On the boundedness of Ricei curvature of an indef'mite metric

*Marcos Dajczer and Katsumi Nomizu**

1. Introduction.

Among several conditions on boundedness of Ricci curvature that play important roles in general relativity we have [1, p. 95]

null convergence condition: $R_{ab}w^a w^b \ge 0$ *for all null vectors* w:

time-like convergence condition: $R_{ab}w^a w^b \ge 0$ for all time-like vectors.

In the present paper we consider the following conditions for a Lorentzian manifold M of dimension ≥ 3 :

(i) $R_{ab}v^a w^b = 0$ for all null vectors w

(ii) $|R_{a\bar{b}}w^a w^b| \le d$ for all time-like unit vectors w, where d is a certain *positive number,*

and prove that each of these conditions implies that M is an Einstein space, that is, $R_{ab} = c g_{ab}$. As a matter of fact, these results are valid for any metric of signature $(-, ..., +, ...)$ and can be stated as therems in linear algebra:

Theorem 1. *Let V be an n-dimensional real vector space with non-degenerate inner preduct* \langle , \rangle of signature $(-, ..., +, ...)$. If a bilinear symmetric *function f on V satisfies the condition*

(1) $f(x, x) = 0$ for all null vectors $x \in V$, then there is a constant c *such that*

$$
f(x, y) = c\langle x, y \rangle \text{ for all } x, y \in V.
$$

Theorem 2. *Let V be as in Theorem 1. If a bilinear symmetric function f on V satisfies the condition*

(2) $|f(x, y)| \le d$ for all time-like unit vectors x, i.e. $\langle x, x \rangle = -1$, *where d is a certain positive number, or*

 $(2')$ $|f(x, x)| \le d$ for all space-like unit vectors x, i.e. $\langle x, x \rangle = 1$, where *d is a certain positive number, then there* is *a constant c such that*

$$
f(x, y) = c\langle x, y \rangle \quad \text{for all} \quad x, y \in V.
$$

^{*}Work partially supported by NSF **grant** MCS7901310 at Brown University. Recebido em **janeiro de** 1980.

In section 2 we shall prove Theorem 1 as well as an equivalent result (Theorem la), which we use for the proof of Theorem 2. In section 3 we give a proof of Theorem 2 and add a remark on a result of Kulkarni [2] on sectional curvature of an indefinite metric.

2. Proof of Theorem 1.

One way of proving Theorem 1 is to use the same argument as that in [1, p. 61]. For the sake of completeness we provide the argument.

Let x be a time-like vector and y a space-like vector in V , and consider

$$
p(t) = \langle x + ty, x + ty \rangle = \langle x, x \rangle + 2t \langle x, y \rangle + t^2 \langle y, y \rangle
$$

and

$$
q(t) = f(x + ty, x + ty) = f(x, x) + 2t f(x, y) + t^2 f(y, y),
$$

 $\sim 10^{-11}$

which are polynomials of degree 2 in t. For $t = 0$, we have $p(t) < 0$ since x is time-like. For large enough $|t|$, we have $p(t) > 0$ since x is space-like. Thus there exist $t_1 < 0 < t_2$ such that $p(t_1) = p(t_2) = 0$ and

$$
t_1 t_2 = \frac{\langle x, x \rangle}{\langle y, y \rangle}.
$$

By condition (1), we have $q(t_1) = q(t_2) = 0$ and hence

$$
t_1t_2 = \frac{f(x, x)}{f(y, y)}.
$$

Therefore

$$
\frac{\langle x, x \rangle}{\langle y, y \rangle} = \frac{f(x, x)}{f(y, y)} \quad \text{i.e.} \quad \frac{f(x, x)}{\langle x, x \rangle} = \frac{f(y, y)}{\langle y, y \rangle}, \text{ say, c.}
$$

It follows that for any space-like or time-like vector z we get $f(z, z) = c\langle z, z \rangle$. This is valid for any null vector z as well. By polarization we easily get

$$
f(z, w) = c\langle z, w \rangle \quad \text{for all} \quad z, w \in V.
$$

On the boundedness of Ricci curvature 27 27

In order to state an equivalent result, we consider the following conditions for a bilinear symmetric function f :

(la) If $\langle x, x \rangle = -1$, $\langle y, y \rangle = 1$ and $\langle x, y \rangle = 0$, then $f(x, y) = 0$;

(1b) If $\langle x, x \rangle = -1$, $\langle y, y \rangle = 1$ and $\langle x, y \rangle = 0$, then $f(x, x) + f(y, y) = 0$.

Lemma 1. (1) *implies* (la) *and* (lb).

To prove this, let x, y be two vectors as in (la). Then $x + y$ and $x - y$ are null vectors. By (1) we get

$$
f(x + y, x + y) = f(x - y, x - y) = 0,
$$

i.e.

$$
f(x, x) + 2f(x, y) + f(y, y) = 0
$$

$$
f(x, x) - 2f(x, y) + f(y, y) = 0.
$$

Hence $f(x, y) = 0$ and $f(x, x) + f(y, y) = 0$.

Lemma **2. (la)** *implies* **(lb)** *and* **(1).**

Let x, y be as in (1b). Then $x_1 = \cos h \, dx + \sin h \, dy$ and $y_1 = \sin h \, dx + \sinh^2 h \, dy$ + cos h ty form another orthonormal pair like $\{x, y\}$. Thus by (la) we get

$$
0 = f(x_1, y_1) =
$$

= (cosh t sinh t) (f(x, x) + f(y, y)) + (sinh² t + cosh² t) f(x, y) =
= (cosh t sinh t) (f(x, x) + f(y, y)),

since $f(x, y) = 0$. Thus for $t \neq 0$ we get $f(x, x) + f(y, y) = 0$, proving (1b).

Now let u be a null vector. Then we can find x, y such that $\langle x, x \rangle =$ $=-1, \langle y, y\rangle=1, \langle x, y\rangle=0$ and $u=x+y$. Then

$$
f(u, u) = f(x + y, x + y) = f(x, x) + f(y, y) + 2f(x, y) = 0
$$

by virtue of $(1a)$ and $(1b)$.

Remark. (lb) implies (la), as can be proved in a similar way. Thus (1), **(la) and (lb)** are equivalent.

We now give an alternate proof of the following

Theorem la. *If a bilinear symmetric function f satisfies condition* (la), *then there is a constant c such that*

$$
f(x, y) = c\langle x, y \rangle \quad \text{for all} \quad x, y \in V.
$$

Let $\{e_1, \ldots, e_n, e_{n+1}, \ldots, e_n\}$ be an orthonormal basis of V such that

$$
\langle e_i, e_i \rangle = -1
$$
 for $1 \le i \le r$
 $\langle e_i, e_i \rangle = 1$ for $r + 1 \le j \le n$.

We shall prove that $f(e_i, e_j) = 0$ for $i \neq j$. If $1 \leq i \leq r$ and $r + 1 \leq j \leq n$, then this is satisfied by virtue of condition (1a). Now assume $1 \leq i, j \leq r$ (the case where $r + 1 \leq i, j \leq n$ is similar). Take any $k \geq r + 1$ and set $z = \sinh t \ e_i + \cosh t \ e_i$. Then $\langle z, z \rangle = 1$ and $\langle z, e_i \rangle = 0$. Thus condition (la) implies

$$
0 = f(z, e_j) = \sinh t \ f(e_i, e_j) + \cosh t \ f(e_k, e_j) = \sinh t \ f(e_i, e_j),
$$

because $f(e_k, e_j) = 0$. For $t \neq 0$, we obtain $f(e_i, e_j) = 0$.

Now let $c_i = f(e_i, e_j)$ for $1 \leq i \leq n$. By condition (1b) which follows from (1a), we have $c_i + c_j = 0$ for $1 \leq i \leq r$ and $r + 1 \leq j \leq n$. Thus

 $-c_1 = ... = -c_r = c_{r+1} = ... = c_n$, say, c.

It follows that $f(x, y) = c\langle x, y \rangle$ for all $x, y \in V$.

3. Proof of Theorem 2.

We shall prove Theorem 2 under assumption (2). Let x, y be two vectors such that $\langle x, x \rangle = -1$, $\langle y, y \rangle = 1$ and $\langle x, y \rangle = 0$. For $|t| > 1$, we have $\langle tx + y, tx + y \rangle = 1 - t^2 < 0$. Thus

$$
u = \frac{tx + y}{(t^2 - 1)^{1/2}}
$$

is a time-like unit vector. By assumption (2) we get

$$
-d \leq \frac{f(tx+y, tx+y)}{t^2-1} \leq d
$$

that is,

$$
- d(t2 - 1) \leq t2 f(x, x) + f(y, y) + 2t f(x, y) \leq d(t2 - 1).
$$

Let $t \rightarrow 1$ from above. Then

$$
f(x, x) + f(y, y) + 2f(x, y) = 0.
$$

Let $t \rightarrow -1$ from below. Then

$$
f(x, x) + f(y, y) - 2f(x, y) = 0.
$$

From these two equations, we get $f(x, y) = 0$ and $f(x, x) + f(y, y) = 0$. By Theorem la, we get the conclusion of Theorem 2.

The proof under assumption $(2')$ is similar.

Remark. The above proof has been inspired by the work of Kulkarni [2]. He shows for an indefinite metric of signature $(-, ..., +, ...)$ that if the sectional curvature function K is bounded from below (or from above) on the set of all nondegenerate 2-planes, then K is a constant function. For boundedness of K on all time-like (or space-like) 2-planes, we may establish the following.

Proposition. Let M be a manifold of dimension ≥ 3 with an indefinite metric *of signature* $(-, ..., +, ...)$. If there is some $d > 0$ such that

$$
|K(p)| \leq d
$$
 for all time-like (or space-like) 2-planes p,

then K is a constant function.

We note that one-sided boundedness on all time-like (or space-like) 2-planes:

$$
K(p) \geq d \qquad \text{or} \qquad K(p) \leq d
$$

does not imply that K is a constant function, as can be shown by using the spaces

$$
S_1^2 \times \mathbb{R}
$$
 or $H_1^2 \times \mathbb{R}$,

where S_1^2 (resp. H_1^2) is, the 2-dimensional Lorentz manifold of constant sectional curvature 1 (resp. -1). The same spaces serve as examples showing that one-sided boundedness of Ricci curvature on all time-like (or space-like) unit vectors:

$$
R_{ab}w^a w^b \ge d \qquad \text{or} \qquad R_{ab}w^a w^b \le d
$$

does not imply that the space is Einstein.

References

- [1] Hawking, S. W., Ellis, *G. F. R., The large-scale structure of space-time,* Cambridge-London-New York-Melbourne, Cambridge University Press, 1973.
- [2] Kulkarni, *R. S., The values of sectional curvature in indefinite metrics,* Comm. Math. Heir. 54, 173-176 (1979).

Marcos Dajczer Instituto de Matemática Pura e Aplicada Rua Luiz de Cam6es, 68 $20.060 -$ Rio de Janeiro, RJ Brasil

Katsumi Nomizu Department of Mathematics Brown University Providence, RI 02 912 USA