

Existence of periodic solutions of Hamiltonian systems on almost every energy surface

Michael Struwe

Abstract. We estab lish the existence of periodic solutions of Hamiltonian systems on almost every smooth, compact.energy surface in the sense of Lebesgue measure.

1. Introduction

In a celebrated paper Viterbo [6] showed that for any C^2 -Hamiltonian $H : \mathbb{R}^{2n} \to$ **R** and any regular value β_0 of H, if $S = H^{-1}(\beta_0)$ is compact, connected, and of contact type in the sense of Weinstein [7], there is a periodic solution x of the Hamiltonian system

$$
\dot{x} = J \nabla H(x) \tag{1.1}
$$

 $\dot{x} = J \nabla H(x)$ (1.1)
on the energy surface S. Here, $J = \begin{pmatrix} 0 & -id \\ -id & 0 \end{pmatrix}$ is the standard symplectic matrix on $\mathbb{R}^{2n} = \mathbb{R}^n \times \mathbb{R}^n$. More generally, Hofer and Zehnder [3] were able to show that for any Hamiltonian $H \in C^2(\mathbb{R}^{2n}; \mathbb{R})$ and any regular value β_0 such that $S = H^{-1}(\beta_0)$ is compact and connected but not necessarily of contact type, then in any neighbourhood of S there is a periodic solution x of (1.1). Subsequently, Rabinowitz [4] observed that their argument can be adjusted to yield in fact uncountably many periodic solutions of (1.1) in any neighborhood of such S.

Here, by a slight modification of the proof used by Hofer and Zehnder we will even establish the existence of periodic solutions of (1.1) on any energy surface $H^{-1}(\beta)$ for almost every β sufficiently near β_0 in the sense of Lebesgue measure.

Theorem 1.1. *Suppose* β_0 *is a regular value of* $H \in C^2(\mathbb{R}^{2n})$ *and* $H^{-1}(\beta_0)$ *is*

Received 15 December 1989.

50 MICHAEL STRUWE

compact and connected. Then for almost every β *near* β_0 *there is a periodic solution of* (1.1) *on the energy surface* $H^{-1}(\beta)$ *.*

However, although we also obtain uniform bounds on the action of solutions, we cannot obtain existence of periodic solutions on a *given* energy surface, in general; see [1] together with [3] for some recent results in this regard.

2. We will basically use the variational approach of Hofer and Zehnder [3]. However, the presentation in Struwe [5] is sometimes suited better for our purpose. Note that periodic solutions of (1.1) uniquely correspond to critical points of the energy functional

$$
E(x) = \frac{1}{2} \int_{0}^{1} <\dot{x}, Jx > dt - \int_{0}^{1} H(x(t))dt,
$$

on the space of 1-periodic loops $x \in C^1$ ([0, 1]; \mathbb{R}^{2n}). Suppose $\beta_0 = 1$ is regular and $X = H^{-1}(1)$ is compact and connected. Then there exists $\delta > 0$ such that all numbers $\beta \in]1 - 2\delta, 1 + 2\delta]$ are regular values of H and $S_{\beta} = H^{-1}(\beta)$ is a compact and connected energy hypersurface diffeomorphic to $S = S_1$ for all such β .

For $m \in N$, $|\alpha| < \delta$ let $U_{m,\alpha} = \bigcup_{\beta,\beta} S_{\beta}$, and let $A_{m,\alpha}$ be the un- $|\beta-(1+\alpha)|<\frac{2}{10}$ bounded, $B_{m,\alpha}$ be the bounded component of the complement of $U_{m,\alpha}$. We may assume that 0 lies in the interior of $\bigcap_{m,\alpha} B_{m,\alpha}$. Also let $\gamma = \sup_{m,\alpha} (\text{diam } U_{m,\alpha})$. Choose smooth functions f, g and constants b, r as in Hofer-Zehnder [3], satisfying

$$
\gamma < r < 2\gamma, \ \frac{3}{2}\pi r^2 < b < 2\pi r^2,
$$
\n
$$
f(s) = 0 \text{ for } s \le -\delta, f(s) = b \text{ for } s \ge \delta, f'(s) > 0 \text{ for } |s| < \delta,
$$
\n
$$
g(s) = b \text{ for } s \le r, \ g(s) \ge \frac{3}{2}\pi s^2 \text{ for } s > r, \ g(s) = \frac{3}{2}\pi s^2 \text{ for large } s,
$$
\n
$$
0 < g'(s) \le 3\pi s \text{ for } s > r.
$$

We modify H as follows: For $m \in \mathbb{N}, |\alpha| < \delta$ let

$$
H_{m,\alpha}(x) = \begin{cases} 0, & \text{if } x \in B_{m,\alpha} \\ f(ms), & \text{if } H(x) = 1 + \alpha + s \text{ for some } |s| \leq \frac{\delta}{m} \\ b, & \text{if } x \in A_{m,\alpha}, |x| \leq r \\ g(|x|), & \text{else} \end{cases}
$$

and denote

$$
E_{m,\alpha}(x)=\frac{1}{2}\int\limits_{0}^{1}<\dot{x},Jx>dt-\int\limits_{0}^{1}H_{m,\alpha}(x)dt.
$$

As our space of admissible loops we choose the Hilbert space

$$
V = H^{1/2,2}\left(\mathbf{S}^1;\mathbf{R}^{2n}\right) =
$$

$$
= \left\{ x = \sum_{k \in \mathbb{Z}} x_k \exp(2\pi Jkt); x_k \in \mathbb{R}^{2n}, ||x||^2 = 2\pi \sum_{k} |k| |x_k|^2 + |x_0|^2 < \infty \right\}
$$

with scalar product

$$
(x,y)=+2\pi\sum_{k\in\mathbb{Z}}|k|
$$

inducing the norm $||\cdot||$ in V. Note that $E_{m,\alpha}$ is well-defined of class C^2 on this space. Moreover, the operator $L : x \mapsto -J\dot{x}$ gives rise to a decomposition of V into eigenspaces

$$
V_k = \left\{ x_k \, \exp(2\pi Jkt) ; x_k \in \mathbb{R}^{2n} \right\}
$$

corresponding to eigenvalues $2\pi k$, $k \in \mathbb{Z}$. In particular, L induces a splitting $V = V^- \oplus V^0 \oplus V^+$, with orthogonal projections P^-, P^0, P^+ , respectively, where $V^- = \bigoplus V_k$, $V^0 = V_0$, $V^+ = \bigoplus V_k$ denote the orthogonal subspaces $k<0$ $k>0$ of V on which the action

$$
A(x)=\frac{1}{2}\int\limits_{0}^{1}<\dot{x},Jx>dt
$$

is negative, null, or positive.

Finally, if we denote $\nabla E_{m,\alpha}(x) \in V$ the gradient of $E_{m,\alpha}$, we have

$$
\nabla E_{m,\alpha}(x) = -x^{-} + x^{+} - \nabla G_{m,\alpha}(x)
$$

1 where $x^{\pm} = P^{\pm} x \in V^{\pm}$ and $G_{m,\alpha}(x) = \int H_{m,\alpha}(x(t))dt$. Note that $\nabla G_{m,\alpha}$ is 0 represented by

$$
(\varphi,\nabla G_{\bm{m},\alpha}(x))=\int\limits_{0}^{1}\nabla H_{\bm{m},\alpha}(x)\varphi dt
$$

and hence by Rellich's theorem is compact. Moreover, $E_{m,\alpha}$ satisfies the Palais-Smale condition:

Any sequence
$$
(x_k) \subset V
$$
 such that $|E_{m,\alpha}(x_k)| \leq C$ and
\n $\nabla E_{m,\alpha}(x_k) \to 0$ as $k \to \infty$ has a strongly convergent
\nsubsequence. (P.-S.)

Similar to Hofer-Zehnder, [3]; Lemma 1, we have:

Lemma 2.1. Let $x \in V$ be a critical point of $E_{m,\alpha}$ with $E_{m,\alpha}(x) > 0$, then

$$
T(x)=mf'\Big(m\big(H(x)-1-\alpha\big)\Big)>0,
$$

and the function $y(t) = x\left(\frac{t}{T(x)}\right)$ *is a* $T(x)$ -periodic solution of (1.1).

Proof. If x is constant, $E_{m,\alpha}(x) = -H_{m,\alpha}(x) \leq 0$. If x is non-constant, and $|x| \ge r$ somewhere, then from

$$
\dot{x}=J\nabla H_{m,\alpha}(x)=J\frac{g'(|x|)}{|x|}x
$$

we obtain that $|x(t)| = \text{const.} = s_0$, whence

$$
E_{m,\alpha}(x)=\frac{1}{2}g'(s_0)s_0-H_{m,\alpha}(x)\leq \frac{3}{2}\pi s_0^2-\frac{3}{2}\pi s_0^2=0.
$$

It remains the case that $H(x) = 1 + \alpha + s$ for some $|s| \leq \frac{\delta}{m}$, whence

$$
\dot{x}=J\nabla H_{m,\alpha}(x)=mf'\big(m\big(H(x)-1-\alpha\big)\big)J\nabla H(x),
$$

as desired. \Box

Moreover, a trivial computation yields:

Lemma 2.2. For fixed $x \in V$, $m' \in N$ the functional $E_{m,\alpha}(x)$ is monotone *non-decreasing in* $\alpha \in]-\delta, \delta[$, and there holds

$$
\frac{\partial}{\partial \alpha} E_{m,\alpha}(x) = m \int\limits_0^1 f'\bigg(m\Big(H(x(t)) - 1 - \alpha\Big)\bigg) dt.
$$

In particular, for a critical point x of $E_{m,\alpha}$ with $E_{m,\alpha}(x) \geq 0$ corresponding to a $T(x)$ -periodic solution of (1.1), by Lemma 2.1 we have

$$
T(x)=\frac{\partial}{\partial\,\alpha}E_{m,\alpha}(x).
$$

The remainder of the paper will be concerned with obtaining some uniform (in m) control of the α -derivative of suitable critical points of $E_{m,\alpha}$ for almost every $|\alpha| < \delta$.

To obtain suitable critical points $x_{m,\alpha}$, for fixed $m \in \mathbb{N}$, $|\alpha| < \delta$ we set up a mini-max scheme as in Hofer-Zehnder [3].

Lemma 2.3. *There exist numbers* $\mu_0 > 0$, $\rho > 0$ *such that* $E_{m,\alpha}(x) \geq \mu_0$ for *all* $x \in V^+$, $||x|| = \rho$, *uniformly in* $m \in \mathbb{N}$, $|\alpha| < \delta$.

Proof. Let $r_0 = \sup\{R > 0; B_R(0) \subset B_{m,\alpha}$ for all $m, \alpha\} > 0$. Let C_0 be a constant independent of m and α such that

$$
H_{m,\alpha}(x) \leq C_0 |x|^2 \text{ for all } x.
$$

Note that $V \hookrightarrow L^p([0, 1]; \mathbb{R}^{2n})$ continuously for any $p < \infty$. In particular, there exists $C > 0$ such that

$$
\text{meas}\{t;|x(t)|>r_0\}\leq \frac{1}{r_0^2}\int\limits_0^1 |x(t)|^2dt\leq C||x||^2.
$$

Hence by Hölder's inequality, for $x \in V$ we have

$$
\int\limits_0^1H_{m,\alpha}(x(t))dt\leq C_0\int\limits_{\left\{t:|x(t)|\geq r_0\right\}}|x(t)|^2dt\\\leq C_0\Bigl(\mathop{\rm meas}\nolimits\{t;|x(t)|\geq r_0\}\Bigr)^{\frac12}\left(\int\limits_0^1|x(t)|^4dt\right)^{\frac12}\leq C||x||^3.
$$

Since on the other hand, for $x \in V^+$ we have

$$
A(x)=\|x\|^2,
$$

the claim follows. \Box

Fix
$$
e = \frac{1}{\sqrt{2\pi}} \exp(2\pi Jt) a \in V^+
$$
, $|a| = 1$, and define

 $Q = \{x = x^- + x^0 + se \in V^-\oplus V^0 \oplus R \cdot e \subset V; ||x^- + x^0|| < R, 0 < s < R\}$

with $R > 0$ to be determined. Denote ∂Q the relative boundary of Q,

$$
\partial Q = \{x = x^- + x^0 + se; ||x^- + x^0|| = R, \text{ or } s \in \{0, R\} \}.
$$

Lemma 2.4. If R is sufficiently large independent of $m \in N$, $|\alpha| < \delta$, then $E_{m,\alpha}$ $_{\mid_{\partial O}} \leq 0$.

Proof. See Hofer-Zehnder [3], Lemma 3. □

Fix $0 < \rho < R$ according to Lemmas 2.3, 2.4. Define a class Γ of maps $V \rightarrow V$ as follows:

 $h \in C^0(V; V)$ belongs to Γ if h is homotopic to the identity through a family of maps $h_t = L_t + K_t$, $0 \le t \le T$, where $L_0 = id$, $K_0 = 0$ and where for each $t \in [0, T]$ the map K_t is compact while

$$
L_t = (L_t^-, L_t^0, L_t^+) : V^- \oplus V^0 \oplus V^+ \to V^- \oplus V^0 \oplus V^+
$$

is a linear isomorphism preserving the sub-spaces V^-, V^0 , and V^+ .

Finally, for $m \in \mathbb{N}$, $|\alpha| < \delta$ define $\Gamma_{m,\alpha}$ to be the class of maps $h \in \Gamma$ such that

 $E_{m,\alpha}|_{h_t(\partial Q)} \leq 0$ for all $t \in [0,T].$

Note that by Lemma 2.2 we have $\Gamma_{m,\alpha'} \subset \Gamma_{m,\alpha}$ if $\alpha \leq \alpha'$.

Following Benci-Rabinowitz [2], as an application of Leray-Schauder degree theory one can show that ∂Q and $S_{\rho}^{+} = \{x \in V^{+}; ||x|| = \rho\}$ link with respect to $\Gamma_{m,\alpha}$; that is, we have:

Lemma 2.5. For any $m \in N$, $|\alpha| < \delta$, $h \in \Gamma_{m,\alpha}$ there holds $h(Q) \cap S_a^+ \neq \emptyset$.

Proof. See Benci-Rabinowitz [2], or Struwe [5], Lemma II. 8.12. \Box

For $m \in \mathbb{N}$, $|\alpha| < \delta$ define

$$
\mu_m(\alpha)=\inf_{h\in\Gamma m,\alpha}\sup_{x\in Q}E_{m,\alpha}(h(x)).
$$

Note that by Lemmas 2.3, 2.5 we have $\mu_m(\alpha) \ge \mu_0 > 0$. Moreover, choosing $h = id$ as comparison function we also have $\mu_m(\alpha) \leq \mu_\infty < \infty$ for some real number μ_{∞} independent of m and α .

By Lemma 2.2 and since $\Gamma_{m,\alpha}$ is non-increasing, clearly we have

Proposition 2.6. For fixed $m \in \mathbb{N}$ the map $\alpha \mapsto \mu_m(\alpha)$ is monotone non-. *decreasing.*

Hence for any $m \in \mathbb{N}$ the function μ_m is almost everywhere differentiable with $0 \leq \frac{\partial}{\partial \alpha} \mu_m \in L^1([-\delta, \delta]),$ and there holds

$$
\int\limits_{-\delta}^{\delta}\frac{\partial}{\partial\alpha}\mu_{m}d\alpha\leq\mu_{\infty}-\mu_{0}<\infty,
$$

independent of m. But then also $\liminf_{m\to\infty} (\frac{\partial}{\partial \alpha}\mu_m) \in L^1(|-\delta,\delta|)$, and by Fatou's lemma

$$
\int_{-\delta}^{\delta} \liminf_{m \to \infty} \frac{\partial}{\partial \alpha} \mu_m d_{\alpha} \leq \liminf_{m \to \infty} \int_{-\delta}^{\delta} \frac{\partial}{\partial \alpha} \mu_m d\alpha \leq \mu_{\infty} - \mu_0
$$

In particular, $\liminf \left(\frac{\pi}{2} \mu_m(\alpha_0) \right) < \infty$ for almost every $\alpha_0 \in]-\delta, \delta[$. Fix such an α_0 and let $\Lambda \subset \mathbb{N}$ be a sequence such that

$$
\frac{\partial}{\partial \alpha}\mu_m(\alpha_0) \to \liminf_{m \to \infty} \left(\frac{\partial}{\partial \alpha}\mu_m(\alpha_0) \right) =: C_0
$$

as $m \to \infty, m \in \Lambda$.

Lemma 2.7. For any $m \in \Lambda$ there exists a critical point x_m of E_{m,α_0} such *that* $E_{m,\alpha_0}(x_m) = \mu_m(\alpha_0)$ *and* $T(x_m) = \frac{\partial}{\partial \alpha} E_{m,\alpha}(x_m)|_{\alpha=\alpha_0} \leq C_0 + 4$.

Proof. (We omit the index m for brevity.) Choose a sequence $a_k \searrow \alpha_0$. We claim there exists a sequence (x^k) such that $\nabla E_{\alpha_0}(x^k) \rightarrow 0$ and

$$
\mu(\alpha_0) - 2(\alpha_k - \alpha_0) \le E_{\alpha_0}(x^k)
$$

\n
$$
\le E_{\alpha_k}(x^k)
$$

\n
$$
\le \mu(\alpha_k) + (\alpha_k - \alpha_0)
$$

\n
$$
\le \mu(\alpha_0) + (C_0 + 2)(\alpha_k - \alpha_0)
$$
 (2.1)

for large k. This will imply the assertion of the lemma: By (P.-S.), (x^k) will accumulate at a critical point x of E_{α_0} , satisfying $E_{\alpha_0}(x) = \mu(\alpha_0)$ and

$$
C_0 + 4 \geq \liminf_{k \to \infty} \frac{E_{\alpha_k}(x^k) - E_{\alpha_0}(x^k)}{\alpha_k - \alpha_0}
$$

=
$$
\liminf_{k \to \infty} \frac{\int_{\alpha_0}^{1} \int_{\alpha_0}^{a_k} m f'\left(m\left(H(x^k(t)) - 1 - \alpha\right)\right) d\alpha dt}{\alpha_k - \alpha_0} =
$$

=
$$
\int_0^1 m f'\left(m\left(H(x(t)) - 1 - \alpha\right)\right) dt = T(x).
$$

Negating the above claim, there exists a number $\varepsilon > 0$ such that for all $x \in V$ satisfying (2.1) there holds

$$
||\nabla E_{\alpha_0}(x)||^2 \ge \varepsilon. \tag{2.2}
$$

Let $0 \le \varphi \le 1$ be a Lipschitz continuous function such that $\varphi(s) = 0$ for $s \le 0$, $\varphi(s) = 1$ for $s \ge 1$ and define a family of vector fields by letting

$$
e_k(x) = -\Big((1 - \varphi_k(x))\nabla E_{\alpha_k}(x) + \varphi_k(x)\nabla E_{\alpha_0}(x)\Big) = x^- - x^+ + \Big((1 - \varphi_k(x))\nabla G_{\alpha_k}(x) + \varphi_k(x)\nabla G_{\alpha_0}(x)\Big),
$$
(2.3)

where

$$
\varphi_k(x)=\varphi\left(\frac{E_{\alpha_0}(x)-(\mu(\alpha_0)-2(\alpha_k-\alpha_0))}{\alpha_k-\alpha_0}\right).
$$

Let $\Phi_k : V \times [0, \infty] \to V$ be the corresponding flows

$$
\frac{\partial}{\partial t}\Phi_k(x,t)=e_k(\Phi_k(x,t)),
$$

$$
\Phi_k(x,0)=x.
$$

By (2.3), as in Hofer-Zehnder [3] or Struwe [5], Lemma 8.13, $\Phi_k(\cdot, t) \in \Gamma$ for all $t \geq 0$. We may assume that $\mu(\alpha_0) \geq 2(\alpha_k - \alpha_0)$ for all k, whence if $E_{\alpha_k}(x) \leq 0$, then $e_k(x) = -\nabla E_{\alpha_k}(x)$ and hence $E_{\alpha_k}(\Phi_k(x,t)) \leq 0$ for all $t \geq 0$. That is,

$$
\Phi_{k}(\cdot,t) \circ h \in \Gamma_{\alpha_{k}} \text{ for all } h \in \Gamma_{\alpha_{k}}, \text{ all } t \geq 0.
$$

For any k, any $x \in V$, moreover,

$$
\Big(e_k(x),\nabla E_{\alpha_k}(x)\Big)\leq -\varphi_k(x)\Big(\nabla E_{\alpha_0}(x),\nabla E_{\alpha_k}(x)\Big).
$$

But for $x \in V$ satisfying (2.1), by assumption (2.2) we have

$$
\left(\nabla E_{\alpha_0}(x), \nabla E_{\alpha_k}(x)\right) = ||\nabla E_{\alpha_0}(x)||^2 - \left(\nabla E_{\alpha_0}(x), \nabla G_{\alpha_k}(x) - \nabla G_{\alpha_0}(x)\right)
$$
\n
$$
\geq \frac{1}{2} ||\nabla E_{\alpha_0}(x)||^2 - \frac{1}{2} ||\nabla G_{\alpha_k}(x) - \nabla G_{\alpha_0}(x)||^2
$$
\n
$$
\geq \frac{\epsilon}{2} - C \int \int \left|\nabla H_{\alpha_k}(x) - \nabla H_{\alpha_0}(x)\right|^2 dt
$$
\n
$$
\{t: |x(t)| \leq r\}
$$
\n
$$
\geq \frac{\epsilon}{2} - o(1)
$$
\n(2.4)

with error $o(1) \rightarrow 0$ as $k \rightarrow \infty$. Hence for large k the map $t \rightarrow E_{\alpha_k}(\Phi_k(x,t))$ is non-increasing for any $x \in V$ satisfying $E_{\alpha_k}(x) \leq \mu(\alpha_k) + (\alpha_k - \alpha_0)$.

Choose $h_0 \in \Gamma_{\alpha_k}$ such that

$$
\sup_{x\in Q} E_{\alpha_k}(h_0(x)) \leq \mu(\alpha_k) + (\alpha_k - \alpha_0). \tag{2.5}
$$

Then letting $h_t = \Phi_k(\cdot,t) \circ h_0 \in \Gamma_{\alpha_k}$ for all $t \ge 0$, (2.5) also holds for h_t .

But $\Gamma_{\alpha_k} \subset \Gamma_{\alpha_0}$ and hence by definition of $\mu(\alpha_0)$ we have

$$
M(t) = \sup_{x \in Q} E_{\alpha_0}(h_t(x)) \geq \mu(\alpha_0)
$$
 (2.6)

for all t. Combining (2.5) and (2.6) we see that $M(t)$ is achieved only at points $h_t(x) \in V$ satisfying (2.1), whence by (2.2) and definition of e_k for sufficiently large k we have

$$
\frac{d}{dt}M(t)\leq -\varepsilon
$$

uniformly in $t \geq 0$, contradicting (2.6). This proves the lemma. \Box

Proof of Theorem 1.1. For any $\alpha_0 \in] - \delta, \delta[$ with

$$
\liminf_{m\to\infty}\frac{\partial}{\partial\alpha}\mu_m(\alpha_0)<\infty
$$

let Λ and $(x_m)_{m \in \Lambda}$ be as in Lemma 2.7. For any m the function x_m is a 1-periodic solution of

$$
\dot{x}_m = T(x_m) \nabla H(x_m)
$$

satisfying

$$
|1+\alpha_0-H(x_m)|\leq \frac{\delta}{m}, \ \ A(x_m)\geq E_{m,\alpha_0}(x_m)\geq \mu_0;
$$

see Lemma 2.1. Since $0 \leq T(x_m) \leq C$ uniformly, by the theorem of Arzéla-Ascoli we may assume that (x_m) converges C^1 -uniformly to a 1-periodic solution **z of**

$$
\dot{\boldsymbol{x}} = T \nabla H(\boldsymbol{x})
$$

for some $T \in \mathbb{R}$ with $H(x) = 1 + \alpha_0$. Since $A(x) \ge \mu_0 > 0$, in particular $x \ne$ const. and $T \neq 0$. The proof is complete. \Box

References

- 1. V. Benci, H. Hofer and P.H. Rabinowitz, "A priori bounds for periodic solutions on hypersurfaces," in: Periodic solutions of Hamiltonian systems and related topics (eds. Rabinowitz et al.), NATO ASI, Ser. C, Reidel, 1987.
- 2. V. Benci and P.H. Rabinowitz, *Critical points theorems for indefinite functionals,* Invent. Math. 52 (1979), 241-273.
- 3. H. Hofer and E. Zehnder, *Periodic solulions on hypersurfaces and a result by C. Viterbo,* Invent. Math. 90 (1987), 1-9.
- 4. P.H. Rabinowitz, *On a theorem of Hofer and Zehnder,* in: Periodic solutions of Hamiltonian systems and related topics (eds. Rabinowitz et al.) NATO ASI, Ser. C, Reidel, 1987.
- 5. M. Struwe, "Variational methods and their aplications to nonlinear partial differential equations and Hamiltonian systems," Springer. to appear
- 6. C. Viterbo, *A proof of the Weinstein conjecture in* \mathbb{R}^{2n} , Ann. Inst. H. Poincar'e, Analyse Non Linéaire 4 (1987), 337-356.
- 7. A. Weinstein, *On the hypotheses of Rabinowitz' periodic orbit theorem,* J. Diff. Eq. 33 (1979), 353-358.

Michael Struwe ETH - Zentrum Forchungsinstitut filr Mathematik CH 8092 - Zurich, Switzerland