

# The Hausdorff dimension of horseshoes of diffeomorphisms of surfaces

Ricardo Mañé

Abstract. Let f be a  $C^r$  diffeomorphism,  $r \ge 2$ , of a two dimensional manifold  $M^2$ , and let  $\Lambda$  be a horseshoe of f (i.e. a transitive and isolated hyperbolic set with topological dimension zero). We prove that there exist a  $C^r$  neighborhood  $\mathcal{U}$  of f and a neighbourhood U of  $\Lambda$  such that for  $g \in \mathcal{U}$ , the Hausdorff dimension of  $\bigcap_n g^n(U)$  is a  $C^{r-1}$  function of g.

## 1. Introduction

Let M be a closed manifold and let  $\operatorname{Diff}^r(M)$  be the space of  $C^r$  diffeomorphisms of M endowed with the  $C^r$  topology. We say that  $\Lambda \subset M$  is a basic set of  $f \in$  $\operatorname{Diff}^r(M)$  if it is hyperbolic, isolated (i.e. there exists a compact neighborhood U of  $\Lambda$  such that  $\Lambda = \bigcap_n f^n(U)$ ) and  $f/\Lambda$  is transitive. If moreover  $\Lambda$  is totally disconnected (i.e. the connected component of every  $p \in \Lambda$  is  $\{p\}$ ) we say that  $\Lambda$  is a horseshoe.

The objective of this paper is to prove the following result:

**Theorem A.** Let  $\Lambda$  be a horseshoe of  $f \in \text{Diff}^r(M)$ , dim M = 2,  $r \geq 2$ , and let U be a compact neighborhood of  $\Lambda$  such that  $\bigcap_n f^n(U) = \Lambda$ . Then there exists a  $C^r$  neighborhood  $\mathcal{U}$  of f such that the Hausdorff dimension of  $\bigcap_n g^n(U)$  is a  $C^{r-1}$  function of  $g \in \mathcal{U}$ .

When r = 1 this result was proved by Manning and McCluskey ([4]). A different proof was given by Palis and Viana ([5]). Actually Manning and McCluskey work with the dimension of  $\Lambda \cap W^s(p)$ , where  $W^s(p)$  is the stable manifold of a periodic point. Our proof of Theorem A does not cover the  $C^1$  case.

Our proof relies in a method, introduced by Bowen in [2], that makes possible Received 20 August 1989. to read, through thermodynamic formalism, the Hausdorff dimension of hyperbolic conformal invariant sets. Since dim M = 2, our horseshoe is roughly speaking, a Cartesian product of two such objects. However, in our case, a technical obstruction appears in the application of Bowen's method forcing us to deviate it along a cumbersome roundabout.

In order to explain this technical obstruction and the result through which we shall circumvent it, we shall first recall some definitions. if X and Y are metric spaces we say that a function  $f: X \to Y$  is Hölder  $\gamma$ -continuous,  $0 < \gamma \le 1$ , if

$$\sup_{x\neq y}\frac{\mathrm{d}(f(x),f(y))}{\mathrm{d}(x,y)^{\gamma}}<\infty.$$

Denote  $C^{\gamma}(X, Y)$  the set of Hölder  $\gamma$ -continuous maps from X into Y. When Y is a normed space and X is compact we shall consider  $C^{\gamma}(X, Y)$  endowed with the norm  $\|\cdot\|_{\gamma}$  given by

$$\|\varphi\|_{\gamma} = \sup_{x} \|\varphi(x)\| + \sup_{x \neq y} \frac{\|\varphi(x) - \varphi(y)\|}{\mathrm{d}(x,y)^{\gamma}}.$$

When X is compact and Y is an n-dimensional manifold,  $C^{\gamma}(X, Y)$  is a Banach manifold modelled on  $C^{r}(X, \mathbb{R}^{n})$ . Given an  $m \times m$  matrix A whose entries  $a_{ij}$ are 0 or 1, define  $B^{+}(A)$  as the space of sequences  $\theta: \mathbb{Z}^{+} \to \{1, \ldots, m\}$  such that  $a_{\theta(n)\theta(n+1)} = 1$  for all  $n \geq 0$ . Endow  $B^{+}(A)$  with the metric  $d(\alpha, \beta) =$  $\sum_{n\geq 0} 2^{-n} |\alpha(j) - \beta(j)|$ . The shift  $\sigma: B^{+}(A) \leftrightarrow$  is defined by  $\sigma(\theta)(n) = \theta(n+1)$ . Define B(A) as the space of sequences  $\theta: \mathbb{Z} \to \{1, \ldots, m\}$  that satisfy  $a_{\theta(n)\theta(n+1)} = 1$  for all n endowed with the metric

$$d(\alpha,\beta) = \sum 2^{-|n|} |\alpha(n) - \beta(n)|.$$

The shift  $\sigma: B(A) \leftrightarrow$  is defined as before. Given  $\psi \in C^0(B^+(A), \mathbb{R})$ , the Perron-Froebenius operator  $\mathcal{L}_{\psi}: C^0(B^+(A), \mathbb{R}) \leftrightarrow$  is defined by

$$(\mathcal{L}_{\psi}\varphi)(x) = \sum_{\sigma(y)=x} \varphi(y) \exp \psi(x).$$

Then

$$(\mathcal{L}_{\psi}^{n}\varphi)(x) = \sum_{\sigma^{n}(y)=x} \varphi(y) \exp S_{n}\psi(x)$$

where

$$S_n\psi=\sum_{j=0}^{n-1}\psi\circ\sigma^j$$

It is easy to prove that for all  $x \in B^+(A)$  the limit

$$\lim_{n\to+\infty}\frac{1}{n}\log(\mathcal{L}_{\psi}^{n}1)(x)$$

exists and is independent of x (see section I). Define  $P(\psi)$  as this limit. Clearly exp  $P(\psi)$  is the spectral radius of  $\mathcal{L}_{\psi}$  and it follows from Ruelle's theorem (whose statement will be recalled in the next section) that when  $\psi \in C^{\gamma}(B^+(A), \mathbb{R})$  then exp  $P(\psi)$  is a simple eigenvalue of  $\mathcal{L}_{\psi}: C^{\gamma}(B^+(A), \mathbb{R}) \leftrightarrow$  and the rest of the spectrum of  $\mathcal{L}_{\psi}: C^{\gamma}(B^+(A), \mathbb{R}) \leftrightarrow$  is contained in the disk  $|z| < \exp P(\psi)$ . Moreover it is well known that  $P(\psi)$  is the topological pressure of  $\psi$ , but we shall not use that concept.

The question of the smoothness of the Hausdorff dimension of  $\bigcap_n g^n(U)$  as a function of  $g \in \mathcal{U}$  is reduced, through Bowen's method, to the smoothness of the composition of certain function  $\mathcal{U} \ni g \to \psi_g \in C^{\gamma}(B^+(A), \mathbb{R})$  with  $P: C^{\gamma}(B^+(A), \mathbb{R}) \to \mathbb{R}$ . The first function is  $C^{r-2}$  and the second, as we shall see below, is real analytic. Then the composition turns out to be  $C^{r-2}$ that is below what we want. To improve this method we shall show that  $\mathcal{U} \ni$  $g \to \psi_g \in C^0(B^+(A), \mathbb{R})$  is  $C^{r-1}$ . But now the problem is that P, as a map  $P: C^0(B^+(A), \mathbb{R}) \to \mathbb{R}$  is only Lipschitz ([3]). To obtain our result we have to use both properties simultaneously and the following theorem.

**Theorem B.** Let N be a Banach manifold and let  $\Phi: N \to C^{\gamma}(B^+(A), \mathbb{R})$ ,  $0 < \gamma \leq 1$ , be a  $C^k$  function,  $k \geq 1$ , such that  $\Phi: N \to C^0(B^+(A), \mathbb{R})$  is  $C^{k+1}$ . Then  $P \circ \Phi: N \to \mathbb{R}$  is  $C^{k+1}$ .

To explain the role of this theorem in the proof of Theorem A we shall give a short outline of its proof.

Let M be a two dimensional manifold and  $\Lambda$  a horseshoe of  $f \in \text{Diff}^r(M)$ ,  $r \geq 2$ . Let U be a neighborhood of  $\Lambda$  such that  $\bigcap_n f^n(U) = \Lambda$ . Take a neighborhood  $\mathcal{U}$  of f such that  $\Lambda_g = \bigcap_n g^n(U)$  is a horseshoe of g for all  $g \in \mathcal{U}$  and there exists a  $C^r \max \mathcal{U} \ni g \to h_g \in C^0(\Lambda, M)$  such that  $h_g$  is a topological equivalence between  $f|\Lambda$  and  $g|\Lambda_g$ . Define  $\delta^s(g)$  and  $\delta^u(g)$  as the Hausdorff dimensions of  $W_g^s(x) \cap \Lambda_g$  and  $W_g^u(x) \cap \Lambda_g$ ,  $x \in \Lambda_g$ . These numbers are independent of the point x. There are several ways to prove this, our proof will implicitly contain one. We shall also see that the Hausdorff dimension of  $\Lambda_g$  is  $\delta^s(g) + \delta^u(g)$ . Therefore we have only to prove that  $\delta^s(g)$  and  $\delta^u(g)$  are  $C^{r-1}$  functions of g. Take a shift  $\sigma: B(\Lambda) \leftarrow$  topologically equivalent to  $f|\Lambda$ . Let  $h: B(A) \to \Lambda$  be a homeomorphism realizing this equivalence. Given  $g \in \mathcal{U}$  define  $\psi_g: B(A) \to \mathbb{R}$  by

$$\psi_g(\theta) = -\log \left| g'(h_g h(\theta)) / E^u_{hgh(\theta)} \right|.$$

There exists  $0 < \gamma \leq 1$  such that  $\psi_g \in C^{\gamma}(B(A), \mathbb{R})$ . Moreover there exists a continuous linear map  $T: C^{\gamma}(B(A), \mathbb{R}) \leftrightarrow$  such that  $(T\psi)(\theta)$  is homologous to  $\psi$  and independent of the values  $\theta(n)$  for n < 0. ([1]). This means that  $T\psi$  can be regarded as an element of  $C^{\gamma}(B^+(A), \mathbb{R})$ . Define a function  $B: \mathbb{R} \times \mathcal{U} \to \mathbb{R}$  by  $B(\delta, g) = P(\delta T\psi_{\delta})$ . Essentially following Bowen ([2]) one proves that  $\delta^u(g)$  satisfies  $B(\delta^u(g), g) = 0$ . Now suppose that we were able to prove that the map  $\mathcal{U} \ni g \to \psi_g \in C^{\gamma}(B^+(A), \mathbb{R})$  is, say,  $C^k, k \geq 1$ . Then, since T is linear and  $P: C^{\gamma}(B^+(A), \mathbb{R}) \to \mathbb{R}$  is real analytic, it would follow that B is  $C^k$ .

Moreover, as we shall see, it is easy to prove that for each  $g \in \mathcal{U}$  there exists C(g) > 0 such that  $(\partial B/\partial \delta)(\delta, g) \leq -C(g)$  for all  $\delta$ . Then for each  $g \in \mathcal{U}$  there exists a unique  $\delta(g)$  satisfying  $B(\delta(g), g) = 0$ . Hence  $\delta(g) = \delta^u(g)$  and by the implicit function theorem, the function  $\delta^u: \mathcal{U} \to \mathbb{R}$  is  $C^k$ . Therefore this approach would work if we could prove that, for some  $0 < \gamma \leq 1$ , the function  $\mathcal{U} \ni g \to \psi_g \in C^{\gamma}(B(A), \mathbb{R})$  is  $C^{r-1}$ . However we can only prove that it is  $C^{r-2}$ . But we can also prove that  $\mathcal{U} \ni g \to \psi_g \in C^{\circ}(B(A), \mathbb{R})$  is  $C^{r-1}$ . Hence we can apply Theorem B to  $N = \mathcal{U}$  and  $\Phi$  being the map  $g \to \psi_g$  and we obtain that B is  $C^{r-1}$  and then that  $\delta^u: \mathcal{U} \to \mathbb{R}$  is also  $C^{r-1}$ .

### 1. Proof of Theorem B.

Let  $\sigma: B^+(A) \leftrightarrow$  be a subshift of finite type. To simplify the notation we shall denote  $K = B^+(A)$ . Given  $\psi \in C^{\gamma}(K, \mathbb{R}), 0 \leq \gamma \leq 1$ , the Perron-Froebenius operator  $\mathcal{L}_{\psi}: C^o(K, \mathbb{R}) \leftrightarrow$  is defined by

$$(\mathcal{L}_{\psi}\varphi)(x) = \sum_{y\in\sigma^{-1}(x)} \varphi(y) \exp \psi(y).$$

**Theorem 1.1.** (Ruelle [1]) If  $\psi \in C^{\gamma}(K, \mathbb{R}), 0 < \gamma \leq 1$ , the spectrum of  $\mathcal{L}_{\psi}: C^{\gamma}(K, \mathbb{R}) \leftrightarrow \text{consists in a simple eigenvalue } \lambda(\psi) > 0$  and a set contained in the disk  $\{z \in C/|z| < \lambda(\psi)\}$ . Moreover there exist a strictly positive function  $h_{\psi} \in C^{\gamma}(K, \mathbb{R})$  and a probability  $\nu_{\psi}$  on the Borel  $\sigma$ -algebra of K satisfying

- a)  $\mathcal{L}_{\psi}h_{\psi} = \lambda(\psi)h_{\psi}$
- b)  $\int h_{\psi} \, \mathrm{d} \, \nu_{\psi} = 1$
- c)  $\mathcal{L}_{\psi}^{*}\nu_{\psi} = \lambda(\psi)\nu_{\psi}$
- d) For all  $\varphi \in C^{\beta}(K,\mathbb{R}), \quad 0 \leq \beta \leq \gamma$ :

$$\lim_{n \to +\infty} \left\| \lambda(\psi)^{-n} \mathcal{L}^n \varphi - h_{\psi} \int \varphi \, \mathrm{d} \, \nu_{\psi} \right\|_{\beta} = 0$$

and for  $0 < \beta \leq \gamma$  the convergence is uniform in the unit  $C^{\beta}$  ball

e) There exists  $C_1 > 0$  such that if for  $\theta \in B^+(A)$  and n > 0 we define  $B(\theta, n) = \{\alpha | \alpha(j) = \theta(j) \text{ for } 0 \le j \le n\}$ , then  $C_1^{-1}\lambda(\psi)^{-n}\exp(S_n\psi)(\theta) \le \nu_{\psi}(B(\theta, n)) \le C_1\lambda(\psi)^{-n}\exp(S_n\psi)(\theta).$ 

Corollary 1.2. If  $\psi \in C^{\gamma}(K, \mathbb{R}), 0 < \gamma \leq 1$ , then

$$\lim_{n \to +\infty} \frac{1}{n} \log \sum_{y \in \sigma^{-n}(x)} \exp(S_n \psi)(y) = \log \lambda(\psi)$$

uniformly on  $x \in K$ .

Proof. From part (d) of 1.1 follows that

$$\lim_{n \to +\infty} \frac{1}{n} \log \sum_{\substack{y \in \sigma^{-n}(x)}} \exp(S_n \psi)(y) = \lim_{n \to +\infty} \frac{1}{n} \log(\mathcal{L}^n 1)(x) =$$
$$= \log \lambda(\psi) + \lim_{n \to +\infty} \frac{1}{n} \log \lambda(\psi)^{-n} (\mathcal{L}^n_{\psi} 1)(x) = \log \lambda(\psi)$$

uniformly on  $x \in K$ .

Corollary 1.3. If  $\psi \in C^0(K, \mathbb{R})$  the limit

$$\lim_{n \to +\infty} \frac{1}{n} \log \sum_{\sigma^n(y)=x} \exp(S_n \psi)(y)$$

exists for all  $x \in K$  and is independent of x.

**Proof.** Define  $\Phi_n: C^0(K) \leftarrow$  by

$$\Phi_n(\psi)(x) = \frac{1}{n} \log \sum_{\sigma^n(y)=x} \exp(S_n \psi)(y).$$

Then

$$(\varPhi'_n(\psi)\varphi)(x) = \frac{\sum_{\sigma^n(y)=x} \frac{1}{n} (S_n \varphi)(y) \exp(S_n \psi)(y)}{\sum_{\sigma^n(y)=x} \exp(S_n \psi)(y)}$$

Hence

$$|(\varPhi'_n(\psi)\varphi)(x)| \leq ||\varphi||_0$$

for all  $x \in K$ . Then

 $\| arPsi_n(\psi) \|_0 \leq 1$ 

for all *n*. Then the sequence of maps  $\Phi_n: C^0(K, \mathbb{R}) \leftrightarrow$  is uniformly Lipschitz and is pointwise convergent (by 1.2), in the dense subset  $C^{\gamma}(K, \mathbb{R}) \subset C^0(K, \mathbb{R})$ . Therefore the sequence  $\Phi_n$  converges uniformly on compact subsets of  $C^0(K, \mathbb{R})$ to a continuous function  $\Phi: C^0(K, \mathbb{R}) \leftrightarrow$ . Since  $\Phi(\psi) \in C^0(K, \mathbb{R})$  is (by 1.2) a constant function when  $\psi \in C^{\gamma}(K, \mathbb{R}), 0 < \gamma \leq 1$ , then, by the density of  $C^{\gamma}(K, \mathbb{R})$  in  $C^0(K, \mathbb{R})$  and the continuity of  $\Phi$  in  $C^0(K, \mathbb{R})$ , it follows that  $\Phi(\psi)$  is a constant function for each  $\psi \in C^0(K, \mathbb{R})$ .

Using 1.3, given  $\psi \in C^0(K, \mathbb{R})$  define

$$P(\psi) = \lim_{n \to +\infty} \frac{1}{n} \log \sum_{y \in \sigma^{-n}(x)} \exp(S_n \psi)(y)$$

Corollary 1.4. For all  $0 < \gamma \leq 1$  the functions

$$P: C^{\gamma}(K, \mathbb{R}) \to \mathbb{R}$$
$$C^{\gamma}(K, \mathbb{R}) \ni \psi \to \nu_{\psi} \in C^{\gamma}(K, \mathbb{R})'$$
$$C^{\gamma}(K, \mathbb{R}) \ni \psi \to h_{\psi} \in C^{\gamma}(K, \mathbb{R})$$

are real analytic.

**Proof.** Let D be a closed disk centered at  $\lambda(\psi)$  such that

$$D\cap \mathrm{sp}(\mathcal{L}_{oldsymbol{\psi}})=\{\lambda(oldsymbol{\psi})\}.$$

Let F be the space of linear maps of  $C^{\gamma}(K,\mathbb{R})$  into itself endowed with the topology of the norm. Let U be a neighborhood of  $\mathcal{L}_{\psi}$  in F such that  $\partial D \cap$   $\operatorname{sp}(L) = \phi$  for all  $L \in U$ . Then, if  $L \in U$ , we can define the projection of  $C^{\gamma}(K,\mathbb{R})$  given by:

$$\pi_L = \frac{1}{2\pi i} \int_{\partial D} (\lambda I - L)^{-1} d\lambda.$$
 (1)

When  $L = \mathcal{L}_{\psi}$  the image of this projection is the eigenspace associated to the eigenvalue  $\lambda(\psi)$ . By part (d) of Theorem 1.1 this space is spanned by  $h_{\psi}$ , hence it is one dimensional. Therefore if U is small enough the image of  $\pi_L$  is also one dimensional and invariant under L. Hence it is an eigenspace associated to

an eigenvalue  $\mu(L)$  that is near to  $\lambda(\psi)$  because the image of  $\pi_L$  is near to the image of  $\pi_{L_{\psi}}$ . Then  $\mu(L) > 0$ . Hence we can calculate it as

$$\mu(L) = \frac{\langle w, \pi_L L_v \rangle}{\langle w, \pi_L v \rangle}.$$
 (2)

where  $v \in C^{\gamma}(K, \mathbb{R})$  and  $w \in C^{\gamma}(B^+(A), \mathbb{R})'$  are vectors such that the inner product in the denominator is  $\neq 0$ . Choose v and w such that  $\langle w, \pi_{\mathcal{L}_{\psi}}v \rangle \neq 0$ . Then, the previous requirement, is satisfied for all  $L \in U$  if U is small enough. Then (1) and (2) show that  $\mu(L)$  is a real analytic function of L. Moreover, by elementary arguments, the spectrum of L consists of  $\mu(L)$  and a set contained in a disk  $\{z/|z| < r\}$  with  $r < \mu(L)$  (recall that by Theorem 1.1 this property holds for  $L = \mathcal{L}_{\psi}$ ). Hence, if  $\varphi$  is so near to  $\psi$  that  $\mathcal{L}_{\varphi} \in U$ , then

$$\mu(\mathcal{L}_{\varphi}) = \lambda(\varphi). \tag{3}$$

Take a neighborhood V of  $\psi$  in  $C^{\gamma}(K, \mathbb{R})$  such that  $\mathcal{L}_{\varphi} \in U$  when  $\varphi \in V$ . Clearly the map  $V \ni \varphi \to \mathcal{L}_{\varphi} \in F$  is real analytic. Hence the map  $V \ni \varphi \to \lambda(\varphi) \in \mathbb{R}$  is real analytic because it is the composition of the maps  $V \ni \varphi \to \mathcal{L}_{\varphi} \in U$  and  $U \ni L \to \mu(L) \in \mathbb{R}$ . Therefore the map  $V \ni \varphi \to P(\varphi) = \log \lambda(\varphi) \in \mathbb{R}$  is real analytic. Since the spectrum of  $\mathcal{L}_{\psi}^*: C^{\gamma}(K, \mathbb{R})' \leftrightarrow$ , is the same as the spectrum of  $\mathcal{L}_{\psi}: C^{\gamma}(K, \mathbb{R}) \leftrightarrow$ , a similar argument shows that there exists a neighborhood U of  $\mathcal{L}_{\psi}^*$  in the space of linear continuous maps of  $C^{\gamma}(K, \mathbb{R})'$  endowed with the topology of the norm, such that for each  $L \in U$  there exists a projection  $\hat{\pi}_L: C^{\gamma}(K, \mathbb{R})' \leftarrow$ , depending analytically on L, and whose image is the one dimensional eigenspace associated to the eigenvalue  $\lambda(\psi)$ . We leave to the reader to check that given a neighborhood W of  $\psi$  such that  $\mathcal{L}_{\varphi}^* \in U$  when  $\varphi \in W$ , then  $\nu_{\varphi}$  and  $h_{\varphi}$  are given by

$$\nu_{\varphi} = \langle \hat{\pi}_{\mathcal{L}_{\varphi}^{*}} \nu_{\psi}, 1 \rangle^{-1} \hat{\pi}_{\mathcal{L}_{\varphi}^{*}} \nu_{\psi}$$
$$h_{\varphi} = \langle \pi_{\mathcal{L}_{\varphi}} h_{\psi}, \nu_{\varphi} \rangle^{-1} \pi_{\mathcal{L}_{\varphi}} h_{\psi}.$$

Then they are real analytic functions of  $\psi \in W$ .

**Corollary 1.5.** For all  $0 < \gamma \leq 1, \nu_{\psi}$  is a weakly continuous function of  $\psi \in C^{\gamma}(K, \mathbb{R})$ , i.e.

$$\lim_{n \to +\infty} \int \varphi d\nu_{\psi_n} = \int \varphi d\nu_{\psi}$$

for every convergent sequence  $\psi_n \to \psi$  in  $C^{\gamma}(K, \mathbb{R})$  and all  $\varphi \in C^0(K, \mathbb{R})$ .

**Proof.** Let  $\psi_n \to \psi$  be a convergent sequence in  $C^{\gamma}(K, \mathbb{R})$  and suppose that  $\nu_{\psi_n}$  does not converge weakly to  $\nu_{\psi}$ . Then we can assume that  $\nu_{\psi_n}$  converges weakly to a probability  $\nu \neq \nu_{\psi}$ . Then

$$\mathcal{L}_{\psi}^{*}\nu = \lim_{n \to +\infty} \mathcal{L}_{\psi n}^{*}\nu_{\psi n} = \lim_{n \to +\infty} \lambda(\psi_{n})\nu_{\psi n} = \lambda(\psi)\nu.$$

Hence,  $\nu \in C^0(K, \mathbb{R})' \subset C^{\gamma}(K, \mathbb{R})'$  is an eigenvector of  $\mathcal{L}_{\psi}^*: C^{\gamma}(K, \mathbb{R})' \leftrightarrow$  associated to the eigenvalue  $\lambda(\psi)$ . But  $\lambda(\psi)$  is a simple eigenvalue of  $\mathcal{L}_{\psi}^*: C^{\gamma}(K, \mathbb{R})' \leftrightarrow$  because  $\lambda(\psi)$  is a simple eigenvalue of  $\mathcal{L}_{\psi}: C^{\gamma}(K, \mathbb{R})' \leftrightarrow$ . Since  $\nu_{\psi}$  is an eigenvector of  $\mathcal{L}_{\psi}^*: C^{\gamma}(K, \mathbb{R})' \leftrightarrow$  associated to  $\lambda(\psi)$ , it follows that  $\nu$  is a scalar multiple of  $\nu_{\psi}$ . But since both are probabilities it follows that  $\nu = \nu_{\psi}$ .

Corollary 1.6. If  $\psi \in C^{\gamma}(K, \mathbb{R}), 0 < \gamma \leq 1$ , then  $\lim_{n \to +\infty} \left\| \frac{1}{n} \frac{\mathcal{L}^{n}_{\psi}(S_{n}\varphi)}{\mathcal{L}^{n}_{\psi}1} - \int \varphi h_{\psi} d\nu_{\psi} \right\|_{c} = 0$ 

for all  $\varphi \in C^{\beta}(K, \mathbb{R}), 0 \leq \beta \leq \gamma$ . Moreover, when  $0 < \beta \leq \gamma$ , the convergence is uniform in the unit ball of  $C^{\beta}$ 

Proof. It is easy to check that

$$\mathcal{L}^{n}_{\psi}(S_{n}\varphi) = \sum_{j=0}^{n-1} \mathcal{L}^{n-j}_{\psi}(\varphi \mathcal{L}^{j}_{\psi}\mathbf{1})$$

Then

$$\lambda^{-n}(\psi)\mathcal{L}^n_{\psi}(S_n\varphi) = \sum_{j=0}^{n-1} \lambda(\psi)^{-(n-j)}\mathcal{L}^{n-j}_{\psi}(\varphi\lambda(\psi)^{-j}\mathcal{L}^j_{\psi}1).$$

But by Ruelle's theorem

$$\lim_{j \to +\infty} \left\| \varphi \lambda(\psi)^{-j} \mathcal{L}_{\psi}^{j} 1 - \varphi h_{\psi} \right\|_{\beta} = 0$$

and

$$\sup_{m} \left\| \lambda(\psi)^{-m} \mathcal{L}_{\psi}^{m} \right\|_{\beta} < \infty.$$

Hence

$$\lim_{n \to ++\infty} \left\| \frac{1}{n} \lambda^{-n}(\psi) \mathcal{L}^{n}_{\psi}(S_{n}\varphi) - \sum_{j=0}^{n-1} \lambda(\psi)^{-(n-j)} \mathcal{L}^{n-j}_{\psi}\varphi h_{\psi} \right\|_{\beta} = 0.$$
(1)

But, by Ruelle's Theorem,

$$\lim_{m \to +\infty} \left\| \lambda(\psi)^{-m} \mathcal{L}^{n}_{\psi} \varphi h_{\psi} - h_{\psi} \int \varphi h_{\psi} d\nu_{\psi} \right\|_{\beta} = 0.$$
 (2)

From (2) it follows that

$$\lim_{n \to +\infty} \left\| \frac{1}{n} \sum_{j=0}^{n-1} \lambda(\psi)^{-(n-j)} \mathcal{L}_{\psi}^{n-j} \varphi h_{\psi} - h_{\psi} \int \varphi h_{\psi} d\nu_{\psi} \right\| = 0.$$
(3)

Also from Ruelle's theorem it follows that

$$\lim_{n \to +\infty} \left\| \lambda^{-n}(\psi) \mathcal{L}_{\psi}^{n} 1 - h_{\psi} \right\|_{0} = 0$$
(4)

...

Then, by (1), (3) and (4):

$$\lim_{n \to +\infty} \left\| \frac{1}{n} \frac{\mathcal{L}_{\psi}^{n}(S_{n}\varphi)}{\mathcal{L}_{\psi}^{n}1} - \int \varphi h_{\psi} d\nu_{\psi} \right\|_{0} =$$

$$= \lim_{n \to +\infty} \left\| \frac{\lambda^{n}(\psi)}{\mathcal{L}_{\psi}^{n}1} \frac{1}{n} \lambda^{-n}(\psi) \mathcal{L}_{\psi}^{n}(S_{n}\varphi) - \int \varphi h_{\psi} d\nu_{\psi} \right\|_{\beta} \leq$$

$$\leq \lim_{n \to +\infty} \left\| \frac{\lambda^{n}(\psi)}{\mathcal{L}_{\psi}^{n}1} \right\|_{\beta} \lim_{n \to +\infty} \left\| \frac{1}{n} \lambda^{-n}(\psi) \mathcal{L}_{\psi}^{n}(S_{n}\varphi) - (\lambda(\psi)^{-n} \mathcal{L}_{\psi}^{n}1) \int \varphi h_{\psi} d\nu_{\psi} \right\|_{\beta} =$$

$$= \lim_{n \to +\infty} \left\| \frac{1}{n} \lambda^{-n}(\psi) \mathcal{L}_{p}^{n} si\varphi \right\|_{\beta} - h_{\psi} \int \varphi h_{\psi} d\nu_{\psi} \right\|_{\beta} = 0.$$

The uniform convergence in the unit  $C^{\beta}$  ball follows from the fact that, by part (d) of Ruelle's theorem, all the convergences involved in this argument are uniform in the unit ball of  $C^{\beta}$  for  $0 < \beta \leq \gamma$ .

**Corollary 1.7.** If  $0 < \gamma \leq 1$ , and  $\psi \in C^{\gamma}(K, \mathbb{R})$ , then the derivative

 $P'(\psi):C^{\gamma}(K,\mathbb{R})\to\mathbb{R}$ 

is given by

$$P'(\psi)\varphi=\int \varphi h_{\psi}d
u_{\psi}.$$

**Proof.** Fix  $p \in K$  and define  $P_n: C^{\gamma}(K, \mathbb{R}) \longrightarrow \mathbb{R}$  by

$$P_n(\psi) = \frac{1}{n} \log(\mathcal{L}_{\psi}^n 1)(p).$$

Then an easy calculation shows that

$$P'_n(\psi)\varphi = rac{1}{n}rac{\mathcal{L}^n_\psi(S_n\varphi)}{\mathcal{L}^n_\psi 1}.$$

Hence, 1.6 implies that

$$P'(\psi)\varphi = \lim_{n \to +\infty} P_n(\psi)\varphi = \int \varphi h_{\psi} d\nu_{\psi}.$$

Now we shall prove Theorem B. This proof requires two Lemmas.

We say that a map  $f: K_1 \to K_2$ , where  $K_1, K_2$  are metric spaces, is *compact* if it maps bounded sets onto relatively compact sets. It is easy to see that if a sequence of compact maps  $f_n: K_1 \to K_2$  converges to a map  $f: K_1 \to K_2$ uniformly on bounded sets, then f is compact.

**Lemma 1.9.** Let  $E_1, E_2$  be Banach spaces and  $U \subset E_1$  an open set. If  $f: U \to E_2$  is a  $C^k$  compact map, then for all  $x \in U$ , the derivatives  $f^{(j)}(x): \overbrace{E_1 \times \cdots \times E_1}^{j} \to E_2$  are compact for all  $1 \leq j \leq k$ .

**Proof.** Given  $x \in U$  let B be the unit ball centered at 0 and define maps  $f_n: B \to E_2$  by

$$f_n(v) = n(f(x + \frac{1}{n}v) - f(x)).$$

Then the sequence  $f_n$  converges uniformly to f'(x)/B. Since clearly each map  $f_n$  is compact, it follows that f'(x) is compact. Now suppose that we have proved that  $f^{(j)}(x)$  is compact for  $1 \le j < m$ . Define maps  $f_n: B \to E_2$  by

$$f_n(v) = n^m (f(x + \frac{1}{n}v) - f(x) - \sum_{j=1}^{m-1} \frac{1}{j!} f^{(j)}(x) \underbrace{\left(\frac{1}{n}v, \cdots, \frac{1}{n}v\right)}^{j} ).$$

Then the sequence  $f_n$  converges uniformly to the map

$$B \ni v \to f^{(m)}(x)(v,\ldots,v) \in E_2.$$

Hence this map is compact. Since using the symmetry of the m-linear map  $f^{(m)}(x)$  it is possible to write  $f^{(m)}(x)(v_1,\ldots,v_m)$  as a linear combination of the vectors  $f^{(m)}(x)(v_i,\ldots,v_i), 1 \le i \le m$ , it follows that  $f^{(m)}$  is compact.

**Lemma 1.10.** Let  $E_0, E_1, E_2$  be Banach spaces,  $U \subset E_0$  an open set and suppose that  $f: U \to E_1, L: E_1 \to E_2$  and  $P: E_2 \to \mathbb{R}$  are maps satisfying

- a) L is linear and compact
- b) f is  $C^k, k \ge 0$
- c)  $L \circ f$  is  $C^{k+1}$
- d)  $P \circ L$  is  $C^{k+1}$

e) There exists a function T that associates to each  $x \in E_1$  a continuous linear map  $T(x): E_2 \to \mathbb{R}$  satisfying

$$(P \circ L)' = T(x)L \tag{1}$$

for all  $x \in E_1$ , and

$$\lim_{n \to +\infty} T(x_n)v = T(\lim x_n)v \tag{2}$$

for every convergent sequence  $\{x_n\} \subset E_1$  and all  $v \in E_2$ .

Then  $P \circ L \circ f$  is  $C^{k+1}$ 

**Proof.** Obviously  $P \circ L \circ f$  is  $C^k$  because  $P \circ L$  is  $C^k$  and f is  $C^k$ . Suppose that  $k \ge 1$ . The derivative  $(P \circ L \circ f)^{(k)}(x)$  can be written as the sum of

$$(P \circ L)'(f(x))f^{(k)}(x)$$
 (3)

and a linear combination of compositions of derivatives  $(P \circ L)^{(i)}$  and  $f^{(j)}$  with  $1 < i \leq k$  and  $1 \leq j < k$ . Hence all these terms are  $C^1$ , because f is  $C^k$  and  $P \circ L$  is  $C^k$ . This means that to prove that f is  $C^{k+1}$  we have only to prove that (3) is  $C^1$ . Observe that given Banach spaces E and F, an open set  $U \subset E$  and a map  $\Phi: U \to F$ , then, to prove that  $\Phi$  is  $C^1$  it suffices to show that for every  $x \in U$  there exists a continuous linear map  $A(x): E \to F$ , depending continuously on x, such that

$$\lim_{t\to 0}\frac{1}{t}(\varPhi(x+tv)-\varPhi(x))=A(x)v$$

for all  $x \in U$  and  $v \in E$ . This is proved by writing

$$\Phi(x+v) - \Phi(x) = \int_0^1 \frac{d}{dt} \Phi(x+tv) dt =$$
$$= \int_0^1 A(x+tv) v dt = A(x)v + \int_0^1 (A(x+tv) - A(x))v dt$$

Hence

$$\| \Phi(x+v) - \Phi(x) - A(x)v \| \le \|v\| \sup_{\|y-x\| \le \|v\|} \|A(y) - A(x)\|$$

thus proving that  $\Phi'(x) = A(x)$ . We shall use this criteria to prove that (3) is  $C^1$ . Observe that

$$(P \circ L)'(f(x+tw))f^{(k)}(x+tw) - (P \circ L)'(f(x))f^{(k)}(x) =$$
  
= ((P \circ L)'(f(x+tw)) - (P \circ L)'(f(x)))f^{(k)}(x+tw) +

RICARDO MAÑÉ

$$+(P\circ L)'(f(x))(f^{(k)}(x+tw)-f^{(k)}(x)).$$

Since  $P \circ L$  is  $C^2$  by (d) and the assumption  $k \ge 1$ , it follows that

$$\lim_{t\to 0} \frac{1}{t} ((P \circ L)'(f(x+tw)) - (P \circ L)'(f(x)))f^{(k)}(x+tw) =$$
$$= (P \circ L)''(f(x))f'(x)wf^{(k)}(x).$$

Moreover, by (1):

$$(P \circ L)'(f(x))(f^{(k)}(x+tw) - f^{(k)}(x)) =$$
  
=  $T(f(x))((Lf)^{(k)}(x+tw) - (Lf)^{(k)}(x))$ 

Hence, since Lf is  $C^{k+1}$ ,

$$\lim_{t\to 0} \frac{1}{t} T(f(x))((Lf)^{(k)}(x+tw) - (Lf)^{(k)}(x)) =$$
$$= T(f(x))(Lf)^{(k+1)}(x)w.$$

Hence

$$\lim_{t\to 0} \frac{1}{t} ((P \circ L)'(f(x+tw))f^{(k)}(x+tw) - (P \circ L)'(f(x))f^{(k)}(x)) =$$
  
=  $(P \circ L)''(f(x))(f'(x)w)f^{(k)}(x) + T(f(x))(Lf)^{(k+1)}(x)w.$ 

Therefore, if we prove that the (k + 1)-linear map  $T(f(x))(Lf)^{(k+1)}(x)$  is a continuous function of x, it will follow that (2) is  $C^1$  and then that  $P \circ L \circ f$  is  $C^{k+1}$ . Since  $P \circ L$  is  $C^2$  and f is  $C^k$  it follows that the first term of the sum depends continuously on x. To prove the continuity of  $T(f(x))(Lf)^{(k+1)}(x)$  first observe that if  $x_n \to x$  and  $S \subset E_2$  is a relatively compact set then, by (2),  $T(x_n)/S$  converges uniformly to T(x)/S. Moreover, Lf is compact because L is compact, and then, by the previous Lemma,  $(Lf)^{(k+1)}(y)$  is compact for all x+1  $y \in E_0$ . Let B be the unit ball of  $E_0 \times \cdots \times E_0$ . Define

$$S = (Lf)^{(k+1)}(x)B \cup (\bigcup_{n \ge 1} (Lf)^{(k+1)}(x_n)B).$$

This set is relatively compact because every sequence  $\{u_n\} \subset S$  either has a subsequence contained in some  $(Lf)^{(k+1)}(p)B$ ,  $p \in \{x, x_1, ...\}$  (and then, since this set is relatively compact, has a convergent subsequence) or has a subsequence that can be written as

$$u_{n_j} = (Lf)^{(k+1)}(x_{m_j})\theta_{m_j}$$

with  $\theta_{m_j} \in B$  and  $m_j \to +\infty$ . But now, by the compacity of  $(Lf)^{(k+1)}$ , we can assume that the sequence  $(Lf)^{(k+1)}(x)\theta_{m_j}, j \ge 1$ , converges to a point  $y \in E_2$ and then it is easy to prove that  $(Lf)^{(k+1)}(x_{m_j})\theta_{m_j}$  converges to y. This concludes the proof of the relative compacity of S and then  $T(x_n)/S$  converges uniformly to T(x)/S. Since  $(Lf)^{(k+1)}(x)B \subset S$  for all  $p \in \{x, x_1, \ldots\}$ , it follows that  $T(x_n)(Lf)^{(k+1)}(x_n)/B$  converges to  $T(x)(Lf)^{(k+1)}(x)/B$  uniformly. This completes the proof of the Lemma when  $k \ge 1$ . The case k = 0 is handled by similar methods.

To prove Theorem B we shall apply Lemma 1.10 to an open set  $U \in N$ , the Banach spaces  $C^{\gamma}(K, \mathbb{R})$  and  $C^{0}(K, \mathbb{R})$ , the  $C^{k}$  map  $\Phi: U \to C^{\gamma}(K, \mathbb{R})$ , the compact linear map  $i: C^{\gamma}(K, \mathbb{R}) \to C^{0}(K, \mathbb{R})$  given by the inclusion and the function  $P: C^{0}(K, \mathbb{R}) \to \mathbb{R}$ . Hypothesis (a), (b) and (c) of 1.10 are obviously satisfied. Hypothesis (d) holds because we proved (Corollary 1.4) that  $P: C^{\gamma}(K, \mathbb{R}) \to \mathbb{R}$ is real analytic. To check (e) associate, to each  $\psi \in C^{\gamma}(K, \mathbb{R})$ , the functional  $T(\psi) \in C^{0}(K, \mathbb{R})'$  given by

$$T(\psi)arphi = \int arphi h_{\psi} d
u_{\psi}.$$

Then, by 1.7,

$$(P \circ i)'(\psi)\varphi = T(\psi)\varphi$$

thus proving property (1) of hypothesis (e). Property (2) follows from the fact that  $\nu_{\psi}$  is, by 1.5, a weakly continuous function of  $\psi \in C^{\gamma}(K,\mathbb{R})$  and  $h_{\psi}$  is a continuous (in fact real analytic) function of  $\psi$  by 1.4. Then, 1.11 can be applied and proves that  $P \circ i \circ \Phi$  is  $C^{k+1}$ .

#### 2. Proof of Theorem A

The proof of Theorem A requires the following properties:

**Proposition 2.1.** ([1]) For all  $0 < \gamma \leq 1$  there exists a continuous linear map  $T: C^{\gamma}(B(A), \mathbb{R}) \to G^{\gamma}(B^+, (A), \mathbb{R})$  such that, denoting  $\pi: B(A) \to B^+(A)$  the canonical projection (i.e.  $\pi(\theta) = \theta/\mathbb{Z}^+$ ) then, for all  $\psi \in C^{\gamma}(B^+(A), \mathbb{R}), \psi$  is homologous to  $(T\psi) \circ \pi$ , i.e. there exists  $u \in C^0(B(A), \mathbb{R})$  such that

$$u \circ \sigma - u = \psi - (T\psi) \circ \pi.$$

**Lemma 2.2.** If  $\Lambda$  is a horseshoe of  $f \in \text{Diff}^r(M), r \geq 1$ , and  $h: B(A) \to \Lambda$  is a topological equivalence between  $\sigma: B(A) \leftrightarrow$  and  $f|\Lambda$ , then h is Hölder continuous

**Lemma 2.3.** Let  $\Lambda$  be a horseshoe of  $f \in \text{Diff}^r(M), r \geq 2, \dim M = 2$ . Let  $h: B(A) \to \Lambda$  be a topological equivalence between  $\sigma: B(A) \leftrightarrow \text{and } f|\Lambda$ . Define  $\psi: B(A) \to \mathbb{R}$  by

$$\psi( heta) = -\log \left| f'(h( heta))/E^u_{h( heta)} 
ight|.$$

Then the following properties hold:

- a) The function  $\mathbb{R} \ni \delta \to P(\delta T \psi) \in \mathbb{R}$  is real analytic (where T is given by 2.1).
- b) There exists c > 0 such that

$$rac{\partial}{\partial \delta} P(\delta T \psi) \leq -c$$

for all  $\delta$ .

c) There exists a unique  $\delta(f) > 0$  such that  $P(\delta(f)T\psi) = 0$ . Moreover every  $x \in \Lambda$  is contained in an open interval  $J \subset W^s(x)$  such that there exists a probability  $\mu$  on the Borel  $\sigma$ -algebra of J and a constant C > 0 satisfying

$$C^{-1}r^{\delta} \leq \mu(B_r(x)) \leq Cr^{\delta}$$

for all  $r \geq 0$ .

Lemma 2.4. If  $\Lambda$  is a basic set of  $f \in \text{Diff}^r(M), r \ge 2$ , there exist neighborhoods U and  $\mathcal{U}$  of  $\Lambda$  and f respectively such that, defining  $\Lambda_g = \bigcap_n g^n(U)$ , there exist  $0 < \gamma < 1$  and a  $C^{r-1}$  function  $\mathcal{U} \ni g \to h_g \in C^{\gamma}(\Lambda, M)$  satisfying the following properties:

- a)  $h_g(\Lambda) = \Lambda_g$  and  $h_g$  is a topological equivalence between  $f|\Lambda$  and  $g|\Lambda_g$ ;
- b) The function  $\mathcal{U} \ni g \to |(\det(g'/E^u)) \circ h_g| \in C^{\gamma}(\Lambda, \mathbb{R})$  is  $C^{r-2}$ ;
- c) The function  $\mathcal{U} \ni g \to |(\det(g'/E^u)) \circ h_g| \in C^0(\Lambda, \mathbb{R})$  is  $C^{r-1}$ .

Now let us prove Theorem A. Let  $\Lambda$  be a horseshoe of  $f \in \text{Diff}^r(M), r \ge 2$ and suppose that dim M = 2. Let  $\mathcal{U}$  and U be the neighborhoods given by Lemma 2.4. It is known (Bowen [1]) that there exists a topological equivalence  $h: B(A) \to \Lambda$  between  $\sigma: B(A) \leftrightarrow$  and  $f|\Lambda$ . Then, if  $h_g: \Lambda \to \Lambda_g$  is given by Lemma 2.4, the map  $h_gh: B(A) \to \Lambda_g$  is a topological equivalence between  $\sigma: B(A) \leftrightarrow$  and  $g/\Lambda_g$ . Moreover by Lemmas 2.2 and 2.4 there exists  $0 < \gamma < 1$  such that  $h_gh \in C^{\gamma}(B^+(A), M)$  and the function  $\mathcal{U} \ni g \to h_gh \in C^{\gamma}(B(A), M)$  is  $C^{r-1}$ . Define  $\psi_g \in C^{\gamma}(B^+(A), \mathbb{R})$  by

$$\psi_g( heta) = -\log \left| g'(h_g h( heta)) / E^u_{h_g h( heta)} 
ight|$$

and  $B: \mathcal{U} \times \mathbb{R} \to \mathbb{R}$  by

$$B(g,\delta)=P(\delta T\psi_g).$$

Then B is  $C^{r-1}$ . This follows from applying Theorem B to the Banach manifold  $\mathcal{U}$  and the  $C^{r-2}$  map  $\mathcal{U} \ni g \to \psi_g \in C^{\delta}(B^+(A), \mathbb{R})$ . Moreover, by Lemma 2.3, for each  $g \in \mathcal{U}$  there exists a unique  $\delta^u(g)$  satisfying

$$P(g,\delta^{u}(g)) = 0$$
$$\frac{\partial P}{\partial t}(g,\delta^{u}(g)) < 0.$$

Then, by the implicit function theorem the function  $\mathcal{U} \ni g \to \delta^u(g)$  is  $C^{r-1}$ . Take a point  $x \in \Lambda_g$  and let  $J^u$  be an interval contained in  $W^u(x)$  and containing x such that, according to Lemma 2.3 there exists a finite measure  $\mu_u$  on the Borel  $\sigma$ -algebra of  $J^u$  and a constant  $C_u > 0$  such that

$$C^{-1}r^{\delta^{u}(g)} \leq \mu_{u}(B_{r}(p)) \leq C_{u}r^{\delta^{u}(g)}$$
(1)

for all  $p \in J$  and r > 0. In a similar way (replacing g by  $g^{-1}$ ) there exists a  $C^{r-1}$  function  $\mathcal{U} \ni g \to \delta^s(g) \in \mathbb{R}$  such that there exists an interval  $J^s \subset W^s(x)$  containing x and a finite measure  $\mu_u$  on the Borel  $\sigma$ -algebra of  $J^s$  such that there exists  $C_s > 0$  satisfying

$$C^{-1}r^{\delta^{\mathfrak{s}}(g)} \leq \mu_{\mathfrak{s}}(B_{r}(p)) \leq C_{\mathfrak{s}}r^{\delta^{\mathfrak{s}}(g)}$$
<sup>(2)</sup>

for all r > 0 and  $p \in J^s$ . By standard properties of hyperbolic sets, there exists  $\epsilon > 0$  such that if  $J^s$  and  $J^u$  are sufficiently small then  $W^s_{\epsilon}(a) \cap W^u_{\epsilon}(b)$  contains exactly one point for all  $a \in J^u$  and  $b \in J^s$ . Given  $A \subset J^u$  and  $B \subset J^s$  define

$$A \times B = \{W^{s}_{\epsilon}(a) \cap W^{u}_{\epsilon}(b) | a \in A, b \in B\}.$$

Take a measure  $\mu$  on the Borel  $\sigma$ -algebra of  $J^{u} \times J^{s}$  such that

$$\mu(A \times B) = \mu_u(A)\mu_s(B) \tag{3}$$

for every pair of Borel sets  $A \subset J^u$ ,  $B \subset J^s$ . Since g is at least  $C^2$ , the stable and unstable foliations extend to  $C^1$  foliations of a neighborhood of  $\Lambda_g$ . Then there exists k > 1 such that

$$(B_{r/k}(p) \cap J^u) \times (B_{r/k}(p) \cap J^s) \subset B_r(p) \subset (B_{kr}(p) \cap J^u) \times (B_{kr}(p) \cap J^s)$$
  
for all  $p \in J^u \times J^s$ . Then, from (1), (2) and (3), there exists  $C > 0$  such that

$$C^{-1}r^{\delta^{s}(g)+\delta^{u}(g)} \leq \mu(B_{r}(p)) \leq Cr^{\delta^{s}(g)+\delta^{u}(g)}$$

for all  $p \in J^u \times J^s$  and r > 0. Then the Hausdorff dimension of  $J^u \times J^s$  is  $\delta^s(g) + \delta^u(g)$ . This follows from the following easy Lemma:

**Lemma.** Let K be a compact metric space and  $\mu$  a probability on the Borel  $\sigma$ -algebra of K such that there exist  $0 \le \delta_1 < \delta_2$  and C > 0 satisfying:

$$C^{-1}r^{\delta_2} \leq \mu(B_r(x)) \leq Cr^{\delta_1}$$

for all  $x \in K$  and r > 0. Then, if  $HD(K), c^{-}(K), c^{+}(K)$  denote respectively the Hausdorff dimension and the lower and upper capacities of K

$$\delta_1 \leq HD(K) \leq c^-(K) \leq c^+(K) \leq \delta_2$$

**Proof.**  $c^+(K)$  can be defined as

$$c^+(K) = \lim_{r \to 0} \sup rac{\log S(r)}{\log(1/r)}$$

where S(r) is the maximum number m such that there exists points  $x_1, \ldots, x_m$  such that  $d(x_i, x_j) \ge r$  for all  $1 \le i < j \le m$ . Then the balls  $B_{r/2}(x_i), i = 1, \ldots, m$  are disjoint. Hence

$$1 \geq \mu\left(\bigcup_{i=1}^{m} B_{r/2}(x_i)\right) \geq \sum_{i=1}^{m} \mu(B_{r/2}(x_i)) \geq mC^{-1}\left(\frac{r}{2}\right)^{\delta_2}$$

Hence

$$m \leq C \left(\frac{2}{r}\right)^{\delta_2}$$

This implies easily  $c^+(K) \leq \delta_2$ . In a similar way one proves  $HD(K) \geq \delta_1$  completing the proof of the Lemma.

Then  $HD(J^{u} \times J^{s}) = \delta^{u}(g) + \delta^{s}(g)$ . Since  $J^{u} \times J^{s}$  is a neighborhood of x and x is arbitrary, it follows that

$$HD(\Lambda_g) = \delta^u(g) + \delta^s(g).$$

Since  $\delta^s$  and  $\delta^u$  are  $C^{r-1}$  functions of g this completes the proof of the Theorem.

**Proof of Lemma 2.2.** Due to the hyperbolicity of  $\Lambda$  there exists  $\delta > 0, C > 0$ and  $0 < \lambda < 1$  such that if  $x \in \Lambda$  and  $y \in M$  satisfy  $d(f^n(x), f^n(y)) < \delta$  for all  $-N \leq n \leq N$  then

$$\operatorname{d}(x,y)\leq C\lambda^N$$
.

Moreover, recalling that we endowed B(A) with the metric

$$\mathrm{d}(lpha,eta) = \sum_{-\infty}^\infty 2^{-|n|} |lpha(n) - eta(n)|,$$

it is easy to see that  $\alpha(n) = \beta(n)$  for all n satisfying

$$|n| < -(\log 2)^{-1} \log d(\alpha, \beta).$$

Since h is continuous there exists k > 0 such that  $\alpha(n) = \beta(n)$  for  $-k \le n \le k$  implies  $d(h(\alpha), h(\beta)) \le \delta$ . Then, given  $\alpha, \beta \in B(A)$  define

$$N = -(\log 2)^{-1} \log d(\alpha, \beta) - 1.$$
 (1)

Then  $\alpha(n) = \beta(n)$  for all  $-N \le n \le N$ . Therefore  $(\sigma^j \alpha)(n) = (\sigma^j \beta)(n)$  for all -k < n < k if  $-(N-k) \le j \le N-k$ . Hence  $d(h(\sigma^j \alpha), h(\sigma^j \beta)) \le \delta$  for  $-(N-k) \le j \le N-k$ . Since  $h\sigma^j = f^j h$ , this implies

$$d(f^j(h(\alpha)), f^j(h(\beta))) \leq \delta$$

for  $-(N-k) \leq j \leq N-k$ . Then

$$d(h(\alpha), h(\beta)) \leq C\lambda^{N-k}$$

Replacing (1) in this inequality, we obtain

$$d(h(\alpha), h(\beta)) \leq C_0 d(\alpha, \beta)^{\gamma}$$

with  $C_0 = C/\lambda^{k+1}$  and  $\gamma = (\log 2)^{-1} \log \lambda$ .

**Proof of Lemma 2.3.** To prove (a) first recall that the subbundle  $E^u \subset TM|\Lambda$ is Hölder continuous because  $r \geq 2$ . Moreover 2.2 implies that h is Hölder continuous. Hence,  $\psi \in C^{\gamma}(B(A),\mathbb{R})$  for some  $0 < \gamma < 1$ , and then  $T\psi \in C^{\gamma}(B^{r}(A),\mathbb{R})$ . Therefore the analiticity of the map  $\mathbb{R} \ni \delta \to P(\delta T\psi) \in \mathbb{R}$ follows from the analiticity of  $P: C^{\gamma}(B^{+}(A),\mathbb{R}) \to \mathbb{R}$ . Before proving (b) let us show that there exists A > 0 > B satisfying

$$S_n(T\psi)(\theta) \le A + Bn \tag{1}$$

for all  $\theta \in B(A)$  and  $n \ge 0$ . For this purpose take  $\overline{\theta}$  such that  $\pi(\overline{\theta}) = \theta$ . Then

$$S_n(T\psi)(\theta) = S_n(T\psi)(\pi(\overline{\theta})) = \sum_{j=0}^{n-1} (T\psi)(\sigma^j(\pi(\overline{\theta})))$$
$$= \sum_{j=0}^{n-1} (T\psi)(\pi(\sigma^j\overline{\theta})).$$

Recalling that  $(T\psi) \circ \pi - \psi$  is homologous to zero, there exists  $u \in C^0(B(A), \mathbb{R})$  such that

$$(T\psi)\circ\pi=\psi+(u\circ\sigma-u).$$

Hence

$$S_n(T\psi(\theta)) = \sum_{j=0}^{n-1} ((T\psi) \circ \pi)(\sigma^j(\theta))$$
$$= \sum_{j=0}^{n-1} \psi(\sigma^j(\overline{\theta})) + u(\sigma^n(\overline{\theta})) - u(\overline{\theta}).$$

Let K be the maximum of u. Then

$$S_n(T\psi)(\theta) \leq \sum_{j=0}^{n-1} \psi(\sigma^j(\overline{\theta})) + 2K.$$
<sup>(2)</sup>

But

$$\sum_{j=0}^{n-1} \psi(\sigma^{j}(\overline{\theta})) = -\sum_{j=0}^{n-1} \log \left| f'(\sigma^{j}(\overline{\theta})) | E_{h\sigma^{j}(\overline{\theta})}^{u} \right|$$
$$= \sum_{j=0}^{n-1} \log \left| f'(f^{j}(h(\overline{\theta}))) | E_{f^{j}h(\overline{\theta})}^{u} \right|$$
$$= -\log \left| (f^{n})'(h(\overline{\theta})) / E_{h(\overline{\theta})}^{u} \right|.$$

Then, if C > 0 and  $0 < \lambda < 1$  are such that

$$\left|(f^n)'(x)/E^u_x\right|^{-1} \le C\lambda^n$$

for all  $x \in \Lambda$  and  $n \ge 0$ ; it follows that

$$\sum_{j=0}^{n-1}\psi(\sigma^j(\overline{\theta}))\leq \log C+n\log\lambda.$$

Replacing this inequality in (2), we obtain (1) with  $A = \log C + 2K$  and  $B = \log \lambda$ . Now, to complete the proof of (b), fix  $\alpha \in B(A)$  and define  $P_n: \mathbb{R} \leftrightarrow$  by

$$P_n(t) = \frac{1}{n} \log \sum_{\sigma^n \theta = \alpha} \exp S_n(t(T\psi))(\theta).$$

Then

$$\frac{dP_n}{dt}(t) = \frac{1}{n} \frac{\sum_{\sigma^n \theta = \alpha} S_n(T\psi)(\theta) \exp S_n(t(T\psi))(\theta)}{\sum_{\sigma^n \theta = \alpha} \exp S_n(tT\psi)(\theta)}$$
$$\leq \frac{1}{n} \sup_{\sigma^n \theta = \alpha} S_n(T\psi)(\theta)$$
$$\leq \frac{1}{n} (A + B_n).$$

This implies that there exists c > 0 such that, if *n* is large,  $(dP_n/dt)(t) \le -c$  for all *t*. In particular

$$P_n(t_1)-P_n(t_2)\leq -c(t_1-t_2)$$

for all  $T_1 \ge t_2$ . By 1.2

$$\log \lambda(t(T\psi)) = \lim_{n \to +\infty} P_n(t).$$

Hence

$$\log\lambda(t_1(T\psi)) - \log\lambda(t_2(T\psi)) \le -c(t_1 - t_2)$$

for all  $t_1 \ge t_2$ . This implies

$$rac{d}{dt}\log\lambda(t(T\psi))\leq -c$$

thus proving (b). To prove (c) take an interval  $J \,\subset W^s(x)$  containing x and define  $F: J \to B^+(A)$  by  $F(p) = \pi h^{-1}(p)$ . Clearly F is continuous. Let us prove that if diam(J) is small enough then F is injective. Let  $K_i \subset \Lambda$  be the image under h of the set  $\{\theta \in B(A) | \theta(0) = i\}$ . The sets  $K_i$  are compact and disjoint. Then there exists  $\delta_0 > 0$  such that  $d(K_i, K_j) > \delta_0$  for all  $1 \leq i < j \leq m$ . Since J is an interval contained in a unstable manifold, diminishing its diameter grants diam $(f^{-n}(J)) \leq \delta_0$  for all  $n \geq 0$ . This means that if  $K_i$  is the set of the family  $\{K_1, \ldots, K_m\}$  that contains  $f^{-n}(x)$ , then  $f^{-n}(J \cap \Lambda) \subset K_i$  because diam  $f^{-n}(J \cap \Lambda) < d(f^{-n}(x), \Lambda - K_i)$  and  $f^{-n}(J \cap \Lambda) \subset \Lambda$ . On the other hand, if  $\theta \in B^+(A)$ , the point  $h(\theta)$  satisfies

$$f^n(h(\theta)) \in K_{\theta(n)}$$

for all  $n \in \mathbb{Z}$ . Hence, if  $h(\theta_0)$  and  $h(\theta_1)$  are contained in J, it follows that  $\theta_1(-n) = \theta_0(-n)$  for all  $n \ge 0$  because, for all  $n \ge 0$ 

$$f^{-n}(h(\theta_0)) \in K_{\theta_0(-n)}$$
$$f^{-n}(h(\theta_1)) \in K_{\theta_1(-n)},$$

and, as we explained above, these two properties plus the fact that  $h(\theta_0), h(\theta_1) \in$ J, imply  $\theta_0(-n) = \theta_1(n)$ . Now suppose that  $F(x_1) = F(x_2)$ . This means that  $\pi h^{-1}(x_1) = \pi h^{-1}(x_2)$  and then  $h^{-1}(x_1)(n) = h^{-1}(x_2)(n)$  for all  $n \ge 0$ . But we also have  $h^{-1}(x_1)(n) = h^{-1}(x_2)(n)$  for all  $n \leq 0$  because  $h(h^{-1}(x_1)) =$  $x_1 \in J$  and  $h(h^{-1}(x_2)) = x_2 \in J$  and therefore  $h^{-1}(x_1)(n) = \theta_0(n) =$  $h^{-1}(x_2)(n)$  for all  $n \leq 0$ . This completes the proof of the injectivity of F. Now take J being open. We claim that  $F(J \cap \Lambda)$  is an open subset of  $B^+(A)$ . Take  $y \in J$ . Given  $\epsilon > 0$  there exists N > 0 such that  $\theta(n) = h^{-1}(y)(n)$ for all  $n \leq N$  implies  $h(\theta) \in W^u_{\epsilon}(y)$ . Therefore, since J is open, there exists N > 0 such that if  $\theta \in B(A)$  satisfies  $\theta(n) = h^{-1}(y)(n)$  for all  $n \leq N$ then  $h(\theta) \in J \cap \Lambda$ . To prove that  $F(J \cap \Lambda)$  is open we shall show that if  $\overline{\theta} \in B^+(A)$  is close to F(y) then  $\overline{\theta} \in F(J \cap \Lambda)$ . If  $\overline{\theta}$  is close to F(y) = $\pi h^{-1}(y)$  then  $\overline{\theta}(n) = h^{-1}(y)(n)$  for  $0 \le n \le N$ . Define  $\theta \in B(A)$  by  $\theta(n) = h^{-1}(y)(n)$  for  $n \leq 0$  and  $\theta(n) = \overline{\theta}(n)$  for  $n \geq 0$ . Observe that this definition is correct because  $h^{-1}(y)(0) = (\pi h^{-1}(y))(0) = F(y)(0) = \overline{\theta}(0)$ . Hence  $\theta(n) = h^{-1}(y)(n)$  for all  $n \leq N$  because it is true for  $n \leq 0$  by definition and  $\theta(n) = \overline{\theta}(n) = h^{-1}(y)(n)$  for  $0 \le n \le N$ . Then  $h(\theta) \in J \cap \Lambda$ . Hence  $\overline{\theta} = \theta/\mathbb{Z}^+ = h^{-1}(h(\theta))/\mathbb{Z}^+ = \pi h^{-1}(h(\theta)) = F(h(\theta))$  completing the proof of the openess of  $F(J \cap \Lambda)$ . Since  $J \cap \Lambda$  is a Cantor set we can take J such that  $J \cap \Lambda$  is open and compact. Then  $F: J \cap \Lambda \to F(J \cap \Lambda)$  is a homeomorphism. Define a measure  $\mu$  on the Borel  $\sigma$ -algebra of  $J \cap \Lambda$  by  $\mu(S) = \nu(F(S))$  where  $\nu = \nu_{\delta T \psi}$  is given by 1.1. Since  $F(J \cap \Lambda)$  is open,  $\mu(F(J \cap \Lambda)) > 0$ . Hence  $\mu(J \cap \Lambda)$  is positive and  $\leq 1$ . To show that  $\mu$  satisfies the inequalities of part (c) of Lemma 2.3, define, for  $\mu \in J \cap \Lambda$ ,

$$S_{\delta}(y,n) = \{p \in J \cap \Lambda | d(f^k(p), f^k(y)) \le \delta \text{ for } 0 \le k \le n\}$$

and, if  $\theta \in B^+(A)$  define  $B(\theta, n) = \{\alpha \in B^+(A) | \alpha(j) = \theta(j) \text{ for } 0 \le j \le n\}$ . Let us prove that there exist  $\delta_1 > 0$  and N > 0 such that:

$$F(S_{\delta_1}(y,n))\subset B(F(y),n)\subset F(S_{\delta_1}(y,n-N))$$

for all  $y \in J \cap \Lambda$  and  $n \geq N$ . Choose any  $\delta_1$  satisfying  $0 < \delta_0$  where  $\delta_0$  satisfies, as above, the property  $d(K_i, K_j) > \delta_0$  for all  $1 \leq i < j \leq m$ . Then, by the same arguments used before, if  $p, y \in J \cap \Lambda$  and  $d(f^k(p), f^k(y)) \leq \delta_1$  for  $0 \leq k \leq n$ , it follows that  $f^k(p)$  and  $f^k(y)$  are contained in the same atom of the partition  $\{K_1, \ldots, K_n\}$  for all  $0 \leq k \leq n$ . Hence  $h^{-1}(p)(n) = h^{-1}(y)(n)$  for all  $0 \leq k \leq n$  and then  $F(p) \in B(F(p), n)$  for all  $p \in J \cap \Lambda$  and  $n \geq 0$ .

To prove the second inclusion, take  $\epsilon > 0$  such that  $W_{\epsilon}^{u}(x) \subset J$  for all  $y \in J \subset \Lambda$  (recall that  $J \cap \Lambda$  is compact and J is open). Take N > 0 so large that  $\alpha(n) = \beta(n)$  for  $n \leq N$  implies  $h(\alpha) \in W_{\epsilon}^{u}(h(\beta))$ . Moreover take  $\epsilon$  smaller than  $\delta_{1}$ , so that the last relation in particular implies  $d(h(\alpha), h(\beta)) < \delta_{1}$ . Then,  $\alpha(n) = \beta(n)$  for  $n \leq N$  implies  $d(h(\alpha), h(\beta)) < \delta_{1}$ . Given  $\overline{\theta} \in B^{+}(F(y), n), n \geq N, y \in J \cap \Lambda$ , define  $\theta \in B(A)$  by  $\theta(m) = \overline{\theta}(m)$  for  $m \geq 0$  and  $\theta(m) = h^{-1}(y)(m)$  when  $m \leq 0$ . Arguing as before,  $\theta$  is well defined and  $h(\theta) \in W_{\epsilon}^{u}(y)$ . Since  $W_{\epsilon}^{u}(y) \subset J$  it follows that  $h(\theta) \in J \cap \Lambda$ . If we show that  $h(\theta) \in S_{\delta_{1}}(y, n - N)$  it will follow that  $\overline{\theta}$  (that satisfies  $\overline{\theta} = F(h(\theta))$ ) belongs to  $F(S_{\delta_{1}}(y, n - N))$ . Hence  $\overline{\theta} \in F(S_{\delta_{1}}(y, n - N))$  thus proving the inclusion  $B(F(y), n) \subset F(S_{\delta_{1}}(y, n - N))$ . To prove that  $h(\theta) \in S_{\delta_{1}}(y, n - N)$  observe that  $f^{k}(h(\theta)) = h(\sigma^{k}(\theta))$  and  $\sigma^{k}(\theta)(m) = \theta(m + k)$  for all m and k. Hence

$$\sigma^k( heta)(j) = \overline{ heta}(j+k) = h^{-1}(y)(j+k)$$

when  $0 \leq j + k \leq n$ . Hence

$$\sigma^k( heta)(j) = h^{-1}(y)(j+k) = h^{-1}(f^k(y))(j)$$

for  $0 \leq j \leq n - k$ . Then, if  $n - k \geq N$ :

$$\mathrm{d}(h(\sigma^k(\theta)),f^k(y))=\mathrm{d}(h(\sigma^k(\theta)),h(h^{-1}(f^k(y)))\leq \delta_1.$$

Since  $h(\sigma^{k}(\theta)) = f^{k}(h(\theta))$ :

$$d(f^{k}(h(\theta)), f^{k}(y)) \leq \delta_{1}$$

when  $n - k \ge N$ , or, what is the same,  $k \le N - n$ . This means  $h(\theta) \in S_{\delta_1}(y, n - N)$ . This completes the proof of  $B(F(y), n) \subset F(S_{\delta_1}(y, n))$ . These inclusions can be written as

$$B(F(y),n)\subset F(S_{\delta_1}(y,s))\subset B(F(y),n-N)$$

and then

$$u(B(F(y),n)) \leq \mu(F(S_{\delta_1}(y,n)) \leq \nu(B(F(y),n-N)).$$

Now recall that if  $\varphi \in C^{\gamma}(B^+(A),\mathbb{R})$  then, if  $\nu_{\varphi}$  is given by 1.1, then there exists  $C_1 > 0$  such that for all  $\theta \in B^+(A)$  and  $n \ge 0$ :

$$C_1^{-1}\lambda(\varphi)^{-n}\exp(S_n\varphi)(\theta) \leq \nu_{\varphi}(B(\theta,n)) \leq C_1\lambda(\varphi)^{-n}\exp(S_n\varphi)(\theta).$$

Then, if  $\log \lambda(\delta T \psi) = P(\delta T \psi) = 0$ , it follows that

$$C_1^{-1}\exp(S_n\delta T\psi)(\theta) \le \nu(B(\theta, n)) \le C_1\exp(S_n\delta T\psi)(\theta)$$
(2)

for all  $\theta \in B^+(A)$  and  $n \ge 0$ . From (1) and (2) it follows that there exists  $C_2 > 0$  such that for all  $y \in J$  and  $n \ge 0$ :

$$C_2^{-1}\exp(S_n\delta T\psi)(F(y)) \leq \mu(F(S_{\delta_1}(y,n))) \leq C_2\exp(S_n\delta T\psi)(F(y)).$$

But since we can write

1

$$(T\psi)\circ\pi=\psi+u\circ\sigma-u$$

where  $u \in C^0(B(A), \mathbb{R})$ , it follows that there exists A > 0 satisfying

$$|(S_nT\psi)(\pi(\theta)) - (S_n\psi)(\theta)| \le A$$

for all  $n \ge 0$  and  $\theta \in B(A)$ . Since  $F = \pi h^{-1}$ , we obtain,

$$\left| (S_n T \psi)(F(y)) - (S_n \psi)(h^{-1}(y)) \right| \leq A.$$

But clearly

•

$$(S_n\psi)(h^{-1}(y)) = -\log \left| (f^n)'(y)/E_y^u \right|.$$

Hence

$$C_2^{-1} \leq \frac{\mu(S_{\delta_1}(y,n))}{|(f^n)'(y)/E^u|^{-\delta}} \leq C_2$$

for all  $n \ge 0$  and  $y \in \Lambda$ . Define  $\rho(y, n) = d(y, J - S_{\delta_1}(y, n))$ . By well known arguments (that require f to be at least  $C^2$ ), there exists  $C_3 > 0$  such that

$$C_{3}^{-1} \leq \frac{\operatorname{diam} S_{\delta_{1}}(y, n)}{\left| (f^{n})'(y) / E_{y}^{u} \right|^{-1}} \leq C_{3}$$
(4)

$$C_{3}^{-1} \leq \frac{\rho(y,n)}{\left| (f^{n})'(y)/E_{y}^{u} \right|^{-1}} \leq C_{3}$$
(5)

for all  $y \in J \cap \Lambda$  and  $n \ge 0$ . Given a small r > 0 take n > 0 such that

$$\rho(y, n+1) \leq r \leq \rho(y, n).$$

Then, by (3) and (5),  

$$\mu(B_{r}(y)) \leq \mu(S_{\delta_{1}}(y, n))$$

$$\leq C_{2} |(f^{n})'(y)/E_{y}^{u}|^{-\delta}$$

$$\leq C_{2}C_{3}^{\delta}\rho(y, n)^{\delta}$$

$$= C_{3}C_{3}^{\delta}r^{\delta} \left(\frac{\rho(y, n)}{r}\right)^{\delta}$$

$$\leq C_{2}C_{3}^{\delta}r^{\delta} \left(\frac{\rho(y, n)}{\rho(y, n+1)}\right)^{\delta}$$

$$\leq C_{2}C_{3}^{\delta}r^{\delta} \left(\frac{C_{3} |(f^{n})'(y)/E_{y}^{u}|^{-1}}{C_{3}^{-1} |(f^{n+1})'(y)/E_{y}^{u}|^{-1}}\right)^{\delta}$$

$$= C_{2}C_{3}^{\delta}\delta r^{\delta} |f'(f^{n}(y))/E_{f^{n}(y)}^{u}|^{-\delta}$$

Hence, if  $C_u$  is an upper bound for  $|f'(z)/E_z^u|^{-1}$ ,  $z \in \Lambda$ , it follows that

 $\mu(B_r(y)) \leq Cr^{\delta}$ 

with  $C = C_2 C_3^{3\delta} C_4^{-\delta}$ . In a similar way, but taking the maximum n such that

 $S_{\delta_1}(y,n) \subset B_r(y)$ 

and using (4) instead of (5), a lower estimate of the form  $\mu(B_r(y)) \ge C'r^{\delta}$  is obtained, completing the proof of Lemma 2.3.

**Proof of Lemma 2.4.** Let m be the dimension of the fibers of the unstable subbundle  $E^u$  of the hyperbolic set  $\Lambda$ . Let G be the Grassmannian bundle of m-dimensional subspaces of the fibers  $T_x M$ , i.e. G is the set of pair (x, E) with  $x \in M$  and E being an m-dimensional subspace of  $T_x M$  endowed with its natural structure of smooth manifold. Associated to every  $f \in \text{Diff}^r(M)$  we have a diffeomorphism  $F_f \in \text{Diff}^{r-1}(G)$  defined by  $F_f(p, E) = (f(p), f'(p)E)$ . The map  $\text{Diff}^r(M) \ni f \to F_f \in \text{Diff}^{r-1}(G)$  is  $C^{\infty}$ . Given  $0 \leq \gamma < 1$  and  $g \in \text{Diff}^r(M), r \geq 2$ , define  $\Phi_g: C^{\gamma}(\Lambda, G) \leftrightarrow$  by

$$\Phi_g(\xi)(x) = F_g(\xi(f^{-1}(x))).$$

When  $\gamma = 0$  it is easy to check through standard techniques that the map  $\xi_0 \in C^0(\Lambda, G)$  defined by  $\xi_0(x) = (x, E_x^u)$  is a hyperbolic fixed point of the  $C^{r-1}$  map  $\Phi_f$ . Moreover the map Diff<sup>r</sup> $(M) \times C^0(\Lambda, G) \ni (\xi, g) \to \Phi_g(\xi) \in C^0(\Lambda, G)$ 

is  $C^{r-1}$ . Hence there exists a  $C^r$  neighborhood  $\mathcal{U}$  of f and a  $C^{r-1}$  map  $\mathcal{U} \ni g \to \xi_g \in C^0(\Lambda, G)$  such that  $\xi_f = \xi_0$  and  $\Phi_g(\xi_g) = \xi_g$  for all  $g \in \mu$ . Let  $\pi: G \to M$  be defined by  $\pi(p, E) = p$ . Then, well known methods show that  $\pi\xi_g = h_g \colon \Lambda \to M$  is a topological equivalence between  $f \mid \Lambda$  and  $g \mid \Lambda_g$  and if  $E^u(g)$  is the unstable subbundle of  $\Lambda_g$ , then  $\xi_g(x) = (h_g(x), E^u_{h_g(x)}(g))$ . From this it follows that the map  $\mathcal{U} \ni g \to |(\det(g'/E^u(g)) \circ h_g| \in C^0(\Lambda, \mathbb{R})$  is  $C^{r-1}$ , thus proving (c). To prove (b) recall that it is well known that, since r is  $\geq 2$ , taking  $0 < \gamma < 1$  sufficiently small, the map  $\xi_0$  is a hyperbolic fixed point of the  $C^{r-2}$  map  $\Phi_g: C^{\gamma}(\Lambda, G) \leftrightarrow$ . Then, if  $\mathcal{U}$  is small enough, the map  $\xi_g$  obtained above is a  $C^{r-2}$  map  $\mathcal{U} \ni g \to \xi_g \in C^{\gamma}(\Lambda, G)$ . Then the map  $\mathcal{U} \ni g \to |(\det(g'/E^u(g)) \circ h_g| \in C^{\gamma}(\Lambda, G))$ .

#### References

- 1. R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics 470 (1973). Springer-Verlag.
- 2. \_\_\_\_\_, Hausdorff dimension of quasi circles, IHES Publ. Math. 50 (1979), 11-25.
- 3. F. Ledrappier, Mesures d'equilibre d'entropie complètment positive, Systèmes Dynamiques, Astérisque 50 (1977), 251-272.
- A. Manning, H. McCluskey, Hausdorff dimension for horseshoes, Erg. Th. & Dyn. Syst. 3 (1983).
- J. Palis, M. Viana, On the continuity of Hausdorff dimension and limit capacity for horseshoes, Proc. of Symposium on Dynamical Systems, Chile 1986, Lecture Notes in Mathematics 1331 (1988), 150-160. Springer-Verlag

Ricardo Mañé Instituto de Matemática Pura e Aplicada Est. D. Castorina, 110 22460, Rio de Janeiro, Brazil