It is interesting to
note that the ‘‘generic’’ segregated fcc alloy of Figure 18
displays a new cusp due to segregation at the (210) orien-
tation, not far from (320). One reason that the model may
not predict the precise orientations at which new cusps are
expected to form probably stems from its neglect of possi-
ble surface reconstruction effects. For example, in the case
of Bi on Cu(100), the adsorbed Bi atoms can order into c(23
2), c(9O2 3 O2)R45 deg, and p(10 3 10) structures[81,82]

with increasing Bi coverage. These significant structural

changes with increasing adsorption are presumably tied to
the large size mismatch between Bi and the underlying Cu
substrate. Thus, the level of adsorption on a surface of any
given orientation will depend not only on the parameters
included in the segregation model, but also on the ease with
which mismatching segregated solute atoms can be accom-
modated on the template provided by the surface structure
of the solvent (substrate). These structural effects may lead
to surface configurations that differ in both adsorption and
energy from those predicted by a model that does not
account for interface reconstruction effects.

In our discussion of the so-called compensation effect in
Section C, we saw that crossovers can occur in the dependence

Fig. 19—(a) ECS of Pb-5 at. pct Bi-0.04 at. pct Ni equilibrated at 498 K,
displaying facets at {111}, {100}, {110}, and in the vicinity of {311}
orientations, together with curved surfaces;[79] and (b) nearly equilibrated
GB pore in Bi-saturated Cu at 1223 K, displaying facets at {111}, {100},
{110}, and {320} orientations, separated by microfaceted regions of the
same orientations.[78]
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of adsorption on temperature for surfaces of different ori-
entation, as shown in Figure 14 for an ideal solution alloy.
Figure 20 is a plot similar to Figure 14, but for the case of
the Ni-0.1 at. pct Au alloy. One conclusion that should be
noted from Figure 20 is that it does not display a common
temperature for which all surface orientations show approx-
imately equal adsorption. This makes the point that the
crossover phenomenon is not necessarily a general feature
of the anisotropy of segregation.

In Figure 21, we plot the surface energy ratios of several
pairs of surface orientations shown in Figure 20, as a func-
tion of temperature, in order to illustrate the interesting
finding that for any pair of orientations, the ratio of the
surface energies displays a minimum at the temperature
corresponding to the crossover in adsorption for those
two surface orientations. While we have not been able thus
far to demonstrate this result analytically, starting from an
appropriate form of Eq. [32], it appears to be quite general,
based on numerical evaluations of the type shown in Figure
21. Thus, although Figure 20 indicates an overall increase
in surface energy anisotropy with increasing segregation,
the behavior of any pair of orientations that undergo a
crossover in adsorption will be such as to show first a
decreasing anisotropy, and then an increasing anisotropy,
as temperature is decreased and the overall level segrega-
tion increases. These results show clearly that it is not
possible to make any generalizations on whether segrega-
tion will tend to increase or decrease the anisotropy of
interfacial energy.

Last, we display in Figure 22 the predicted effects of
segregation on the ECS of the Ni-Au alloy used in the
illustrations of this section. The equilibrium crystal shapes
shown in the figure have been computed by means of
Wulffman software[83] from the computed energies of the
segregated Ni-Au surfaces at various temperatures; the
shapes are viewed along a ,110. direction. If we consider
first the relative sizes of the {100} and {111} facets, we see
that the ratio g(100)/g(111) is high at the lowest temperature

(i.e., relatively small {100} facets), reaches a minimum
around 1250 K, and then increases again, although not very
significantly. If we consider the {110} facets, they are
absent at the lowest temperature, indicating that the energy
cusp at that orientation does not penetrate the inner enve-
lope of Wulff planes. However, these facets make their
appearance on the ECS between 1200 and 1250 K, increase
in size with increasing temperature up to 1300 K, and then
decrease in size, although they do not completely disappear
even at 1700 K. The facet shape shown at 1300 K in Figure
22 is quite similar to that observed on the ECS of a Pb-5 at.
pct Bi-0.08 at. pct Ni alloy (i.e., an alloy with double the Ni
concentration of that shown in Figure 19(a)) at 523 K, as
illustrated in Figure 23. The only important difference
between the ECS of this Pb alloy and the Ni-Au alloy at
1300 K is that the Pb alloy still displays some curved
surfaces; i.e., it is not completely faceted. These minor
differences are most likely due to neglect of excess and
surface entropy effects in the surface segregation model.
The preceding results indicate that it would be interesting

to extend the model to interphase boundaries, as this would
provide a means of investigating the equilibrium shape of
precipitates of one phase in another. Such an extension
would also allow the evaluation of segregation effects at
interphase boundaries that might allow tailoring of alloying
additions to produce precipitates of desirable shapes.

VI. SUMMARY AND CONCLUSIONS

Analytical models for probing the anisotropy of interfa-
cial segregation in the case of GBs and free surfaces have
been presented. The most general case described is a GB
segregation model, based on the regular solution approxi-
mation, which accounts for the five macroscopic param-
eters of the GB orientation space. It is shown that most
of the previous regular solution-type models of segregation
can be derived from the GB segregation model, by appro-
priate simplifications. In addition, the relationship between
the models and the Gibbsian thermodynamics of adsorption
is clarified.
The GB segregation model has been exercised to identify

general trends in GB segregation anisotropy. It is shown
that GB segregation is sensitive to all five of the macro-
scopic GB orientation parameters. In addition, the compo-
sition profile of the segregated species across a GB is
shown to depend on the crystallographic orientations of
the two planes terminating the GB. In the case of regular
solutions, where there is a finite interaction between the
atomic species across the GB, the composition on one side
of a GB terminated by a given crystallographic plane
depends on crystallographic orientation of the plane termi-
nating the other side of the GB. This model prediction is
supported by experimental evidence.
The significance of experimentally derived effective

enthalpies and entropies of segregation has been analyzed.
It is shown that these thermodynamic parameters lack phys-
ical significance for any realistic situation where some
atoms of the segregated species are located beyond the first
atomic plane parallel to the interface. It is therefore con-
cluded that the use of these parameters for interpretation of
data are best avoided.

Fig. 20—Adsorption vs temperature for seven different surface orienta-
tions calculated for a Ni-0.1 at. pct Au alloy.
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The so-called compensation effect has been analyzed. It
is shown that previous interpretations of this effect as aris-
ing from a linear relationship between the effective enthal-
pies and entropies of segregation are incorrect, as the effect
occurs even in ideal solutions where the effective entropy is
set to zero. The compensation effect in these ideal solutions
seems to arise from a complex interplay between the num-
bers of dangling bonds in each segregated plane, the num-
bers of planes that can contain excess solute, as well as the
number of atom sites per plane. In the case of regular
solutions, the compensation effect is not always present;
thus, its significance, if any, is unclear.

A comparison has been made between GB and surface
segregation. Although adsorption is generally expected to
be higher at surfaces than at GBs, it is possible for GB
adsorption to be higher than that at a surface if the intera-

tomic interaction contributions to the driving force for seg-
regation dominate other contributions.

The anisotropy of surface segregation and its effects on
the anisotropy of surface energy have been investigated, in
an effort to ascertain whether segregation tends to increase
or decrease interfacial energy anisotropy. The conclusion
reached is that it is not possible to generalize, as segregation
can either increase or decrease the interfacial energy aniso-
tropy. In addition, the following interesting finding has
emerged from the results: for any pair of orientations, the
ratio of the surface energies displays a minimum at the
temperature corresponding to the crossover in adsorption
for those two surface orientations. Finally, the effects of
surface segregation on equilibrium crystal shape have been
addressed. The general trends predicted by the model are
found to be in agreement with previous experimental results.

Fig. 21—Surface energy ratios of various pairs of orientations in Ni-0.1 at. pct Au, as a function of temperature: (a) g(211)/g(111), (b) g(210)/g(111), (c) g(110)/
g(111), and (d) g(321)/g(111).
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