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On the boundedness o f  Ricei curvature o f  an indef'mite metric 

Marcos Dajczer and Katsumi Nomizu* 

1. Introduction. 

Among several conditions on boundedness of R ico  curvature that play 
important  roles in general relativity we have [1, p. 95] 

null convergence condition: R.~w*w~ > 0 for all null vectors w: 

time-like convergence condition: R,bw~ > 0 for all timeSlit~e vectors. 

In thepresen t  paper we consider the following conditions for a Loren- 
tzian manifold M of dimension > 3: 

(i) R,b~.v~ 0 for all null v ectors w 

( i i )  IR~ <= d for all time-like unit vectors w, where d is a certain 
positive number, 

and prove that each of these conditions implies that M is an Einstein space, 
that is, R,b = c g,~. ~ As a matter  of fact, these results are valid for any 
metric of signature ( - ,  . . . .  + , . . . )  and can be stated as therems in linear 
algebra: 

Theorem 1. Let V be an n-dimensional real vector space with non-degenerate 
inner preduct ( , )  of signature ( - ,  . . . .  + . . . .  ). I f  a bilinear symmetric 
function f on V satisfies the condition 

(1) f ( x , x )  = 0 f o r  all null vectors x ~  V, then there is a constant c 
such that 

f (x ,  y) = c(x,  y )  for all x, y ~ V. 

Theorem 2. Let V be as in Theorem 1. I f  a bilinear symmetric function 
f on V satisfies the condition 

(2) If(x,y)l <= d for all time-like unit vectors x, i.e. ( x , x ) = -  1, 
where d is a certain positive number, or 

(2') i f (x,  x)J ~_ d for all space-like unit vectors x, i.e. (x,  x )  = 1, where 
d is a certain positive number, then there is a constant c such that 

f (x ,  y) = c(x, y )  for all x, y E V. 
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In section 2 we  shall prove Theorem 1 as well as an equivalent result  
(Theorem la), which we use for the proof of Theorem 2. In section 3 we 
give a proof of Theorem 2 and add a remark on a result of Kulkarni [2] 
on sectional curvature of an indefinite metric. 

2. Proof of Theorem 1. 

One way i of proving Theorem 1 is to use the same argument as that in 
[1, p. 61 ]. For the sake of completeness, we provide the argument. 

Let x be a time-like vector and y a space-like vector in V, and consider 

p(t) = (x  + ty, x + ty)  = (x,  x )  + 2t(x, y)  + t2(y, y )  

and 

q(t) = f ( x  + ty, x + ty) = f ( x ,  x) + 2t f (x ,  y) + t 2 f (y ,  y), 
s:- 

which are polynomials of degree 2 in t. For  t = 0, we have p(t) < 0 since 
x is time-like. For  large enough [tl, we have p(t) > 0 since x is space-like. 
Thus there exist t t <" 0 < t 2 'such that p ( t t ) =  P(t2)= 0 and 

(X, X) 
t i t  z = (y, y )  

By condition (1), we have q(t l )= q(t2)---0 and hence 

f ( x ,  x) 
t , t  z = f (y ,  y----'~" 

Therefore 

(x, x )  f (x ,  x) f (x ,  x.) f(Y'  Y) say, c. 
(y, y-----~ = f (y ,  y) i.e. (x,  x-------) - (y, y )  ' 

It follows that for any space-like or time-like vector z we get' f(z,z) = c(z, z ) .  
This is valid for any null vector z as well. By polarization we easily get 

f (z ,  w) = c(z, w) for all z, w ~ V. 
? 
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In order to state an equivalent result, we consider the following condi- 
t ions for a bilinear symmetric function f:  

(la) I f  (X ,X)  = - 1, ( y , y )  = 1 and ( x , y )  = 0 ,  then f ( x , y )  = 0", 

(lb) I f ( x , x ) =  - 1 ,  ( y , y )  = 1 and ( x , y )  = 0 ,  then f ( x , x ) + f ( y , y ) = O .  

Lemma 1 .  (1) implies (la) and (lb). 

To prove this, let x, y be two vectors as in (la). Then x + y and 
x - y  are null vectors. By (I) we get 

f ( x  + y, x + y ) =  f ( x -  y, x - y ) = 0 ,  

i.e. 

f (x ,  x) + 2f(x, y) + f (y ,  y) = 0 

f (x ,  x) , 2f(x, y) + f (y ,  y) = O. 

Hence f ( x ,  y) = 0 and f ( x ,  x) + f (y ,  y) = O. 

Lemma 2. (la) implies (lb) and (1). 
Let x, y be as in (lb). .Then x~ = c o s h t x + s i n h t y a n d y  1 = s i n h t x §  

+ c os h t y  form another orthonormal pair like {x,y}. Thus by (la) we get 

0 = f ( x t , y l )  = 
= (cosh t sinh t) ( f (x ,  x) + f (y ,  y)) + (sinh 2 t + cosh 2 t) f ( x , y )  = 

= (cosh t sinh t) (f(x, x) + f (y ,  y)), 

since f ( x ,  y) = O. Thus for t # 0 we get f ( x ,  x) + f (y ,  y ) =  0, proving (lb). 
Now let u be a null vector. Then we can find x, y such that (x, x)  = 

= -  1, ( y , y ) = l ,  ( x , y ) = 0  and u = x + y .  Then 

f (u, uJ = f (x + y, x + y) = f (x, x) + f (y, y) + 2f(x, y) = 0 

by virtue of (1 a) and (1 b). 

Remark. (lb) implies (la), as can be proved in a similar way. Thus (1), 
(la) and (lb) are equivalent. 

We now give an alternate proof of the following 

Theorem l a .  I f  a bilinear symmetric function f satisfies condition ( l a ) ,  
then there i s  a constant c such that 

f ( x ,  Y) = c(x,  y )  for all x, y ~ V. 
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Let  {e~ . . . . .  e,, e,+ t . . . . .  e.} be an o r thono rma l  basis o f  V such tha t  

(ei ,  e~) = - t for 1 < i < r 

(ej ,  ej> = 1 for r + 1 ~ j  N n. 

We shall Prove that  f ( e  i , e j )=O for i # : j l  I f  1 < i _ < r  and r + l  _<j__<n, 
then this is satisfied by virtue of  condi t ion (la). N o w  assume  1 < i, j < r 
(the case wlaere r + 1 < i, j _-< n is similar). Take  any k > r + 1 and  set  
z = sinh t e i + cosh t % Then (z, z )  = I and (z, ei)  = O. Thus  cond i t ion  
( la)  implies 

0 = f (z ,  ei) = gmh t f(ej,  ei) + cosh t f ( e  v el) = sinh t f ( ep  e j), 

because f ( e  k, e j ) =  0. For  t # 0, we obtain  f ( e  i, e j ) =  O. 
N o w  let c / =  f(ei,  e i ) for  I < i <  n. By condi t ion (lb) which fol lows 

f rom (la), we have c / + c i = 0  for 1 < i < r  and r +  1 < j < n .  Thus  

- -  C 1 ~ o . .  ~ - -  C r ~ C r +  1 ~ o . .  ~ C n ,  say, c. 

I t  follows that  f ( x , y ) =  c ( x , y )  for all x, y ~ V .  

3. Proof of Theorem 2. 

We shall p rov  e T h e o r e m  2 u n d e r  assumpt ion  (2). Let x, y be two vec to rs  
such that  ( x , x ) =  - 1 ,  ( y , y ) = l  and ( x , y ) = O .  For  Itl > 1, we h a v e  
( , t x + y ,  t x + y )  = 1 - t "  < 0 .  T h u s  

tx + y  
U = (t 2 __ ])t/2 

is a t ime-like unit  vector. By assumpt ion  (2) we get 

- d < f ( t x  + y, tx + y) < d 
= t 2 ' -  I = 

that  is, 

- -  d ( t  2 - l) ~ t 2 f (x ,  X) + f (y ,  y) + 2t f (x ,  y) ~_ d(t 2 - 1). 

Let  t ~ 1  f rom above.  Then 

f (x, x) + f (y, y) + 2f(x, y) = O. 
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Let t ~ - I  from below. Then 

f ( x ,  x) + f (y ,  y) - 2f(x, y) = O. 

From these two equations, we get f ( x ,  y ) =  0 and f ( x ,  x ) +  f (y ,  y ) =  O. 
By Theorem la, we get the conclusion of Theorem 2. 

The proof under assumption (2') is similar. 

Remark. The above proof has been inspired by the work of Kulkarni [2 ]. 
He shows for an indefinite metric of signature ( - ,  ~.,., + . . . .  ) that if the 
sectional curvature function K is bounded from below (or from above) 
on the set of all nondegenerate 2-planes, then K is a constant function. 
For boundedness of K on all time-like (or space-like) 2-planes, we may 
establish the following. 

Proposition. Let M be a manifold of dimension > 3 with an indefinite metric 
of signature ( - ,  . . . .  + . . . .  ). I f there is some d > 0 such that 

i 

IK(p)I <= d for all time-like (or space-like) 2-planes p, 

then K is a constant function. 

We note that one-sided boundedness on all time-like (or space-like) 
2-planes: 

Kilo) :~ d or K(p) < d 

does not imply that K is a constant function, as can be  shown by using the 
spaces 

S i x E or H i x ~q, 

where S i (resp. Hi) is, the 2-dimensional Lorentz manifold of constant 
sectional curvature 1 (resp. - 1). The same spaces serve as examples sho- 
wing that one-sided boundedness of Ricci curvature on all time-like (or 
space-like) unit vectors: 

R~bw~w b > d  or Ro~w~ b <_ d 

does not imply tha t  the space is Einstein. 
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