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Existence of periodic solutions of Hamiltonian 
systems on almost every energy surface 
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A b s t r a c t .  We estab lish the existence of periodic solutions of Harniltonian systems on almost 
every smooth, compact.energy surface in the sense of Lebesgue measure. 

1. I n t r o d u c t i o n  

In a celebrated paper Viterbo [6] showed that for any C~-Hamiltonian H : ~ "  --o 

R and any regular value 8o of H,  if S = H-l(flo) is compact, connected, and 

of contact type in the sense of Weinstein [7], there is a periodic solution z of the 

Hamiltonian system 

i = J V / ' / ( z )  (1.1) (o :) 
on the energy surface S. Here, J = id is the standard symplectic 

matrix on R 2n = R" x R". More generally, Hofer and Zehnder [3] were able 

to show that for any Hamiltonian H 6 C2(R2"; i~) and any regular value /~o 

such that S = H-X(/~o) is compact and connected but not necessarily of contact 

type, then in any neighbourhood of S there is a periodic solution z of (1.1). 

Subsequently, Rabinowitz [4] observed that their argument can be adjusted to 

yield in fact uncountably many periodic solutions of (1.1) in any neighborhood 

of such S. 

Here, by a slight modification of the proof used by Hofer and Zehnder we will 

even establish the existence of periodic solutions of (1.1) on any energy surface 

H - 1  (8) for almost every/9 sufficiently near/9o in the sense of Lebesgue measure. 

Theorem 1.1. Suppose 8o is a regular value of H 6 C2(R ~n) and H-l(flo) is 
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compact and connected. Then for almost every fl near flo there is a periodic 

solution of(1.1) on the energy surface H-l(fl).  

However, although we also obtain uniform bounds on the action o f  solutions, 

we cannot obtain existence of periodic solutions on a given energy surface, in 

general; see [1] together with [3] for some recent results in this regard. 

2. We will basically use the variational approach of Hofer and Zehnder [3]. 

However, the presentation in Struwe [5] is sometimes suited better for our purpose. 

Note that periodic solutions of (1.1) uniquely correspond to critical points of the 

energy functional 
1 1 1/ / 

E(z) = ~ < ~ , Jx  > d t -  H(x(t))dt, 
0 0 

on the space of 1-periodic loops z E C 1 ([0, 1]; R:"). Suppose #o = 1 is regular 

and X = H - l ( 1 )  is compact and connected. Then there exists 6 > 0 such that 

all numbers fl E]I - 25,1 + 26[ are regular values of H and S# = H - l ( f l )  is 

a compact and connected energy hypersurface diffeomorphic to S = $1 for all 

such #. 

For m e N, < 8 let u,,,a = U s#, and let Am,= be the un- 

I#-(l+a}l<~k 
bounded, B,n,a be the bounded component of the complement of Ur~,a. We may 

assume that 0 lies in the interior of I'1 B,n,,,. Also let 7 = sup(d iam Urn,o). 
F/1,)O~ Ft'l, ) Ot 

Choose smooth functions f ,  g and constants b, r as in Hofer-Zehnder [3], satisfy- 

ing 

~/< r < 27,  -31rr2 < b < 27rr 2, 
2 

Z(s) = 0  for s < --6, Z(s) = b  for s > 6, Z'(s) > 0 for Is[ < 5, 

3 2 3 2 g ( s ) = b  for s < r, g(s) > ~rs  for s > r, g (s )= ~rs  forlarges, 

0 < g'(s) < 3~rs for s > r. 

We modify H as follows: For m E N, Ic~[ < 6 let 

0, ff z E B,n,,, 

/ ( m s ) ,  f f H ( z ) = l + a + s f o r s o m e l s l _ _ &  

H , n : , C z )  - -  b, ff :r e Am,,, , ,  I~l -< r 

gCIxl), else 
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and denote 

1 1 

if / 
0 0 

As our space of admissible loops we choose the Hilbert space 

V = H 1/2,2 ( s l ; ~  2n)  ~- 

= { z =~-" xk exp (2~rJkt); xk E R2n' l[xll2 = 2~r ~-'~ lk[ Ixk[2 + k < o o }  

with scalar product 

(=,u) = <  xo,yo > +2~ E Ikl < x~,u~ > 
kEZ 

inducing the:norm [[. II in v .  Note that E,,~.= is well-defined of class C 2 on this 

space. Moreover, the operator L ~ : x ~ - J k  gives rise to a decomposition of V 

into eigenspaces 

v,, = {=,, o,,p(2,-JkO; R'"} 
corresponding to eigenvalues 2~rk, k E 2z. In particular, L induces a splitting 

V = V -  (9 V ~ (3 V +, with orthogonal projections P - ,  pO, p+ ,  respectively, 

where V -  = (]~) Vk ,V  ~ = Vo,V + = (]~ Vk denote the orthogonal subspaces 
k<0 k>0 

of V on which the action 

xf A(x) = ~ < #., J x  > dt 

is negative, null, or positive. 

Finally, if we denote VE,,~,=(z) E V the gradient of E,n,=, we have 

VE~,=C=) = - = -  + =+ - VC~,=(~) 

1 
where z • = P •  E V • and Gm,a(x) = f Hnt,=(z(t))dt. Note that VG,n,a is 

0 
represented by 

1 

C~,, va~,,,C=)) = f v~,,,,,,C=)~,dt 
0 
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and hence by Rellich's theorem is compact. Moreover, E,n,~, satisfies the Palais- 

Smale condition: 

Any sequence(xk) c V such thatlE,~,,,(xk)l < C and 

VE,~,,~(zk) ~ Oas k ~ co has a strongly convergent (P.-S.) 

subsequence. 

Similar to Hofer-Zehnder, [3]; Lemma 1, we have: 

L e m m a  2.1. Let z E V be a critical point of Em,~, with E,,~,a (z) > O, then 

T(x)  = m f ' ( m ( H ( z )  - 1 -c~) )  > O, 

and the function y(t) = x ( T-~ ) is a T(x)-periodic solution of  (1.1). 

Proof .  If x is constant, E,r,,a(z) = -H,,~,~(x) < O. If x is non-constant, and 

I xl _ ," somewhere, then from 

~:= J V H ,  n ,~(x)= J(Ixl) 

we obtain that Ix(t)l = const. = so, whence 

1 ,  3 2 3 2 
E,n,a(x) = -~g (so)so - Hm,, (x)  <_ -~rs o - ~ r s  o = O. 

It remains the case that H(x)  = 1 + a + s for some Isl _< &,n, whence 

= JVHm,a(x )  = mf ' (mCHCz)  - 1 - a ) ) J V H ( z ) ,  

as desired. [] 

Moreover, a trivial computation yields: 

L e m m a  2.2. For fixed x E V,  m ' E  N the functional Em,a(z) is monotone 

non-decreasing in a E] - 6,6[, and there holds 

1 

0 
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In particular, for a critical point x of Era, ,  with E,r,,~,(x) > 0 corresponding 

to a T(z)-periodic solution of (1.1), by Lemma 2.1 we have 

TC~) = ~E.,,~(~). 

The remainder of the paper will be concerned with obtaining some uniform (in 

m) control of the a-derivative of suitable critical points of Em,~ for almost every 

I~l < 8. 

To obtain suitable critical points x,n/,,  for fixed m 6 N, I,,I < 8 we set up 

a mini-max scheme as in Hofer-Zehnder [3]. 

L e m m a  2.3. There exist numbers/~o > 0,p  > 0 such that E,~,a(x) > #o for 

all z E V + , I1~11 -- p, uniformly in m E N, I,~1 < ~. 

Proof.  Let ro = s u p { R  > 0 ;BR(0)  c Bm,,~ for all m, c~} > 0. Let Co be a 

constant independent of m and c~ such that 

H,,,,~(~) < Col~l ~ forallx. 

Note that V ~ / 2 ( [ 0 ,  1]; •2,) continuously for any p < oo. In particular, there 

exists C > 0 such that 

1 

1 f ix(t)l~d t < 011~112. meas{t;  [x(t)l > ro} _< r7 _ 
0 

Hence by HOlder's inequality, for x E V we have 

1 

o {t;izCt)l_>ro} 

IxCt)lZdt 

2. ( / )  <_ Co(meas(t;[x(t) l  >_ to)) �89 Ix(t)l 'dt 

Since on the other hand, for z 6 V + we have 

<_ c l l~ l l  3 

A(z) = tlxlJ 2, 

the claim follows. [] 
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1 
Fix e = x / ~  exp(2~rJt)a E V +, [a I - 1, and define 

Q : {x : x -  + x ~  ~ v -  ~ v ~  c V;l l=-  +x~  - R, o < s < R} 

with R > 0 to be determined. Denote ctQ the relative boundary of Q, 

aQ -- {x - ~ -  + ~o + ~e; I1~- + ~~ = R ,  o r  s E {0, R}}. 

Lemma 2.4. I f  R is sufficiently large independent of m E N, [a I < 8, then 

E,~,, [aQ <- O. 

Proof.  See Hofer-Zehnder [3], Lemma 3. [] 

Fix 0 < p <  R according to Lemmas 2.3, 2.4. Define a class F of maps 

V ~ V as follows: 

h E C~ V) belongs to F if h is homotopic to the identity through a family 

of maps ht : Lt q- Kt, 0 < t < T, where Lo = id, Ko = 0 and where for each 

t ~ [0, T] the map Kt is compact while 

Lt : (L?, LOt, L+): V- ~9 V ~ (9 V + -* V- @ V ~ ~9 V + 

is a linear isomorphism preserving the sub-spaces V - ,  V ~ and V +. 

Finally, for m E N, I,~1 < ~ define F,,~,,, to be the class of maps h E F such 

that 

E,,~,~ [ht(aO ) < 0 for all t E [0, T]. 

Note that by Lemma 2.2 we have rm,a, C Pm,a if a < a' .  

Following Benci-Rabinowitz [2], as an application of Leray-Schauder degree 

theory one can show that OQ and S + : {x E V+; Ilzll = p} link with respect 

tO Fra,a; that is, we have: 

Lemma 2.5. For any m E N, Io, I < 6, h e r ,~,~ there holds h(Q) f] S + ~ 0.  

Proof.  See Benci-Rabinowitz [2], or Struwe [5], Lemma II. 8.12. [] 

For m E N, lal < 6 define 

~u,~(a) = inf sup E,n,a(h(z)). 
hEFm,c~ zEQ 
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Note that by Lemmas 2.3, 2.5 we have/J,n(s)  > /Jo > 0. Moreover, choosing 

h = id as comparison function we also have t~,,~(s) < p ~  < oo for some real 

number t~oo independent of m and s.  

By I.emma 2.2 and since I',n,,, is non-increasing, clearly we have 

Proposition 2.6. For fuced m E N the map s , , #,~(s) is monotone non-. 

decreasing. 

Hence for any m E N the function/~,r, is almost everywhere differentiable 

with 0 _< ~  ~ LX([-8,6]), and mere holds 
6 

fO..ds<_.o~-.o<OO, 
- 6  

independent of m. But then also l iminf  ( ~  E LX([-6,6]), and by Fatou's 
W'/,.--~ OO 

lemma 

6 6 

- 6  - 6  

In particular, l iminf  ( ~ - ~ , ~ ( S o ) )  < , ~ _ . o o  Qo for almost every so E] - 8,6[. 

such an So and let A c N be a sequence such that 

L "m(a~ -* l iminf  ( ~-~-s "re(s~ ~ = : C o  

as m ---~ oo , m E A. 

Fix 

Lemma  2.7. For any m E A there exists a critical point z,n of  E, ma o such 

that E,n,ao~X,n) = I ~ ( a o )  and T(x,,~) = o Em,a(x,n)la=ao < Co -t- 4. 

Proof. (We omit the index m for brevity.) Choose a sequence ak ~ So. We 

claim there exists a sequence (x k) such that VE,,o(X k) ~ 0 and 

~(so) - 2(sk - so) <_ Z~,oCx k) 

< Ea~(xk) (2.1) 
_ ~,(sk) + (s~ - -o) 

_ ~(s0) + (Co + 2)(sk - so) 
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for large k. This will imply the assertion of the lemma: By (P.-S.), (x ~) will 

accumulate at a critical point x of E~, o, satisfying E~o(Z ) =/,(ao) and 

' E~,~(~ ~) - E ~ o ( - * )  
CO + 4 > lim inf 

k---*oo O~ k - -  Ot 0 

(r )) f f mr'  m H ( x k ( t ) ) - l - a  dadt 
= lim inf o ao = 

k--*oo Ot k - -  O~ 0 

1 

0 

Negating the above claim, there exists a number e > 0 such that for all x E V 

satisfying (2.1) there holds 

IIVE~o(=)II = _> ~. (2.2) 

Let 0 ~ ~o _< 1 be a Lipschitz continuous function such that ~o(s) = 0 for 

s _< 0, ~o(s) = 1 for s _> 1 and define a family of vector fields by letting 

ek(x) = - ( ( 1  - ~ok(x) )VE% ( x ) +  pk(z)VE~,o(x)) 

= x -  - x + + ((1 - ~k(x))VG%(x) + pk(x)VGao(x)), 

where 
Ec, o(X) - (#(C~o) - 2(a~ - so ) )  ) 

~ ( x )  = ~, , ~  - ~,o -, " 
Let ~k  : V x [0, r V be the corresponding flows 

~ ( x , t )  = e ~ C ~ C ~ , t ) ) ;  

r = x. 

(2.3) 

By (2.3), as in Hofer-Zehnder [3] or Struwe [5], Lemma 8.13, ~ k ( . , t )  E r for 

all t > 0. We may assume that /*(ao) > 2(ak - so )  for all k, whence if 

Eak(x ) < O, then ek(z) = - V E % ( x )  and hence E%(~(x, t ) )  < 0 for all 

t > 0. That is, 

�9 k( . , t )  o h E r %  forall h E F % ,  all t >__ 0. 

For any k, any x E V, moreover, 
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But for z E V satisfying (2.1), by assumption (2.2) we have 

> 1  ,_12 _  IIVE o( )II 2 -  IlVa k(=)- VG o( )II 2 

O;IzCOIs,'} 

> -~ - o(1) 
- 2  

(2.4) 

with error o(1) --~ 0 as k --* oo. Hence for large k the map t --+ E~k(~k(z, t ))  
is non-increasing for any z E V satisfying E~, k (z) < #(ak)  + (ak -- c~o). 

Choose ho E I'~k such that 

sup E,,~(ho(z)) </J(ak)  4- (ak - ao)- (2.5) 
z ~ Q  

Then letting ht : ~kC.,t) o ho E I'a k for all t >_ 0, (2.5) also holds for hr. 

But Fak c Fa o and hence by definition of #(ao) we have 

M(t) = sup E~.o(ht(x)) >_/~(ao) (2.6) 
zr 

for all t. Combining (2.5) and (2.6) we see that M(t) is achieved only at points 

ht(z) E V satisfying (2.1), whence by (2.2) and definition of ek for sufficiently 

large k we have 

d M(t) < - e  

uniformly in t > 0, contradicting (2.6). This proves the lemma. [] 

Proof  of Theorem 1.1. For any t~o E] - 6, 6[ with 

--~--O t ~ ( a o )  < oo l iminf  
~ " - '  OO o a  

let 3. and (z,~),~eA be as in Lemma 2.7. For any m the function z,,, is a 1-periodic 

solution of 

~,~ = T ( x , , ) V H ( z , , )  

satisfying 

ITI 
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see Lemma 2.1. Since 0 < T(zra) < C uniformly, by the theorem of Arzrla- 

Ascoli we may assume that (z,,,) converges Cl-uniformly to a 1-periodic solution 

z o f  

for some T E R with HCz) = 1 + t~0. Since A(z)  >/~0 > 0, in particular z 

const, and T # 0. The proof is complete. [] 
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