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A b s t r a c t .  Let f be a G 'r diffeomorphism, r > 2, of a two dimensional manifold M 2, and let 
A be a horseshoe of f (i.e. a transitive and isolated hyperbolic set with topological dimension 
zero). We prove that there exist a G 'r neighborhood// of f and a neighbourhood U of A such 
that for g E / / ,  the Hausdorff dimension of A n  on(U) is a U r - 1  function of 9. 

1. Introduction 

Let M be a closed manifold and let Diff ' (M) be the space of C ~ diffeomorphisms 

of M endowed with the C '~ topology. We say that A c M is a basic set of f E 

Diffr(M) if it is hyperbolic, isolated (i.e. there exists a compact neighborhood 

U of A such that A = Nn fn(U)) and f / A  is transitive. If moreover A is totally 

disconnected (i.e. the connected component of every p E A is {p}) we say that 

A is a horseshoe. 

The objective of this paper is to prove the following result: 

Theorem A. Let A be a horseshoe of f E Diffr(M), d i m M  = 2, r > 2, 

and let U be a compact neighborhood of A such that An fn(U) = A. Then 

there exists a C ~ neighborhood II of f such that the Hausdorff dimension of 

Mr, gn(U) is a C ~-1 function ofg EII. 

When r = 1 this result was proved by Manning and McCluskey ([4]). A dif- 

ferent proof was given by Palis and Viana ([5]). Actually Manning and McCluskey 

work with the dimension of A N WS(p), where W3(p) is the stable manifold of 

a periodic point. Our proof of Theorem A does not cover the C 1 case. 

Our proof relies in a method, introduced by Bowen iia [2], that makes possible 
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2 RICARDO M A i'7,It~ 

to read, through thermodynamic formalism, the Hausdorff dimension of  hyperbolic 

conformal invariant sets. Since dim M -- 2, our horseshoe is roughly speaking, 

a Cartesian product of two such objects. However, in our case, a technical ob- 

struction appears in the application of Bowen's method forcing us to deviate it 

along a cumbersome roundabout. 

In order to explain this technical obstruction and the result through which we 

shall circumvent it, we shall first recall some definitions, if X and Y are metric 

spaces we say that a function f :  X ~ Y is HOlder 7-continuous, 0 < 7 < 1, if 

d(f(x),f(y)) 
s u p  < o o .  z~u d(x, y)'t 

Denote C'~(X , Y) the set of HOlder "/-continuous maps from X into Y. When Y 

is a normed space and X is compact we shall consider C'~(X, Y) endowed with 

the norm II-117 given by 

-  (u)ll I1 11  = sup I1 (=)11 + sup = d(x ,v)"  

When X is compact and Y is an n-dimensional manifold, C'7(X, Y) is a Banach 

manifold modelled on Cr(X, Rn). Given an rn • m matrix A whose entries aij 
are 0 or 1, define B+(A) as the space of sequences 0: 2r+ .--, { 1 , . . .  , m} such 

that ae(,qe(n+l) = 1 for all n > 0. Endow B+(A) with the metric d(oqfl)  = 

~n>o 2-nla(J) - fl(J)l" The shift a:  B + (A) ~ is defined by ~r(0)(n) = 0(n + 

1). Define B(A) as the space of sequences 0:Z ~ ( 1 , . . .  , m }  that satisfy 

ae(,~)0(,~+l) = 1 for all n endowed with the metric 

d ( a ,  fl) = ~ - flCn)l. 

The shift a : B ( A )  ~-, is defined as before. Given r E C~ the 
Perron-Froebenius operator s C~ R) *---" is defined by 

( s 1 6 2  E P ( v ) e x p r  �9 

~Cu)== 

Then 

where 
a"Cv)== 

n - 1  

s . r  C o g .  
.f=O 
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It is easy to prove that for all x E B + (A) the limit 

lira -1 log(egl)(=) 
n---* +oo  ?/, 

exists and is independent of z (see section I). Define P ( r  as this limit. Clearly 

exp P ( r  is the spectral radius of L,k and it follows from Ruelle's theorem (whos.e 

statement will be recalled in the next section) that when r E G "Y (B + (A), R) then 

exp P ( r  is a simple eigenvalue of s C'Y(B+(A), R) ~ and the rest of the 

spectrum of s  ~-" is contained in the disk Izl < e x p P ( r  

Moreover it is well known that P ( r  is the topological pressure of r but we 

shall not use that concept. 

The question of the smoothness of the Hausdorff dimension of rl,~ g, (U)  as 

a function of g E ~/ is reduced, through Bowen's method, to the smoothness 

of the composition of certain function /2 9 g ---, Cg E C'T(B+(A), R) with 

P:C ' t (B+(A) ,R)  ~ R. The first function is C ~-2 and the second, as we 

shall see below, is real analytic. Then the composition turns out to be C ~-2 

that is below what we want. To improve this method we shall show that t/ 

g ~ Cg ~ C~  is C ~-1. But now the problem is that P,  as a map 

P: C~  ~ R is only Lipschitz ([3]). To obtain our result we have to 

use both properties simultaneously and the following theorem. 

Theorem B. Let N be a Banach manifold and let ~: N ---, C ' t (B+(A) ,  •), 

0 < 7 < 1, be a C k function, k > 1, such that ~ : N  ~ C~ is 

C k+l. Then P o ~: N ---, R is C k+s. 

To explain the role of this theorem in the proof of Theorem A we shall give 

a short outline of its proof. 

Let M be a two dimensional manifold and A a horseshoe of f E Diffr(M),  

r > 2. Let U be a neighborhood of A such that n , , f n ( U )  = h. Take a 

neighborhood /2 of f such that A0 = n n g " ( U )  is a horseshoe of g for all 

g E /./ and there exists a C r map Z/ 9 g ---, hg E C~ M )  such that hg is a 

topological equivalence between f [h  and g[hg. Define 6~ and 6U(g) as the 

Hausdorff dimensions of W~(x)N Ag and W ~ ( z ) n  Ag, z e A~. These numbers 

are independent of the point x. There are several ways to prove this, our proof 

will implicitly contain one. We shall also see that the Hausdorff dimension of 

Ag is 8"(g) + 6=(g). Therefore we have only to prove that 6"(g) and 6t~(g) are 

C "-1 functions of g. Take a shift a: B(A)  ~ topologically equivalent to f l  A. 
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Let h: BCA ) ~ / t  be a homeomorphism realizing this equivalence. Given g E/2 

define r BCA ) ~ R by 

~bg(0) = - l o g  g'ChghC#))/E~gh(O). 

There exists 0 < 7 < 1 such that r E C'7(B(A),R). Moreover there exists a 

continuous linear map T: C'Y(B(A),R) ~ such that (Tr  is homologous to 

and independent of the values 0(n) for n < 0. ([1]). This means that T r  can 

be regarded as an element of C~(B+(A), R). Define a function B:  R • ~/ ---, R 

by B(8,g) = P(STr Essentially following Bowen ([2]) one proves that 5U(g) 
satisfies BCS"(g),g) = 0. Now suppose that we were able to prove that the map 

Lt ~ g ---, Cg ~ C'~(B+(A),R) is, say, Ck,k  > 1. Then, since T is linear and 

P: C'T(B+(A), R) ~ R is real analytic, it would follow that B is C k. 

Moreover, as we shall see, it is easy to prove that for each g E /2 there exists 

C ( g ) >  0 such that (aB/aS)(8,g) < -C(g)  for all 8. Then for each g E U 

there exists a unique 8(g) satisfying B(8(g),g) = 0. Hence 8(g) = 8'~(g) and 

by the implicit function theorem, the function 8u:/2 ~ R is C k. Therefore this 

approach would work if we could prove that, for some 0 < 7 < 1, the function 

II ~ g ~ r E C~(B(A),  R) is C ~-1. However we can only prove that it is 

C r-2. But we can also prove that Ll 9 g ---* ~bg E C~ is C r-x. Hence 

we can apply Theorem B to N = / 2  and �9 being the map g ~ ~/,g and we obtain 

that B is C ~-1 and then that ~Su:/2 ~ R is also C ~-z. 

1. Proof of Theorem B. 

Let a:  B + (A) *--" be a subshift of finite type. To simplify the notation we shall 

denote K = B+(A). Given ~b E C '7 (K ,R) ,0  < "1 < 1, the Perron-Froebenius 

operator / ~ :  C~ R) ~ is defined by 

 ,C )expr 
weo-"(=) 

Theorem 1.1. (RueUe [1]) I f  r E C '7 (K,R) ,0  < "t < 1, the spectrum of 
f.,p : C'I ( K, R ) ~ consists in a simple eig envalue A(r > 0 and a set contained 
in the disk {z E c/Izl < A(r Moreover there exist a strictly positive 

function h~ E C't(K, R) and a probability L,~ on the Borel a-algebra of  K 

satisfying 
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a) /~,ph,p = A(r 

b) f h ~ d v , p  = 1 

c) z : ~  = ~(r 
d) For all ~o E C#(K,R), o_<fl_<'7: 

lim X(r = 0  
t'L---~ dl- O0 

and for  0 < fl <_ "7 the convergence is uniform in the unit C a ball 

e) There exists C1 > 0 such that if for 0 E B+CA) and n > 0 we define 

B(O,n) = {ot[a(j)=O(j)forO < j <_ n}, then 

c ; ~ ( r  -" expCS.r < ~CBCO,-)) _< C~(r expCS.r 

Corollary 1.2. l f  r E C' t (K,R) ,O < "7 <- 1, then 

l i m - l l o g  ~ exp(S~r =logA(r 
n - - * + o o  n 

y E a - n ( z )  

uniformly on x E K. 

Proof. From part (d) of 1.1 follows that 

lim 1 log Z exp(Snr lim 1 log(~nl)(z) 
n--*-boo n n - - * + o o  n 

= logA(r + lim llogA(r ) = logA(r 
n---* + o o  n 

uniformly on x E K. 

Corollary 1.3. I f  r E C~ R) the limit 

lira !log ~ expCS.r 
n--~ + o o  n on(y)== 

exists for all x E K and is independent of  x. 

Proof. Define ~n: C~ ~ by 

r162  ~ ~xpCS.r 
n ~n(u)== 

Then 
C~Cr = E~-cu)== ~(s.~)Cy) expCS.r 

Eo-cu)== expC s.  r 



6 gICARDO MA~ 

Hence 

for all x E K. Then 

I1 11o 

11 '(r - 1 

for all n. Then the sequence of maps ~,~: C~ ~ is uniformly Lipschitz 

and is pointwise convergent (by 1.2), in the dense subset C'I(K, R) c C~ R). 
Therefore the sequence ~,, converges uniformly on compact subsets of C~ R) 
to a continuous function ~: C~ R) ~---'. Since ~ ( r  E C~ R) is (by 1.2) 

a constant function when r E C'7(K,R),O < ff < 1, then, by the density of 

C~(K, R) in C~ R) and the continuity of �9 in C~ R), it follows that 

~ ( r  is a constant function for each r E C~ R). 

Using 1.3, given ~/, E C~ [~) define 

P(r  lim l log ~ exp(S,,r  
n-*+oo  rl  yEa-n(z) 

Corollary 1.4. For all 0 < "7 <_ 1 the functions 

P:C'Y(K,[~) --~ R 

C~(K,R) ~ r --~ u,p e C'T(K,R) ' 

C'Y(K,R) 9 r --4 h,p e C~(K,R) 

are real analytic. 

Proof. Let D be a closed disk centered at A(r such that 

D rq s p ( s 1 6 2  {A(r 

Let F be the space of linear maps of C~(K, R) into itself endowed with the 

topology of the norm. Let U be a neighborhood of g~ in F such that a D  rq 

sp(L) = r for all L E U. Then, if L E U, we can define the projection of 

C~(K, R) given by: 

1 ~ (AI_L)_ldA. (1) 
~rL = 2~i D 

When L = s the image of this projection is the eigenspace associated to the 

eigenvalue A(r By part (d) of Theorem 1.1 this space is spanned by he,  hence 

it is one dimensional. Therefore if U is small enough the image of rx, is also 

one dimensional and invariant under L. Hence it is an eigenspace associated to 
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an eigenvalue/~(L) that is near to A(r because the image of ~rz is near to the 

image of r z# .  Then/z(L) > 0. Hence we can calculate it as 

I~(L)-= <w, lrzLv) 
(w, rLU) (2) 

where v �9 C ' t (K,R)  and w �9 C't(B+(A),R) ' are vectors such that the inner 

product in the denominator is r 0. Choose v and w such that (w, rzr ~ O. 
Then, the previous requirement, is satisfied for all L �9 U if U is small enough. 

Then (1) and (2) show that #(L) is a real analytic function of L. Moreover, by 

elementary arguments, the spectrum of L consists of ~(L) and a set contained 

in a disk {z/Izl < r} with r < it(L) (recall that by Theorem 1.1 this property 

holds for L =/~r Hence, if ~o is so near to r that s �9 U, then 

~,(Z~,) = ~(~).  (3) 

Take a neighborhood V of r in C~(K, R) such that / ~  �9 U when ~o �9 V. 

Clearly the map V 9 p ---, / ~  �9 F is real analytic. Hence the map V 

p ---* )~(~o) �9 R is real analytic because it is the composition of the maps 

V ~ p --~ s  �9 U and U ~ L ~ / z ( L )  �9 R. Therefore the map V 9 p --~ 
. * .  "/ t P(~o) = log A(~o) �9 l~ is real analytic. Since the spectrum of/~,p. C (K, R) ~---,, 

is the same as the spectrum of s C~(K, R) .--,, a similar argument shows that 

there exists a neighborhood U o f / ~  in the space of linear continuous maps of 

C~(K, R)' endowed with the topology of the norm, such that for each L E U there 

exists a projection ~'L: CT(K,R) ' "-', depending analytically on L, and whose 

image is the one dimensional eigenspace associated to the eigenvalue ,k(r We 

leave to the reader to check that given a neighborhood W of r such that s �9 U 

when ~o �9 W, then t,~o and h~o are given by 

Then they are real analytic functions of q, �9 W. 

Corollary 1.5. For all 0 < 'T < 1, u# is a weakly continuous function of 
r e C~(K; R), i.e. 

for every convergent sequence r  ~ r in C~(K, R) and all ~o e C~ R). 
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Proof.  Let ~,,~ ~ ~b be a convergent sequence in C'~(K, •) and suppose that 

yen does not converge weakly to re .  Then we can assume that z~r ~ converges 

weakly to a probability v ~ re .  Then 

s 1 6 2  = lira Lr ~ ,  l im ,~(g,,)vr = )~(~b)v. 
r~---* d-  o o  rt,---*--f- o o  

Hence, z,, E C~ ' c C'V(K,R) ' is an eigenvector of C~:C~(K ,R)  ' ~ as- 

sociated to the eigenvalue A(~/,). But ,~(~b) is a simple eigenvalue of 

s C~(K,R)  ' .--, because )~(~b) is a simple eigenvalue o f /~ r  R) ~---'. 
. .  , '/ ! Since z% is an eigenvector of L,p, C (K, R) *--' associated to )~(~b), it follows 

that z,, is a scalar multiple of re.  But since both are probabilities it follows that 

/'/ ~--- /~b. 

Corollary 1.6./f~ E C ~ ( K , a ) , O  < "~ <_ ~, then 

lim [1 s f ph dv  =0 
. - .+oo n L~I  

for all ~9 ~ C3(K,~) ,O  <_ fl <_ 7. Moreover, when 0 < fl <_ 7, the conver- 

gence is uniform in the unit ball of  C ~ 

Proof.  It is easy to check that 
n - - I  

.7"=0 

Then 
n - 1  

n- j  A -J J 1 

j = O  

But by Ruelle's theorem 

lim ~o,~(~) - j / ~ 1  - ~ohr ~ 

and 

= 0  

Hence 

s u p  

n - 1  

l im -ln,~-"C~b)L~($,,~o ) - ~ )~(~b)-('*-J)s 
n--.* -I--b oo 

j=O 3 

But, by Ruelle's Theorem, 

= 0 .  

= 0 .  

( 1 )  

. (2) 
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From (2) it follows that 

II- I I lim 1 Z A(~b)'(n-J)L;-iph*-h,  ph,  d~,r = 0 .  
n---*+oo n j = 0  

Also from Ruelle's theorem it follows that 

lim A - " ( r  - h,/, o = 0 
n--,, + oo 

Then, by (1), (3) and (4): 

(3) 

(4) 

0 

Iq , , , , ,  / II = l i m  1 A - ' ~ / ~  S,~o - ~oh,~du~ <_ 
n---,+oo s n fl 

lim An(~b) ]1 " 
I I  

_< 

n---,+oo p 

The uniform convergence in the unit C a ball follows from the fact that, by part (d) 

of Ruelle's theorem, all the convergences involved in this argument are uniform 

in the unit ball of C # for 0 < /3  < 7. 

Corollary 1.7. lf O < 7 <<- 1, and ~b e C'7(K,R), then the derivative 

e'(~):  c~CK, R) --, a 

is given by 
lY(~b)~o = f ~oh~du~. 

Proof. Fix p E K and define P,: C'7(K, R) , R by 

Pn(~b) = 1 log( /~ l ) (p ) .  
n 

Then an easy calculation shows that 

p . (@,  = _z L;(s.~) 
, ~ 1  

Hence, 1.6 implies that 

P'(r = ,,-+o,lim P.(r 
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Now we shall prove Theorem B. This proof requires two Lemmas. 

We say that a map f :  Kx ---, Ks,  where K1,// '2 are metric spaces, is compact 

if it maps bounded sets onto relatively compact sets. It is easy to see that if a 

sequence of compact maps f , :  Kx ~ Ks  converges to a map f :  K1 ---, K2 

uniformly on bounded sets, then f is compact. 

L e m m a  1.9. Let El ,  Es be Banach spaces and U c Ex an open set. I f  

f :  U ~ 17,2 is a C k compact map, then for  all z �9 U, the derivatives 
i 

fCJ)(z) :E1 x . . .  x E1 --4 E2 are compact for  all 1 < j < k. 

Proof .  Given x �9 U let B be the unit ball centered at 0 and define maps 

fn: B ~ Es by 

f,,(,~) = - ( f ( ~  + ~,~) - fC~))- 

Then the sequence .1", converges uniformly to f ' ( x ) / B .  Since clearly each map 

f,, is compact, it follows that i f ( x )  is compact. Now suppose that we have proved 

that f ( D ( z )  is compact for 1 < j < m. Define maps fn: B ~ Es by 

i 

f,,(,~) = n " C f ( ~  + ln,~) _ f ( ~ : ) _  (~) ,, 
1=1 

Then the sequence f,~ converges uniformly to the map 

S ~ v --, f C ' ) ( ~ ) 0 , , . . . ,  ~,) �9 Zs.  

Hence this map is compact. Since using the symmetry of the m-linear map 

f ( 'n)(x)  it is possible to write f ( ' ~ } (x ) ( v l , . . .  ,v,n) as a linear combination of 

the vectors f ( m ) ( z ) ( v i , . . .  , vi), 1 < i < m, it follows that f(m) is compact. 

L e m m a  1.10. Let Eo, Ex, 17,2 be Banach spaces, U c Eo an open set and 

suppose that f :  U ~ Ex, L: Ex ~ E2 and P: E2 ~ R are maps satisfying 

a) L is linear and compact 

b) f is Ck,  k > O 

c) L o f / s C  k+x 

d) P o L is C k§ 
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e) There exists a function T that associates to each x E Ex a continuous 

linear map T (x): E~ --* R satisfying 

for  all x E Et ,  and 

(P o L)' - T ( x ) L  (1) 

lim T ( x n ) v = T ( l i m x n ) v  (2) 

for  every convergent sequence {x,~} c Ex and all v E E2. 

Then P o L o f is C k+ I 

Proof .  Obviously P o L o f is C ~ because P o L is C k and f is C k. Suppose 

that k > 1. The derivative ( P  o L o f) (k)(x)  can be written as the sum of 

(P  o L) ' ( f (x)) fCkl(x)  (3) 

and a linear combination of  compositions of derivatives ( P  o L)(i) and f(J) with 

1 < i_< k a n d l  _< j < k. Hence all these terms a r e C  t ,because f i s  C ~ 

and P o L is C k. This means that to prove that f is C k+l we have only to 

prove that (3) is C 1. Observe that given Banach spaces E and F, an open set 

U C E and a map O: U ---* F, then, to prove that �9 is C 1 it suffices to show that 

for every x ~ U there exists a continuous linear map A(z) :  E ~ F, depending 

continuously on x, such that 

lim !C~/iCx + tv) - ~Cx)) = ACx)v 
t ---,0 t 

for all z E U and v E E. This is proved by writing 

f0 O(z + v) - O(z) = -~OCx + tv)dt  = 

fo fo' 1 A C z + t v ) v d t  = A(x)v  + ( A ( z +  tv) A(z ) )vd t .  

Hence 

li Cx + - - ACx), . , I I  _< I1,,11 I IACy)  - A( )II 
I lu-zl l- I lv l l  

thus proving that O'(x) = ACx). We shall use this criteria to prove that (3) is 

C 1. Observe that 

C P o L)'CfCx + tw))/Ck)cx + tw) - C P o L)'CfCx))fCk)c ~) = 

= COP o L)'CfCz + tw)) - (P  o L)'(fCz)))fCk)Cz + tw)+ 
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+(P  o L)'C/Cx))(/c~)(~ + t~o) -/Ck)c.)).  

Since P o L is C 2 by (d) and the assumption k _> 1, it follows that 

lira l ( ( p  o L) ' ( f (x  + tw)) - ( P  o L)'(f(z)))f(~)(:c + tw) = 
t ~ 0  t 

= (P o L)"( fCz)) f ' ( z )wf(k) (z ) .  

Moreover, by (1): 

(P o L)'CfCz))CfCk)cz + tw) - /Ck)cz))  = 

= T(f(z))CCLf)Ck)cx + tw) - (Lf)Ck)cz)). 

Hence, since L f  is C k+l, 

t~olim 1T( fCz) ) ( (L f ) (k ) ( z  + tw) - (L f )  (k) (z)) = 

= T( f ( z ) ) (L f ) (k+l ) (z )w.  

H e n c e  

-..1 C(P o L ) ' ( f ( x  + gw))fCk)c~ -t- tw) - (P o L) 'C f (~) ) fCk) (x ) )  tim 
t -.,,.0 1: 

= ( P  o L)"C/C~))C/ 'C~)~, ) /ck) (~)  + TCfC~))CL/)C~+~I(~)~. 
Therefore, if we prove that the (k + 1)-linear map T( f ( z ) ) (L f ) (k+l ) (x )  is a 

continuous function of z, it will follow that (2) is C 1 and then that P o L o f is 

C k+l. Since P o L is C 2 and f is C k it follows that the first term of  the sum 

depends continuously on x. To prove the continuity of  T( f ( z ) ) (L f ) (k+x)(z )  
first observe that if zn ~ z and 5" c E2 is a relatively compact set then, by (2), 

T ( x n ) / S  converges uniformly to T ( z ) / S .  Moreover, L f  is compact because L 

is compact, and then, by the previous Lemma, (Lf)(k+l)(y) is compact for all 
k+l  

A 

y E Eo. Let B be the unit ball of Eo x . . .  x Eo. Define 

s = CZ:f)ck+llCx)B u CCI Cz/)ck+x)Cx,,)8). 
n_>l 

This set is relatively compact because every sequence {u,~} c S either has a 

subsequenee contained in some (Lf)Ck+l)(p)B, p E {z, z l , . . .  } (and then, since 

this set is relatively compact, has a convergent subsequence) or has a subsequence 

that can be written as 

u,., s = (Lf)Ck+l)(~,.,,i)O,,,. i 
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with O,nj e B and mj  ~ +oo. But how, by the compacity of (L f )  (k+l), we can 

assume that the seqhence (Lf)(k+l}(x)O,,~j,j > 1, converges to a point y 6 B2 

and then it is easy to prove that (Lf)(k+x)(xrai)O,n i converges to y. This con- 

cludes the proof of the relative compacity of S and then T(xn)/S converges 

uniformly to T(x)/S.  Since (Lf)(k+I)(x)B c S for all p e {X, Xx, . . .} ,  it 

follows that T(xn)(Lf)(k+I)(x,)/B converges to T(x)(Lf)(k+I)(x)/B uni- 

formly. This completes the proof of the Lemma when k > 1. The case k -- 0 is 

handled by similar methods. 

To prove Theorem B we shall apply Lemma 1.10 to an open set U 6 N, 

the Banach spaces G~( K, R) and G~ R), the C k map ~: U ~ C'7( K, R), the 

compact linear map/: G~(K, R) ~ G~ R) given by the inclusion and the func- 

tion P:  C~ R) L_. R. Hypothesis (a), (b) and (c) of 1.10 are obviously satisfied. 

�9 Hypothesis (d) holds because we proved (Corollary 1.4) that P:  C'Y(K, R) ~ R 
is real ana!ytic. To check (e) associate, to each %/, e C"(K, R), the functional 

T (r 6 C ~ (K, [~ )' given by 

Then, by 1.7, 

T(r = f ~ohcdur 

(Poi)'(r T(r 

thus proving property (1) of hypothesis (e). Property (2) follows from the fact 

that v,~ is, by 1.5, a weakly continuous function of r E C "r (K, R) and h~ is a 

continuous (in fact real analytic) function of r by 1.4. Then, 1.11 can be applied 

and proves that P o i o ~ is C k+l. 

2. Proof  of  T h e o r e m  A 

The proof of Theorem A requires the following properties: 

Proposition 2.1. ([1]) For all 0 < "1 <- 1 there exists a continuous lin- 
ear map T: C'T(B(A),R) ~ G~(B +, (A),R) such that, denoting ~r: B(A) 
B+(A) the canonical projection (i.e. r(O) = O/Z +) then, for all r 6 
C'I(B+(A),R),r is homologous to ( T r  r, i.e. there exists 
u e C~ R) such that 

uoo- u = r (Tr 
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Lemma 2.2. I f  A is a horseshoe o f f  ~ Dif fr(M),r  > 1, and h : B ( A )  --~ h 

is a topological equivalence between a: B(A) ~ and flA, then h is H6lder 

continuous 

Lemma 2.3. Let A be a horseshoe of  f E Diff~(M),r  > 2 , d i r n M  = 2. 

Let h: B(A)  ~ A be a topological equivalence between ~: B(A)  +--" and flA. 

Define r B(A)  ~ R by 

r  : - l o g  f '(h(O))/E~(o). 

Then the following properties hold: 

a) The function R 9 6 --* P ( 6 T r  E R is real analytic (where T is given by 

2.1). 

b) There exists c > 0 such that 

for all 6. 

~ 6 P ( 6 T r  _< - c  

c) There exists a unique 6(f)  > 0 such that P ( 6 ( f ) T r  = 0. Moreover every 

z E A is contained in an open interval J C W' (x )  such that there exists a 

probability p on the Borel a-algebra of J and a constant C > 0 satisfying 

C - 1 #  _< PCBrCx)) _< Cra 

for all r > 0. 

Lemma 2.4. I f  A is a basic set o f f  E Dif f f (M) , r  > 2, there exist neighbor- 

hoods U and 12 of  A and f respectively such that, defining Ag = Nngn(U),  

there exist 0 < 7 < 1 and a Gr- l  function ll ~ g ~ hg E C'I(A, M)  satisfying 

the following properties: 

a) hg(A) = Ag and h e is a topological equivalence between flA and glhg; 

b) The function ~ ~ g---, I (de t (g ' /E~))o  hgl ~ C'7(A,R)/s Cr-~; 

c) The function ~ ~ g ---. I (de t (g ' /E~))o  hgl C~ is C r-x. 

Now let us prove Theorem A. Let A be a horseshoe of f E Di t f r (M) ,  r > 2 

and suppose that dim M = 2. Let U and U be the neighborhoods given by 

Lemma 2.4. It is known (Bowen [1]) that there exists a topological equivalence 

h: B(A)  ~ A between a: B(A)  *--" and f l  A. Then, if he: A ~ A~ is given 
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by Lemma 2.4, the map hgh: B(A) ---) ltg is a topological equivalence between 

a: B(A) ~-" and g/l~g. Moreover by Lemmas 2.2 and 2.4 there exists 0 < 

q, < 1 such that h~h �9 C'T(B+(A),M) and the function /2 ~ g ---+ hgh �9 

C'7(B(A) ,M) is C r-z. Define Ca �9 C'T(B+(A), R) by 

r = - l o g  g'(h,h(e))/E~gh(,) I 
and B:/2 x R --* R by 

B(g, 6) --- P(6Teg) .  

Then B is C r-z. This follows from applying Theorem B to the Banach manifold 

/2 and the C r-~ map/2 ~ g ---, eg E C6(B+(A),R). Moreover, by Lemma 2.3, 

for each g E/2 there exists a unique 6u(g) satisfying 

P(g,6=(g)) = 0  

OP 
at (g,8"C.q)) < o. 

Then, by the implicit function theorem the function /2 9 g ---, 5U(g) is C r-1. 

Take a point x E hg and let j u  be an interval contained in WU(x) and containing 

x such that, according to Lemma 2.3 there exists a finite measure #,, on the Borel 

a-algebra of J'* and a constant Cu > 0 such that 

C-Zr  6u(~) < lzu(Br(p)) <_ C , r  6u(g) (1) 

for all p E J and r > 0. In a similar way (replacing g by g-z) there exists a 

C ~-z function/2 ~ g ~ 6"(g) �9 R such that there exists an interval J '  c W ' (x )  

containing x and a finite measure #,, on the Borel a-algebra of J"  such that there 

exists C. > 0 satisfying 

C - l r  ~'(g} <_/~,(B,(p)) < C,/'(~) (2) 

for all r > 0 and p �9 J L  By standard properties of hyperbolic sets, there exists 

> 0 such that if J '  and J "  are sufficiently small then W~(a)nW~U(b) contains 

exactly one point for all a �9 J "  and b �9 J ' .  Given A c j u  and B c j a  define 

A x B = { W : ( a )  N W~'(b)l a (5 A,b �9 B} .  

Take a measure # on the Borel a-algebra of J "  x J~ such that 

p(A x B) = IJ.(A)ps(S) (3) 

for every pair of Borel sets A c J " ,  B c d a. Since g is at least C 2, the stable 

and unstable foliations extend to C z foliations of a neighborhood of h e. Then 
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there exists k > 1 such that 

(Br/k(p) NZ  ~) • (Br/k(p) NZ ' )  C Br(p) C (Bkr(p) N J  u) • (Bkr(p) N J ' )  

for all p E j u  • j , .  Then, from (1), (2) and (3), there exists C > 0 such that 

C - Z r  Sa(a)+6t`(g) < #(Br(p) )  < C r  ~a(~)+6u(g) 

for all p E J=  x J "  and r > 0. Then the Hausdorff dimension of j r ,  x J '  is 

5s(g) + 5u(g). This follows from the following easy Lemma: 

L e m m a .  Let K be a compact metric space and # a probability on the Borel 

a-algebra of K such that there exist 0 < 5x < 82 and C > 0 satisfying: 

C-Zr ~2 <_ Iz(Br(x)) <_ C r  6' 

for all x E g and r > O. Then, if g O ( K ) ,  c - ( g ) ,  c + (g )  denote respectively 

the Hausdorff dimension and the lower and upper capacities of K 

5z <_ HD(K)  <_ c - ( g )  <_ c+(g) <_ 52 

Proof.  c + (K)  can be defined as 

c+(K)---- ~imsup logS( r )  
l o g ( l / r )  

where S(r) is the maximum number m such that there exists points x z , . . .  , x,,~ 

such that d(xi, xj) > r for all 1 < i < j < m. Then the balls Br/2(x,), i = 
1 , . . .  , m are disjoint. Hence 

1 >_ ~ Br/2 zi 

Hence 

___ _> m C  -1  

/=1  

This implies easily e+(K) < 52. In a similar way one proves H D ( K )  > 5z 

completing the proof of the Lemma. 

Then H D ( J  u x J*) = 5u(g) + 8*(g). Since j u  • j ,  is a neighborhood of 

x and x is arbitrary, it follows that 

HDCh,) = 5"(g) + 5"(g). 

Since 5" and 5 = are C r -  z functions of g this completes the proof of the Theorem. 
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P r o o f  of  L e m m a  2.2. Due to the hyperbolicity of A there exists 8 > 0, C > 0 

and 0 < A < I such that ff x E A and y E M satisfy d(f"(z) ,  f"(u)) < 6 for 
all - N  < n _< N then 

d(x, v) < C,X N. 

Moreover, recalling that we endowed B(A) with the metric 

dCa,Z) = ~ 2-J"Jl~(,,) - fl(")l, 
- - O O  

it is easy to see that c~(n) = / ~ ( n )  for all n satisfying 

Inl < - ( l o g 2 )  -x logd(c~,fl). 

Since h is continuous there exists k > 0 such that a ( n )  = fl(n) for - k  < n < k 

implies d (h (~ ) ,  h(fl)) < 6. Then, given c~,/~ E B(A) define 

N = -(log 2) - t  logd(cq/3) - 1. (l) 

Then or(n) = fl(n) for all - N  < n < N. Therefore (aJcO(n) : (o4fl)(n) for 

all - k  < n < k if - ( N  - k) < j < N - k. Hence d ( h ( a / c 0 , h ( a i ~ ) )  < 6 
for - ( N  - k) < j < N - k. Since h~r i = fJh, this implies 

d( f i (h(a) ) , f i (h( f l ) ) )  < 6 

f o r - ( N - k ) < j < N - k .  Then 

d ( h ( a ) ,  h(/~)) _< CA N-k. 

Replacing (1) in this inequality, we obtain 

d(h(oO, h(fl)) <_ Co d(o~, fl)'7 

with Co = C / A  k+t and 7 = ( log2) -1 logA. 

P r o o f  of  L e m m a  2.3. To prove (a) first recall that the subbundle E u c TMIA 
is HOlder continuous because r > 2. Moreover 2.2 implies that h is HSlder 

continuous. Hence, r E C'~(B(A),R) for some 0 < 7 < 1, and then T r  

C't(B"(A),R). Therefore the analiticity of the map [~ ~ 6 ~ P ( t T r  ~ R 

follows from the analiticity of P :  C'Y(B+(A), R) ---, R. Before proving (b) let us 

show that there exists A > 0 > B satisfying 

Sn(Tr < A + Bn (1) 
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for all 0 E B(A) and n > O. For this purpose take 0 such that zr(O) = O. Then 

n--1 

Sn(Tr = Sn(Tr E ( T r  
j=o 

n- -1  

= ~_,CTr 
1=0 

Recalling that ( T r  r -  r is homologous to zero, there exists u E C O (B(A), R) 
such that 

(Tr o ~ = r + (u o ~ - ~,). 

Hence 
n - 1  

S.(Tr  = ~ ( ( T r  o,~)(~l(e)) 
1=0 
rl--1 

: ~ r + ~,(~"C~)) - uC~). 
j=0 

Then 
n--1 

S.(Tr <_ ~ r + 2K. 
i=0 

Let K be the maximum of u. 

But 
n - I  n - 1  

r = -  ~ log f'C~JC~))l~Jc~ ) 
j=O j=O 

n - 1  

: ~ log y'CYJChC~)))lE~ac~)] 
1=0 

= - l o g  (I")'(hC~))/g~c~l. 

(2) 

Then, if C > 0.and 0 < A < 1 are such that 

�9 ICf") 'Cx)/E~1-1 < CA'* 

for all x E A and n > 0; it follows that 
I'.--1 

r < logo  + . log  :~. 
j=O 

Replacing this inequality in (2), we obtain (1) with A = log C + 2 K  and B = 

log A. Now, to complete the proof of (b), fix o, E B(A) and define Pn: R ~ by 

Pn(t) = l log ~ expS,,(t(Tr 
n fftttOm ~ 
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Then 
dP. 1 Ea.e=a S.(Tr exp S.(tCTr 
dt (t) = n ~.a"o=a exp S.(tTr 

1 
_ < -  sup S . ( T r  

<_ I ( A  + S.) .  
n 

This implies that there exists c > 0 such that, if n is large, (dP~/dt)(t) <_ -c  
for all t. In particular 

for all T1 > t2. By 1.2 

Hence 

P.Ct~) - P.Ct~) <_ -c(t~ - t 2 )  

l o g A ( t ( T r  = lim P.(t). 
n ~ + r  

log ~(txCTr - log ~(t~CTr _< -cCtx - re) 

for all tz _~ t2. This implies 

d 
d-~ log A( t (Tr  __ - c  

thus proving (b). To prove (c) take an interval J c WS(z) containing x and define 

F: J --* B+(A) by F(p) = rh-l(p). Clearly F is continuous. Let us prove 

that if d i a m ( J )  is small enough then F is injective. Let Ki c A be the image 

under h of the set {0 �9 B(A)[O(O) = i}. The sets Ki are compact and disjoint. 

Then there exists 60 > 0 such that d ( K i , K i )  > 6o for all 1 _< i < j _< m. 

Since J is an interval contained in a unstable manifold, diminishing its diameter 

grants diam(f-n(J)) <_ 60 for all n > 0. This means that if Ki is the set of the 

family { K z , . . .  , Kin} that contains f -"(x) ,  then f - " ( J  ~ A) c Ki because 

diamf -n (J  N A) < d ( f - n ( x ) , h -  Ki)and f - n ( J  N A ) c  h. On the other 

hand, if 0 �9 B+(A), the point h(O) satisfies 

fn(h(O)) �9 Ke(.) 

for all n �9 Z. Hence, if h(80) and h(Oz) are contained in J, it follows that 
8z(-n) = 8o(-n) for all n > 0 because, for all n >_ 0 

f-"(h(Oo)) �9 goo(-.) 

I -"(h(01) )  �9 Ke,C-,,), 
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and, as we explained above, these two properties plus the fact that h(Oo), h(Ox) E 
d,  imply 0 o ( - n )  = 01(n). Now suppose that F ( z l )  = F(z2). This means that 

7 r h - l ( z l )  - -  ~ h - l ( z 2 )  and then h-l(zl)(n) = h-l(z2)(n) for all n > 0. But 

we also have h-l(Zl)(n) = h - l ( z 2 ) ( n )  for all n < 0 because h ( h - l ( Z l ) )  = 

z l  E J and h(h-l(z2)) = z2 E J and therefore h-l(zx)(n) = go(n) = 
h-l(x~)(n) for all n < 0. This completes the proof of the injectivity of F.  

Now take J being open. We claim that F(J ~ A) is an open subset of  B+(A). 
Take y E J .  Given ~ > 0 there exists N > 0 such that a(n) = h-X(y)(n) 
for all n < N implies h(O) E W~'(y). Therefore, since J is open, there exists 

N > 0 such that if 0 E B(A) satisfies 8(n) = h-l(y)(n) for all n < N 

then h(0) E J n h. To prove that F(J n A) is open we shall show th'at if 

E B+(A) is close to F(y) t h e n 0  E F(Jf3A). I f 0 i s  close to F(y) = 
7rh-1(y) then 9(n)  = h-l(y)(n) for 0 < n < N. Define 0 E B(A) by 

8(n) = h-l(y)(n) for n < 0 and 0(n) = 0(n)  for n > 0. Observe that this 

definition is correct because h - l ( y ) ( 0 )  = ( T r h - l ( y ) ) ( 0 )  - -  F(y) (O)  --" 0(0). 

Hence 0(n) = h-l(y)(n) for all n < N because it is true for n _< 0 by definition 

and O(n) = "O(n) = h-X(y)(n) for 0 < n < N.  Then h(0) E J n h. Hence 

= O/'L + = h-l(h(#))/Z + = ~rh-l(h(8))  = F(h(O)) completing the proof of 

the openess of F(J N h). Since J A h is a Cantor set we can take J such that 

J n h is open and compact. Then F:  J n h ---, F(J n h) is a homeomorphism. 

Define a measure/~ on the Borel a-algebra of J A/k by/~(S)  = v(F(S)) where 

= V6Tr is given by 1.1. Since F(J n A) is open, I~(F(J A h))  > 0. Hence 

# ( J  N A) is positive and < 1. To show that ~ satisfies the inequalities of part (c) 

of I_emma 2.3, define, for ~ E J n A, 

S ~ ( y , n ) = { p e J N h  Id(fk(p),fk(y))<_6 for 0 < k _ <  n} 

and, i f0  6 B+(A)define B(O,n) = {c~ 6 B+(A)Io~(j) = 8 ( ] ) f o r 0  _< j _< n}. 

Let us prove that there exist 61 > 0 and N > 0 such that: 

r(s~,(y,n)) c B(f(y) ,n)  c r(s6,(y,n - Y)) 

for all y E J N A  and n > N. Choose any 61 satisfying 0 < 8o where 60 

satisfies, as above, the property d(Ki, K i )  > Q for all 1 _< i < 3" <-- m. Then, 

by the same arguments used before, if p, y E J N A and d ( fk (p ) ,  fk(y)) ~ 8x 
for 0 < k < n, it follows that fk(p) and fk(y) are contained in the same atom of 

the partition { E l , . . .  , g , }  for all 0 < k < n. Hence h-l(p)(n) = h-l(y)(n) 
for all 0 < k <_ n and then F(p) e S(f(p),  n) for all p e J n h and n :> 0. 
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To prove the second inclusion, take e > 0 such that W~(x) c J for all y E 

J c A (recall that J n A is compact and J is open). Take N > 0 so large 

that c~(n) = fl(n) for n < N implies h(c~) E W~'(h(~)). Moreover take e 

smaller than 81, so that the last relation in particular implies d(h(a) ,  h(fl)) < 61. 

Then, c~(n) = fl(n) for n < N implies d(h(c~),h(/9)) < 81. Given 0 E 

B+(F(y), n), n > N, y E J N A, define 0 E B(A) by O(m) = 0(m) for rn > 0 

and 0(m) = h-l(y)(m) when m < 0. Arguing as before, 0 is well defined and 

h(O) E W~(y). Since W~'(y) c J it follows that h(O) E J nA. If we show that 

h(O) E $6~ (y, n - N) it will follow that 0 (that satisfies -0 = F(h(O))) belongs 

to F(S~ l (y, n - N)). Hence 0 E F(Ssi (y, n - N)) thus proving the inclusion 

B(F(y) ,n)  c F(S6~(y ,n-  N)). To prove that h(O) E Ss~(y ,n -  N) observe 

that fk(h(O)) = h(ak(O)) and ak(O)(m) = O(rn + k) for all m and k. Hence 

ak(O)(j) = 8(j -{- k) = h- l (y) ( j  -t- k) 

when 0 < j - +  k <  n. Hence 

ok(O)(j) = h- l (y) ( j  + k) = h- l ( fk(y)) ( j )  

f o r 0 < j < n - k .  Then, if n - k >  N: 

d(h(ak(8)),f~(y)) = d(h(a~(8)),h(h-l(fk(y))) < 61. 

Since h(ak(8)) = fk(h(8)): 

d(fk(h(O)),fk(y)) < 61 

when n - k  > N, or, what is the same, k < N - n .  This means h(O) E 
S6~(y, n -  N). This completes the proof of B ( F ( y ) , n ) c  F(S6t(y,n)). These 

inclusions can be written as 

B(F(y) ,n)  c F(S6,(y,s)) c B ( F ( y ) , n -  N) 

and then 

, (SCFCy),n)) < uCFCS ,Cy, n)) <  (BCFCy),-- N)). 

Now recall that if ~o E C'YCB+CA),R) then, if v~ is given by 1.1, then there 

exists C1 > 0 such that for all 0 E B+(A) and n ~_ 0: 

C;I~(~)  -"  expCS.~o)C0 ) _< ~ ( S C 0 ,  n)) _< cl~C~o)-" expCS.~o)C0 ). 

Then, ff log AC6Tr = P(6Tr = 0, it follows that 

C~ 1 exp(Sr, STr < :/(B(8, n)) < Cl exp(Sn6Tr (2) 
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for all 0 E B+(A) and n > 0. From (1) and (2) it follows that there exists 

C2 > 0 such that for all y E J and n > 0: 

C~ l exp(Sn6Tf)(F(y))  < I~(F(S6~(y,n))) <_ C2exp(S,~STr 

But since we can write 

(Tr o lr = r + u o a -  u 

where u 6 C~ R), it follows that there exists A > 0 satisfying 

[(SnTd2)(~r(O))- (Snr < A 

for all n _> 0 and 0 E B(A). Since F = rh -1, we obtain, 

[(S.Tr (S.r _< A. 

But clearly 

Hence 

( s . r  = - l o g  (/")'(y)/E~. 

c ;  1 < ~,(s~, (y, n)) < c~ 
-iCf,,),Cy)/Eul-~ - 

for all n > 0 and y E A. Define p(y, n) = d(y,  J - $6, (y, n)).  By well known 

arguments (that require f to be at least C2), there exists C3 > 0 such that 

d iam S~ 1 (y, n) < C3 
C~ 1 <_ (fn),(y)/E,~] -1 (4) 

pCy,") 
c ; I  <- ( /")'(y)lz? -1 <- c3 

for all y E J fl A and n > 0. GNen a small r > 0 take n > 0 such that 

(5) 

pCY, n + 1) _< r _< p (y ,n ) .  
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Then, by (3) and (5), 

,4BrCv)) _< ~,Cs~,Cv,-)) 

< C  " '  Cf ) Cv) /~  -~ 

<_ c~c~p(v,.)~ 

=C~C~/ ('(~")) ~ 

< c~c'~r' ( , ,C, , , , , )  '~ ' 
- \p(~, n--+ I)'] 

5 

_ (, -' ) 
t C ;  1 (I"+I) '(y)/E? 

38 6 i n u = C2C3 r [ ( f  (Y))/E;n(tt  } -a 

Hence, if Cuis  an upper bound for I f 'Cz ) /EYI-L  z e A, it follows that 

~,(B, Cy)) __< C /  

with C = C2CzzaC~ 8. In a similar way, but taking the maximum n such that 

S6,(y,n) C B~Cy) 

and using (4) instead of (5), a lower estimate of the form ;~(B~(y)) > C'r 6 is 

obtained, completing the proof of Lemma 2.3. 

Proof  of Lemma 2.4. Let m be the dimension of the fibers of the unstable 

subbundle ~ of the hyperbolic set A. Let G be the Grassmannian bundle of 

m-dimensional subspaces of the fibers TzM, i.e. G is the set of pair (x, E) 

with z 6 M and E being an m-dimensional subspace of T z M  endowed with 

its natural structure of smooth manifold. Associated to every f 6 Diff r (M) we 

have a diffeomorphism F I 6 Diff ' - l (G)  defined by Fi(p, E) = ( f  (p), f'Cp)E). 
The map Diffr(M) 9 f ~ F! 6 Diffr-X(G) is C ~176 Given 0 < 7 < 1 and 

g E Di f f r (M) , r  > 2, define #g:C'r(A,G) ~ by 

#,C~)C-) = F,C~Cf-lCa:))). 
When '7 = 0 it is easy to check through standard techniques that the map ~o 6 

C O CA, G) defined by ~o C a:) = Ca:, E= u) is a hyperbolic fixed point of the C r - 1 map 

~I .  Moreover the map Diffr(M) x C~ G) 9 (~,g) ---, ~g(~) 6 C~ G) 
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is C r-s .  Hence there exists a C ~ neighborhood /2 of  f and a C r-1 m a p / /  

g ~ ~g ~ C ~  such that ~!  = ~o and ~g(~g) = ~g for all g ~ /z. Let 

a': G ---* M be defined by r (p ,  E)  = p. Then, well known methods show that 

~r~g = hg:A ---, M is a topological equivalence between fl A and glAg and if 

E~'(g) is the unstable subbundle of  Ag, then ~g(x) = (hg(x),  E~g(z)(g)).  From 

this it follows that the map Ll ~ g --* [ (de t (g ' /EU(g) )o  hg I ~ C~ is 

C r - l ,  thus proving (c). To prove (b) recall that it is well known that, since r 

is > 2, taking 0 < 7 < 1 sufficiently small, the map ~o is a hyperbolic fixed 

point of the C "-2 map ~ g : C ~ ( A , G )  ,--,. Then, i f /2  is small enough, the map 

~g obtained above is a C r-2 map ~/ 9 g ~ ~g E C'~(A,G).  Then the map 

II ~ g -* [ (det(g' /EU(g))  o h~l ~ C'~(A,R) is C r-2. 
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