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1. I N T R O D U C T I O N  

In interpreting dispersion curves it is very rare for the theoretical dispersion curve of the model 
assumed to agree exactly with experimental data. In order to achieve agreement with experimental 
data, it is usually necessary to change the parameters of the model gradually. To render this 
procedure effective and sufficiently fast, it is very valuable to know the partial derivatives of 
the dispersion curve with respect to the parameters of the medium. The knowledge of the partial 
derivatives extends the possibilities of the interpretation considerably, because it allows for the 
changes of the dispersion curve, due to the changes of the parameters of the medium, to be 
determined. Also the objective method of numerical inversion, presented in [3], is based on the 
computation of the partial derivatives. 

The study and applications of partial derivatives of dispersion curves has been the subject of 
a number of papers. The partial derivatives of the phase velocity, the group velocity and its 
partial derivatives are usually computed numerically [2, 3, 8, 9]. This procedure is simple, but 
very time--consuming and also less accurate, especially as regards the partial derivatives of the 
group velocity [8]. Some of the disadvantages of numerical differentiation were removed success- 
fully by applying energy integrals. Formulas have been derived for computing the group velocity 
and the partial derivatives of the phase velocity without numerical differentiation [l, 6, 10, 11]. 

This paper describes another method of computing the group velocity and the partial derivat- 
ives of the phase and group velocities without numerical differentiation for a plane Love-wave 
problem. Thomson-Haskell matrices are used [4]. Only the phase velocity is computed numeric- 
ally, the group velocity and all {he derivatives are obtained by substituting into forrnulas. 

2. F O R M U L A S  FOR C O M P U T I N G  THE PARTIAL DERIVATIVES 

Le t  us cons ide r  the p r o p a g a t i o n  o f  L o v e  waves  in a m e d i u m ,  which  is c o m p o s e d  

o f  h o m o g e n e o u s  a n d  i so t rop ic ,  pa ra l l e l  layers,  loca ted  on a h o m o g e n e o u s  and  iso- 

t r o p i c  ha l f -space .  Let  c r ep re sen t  the  phase  ve loc i ty ,  U the g r o u p  ve loc i ty ,  co the 

a n g u l a r  ve loci ty ,  N the m u n b e r  o f  layers  ( the index  N + 1 will d e n o t e  t he  hal f -space) .  

T h e  ve loc i ty  o f  t r ansverse  waves,  the  dens i ty  and  the th ickness  o f  the  m - t h  layer  are  

d e n o t e d  by b,., o,., and  d,,, r espec t ive ly .  

T h e  d i spe r s ion  e q u a t i o n  o f  Love  waves  can then  f o r m a l l y  be wr i t t en  as fo l lows:  

(1) f ( e ) ,  bl .  O,, dt . . . . .  b.v, o~N, d~. b.,l+ l, Q,v ~ l, c) = O, 

w h e r e  the phase  veloci ty  c is aga in  a func t i on  o f  the angu l a r  ve loc i ty  (o and  o f  t i le 
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parameters of the medium: 

(2) c = c(~,, b,, o ,, d, . . . . .  b,, + t, ~:~. , ) .  

The concrete form of the function f can be expressed, e.g., by means of Thomson- 
Haskell matrices. In particular, for a single-layered medium (N = 1) function f is 
given by 

(3) f = tan (codts , /c)  - ~oab2s'2/(olb2,h), 

/ , 2  2 t t 9 I " 
= = - c - / b ; ) .  ,vllerc 5, V ( ~  /b ,  - ~) a n a  ~ , : ( t  

The phase velocity c is defined by Eq. (1) in implicit form and it cannot be expressed 
analytically. However, if the value of the phase velocity is known, its derivatives 
can be computed analytically using the theorem on implicit functions [5, 7]. Let us 
first differentiate Eq. (l) with respect to some parameter of the medium, p. As 
function f is a composite function, 

(4) a f l a p  + (a f lOe)(ac/ap)  = o . 

From the latter equation follows the formula for computing the partial derivatives 
of the phase velocity with respect to the parameter of the medium: 

(5) ac/Op = - ( , ? f / a p )  : (a f /ac)  . 

If function f is expressed analytically, the partial derivatives of the phase velocity 
can easily be computed by using Eq. (5). 

By differentiating Eq. (1) one can also derive the formula for computing the group 
velocity and its derivatives. From the formula for the group velocity U, 

(6) u-'  = a(~c-')la~ 
it follows that 

(7) o' = c :  [ t  - ( ~ o / c ) ( a . ! a ~ , ) ] .  

The partial derivatives of the phase velocity with respect to a) in Eq. (7) can.be com- 
puted analogously to the partial derivatives in Eq. (5). Let us differentiate Eq. (1) 
with respect to co: 

(8),(9) Of  + g f  dc  _ 0 = . - - =  . 

&o ac aao &o & o / &  

Formulas (9) and (7) make it possible to compute the group velocity without numer- 
ical differentiation. The partial derivatives of the group velocity with respect to some 
parameter of the medium p can be derived from (7): 

@ c-" Lap - ~ ~ ,  + co a~a~;_l  
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In order to determine the last term in (10), we shall differentiate Eq. (8) with respect 
to parameter p. The second derivative of c with respect to co and p is then 

. . . .  F + + ( + ,_./<,i 
(11) 

The applicability of these formulas, as well as their use in solving the inverse problem, 
were first tested on the case of the single-layered medium, where function f is defined 

by (3). 
In order to be able to use the formulas for an N-layered medium, we shall express 

the function f and its derivatives by means of the Thomson-Haskell  matrices. Let 

us introduce the following notations: 

,< , / .2  1) for c > bm 02) ~, = o . . , b ~ .  , . , .  = . , t c - l o ~  - , 

, .  = - i  , / (1  - c'lb?. ) for c < b " .  Q,, = (cole) d•r" . 

The contribution of the m-th layer to the dispersion equation is defined by the matrix 

(13) y,,, = l J',.,t Y"2 . 
1.7,,3 Y,.4 

where Y,,t = Y,.4 = 1, Y,,,2 = iP,7, ir,~* tan Q.,, y,~3 = ip=r= tan Q=. Let us define 

the matrices X= and Z"  by 

(14)  X i  = Y i  , X. .  = I x"t  x~,2 = Y=" Y , . - t  "-" Yt = Y"" X , - - 1  , 
I Xm3 Xm4 , 

(15) Z ,  = YN, Z ~ , = ! z "  : " 2 1 =  Y N . Y , ~ - , - . . Y , , .  
I Z=3 z,.41 

The dispersion equation can then be expressed by [4] 

(16) f = x,v3 + Q N + i b ~ + t r N ~ i X N t .  

It  is easy to compute the partial derivatives o f f  with respect to the parameters  of the 

half-space: 

O ( b N + i r , ~ + , )  Of  ~ 2 (17) Of = b , ~ + i r u + i x . , .  - O s + ,  x . ,  . 
0o~,~.+ i gbN+ i ODN+ i 

In computing the other partial derivatives, it is necessary to differentiate the matrices. 
By the derivative of  a matrix we shall understand a matrix which is created by dif- 
feremiafing all the elements of the matrix. A rule analogous to that for the derivative 
of  a product of functions holds for the product of matrices. By differentiating (14) 

with respect to c, we obtain 

(18) 0 X  l _ 0 Y ,  0 X . ,  _ EY., X " _  1 + y , .  OX, ._ l  

gc Oc c~c ~?c i)c 
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Using the recurrent formulas (18), the partial derivative of X N with respect to c 
can be computed. The partial derivative o f f  with respect to c is obtained by substi- 
tuting into 

(?,r.~+ ~ ?;Xv. ~'~ . 
(19) Ofec = ~xV3oc + o.,~+,b~e+, \ ec x:vl + r,~+, ec / 

It is easier to compute the partial derivatives of f with respect to the parameters 
of the medium. Let us rewrite matrix X~ as follows: 

(20) X.r = Z,n + 1 �9 Ym- X , , _ l  �9 

As the parameters of the medium of the m-th layer only occur in matrix Y,,, it will 
hold that 

(21), (22) 

Of ?x.,. 3 2 ax~'l OX,,r = Z,,+ 1 aY__.2_ = X,,_ t _ + ON+lb~+lr,v+l , 
Op,, Op,, Op= ~p,. vp,, 

where p,, represents b,,, 0,1, or dr.. Thus, the partial derivative (22) is obtained from 
Eq. (16) by substituting the elements of matrix X u by the elements of matrix (2l). 

The above represents the description of the computation of all expressions which 
are required to determine the partial derivatives of the phase velocity according to 
Eq. (5). In computing the group velocity and its partial derivatives, we need certain 
other derivatives of function f .  The computation of the partial derivative o f f  with 
respect to co is analogous to the computation of the partial derivative of funct ionf  
with respect to c. In computing the second partial derivatives of the function f it is 
necessary to differentiate further Eqs. (17)to (19), (21) and (22). 

3. SHORT DESCRIPTION OF THE P R O G R A M M E  

Using the formulas, given above, a programme for the MINSK 22 computer was written. 
The programme consists of four principal parts. For the sake of simplicity, let us first describe 
the computing of the partial derivatives of the phase velocity. 

In the first part of the programme the phase velocity is computed numerically. In the second 
part the partial derivative of matrix X,  t with respect to c is computed by using the recurrent for- 
mulas (18). This part is formed by a cycle which runs through from the first to the N-th layer. 
The elements of the matrix X m (the first column is sufficient) are gradually stored, as well as some 
other expressions like r m tan Qm, etc. In the third part Eq. (19) is computed and the computation 
of the partial derivatives of the phase velocity with respect to ~o,~+ t and b,~,+ t is carried out with 
the help of Eqs. (17) and (5). The fourth part of the programme is formed by a cycle which has the 
reversed order, beginning with the N-th layer and ending in the first layer. For each layer Eqs. (21), 
(221) and (5) are computed, as well as tile matrix Z,,  using the formula Z,, = Z,,,+ t �9 Y,,,' Matrix 
Z,n will be needed for the subsequent cycle to compute Eq. (21), but index m will be substituted 
by m - -  1. After the results have been printed out the whole computation is repeated for the next 
period. 
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In computing the partial derivatives of the group velocity, apart from all the computat ions  
of the partial derivatives of the phase velocity, it is also nec~sary to compute some other  expres- 
sions. The first part of the programme remains the same. Moreover, in the second part the fol- 
lowing partial derivatives are computed: 

(23.) ~Xm/Oe9 O- mlCC- o - X m / v c 3 m .  

The partial derivatives of matrix X m with respect to c and the first expression in (23) are stored. 
In the third part also the following expressions are computed: 

{1241 ~f/'~co, OZf/Oc 2 , c -J /ac  . . . .  Oe~ , 

as well as formulas (9) and (7) and the partial derivatives of the group velocity wi th  respect to 
the parameters of the half-space. In the fourth part of the programme also the partial  derivat ive 
of (21) with respect to c and e~, expressions (11), (10) and the partial derivatives of  matrix Z,,, 
with respect to c and o) are computed. 

Table 1. Parameters of the model of the Canadian shield CANSD. The quantities i, bi, ~o i and d i 
represent the number of the layer, the velocity of the transverse waves, the density and the 

thickness of the i-th layer, resp~xxively. 

bi Qi 

3-47 2.70 
3.64 2-80 
3-85 2.85 
4.72 3-30 
4-54 3.44 
4.51 
4-76 
5.12 

di 

6.0 
10.5 
18-7 
80.0 

I00.0 
3"53 100.0 
3.60 80.0 
3-76 

Table 2a. Dispersion curves for the fundamental mode of Love waves in the C A N S D  model. 

T (s) 

10.0 
20-0 
30.0 
40.0 
50-0 

c (kin/s) 

i 

3-74107 
4.00710 
4.25059 
4.40209 
4.47858 

U (kin/s) 

3.51010 
3.52732 
3.72166 
4-01515 
4.22071 

The properties of the programme were tested using computations for the model o f  the Canadian 
shield CANSD [2]. The parameters of the model are given in Tab. 1, an example of  the computa- 
tions are in Tab. 2. The following numerical data in this section concern the programme alterna- 
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Table 2b. Computation for the fundamental mode of Love waves in the CANSD modeI. Partial 
derivatives for the individual layers are printed under one another. 

i T 

20 

40 

~c/ab i Oc/ae~ ac/O,t~ OUl'c~b i OU,/~el OU/Od~ 
L 

0.25048 
0.40458 
0.40666 
0.13636 
0-00022 
0 00000 
0.00000 
0.00000 

0.09234 
0.16802 
0.26171 
0,48998 
0-10746 
0-01742 
0.00147 
0.00011 

--0.05192 
--0.03721 

0.03642 
0-04255 
0.00005 
0.00000 
0,00000 
0.00000 

--0.03562 
--0.04359 
--0.02070 

0.07374 
0-00813 
0.00136 
000027 
0.00003 

- -  0.02455 
--0.01807 
- -0  01113 

0.00000 
0.00000 
0.00000 
0.00000 

--0-01633 
--0.01415 
--0"01100 

000037 
0-00000 

--000001 
0.00000 

0"39610 
0"56217 
0"29970 

- -  0"17980 
--0'00205 

000000 
0-00000 
000000 

026627 
0.47105 
0-64765 
0.37427 

--0.28059 
--0.10107 
--0.01280 
- -  0-00132 

--0-03708 
0"01013 
006946 

--  0"03776 
--  000046 

0"00000 
0.00O00 
0.00000 

--0"08695 
--0"09121 

O01359 
0"14947 

--000354 
--0'00573 
--0-00223 
--0-00036 

--0.01867 
--000798 

0-00043 
- -0  00002 

0 00000 
0.00000 
0-00000 

--0.04030 
- -003377 
--0.02506 
- - 0  00050 

0-00006 
0-00011 
0-00002 

rive which was written for the MINSK 22 computer. If a different computer or programme is 
used some of the data below may differ slightly. 

One of the most important advantages of the programme described is the large saving of 
machine time. For the sake of comparison, let it be assumed that the partial derivatives of the 
dispersion curves are to be computed numerically and that the computation of a single difference 
would be considered adequate. Let it also be assumed that each computation of the phase velo- 
city would require, e.g., 15 iterations. It then appears that  for the CANSD model the computation 
of all 23 partial derivatives of the phase velocity by means of the programme mentioned, using 
a MINSK 22 computer, would be at least 15 times faster and the computing of all partial derivat- 
ives of the group velocity at least 20 times faster then computations made by numerical differentia- 
tion. At the same time one may expect that the computations with the help of the said programme 
will be more accurate. For example, the partial derivatives ~f the phase and group velocities with 
respect to b t (velocity of transverse waves in the first layer) in Tab. 2 have been computed with 
an error smaller than 1 X 10 -4 ,  which is a higher accuracy than with numerical differentiation [8]. 
In order to achieve this accuracy, it would be sufficient to compute the phase velocity with an 
accuracy' of only' 1 :< 10-5 km/s. The accuracy of the computations, however, decreases con- 
siderably if the phase velocity approaches the velocity of the transverse waves in any of the layers. 
i f  the phase velocity is equal to the velocity of the transverse waves in any of the layers, some of the 
expressions become indefinite because the denominators are equal to zero. For example for T = 
=~ 14.2 s the phase velocity is c = 3.84887 kin/s, which is close to velocity b 3 == 3.85 km/s and 
Jn computing the expressions 

(25) 8Y32/~c , O2y32/Oe2 , cqY321/c, b3 , 02y32/8c ~b 3 

three valid decimal places are lost. This disadvantage could be removed by using Taylor's expan- 
sions for indefinite expresions (this was not carried out in the programme). 
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In computing dispersion curves, matrices are frequently used, which are created by multiplying 
all the elements of matrix (13) by cos Qm. On the basis of these matrices a programme was written 
for computing the derivatives of dispersion curves in the Algol language for the Elliott 503 com- 
puter. The formulas in this programme required special modifications for short periods. The 
author is of the opinion that it is more suitable to use formulas (13) for the considered problem, 
as they make it possible to obtain more accurate results. 

4. SOME APPLICATIONS 

The programme,  described above, was used to investigate the partial derivatives 
of  dispersion curves for the fundamental  mode  of  Love waves on a model  of  the 
Canadian shield C A N S D  (Tab. 1 and 2). The effect of  the Earth 's  curvature  on the 

dispersion curves was not considered. Figures 1 to 3 show the partial derivatives o f  the 

i , 
f 

1 6 

0 20 40 60 80 T(rgec) 

Fig. 1. Partial derivatives of the phase velocity of Love waves with respect to the velocities of 
transverse waves for the CANSD model. The numbers with the curves represent the numbers 

of the layers in Tab. 1. 

0C I 
~t 

G I ~ I ~ .... r(secl 

-~4]- 
k 

L 

Fig. 2. Partial derivatives of the phase velocity with respect to the densities. 
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phase velocity with respect to ttie transverse-wave velocities, the densities and the 
thicknesses of the individual layers and of the half-space. These curves agree with the 
curves in [2]. The appropriate partial derivatives of the group velocity with respect 

4 
" - ~  20 ~ " SO " dO -~ r(sec) 

-aOq 

Fig. 3, Partial  derivatives of  the phase velocity with respect  to the thicknesses of  the layers. 

d o~ 1 
o6! s 

0 <see)  
~ - 7 

-a2~ 

L 
Fig. 4. Partial  derivatives of  the group  velocity with respect  to the velocities of  t ransverse  waves. 

to the parameters of the medium are shown in Figs. 4 to 6. The numbers with the 
curves in Figs. 1 to 6 represent the numbers of the layers going down, and number 
8 represents the half-space. The velocities are given in kin/s, the densities in g/cm 3, 
and the thicknesses and depths in kin. The partial derivatives, which have not been 
included in some of the figures, were too small in absolute value. 

The analysis of the figures and their mutual comparison yields a number of con- 
clusions concerning the properties of the partial derivatives of the dispersion curves. 
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The partial derivatives of tile phase velocity with respect to the velocities of  the trans- 
verse waves (Fig. l) are only positive, with the exception of curves 1 and 8 they have 
a similar shape, and they display a single maximum. The different character of curves 
t and 8 also in the other figures is a result of the exceptional location of  the first 
layer (it forms the boundary with the surface of the medium) and of the half-space. 

016) 4 

-0.1Ct 

Fig. 5. Partial derivatives of the group velocity with respect to the densities. 

o'~ 5o e o r (sec) 

-3021 
-QO4L 

Fig. 6. Partial derivatives of the group velocity with respect to the thicknesses of the layers. 

The partial derivatives of the phase velocity with respect to the densities (Fig. 2) 
have a more complicated character, the explanation of which is given in [2]. The 
partial derivatives of the group velocity with respect to the velocities of the transverse 
waves (Fig. 4), with the exception of curves 1 and 8, are negative for short periods 
and positive for long periods. In the negative sections of these curves there is an inter- 
esting phenomenon, i.e. the increase in the velocity of the transverse waves causes 
a decrease in the group velocity. The partial derivatives of the group velocity with 
respect to the densities (Fig. 5) have a very complicated character. It should be 
pointed out that the graphs in Figs. 3 and 6 represent partial derivatives with respect 
to the thicknesses of the layers, and not partial derivatives with respect to the depths 
of the interfaces. The comparison of Figs. 1 to 3 and 4 to 6 indicates that the partial 
derivatives of the phase velocity with respect to the parameters of the medium are 
smaller in absolute value than the corresponding partial derivatives of the group 
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velocity. This means that the group velocities are more sensitive to changes of  the 

parameters of  the medium than the phase velocities. The regions of  the extremes on 
curves in Figs. 4 to 6 are connected with the points of  inflection on curves in Figs. 1 

to 3. The partia.1 derivative of  the group velocity has its smallest (or largest) values 
for periods in the neighbourhood of  the point of  inflection on the ascending (or 
descending) part of  the curve of the partial derivative of  the phase velocity, respec- 
tively. For  the interpretation of  the dispersion data it is very important  that the partial 

derivatives of  the phase and group velocity with respect to the velocities of  the trans- 
verse waves (Figs. 1 and 4) are con- 
siderably larger than the partial de- 

rivatives with respect to the densities 
(Figs. 2 and 5). 

0.02 90 

0011 

0 
0 20 40 GO T(serJ 

/,.0 

Fig. 8. Partial derivatives of the phase velocity with 
respect to the density for various depths of the 

layers. 

Fig. 7. Partial derivatives of the phase 
velocity with respect to the velocity of 
transverse waves for various depths of 
the layers. The numbers with the curves 
denote the depth (in kin) of the centre 

of the layer, which is 1 km thick. 

In order to be able to evaluate the effect of  the depth of  a layer on the partial 
deri,,atives of  the dispersion curves, layers 1 km in thickness were chosen in the 
C A N S D  model, the centres of  which were at depths of  10, 20 . . . . .  60 kin. The partial 
derivatives o f  dispersion curves with respect to the parameters of  these layers are 

shown in Figs. 7 to i0. The numbers with the curves indicate the depth of  the centre 
of  the layer. For  example, curve 10 in Fig. 7 illustrates the partial derivative of  the 
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phase velocity with respect to the velocity of  the transverse waves in a layer which 
is between 9-5 and 10"5 km deep. The properties of  the partial derivatives o f  dispersion 
curves, described above, can also be observed in these figures. It also fol lows from 
Figs. 7 and 9 that the cttanges in the velocity of  the transverse waves in the surface 
layers have considerable effect on the dispersion curve over a wide range of  periods. 

o~5! 

! 

I 

OQ3 

Cg2b 

i 
C,01; 

I 
I 
! 

20 

30 

~fjr 

t 

-ff~34 

131306 

-0g~ 

-~o;ok 

5O 

60 

40  60  T(.'.'aec} 

0 40 

Fig. 10. Partial derivatives of the group 
velocity with respect to the density for 

various depths of the layers. 

Fig. 9. Partial derivatives of  the group 
velocity with respect to the velocity of the 
transverse v, aves for various depths of 

the layers. 

For long periods this effect is roughly the same as the effect of  layers o f  the same 
thickness at greater depth. This property must be taken into account in solving the 
inverse problem and in evaluating the accuracy of the velocity section, obtained 
by interpreting the dispersion data. The magnitude of the maxima in Fig. 7 and the 
corresponding periods, are given in Tab. 3. In the first column o[  the latter table the 
depths of  the centres of the l-km layers, in the second column the periods of the 
maxima and in the third the maximum values of the partial derivative o f  the phase 
velocity with respect to the velocit:'es of  the transverse waves are given. Curves 40, 50 
and 60 in Fig. 8 and I0 have a slightly different shape than the first three curves, 
because at a depth of 35'2 k n a higla-velzcity layer begins (Tab. t). The partial deriv- 
atives of  the phase velocity with respect to the thickness of  the layer has not been 
plotted, because for the layer at the depth of  10 km they are the same as curve 2 
in Fig. 3, for layers at 20 and 30 km the same as curve 3, and for the other three layers 
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the same as curve 4. Similarly, the partial derivatives of  the group velocity with respect 
to the thickness of  the layer agree with the corresponding curves in Fig. 6. 

I f  the curves in Fig. 7 are computed  for a larger number  o f  various depths, Figs. 11 
and 12 can be plotted. In the latter figures the horizontal  axis is the depth of  the centre 

of  the I-km layer, the vertical is the period. The curves in Fig. t l  join the points, 

Fig. II. lsolines of the partial derivative 
of the phase velocity with respect to the 
velocity of the transverse waves in a l-kin 
layer. The numbers with the curves denote 
the magnitude of the partial derivative 

multiplied by 1000. 

T(soc)! 

1 
SOb 

1 

,oi -@"q~ 

30 
20F 40 

OL 
0 20 40 60 H(km) 

6~ I / / /  / 

o~ s'~ , co  1~o Ha~) 

Fig. 12. Periods in which the partial deriva- 
tive of the phase velocity with respect to the 
velocity of the transverse waves achieves max- 

imum and multiples of the maximum. 

in which the partial derivatives of  the phase velocity with respect to the velocity of  the 

transverse waves have the same value. The numbers with the curves give the magnitude 
of  the partial derivative multiplied by 1000. For  example on curve 20 the partial 
derivatives have. a value of  0-02. Figure 11 thus illustrates the partial derivative 
of  the phase velocity with respect to the velocity of  transverse waves as a function 
of  two variables, the depth of  the layer H and the period T. Figure 12 shows the 

peri3ds, at which the partial derivative of  the phase velocity with respect to the 
vel,-)cities of  the transverse waves achieves, for a given depth H, maximum (curve M), 
eight tenths six tenths and four tenths of  the max.imum value (curves 0.8 M, 0'6 M, 

0"4 M). For  example, for the layer at a depth of  50 km the said partial derivative 
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(26) 

a c h i e v e s  its m a x i m u m  value ,  e q u a l  to  0 ' 00968 ,  a t  a p e r i o d  o f  36.9 s (F ig .  7 a n d  T a b .  3), 

a n d  va lues  of  0.8 x 0 .00968 = 0 .00774  a t  p e r i o d s  o f  28 a n d  52 s. 

Finally, an at tempt ,,viii be made at clarifying the occurrence of negative values on the curves 
in Fig. 4. Let us transcribe Eq. (7) to 

H (km) 

U = c :  [1 -t- (T/c)(Oc,/OT)]. 

Table 3. Maximum values of partial derivatives in Fig. 7. 

U 

4.2 

10 
20 
30 
40 
50 
60 

r m (s)  Oc/Ob 

7"8 0"05028 
19'7 0"02898 
26"2 0"01842 
33"0 0"01331 
36"9 0"00968 
40"8 0-00749 

2/ 

O. Novotn~ 

20 30 40 T#ec) 20 30 40 T#eO 

c! ,0 

4 . 2 ~  36 

4.0 , , . 

Fig. 13a. Curves of the phase velocity. Curve 1 is 
for model CANSD, curve 2 for the case when 

b ,  has been increased by 0.1 km/s. 

Fig. 13b. Curves of the group velocity. 

From Eq. (26) follows the well-known fact that small values of the group velocity correspond 
to "s teep" sections of the phase-velocity curve, i.e. to large partial derivatives of c with respect to T. 
Curve 1 in Fig. 13a illustrates the phase velocity for model CANSD. If the velocity b4. in the 
CANSD model is increased by 0.1 km/s  and the other parameters are left unchanged,  we obtain 
curve 2. The appropriate group velocities are in Fig. 13b. In increasing velocity b.,, the phase 
velocity was increased, but for short periods also the slope of the phase-velocity curve increased. 
It appears that for short periods this increase in slope in (26) overrides the increase in phase 
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velocity, so that the group velocity is then decreased (Fig. 13b). The above yields one more 
conclusion. Let us denote by Tj the period in which the]-th curve in Fig. 1 achieves maximum. 
If the velocity of the transverse waves is slightly increased in the j-th layer, the phase velocity 
will increase for period Tj, but the slope of the curve will remain unchanged. According to (26) 
the group velocity for period Tj is increased, i.e. thej - th  curve in Fig. 4 must achieve positive 
values for period Tj. The period in which thej-th curve in Fig. 4 achieves zero value n'mst always, 
therefore, be smaller than Tj. 

5. CONCLUSION 

In  this pape r  f o r m u l a s  have  been der ived ,  wh ich  m a k e  it poss ib le  to c o m p u t e  

the g r o u p  ve loc i ty  a n d  the  par t ia l  de r iva t ives  o f  the  phase  a n d  g r o u p  veloci t ies  for  

L o v e  waves  in a l aye red  m e d i u m  wi thou t  numer i ca l  d i f fe ren t ia t ion .  T h e  c o m p u t a -  

t ions on  the basis o f  these f o r m u l a s  are  mul t ip ly  qu icke r  t han  n u m e r i c a l  d i f ferent ia-  

t ion,  as well as m o r e  accura te ,  especia l ly  in c o m p u t i n g  the  par t ia l  de r iva t ives  o f  the  

g r o u p  veloci ty .  The  par t ia l  der iva t ives  o f  d i spers ion  curves  o f  Love  waves  for  the 

m o d e l  o f  the  C a n a d i a n  shield C A N S D  have  been s tud ied  in grea te r  deta i l ,  and  this has 

also y ie lded  cer ta in  m o r e  genera l  p rope r t i e s  o f  the par t i a l  de r iva t ives  o f  d i spe r s ion  

curves .  

The author wishes to thank Dr. K. Pa~. for a number of valuable comments, which helped 
him in writing this paper. 
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Z u s a m m e n f a s s u n g  

D I E  P A R T I E L L E  A B L E I T U N G E N  D E R  D I S P E R S I O N S K U R V E N  

D E R  L O V E - W E L L E N  I M  G E S C H I C H T E T E N  M E D I U M  

OLDRIC,r-I NOVOTN'~ 

Geophysikatisches Institut der Karlsuniversittit, Praha 

Es werden Formeln abgeleitet, die die Gruppengeschwindigkeit  und partielle Ableitungen 
der Phasen- und Gruppengzschwindigkeit  der Love-Wellen im geschichteten Medium zu be- 
rechnen erm6glichen, und zwar ohne Verwendung der numerischen Ableitungen. Die Berechnun- 
gen mit Hilfe dieser Formeln sind vielfach schneller als bei Verwendung dcr numerischen Metho- 
den; sic sind sogar genauer, besondcrs bei der B2rechnung der partiellen Ablei tungen der Grup- 
pengeschwindigkeit. Ausffihrlich werden die partiellen Ablcitungen dcr Dispersionskurven der 
Love-WelIen f/Jr das Model des Kanadischen-Schilds studiert. 
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