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1. INTRODUCTION

In interpreting dispersion curves it is very rare for the theoretical dispersion curve of the model
assumed to agree exactly with experimental data. In order to achieve agreement with experimental
data, it is usually necessary to change the parameters of the model gradually. To render this
procedure effective and sufficiently fast, it is very valuable to know the partial derivatives of
the dispersion curve with respect to the parameters of the medium. The knowledge of the partial
derivatives extends the possibilities of the interpretation considerably, because it allows for the
changes of the dispersion curve, due to the changes of the parameters of the medium, to be
determined. Also the objective method of numerical inversion, presented in [3], is based on the
computation of the partial derivatives.

The study and applications of partial derivatives of dispersion curves has been the subject of
a number of papers. The partial derivatives of the phase velocity, the group velocity and its
partial derivatives are usually computed numerically [2, 3, 8, 9]. This procedure is simple, but
very time-consuming and also less accurate, especially as regards the partiai derivatives of the
group velocity [8]. Some of the disadvantages of numerical differentiation were removed success-
fully by applying energy integrals. Formulas have been derived for computing the group velocity
and the partial derivatives of the phase velocity without numerical differentiation [1, 6, 10, {1].

This paper describes another method of computing the group velocity and the partial derivat-
ives of the phase and group velocities without numerical differentiation for a plane Love-wave
problem. Thomson-Haskell matrices are used [4]. Only the phase velocity is computed numeric-
ally, the group velocity and all the derivatives are obtained by substituting into formulas.

2. FORMULAS FOR COMPUTING THE PARTIAL DERIVATIVES

Let us consider the propagation of Love waves in a medium, which is composed
of homogeneous and isotropic, parallel layers, located on a homogeneous and iso-
tropic half-space. Let ¢ represent the phase velocity, U the group velocity, w the
angular velocity, N the number of layers (the index N + 1 will denote the half-space).
The velocity of transverse waves, the density and the thickness of the m-th layer are
denoted by b, 2., and d,,, respectively.

The dispersion equation of Love waves can then formally be written as follows:

(1) f((”s bioor divoeii by, oy, dy- by iy Oy 41 c) =0,

where the phase velocity ¢ is again a function of the angular velocity w and of the
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parameters of the medium:
(2) c=clw, bl ondy .., byrrs Qvey) -
The concrete form of the function f can be expressed, e.g., by means of Thomson-

Haskell matrices. In particular, for a single-layered medium (N = 1) function f is
given by

(3) f = tan (wd,s[c) — ¢,b3s3/(e,bs;),

where s, = /(c¢?/b] — 1) and 55 = /(1 — ¢*/b3).

The phase velocity c is defined by Eq. (1) in implicit form and it cannot be expressed
analytically. However, if the value of the phase velocity is known, its derivatives
can be computed analytically using the theorem on implicit functions [5, 7]. Let us
first differentiate Eq. (1) with respect to some parameter of the medium, p. As
function f is a composite function,

(4) of [op + (of [éc) (dcjep) = 0.

From the latter equation follows the formula for computing the partial derivatives
of the phase velocity with respect to the parameter of the medium:

(5) acfcp = —(of [ep) : (&ffdc) .

If function f is expressed analytically, the partial derivatives of the phase velocity
can easily be computed by using Eq. (5).

By differentiating Eq. (1) one can also derive the formula for computing the group
velocity and its derivatives. From the formula for the group velocity U,

(6) U™l = {we™)/w
it follows that
(7 U=c:[l - (o)(dfiw)].

The partial derivatives of the phase velocity with respect to w in Eq (7N can be com-
puted analogously to the partial derivatives in Eq. (5). Let us differentiate Eq. (1)
with respect to w:

(8). (9) Y Yok g0 AT
cw Oc¢ dw ow dw/( dc

Formulas (9) and (7) make it possible to compute the group velocity without numer-
ical diffcrentiation. The partial derivatives of the group velocity with respect to some
parameter of the medium p can be derived from (7):

21N s = N2
(10) e (SR R

ép c* | dp
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In order to determine the last term in (10), we shall differentiate Eq. (8) with respect
to parameter p. The second derivative of ¢ with respect to @ and p is then

ay oo -[EL (Sl )L

Jdw dp - dwdp Cwdcdp éc 6; éct op/) dw / ée

The applicability of these formulas, as well as their use in solving the inverse problem,
were first tested on the case of the single-layered medium, where function f is defined
by (3).

In order to be able to use the formulas for an N-layered medium, we shall express
the function f and its derivatives by means of the Thomson-Haskell matrices. Let
us introduce the following notations:

(12) C pn = onbl. ra = J(3bE — 1) for ¢>b,,
rm=—iJ(1 = c*b) for ¢c<b,. Qn=(0c)drn.

The contribution of the m-th layer to the dispsrsion equation is defined by the matrix

(13) Y = ;{yml Vm2

m i
i Ym3 Vma

1

where you = Vma = 1, Yz = i) trnttan Qn, Vs = ipi,ry tan Q,,. Let us define

the matrices X, and Z,, by

4 X, =Y, X

(15  Zy

il
=~
z

N

It

The dispersion equation can then be expressed by [4]

(16) f = Xy3 + O+ 1PN 1N 1 %81 -

It is easy to compute the partial derivatives of f with respect to the parameters of the
half-spacz:
of a(b/3+xr:v+1)x

of
(17) =b§r+1"‘v+1 XNy - = On+1
00511 Obyty : Oby+y

N1

In computing the other partial derivatives, it is necessary to differentiate the matrices.
By the derivative of a matrix we shall understand a matrix which is created by dif-
ferentiating all the elements of the matrix. A rule analogous to that for the derivative
of a product of functions holds for the product of matrices. By differentiating (14)
with respect to ¢, we obtain

(18) oX, _ oY, 90X, _ '"xm_1+Ym___CX'"“‘_

dc dc éc o e
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Using the recurrent formulas (18), the partial derivative of Xy with respect to ¢
can be computed. The partial derivative of f with respzct to ¢ is obtained by substi-
tuting into

) 5 - ~

of O0Xy3 2 Eryay Xy
(19) — = + On+1by+y — Xy * Fysy .

ie de ce

It is easier to compute the partial derivatives of f with respect to the parameters
of the medium. Let us rewrite matrix X, as follows:

(20) xN = Zm+l . Ym . xm—l .

As the parameters of the medium of the m-th layer only occur in matrix Y,,, it will
hold that

(21), (22
0Xy AS of 0xy3 2 0%y
—~ = Zm+ '_—E'xm— s T = -—= @3 b r - 3
0P Y op,, Y op. b, N b

where p,, represents b, 0., or d,,. Thus, the partial decivative (22) is obtained from
Eq. (16) by substituting the elements of matrix Xy by the elements of matrix (21).

The above represents the description of the computation of all expressions which
are required to determine the partial derivatives of the phase velocity according to
Eq. (5). In computing the group velocity and its partial derivatives, we need certain
other derivatives of function f. The computation of the partial derivative of f with
respect to w is analogous to the computation of the partial derivative of function f
with respect to ¢. In computing the second partial derivatives of the function f it is
necessary to differentiate further Egs. (17) to (19). (21) and (22).

3. SHORT DESCRIPTION OF THE PROGRAMME

Using the formulas, given above, a programme for the MINSK 22 computer was written.
The programme consists of four principal parts. For the sake of simplicity, let us first describe
the computing of the partial derivatives of the phase velocity.

In the first part of the programme the phase velocity is computed numerically. In the second
part the partial derivative of matrix Xy with respect to ¢ is computed by using the recurrent for-
mulas (18). This part is formed by a cycle which runs through from the first to the N-th layer.
The elements of the matrix X, (the first column is sufficient) are gradually stored, as well as some
other expressions Jike r,, tan Q,,, etc. In the third part Eq. (19) is computed and the computation
of the partial derivatives of the phase velocity with respect to ¢y, 1 and by, ( is carried out with
the help of Egs. (17) and (5). The fourth part of the programmeis formed by a cycle which has the
reversed order, beginning with the N-th layer and ending in the first layer. For each layer Egs. (21),
(22) and (5) are computed, as well as the matrix Z, using the formula Z_ = Z_ .Y, . Matrix
Z, will be needed for the subsequent cycle to compute Eq. (21), but index m will be substituted
by m — 1. After the results have been printed out the whole computation is repeated for the next
period.
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In computing the partial derivatives of the group vclocity, apart from all the computations
of the partial derivatives of the phase velocity, it is also necessary to compute some other expres-
sions. The first part of the programme remains the same. Moreover, in the second part the fol-
lowing partial derivatives are computed:

(23) EXf00, 91X, joct, 92X Jicéw .

The partial derivatives of matrix X,, with respect to ¢ and the first expression in (23) are stored.
In the third part also the following expressions are computed:

(24) eficw, 8% flact, & flécéw
/ { ]

as well as formulas (9) and (7) and the partial derivatives of the group velocity with respect to
the parameters of the half-space. In the fourth part of the programme also the partial derivative-
of (21) with respect to ¢ and w, expressions (11), (10) and the partial derivatives of matrix Z
with respect to ¢ and @ are computed.

Table 1. Parameters of the model of the Canadian shield CANSD. The quantities Z, b;, ¢; and d;
represent the number of the layer, the velocity of the transverse waves, the density and the
thickness of the i-th layer, respectively.

1 i !
i i b, * 2 | d;

H t
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! 512 ; 3-76 ; @w

Table 2a. Dispersion curves for the fundamental mode of Love waves in the CANSD model.
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The properties of the programme were tested using computations for the model of the Canadian
shield CANSD {[2]. The parameters of the model are given in Tab. 1, an example of the computa-
tions are in Tab. 2. The following numerical data in this section concern the programme alterna-
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Table 2b, Computation for the fundamentat mode of Love waves in the CANSD model. Partial
derivatives for the individual layers are printed under onc another.

T ede, { ocf e, ' écjéd, oujes, | outeo, | eufed,
20 | 025048 | —005192 | —002455 0:39610 ll —0-03708 | —0-01867
040458 | —003721 | —001807 056217 |  0-01013 | —000798
040666 0-03642 | —00I113 029970 | 006946 |  0-00043
| 013636 | 004255 ; 000000 ; —0-17980 | —0-03776 | —000002
| 000022 | 000005 { 000000 ; —000205 | —000046 | 000000 |
j 000000 : 000000 ‘ 0-00000 || 0-00000 ; 000000 «  0-00000 |
| 000000 000000 [ 0:00000 |  0-00000 ; 000000 |  0:00000
| 000000 |  0-00000 ! ©0:00000 |  0-00000 | ‘
| f ! ‘ i |
40 009234 | —003562 | —001633 = 026627 | —008695 | —0-04030 |
016802 | —004359 | —0O0I415 | 047105 | —009121 | —003377 !
. 026171 | —002070 | —0:01100 i 0-64765 | 001359 | —0-02506
048998 | 007374 | 000037 ; 037427 | 014947 | —000050
010746 | 000813 | 000000 | -—0-28059 | —0-00354 |  0-00006
| 001742 | 000136 | —000001 | —0-10107 | —0-00573 |  0-00011
| 000147 | 000027 ' 000000 | —001280 | —000223 |  0:00002
' 000011 | 0-00003 | —000132 | —0:00036 |
‘ : I

tive which was written for the MINSK 22 computer. If a different computer or programme is
used some of the data below may differ slightly.

One of the most important advantages of the programme described is the large saving of
machine time. For the sake of comparison, let it be assumed that the partial derivatives of the
dispersion curves are to be computed numerically and that the computation of a single difference
would be considered adequate. Let it also be assumed that each computation of the phase velo-
city would require, e.g., 15 iterations. It then appears tha t for the CANSD model the computation
of all 23 partial derivatives of the phase velocity by means of the programme mentioned, using
a MINSK 22 computer, would be at least 15 times faster and the computing of all partial derivat-
ives of the group velocity at least 20 times faster then computations made by numerical differentia-
tion. At the same time one may expect that the computations with the help of the said programme
will be more accurate. For example, the partial derivatives of the phase and group velocities with
respect to b, (velocity of transverse waves in the first layer) in Tab. 2 have been computed with
an error smaller than 1 x 10™%, which is a higher accuracy than with numerical differentiation [8].
In order to achieve this accuracy, it would be sufficient to compute the phase velocity with an
accuracy of only 1 X 1073 km/s. The accuracy of the computations, however, decreases con-
siderably if the phase velocity approaches the velocity of the transverse waves in any of the layers.
1f the phase velocity is equal to the velocity of the transverse waves in any of the layers, some of the
expressions become indefinite because the denominators are equal to zero. For example for T ==
== 14.2 s the phase velocity is ¢ = 3.84887 km/s, which is close to velocity b, == 3.85 km/s and
in computing the expressions

(25) 2y3,/ec, 52}'32/3”2 . @yyp/eby, 32}’32/30 by
three valid decimal places are lost. This disadvantage could be removed by using Taylor’s expan-

sions for indefinite expresions (this was not carried out in the programme).
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In computing dispersion curves, matrices are frequently used, which are created by multiplying
all the elements of matrix (13) by cos Q. On the basis of these matrices a programme was written
for computing the derivatives of dispersion curves in the Algol language for the Elliott 503 com-
puter. The formulas in this programme required special modifications for short periods. The
author is of the opinion that it is more suitable to use formulas (13) for the considered problem,
as they make it possible to obtain more accurate results,

4. SOME APPLICATIONS

The programme, described above, was used to investigate the partial derivatives
of dispersion curves for the fundamental mode of Love waves on a model of the
Canadian shield CANSD (Tab. 1 and 2). The effect of the Earth’s curvature on the
dispersion curves was not considered. Figures 1 to 3 show the partial derivatives of the

15

o @
55

0 20 40 s0 30 " T{sec)
Fig. 1. Partial derivatives of the phase velocity of Love waves with respect to the velocities of

transverse waves for the CANSD model. The numbers with the curves represent the numbers
of the layers in Tab. 1.

dc,
4
008

20 40 50 30 T(sec)

Fig. 2. Partial derivatives of the phase velocity with respect to the densities.
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phase velocity with respect to the transverse-wave velocities, the densities and the
thicknesses of the individual layers and of the half-space. These curves agree with the
curves in [2]. The appropriate partial derivatives of the group velocity with respect
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Fig. 3. Partial derivatives of the phase velocity with respect to the thicknesses of the layers.
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Fig. 4. Partial derivatives of the group velocity with respect to the velocities of transverse waves.

to the parameters of the medium are shown in Figs. 4 to 6. The numbers with the
curves in Figs. 1 to 6 represent the numbers of the layers going down, and number
8 represents the half-space. The velocities are given in km/s, the densities in gfem?,
and the thicknesses and depths in km. The partial derivatives, which have not been
included in some of the figures, were too small in absolute value.

The analysis of the figures and their mutual comparison yields a number of con-
clusions concerning the properties of the partial derivatives of the dispersion curves.
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The partial derivatives of the phase velocity with respect to the velocities of the trans-
verse waves (Fig. 1) are only positive, with the exception of curves 1 and 8 they have
a similar shape, and they display a single maximum. The different character of curves
| and 8 also in the other figures is a result of the exceptional location of the first
layer (it forms the boundary with the surface of the medium) and of the half-space.
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Fig. 5. Partial derivatives of the group velocity with respect to the densities.
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Fig. 6. Partial derivatives of the group velocity with respect to the thicknesses of the layers.

The partial derivatives of the phase velocity with respect to the densities (Fig. 2)
have a more complicated character, the explanation of which is given in [2]. The
partial derivatives of the group velocity with respect to the velocities of the transverse
waves (Fig. 4), with the exception of curves 1 and 8, arc negative for short periods
and positive for long periods. In the negative sections of these curves there is an inter-
esting phenomenon, i.e. the increase in the velocity of the transverse waves causes
a decrease in the group velocity. The partial derivatives ot the group velocity with
respect to the densities (Fig. 3) have a very complicated character. It should be
pointed out that the graphs in Figs. 3 and 6 represent partial derivatives with respect
to the thicknesses of the layers, and not partial derivatives with respect to the depths
of the interfaces. The comparison of Figs. 1 to 3 and 4 to 6 indicates that the partial
derivatives of the phase velocity with respect to the parameters of the medium are
smaller in absolute value than the corresponding partial derivatives of the group
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velocity. This means that the group velocities are more sensitive to changes of the
parameters of the medium than the phase velocities. The regions of the extremes on
curves in Figs. 4 to 6 are connected with the points of inflection on curves in Figs. 1
to 3. The partial derivative of the group velocity has its smallest (or largest) values
for periods in the neighbourhood of the point of inflection on the ascending (or
descending) part of the curve of the partial derivative of the phase velocity, respec-
tively. For the interpretation of the dispersion data it is very important that the partial
derivatives of the phase and group velocity with respect to the velocities of the trans-
verse waves (Figs. 1 and 4) are con-
siderably larger than the partial de-
rivatives with respect to the densities
(Figs. 2 and 5).
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Fig. 8. Partial derivatives of the phase velocity with
respect to the density for various depths of the

oazL layers.
Fig. 7. Partial derivatives of the phase

001 velocity with respect to the velocity of
transversc waves for various depths of
the layers. The numbers with the curves
denote the depth (in km) of the centre

0 . of the layer, which is 1 km thick.

0 20 40 60  T(sec)

In order to be able to evaluate the effect of the depth of a layer on the partial
derivatives of the dispersion curves, layers 1 km in thickness were chosen in the
CANSD model, the centres of which were at depths of 10, 20, ..., 60 km. The partial
derivatives of dispersion curves with respect to the parameters of these layers are
shown in Figs. 7 to 10. The numbers with the curves indicate the depth of the centre
of the layer. For example, curve 10 in Fig. 7 illustrates the partial derivative of the
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phase velocity with respect to the velocity of the transverse waves in a layer which
is between 9-5 and 10-5 km deep. The properties of the partial derivatives of dispersion
curves, described above, can also be observed in these figures. It also follows from
Figs. 7 and 9 that the changes in the velocity of the transverse waves in the surface
layers have considerable effect on the dispersion curve over a wide range of periods.

ur 0 40
[ 20
ay 0
ab[ Go04r 50
I S0
cost
!
'
004t
03
i
cozt " . .
; Fig. 10. Partial derivatives of the group
velocity with respect to the density for
various depths of the layers.
co1t
i
! Fig. 9. Partial derivatives of the group
i velocity with respect to the velocity of the
o transverse waves for various depths of
| the layers.
1
|
|
o

For long periods this effect is roughly the same as the effect of layers of the same
thickness at greater depth. This property must be taken into account in solving the
inverse problem and in evaluating the accuracy of the velocity section, obtained
by interpreting the dispersion data. The magnitude of the maxima in Fig. 7 and the
corresponding periods, are given in Tab. 3. In the first column of the latter table the
depths of the centres of the I-km layers, in the second column the periods of the
maxima and in the third the maximum values of the partial derivative of the phase
velocity with respect to the velocities of the transverse waves are given. Curves 40, 50
and 60 in Fig. 8 and 10 have a slightly different shape than the first three curves,
because at a depth of 352 km a high-velocity layer begins (Tab. 1). The partial deriv-
atives of the phase velocity with respect to the thickness of the layer has not been
plotted, because for the layer at the depth of 10 km they are the same as curve 2
in Fig. 3, for layers at 20 and 30 km the same as curve 3, and for the other three layers
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the same as curve 4. Similarly, the partial derivatives of the group velocity with respect
to the thickness of the layer agree with the corresponding curves in Fig. 6.

If the curves in Fig. 7 are computed for a larger number of various depths, Figs. 11
and 12 can be plotted. In the latter figures the horizontal axis is the depth of the centre
of the l-km layer, the vertical is the period. The curves in Fig. [l join the points,

T(sec)[

w

L
l

ot
{

Fig. 11. Isolines of the partial derivative
of the phasc velocity with respect to the
velocity of the transverse waves ina 1-km
layer. The numbers with the curves denote
the magnitude of the partial derivative
multiplied by 1000.

50 Hikm)

T(sec)
04M u6M JosM
&0+
s0k-
i
L0t Fig. 12. Periods in which the partial deriva-
! tive of the phase velccity with respect to the
ZU«i' velocity of the transverse waves achieves max-
; = imum and multiples of the maximum.
o 50 100 150 Hikm)

in which the partial derivatives of the phase velocity with respect to the velocity of the
transverse waves have the same value. The numbers with the curves give the magnitude
of the partial derivative multiplied by 1000. For example on curve 20 the partial
derivatives have a value of 0-02. Figure 11 thus illustrates the partial derivative
of the phase velocity with respect to the velocity of transverse waves as a fuaction
of two variables, the depth of the layer H and the period T. Figure 12 shows the
periods, at which the partial derivative of the phase velocity with respect to the
velocities of the transverse waves achieves, for a given depth H, maximum (curve M),
eight teaths six tenths and four tenths of the maximum value ('curvcs 08 M, 06 M,
04 M). For example, for the layer at a depth of 50 km the said partial derivative
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achieves its maximum value, equal to 0-00968, at a pzriod of 36:9 s (Fig. 7 and Tab. 3),
and values of 0'8 x 0:00963 = 0-00774 at periods of 28 and 52 s.

Finally, an attempt will be made at clarifying the occurrence of negative values on the curves
in Fig. 4. Let us transcribe Eq. (7) to

(26) = c: [1 + (T/o) (8c/oT.

Table 3. Maximum values of partial derivatives in Fig. 7.

T { I
i

H (km) . T (s) ’ dcf2b x
i !
| B ! ;
! ! s
; 10 78 | 005028 |
o200 197 | 002898
300 262 | 001842
4 330 | 001331 |
50 . 369 | 000968
60 40-8 b0:00749 !
| s i |
U
42
2/
40
38
35
20 30 40 Tisec) 20 30 40 T(sec)
Fig. 13a. Curves of the phase velocity. Curve 1 is Fig. 13b. Curves of the group velocity.

for model CANSD, curve 2 for the case when
b4 has been increased by 0.1 kmy/s.

From Eq. (26) follows the well-known fact that small values of the group velocity correspond
to “'steep” sections of the phase-velocity curve, i.e. to large partial derivatives of ¢ with respect to T.
Curve 1 in Fig. 13a illustrates the phase velocity for model CANSD. If the velocity by in the
CANSD model is increased by 0.1 km/s and the other parameters are left unchanged, we obtain
curve 2. The appropriate group velocities are in Fig. 13b. In increasing velocity b, the phase
velocity was increased, but for short periods also the slope of the phase-velocity curve increased.
It appears that for short periods this increase in slope in (26) overrides the increase in phase
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velocity, so that the group velocity is then decreased (Fig. 13b). The above yields one more
conclusion. Let us denote by Tj the period in which the j-th curve in Fig. 1 achieves maximum.
If the velocity of the transverse waves is slightly increased in the j-th layer, the phase velocity
will increase for period T;, but the slope of the curve will remain unchanged. According to (26)
the group velocity for period 7 is increased, i.e. the j-th curve in Fig. 4 must achieve positive
values for period 7. The period in which the j-th curve in Fig. 4 achicves zero value must always,
therefore, be smaller than T;.

5. CONCLUSION

In this paper formulas have been derived, which make it possible to compute
the group velocity and the partial derivatives of the phase and group velocitics for
Love waves in a layered medium without numerical differentiation. The computa-
tions on the basis of these formulas are multiply quicker than numerical differentia-
tion, as well as more accurate, especially in computing the partial derivatives of the
group velocity. The partial derivatives of dispersion curves of Love waves for the
model of the Canadian shield CANSD have been studied in greater detail, and this has
also yielded certain more general properties of the partial derivatives of dispersion
curves.

The author wishes to thank Dr. K. P& for a number of valuable comments, which helped
him in writing this paper.

Reccived 17. 4. 1969 Reviewer: J. Vanék
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Zusammenfassung

DIE PARTIELLE ABLEITUNGEN DER DISPERSIONSKURVEN
DER LOVE-WELLEN IM GESCHICHTETEN MEDIUM

OvLbpkict NovoTny

Geophysikalisches Institut der Karlsuniversitat, Praha

Es werden Formeln abgsleitet, die die Gruppengsschwindigkeit und partieile Ableitungen
der Phasen- und Gruppengsschwindigkeit der Love-Wellen im geschichteten Medium zu be-
rechnen ermoglichen, und zwar ohne Verwendung der numerischen Ableitungen. Die Berechnun-
gen mit Hilfe dieser Formeln sind vielfach schneller als bei Verwendung der numerischen Metho-
den; sie sind sogar genauer, besonders bet der Berechnung der partiellen Ableitungen der Grup-
pengeschwindigkeit. Ausfihrlich werden die partiellen Ableitungen der Dispersionskurven der
Love-Wellen flir das Model des Kanadischen-Schilds studiert.
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