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ON THE NUMBER OF LIMIT CYCLES WHICH APPEAR BY PERTURBATION
OF SEPARATRIX LOOP OF PLANAR VECTOR FIELDS

R. ROUSSARIE

Consider a family of vector fields X, on the plane. This
family depends on a parameter X\ € .ZFA, for some A € IN, and
is supposed to be C¢® in (m,\) € ®:x mM,

Suppose that for X = 0, the vector field X, has a
separatrix Loop. This means that X, has an hyperbolic saddle
point s, and that one of the stable separatrix of s, coincides
with one of the unstable one. The union of this curve and s, is
the Loop T'. A return map is defined on one side of T.

Loops on the plane

Figure 1

We are interested in the number of limit cycles (isolated
closed orbits) which may appear near T, for small values of ).
This problem was first studied by A.A. Andronov and others [A].
They showed that for l-parameter families, with the condition
that div X,(s,) # 0, it appears at most one cycle. Next,
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L.A. Cherkas in [C], considered the question of the structure of
the transition map near a saddle point, for a family of vector
fields X, (below, I call it the "Dulac map" of the saddle). He
derived from his study some results about the number of cycles.
For example, he showed that if div x,(s,) = 0 and if the
Poincaré map of the loop is hyperbolic, then this number doesn't
exceed 2.

I want to present a generalization of these results. Suppose
that div X (s,) = 0. Then, it is known from Dulac (D], that
the Poincaré map P,(x) of X,, along the loop T has an expansion

equal to: [ a..c*(nz)?. (This means that for each % € W,
0<i<i *J
1<z

the Poincare map is equal to a finite sum of the above serie for
0 <j <z < (k) and some <(k) € W, up to some ck, k-flat
function; k-flat means that all the derivatives are zero, at

z = 0, up to the order k). In fact, if the function pP,(z)-x is
not ¢%-flat (i.e.: a. =1 and a.., =0 for (i,7) # (1,0)),

10 tJ

s s . k k+1l
then it is equivalent to Bp® OF & Laz, By OF ap,, # 0,

for some k > 1. (P,(x)-z equivalent to g,x means here that

1

Blz) 1is ¢ and hyperbolic). Now, the principal result is as

follows:

x»e ®Y a ¢® family of vector fields on

Theorem A. Let Xy
the plane, which has a separatrix loop I for XA = 0, at some
hyperbolic saddle point s,. Suppose that divx (s,) = 0. Let
P,(x), the Poincare map of X, relative to the loop T.

Suppose that P (x)-x is not flat. Then, for X small enough,

Xk has an uniform finite number of 1imit cycles near T . More
precisely, if P (x)-z 1is equivalent to kak, with Bk # 0,
then XA has at most 2k 1limit cycles for small A, near T;

if Py(x)-z 1is equivalent to ak+lxk+anx,ak+1 # 0, then x; has
at most 2k+1 limit cycles. (Here, "near I, for 2 small enough"

means: there exist a neighborhood U of T in ®r? and a
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neighborhood V of O € IRA such that X, has at most the
specified finite number of limit cycles in U for A E V).

Remark. Recently, J.S5. I1'lasenko proved that, for any isolated
loop of analytic vector field X, on the plane, the function
Po(z)-z 1is not flat. (Isolated means here: isolated among the
limit cycles) [I]. So, for analytic vector fields, the theorem A
works in the following form:

Let X, an analytic vector field family on the plane, with
an isolated Loop T at A = 0, Then, for A small enough,
has an uniform finite numbern of Limit cycles near T.

Now I want to indicate why the non-flatness condition in the
theorem A will be verified in any generic family of vector fields,
depending on a finite number of parameters.

Definition: Let s an hyperbolic saddle point of a ¢” vector
field X, with div X(¢} = 0. Recall that the infinite-jet of
X at s is Cw—equiva1ent to:

© 3 ] z ]
J X(s) megg s Yyt (izlai+1(xy) Vv 55

(The Cw—equiva]ence is the equivalence up a ¢~ diffeomorphism
and multiplication by a positive ¢~ function). We say that

is a saddle of order k > 1, if o, . is the first non zero
coefficient e, in this expansion.

Remark: Let o, T, two transversal segments to the local stable
and unstable manifolds of s, such that a transition map D(=z)
is defined from o to T by the flow of X.
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Diz) :o + 1

Figure 2

Then, it is easy to show that s 1is a saddle of order &k if

and only if k+1 is the order of the firstkunbounded derivative
of D(z) at « =0. (In fact D(z) vo, & *'Inz in this case).

So the notion of order does not depend on the above representation
of ij(s).

Now, we come back to a vector field X, with a saddle loop T
at a saddle s,, such that div x,(sy) = 0. Call R(x) the
Poincare map of - X,, from o to «=:

Figure 3

(R(x) 1is the Poincaré map above the regular part of T).

This map has a Taylor expansion equal to:

R(z) = x-B,-B z-B,x =, .. .. By -
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Clearly the coefficients al,az,...,ak,... and so
are independent of each other. So, if X, belongs to a g-parameter
family of C*® vector fields, we can suppose genenically that one
of the g+1 first coefficients in the 1ist: B,,0,,8,50,5-..sB750...
is non zero. (Generically means: for Xy in some open dense
subset in the space of all g-parameter families, with the
compact-open C° topology).

If 8, 1is this first non zero coefficient, then P(z)-z“F '(z)<
is the first one,

2B s aByse

is equivalent to Bk xké If o

k+1
Plx)-z v D(z)-x v a, 6 =z e (As we will show in the following).

k+
So, we have the following generic corollary of the theorem A:

Corollary B: Let a ¢~ %-parameter genendic family of vector fields
Xys A G.mg, £ > 1. Suppose that x, has a separatrix loop at

a saddle point s,. Then there exist at most £ 1imit cycles of
X, near T, for X small enough.

We are also interested to the case of a family which is a
perturbation of an Hamifionian vector fiefd. This type of family
has the following form:

Xy = X, - €k + o(e)

where X = (g,X) with € near zero and % in some finite
dimensional space of parameters. We suppose also that X, 1is an
hamiltonian vector field. This means that for some area-form Q
on IR®, there exists a € function X, such that X 4Q = di,
The vector field X depends on the parameter A only. The term
o(e) depends on (m,X,€). We suppose that the level {# = 0}
contains a loop I at a saddle point s, of X, and that the
levels {# = b} for P > 0, near 0, contain closed curves Ty
near T = T,. We define the integral function I(b,XA) by:

I(b,1) = f w where w = X1,
Ty
It is known that this function is very interesting to study
the Timit cycles of Xk for small € # 0, In fact, if o 1is a
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transversal segment to T, parametrized by the positive values
of H, the Poincaré map Py of X, on o, has the following
expansion:
Pk(b)-b = af w + ofe).
T
b
It is easy to see that I(bh,)) admits an expansion equal to

T [B.(2)b* + a.(X)b
>0 ° *
(The convergence is, as above, up to ck, k-flat functions, for

Lnb for ¢~ functions a., b. in 2A.
7 A

Z+1

any k). The number of cycles near T {is related to this expansion
of I:

Theorem C: Let X, = X, -~ eX + o(e) a perturbation of an
Hamiltonian vector X,, defined as above. Suppose that
r(b,io)mbk(io)bk with b (X,) # 0. Then Xy has at most 2k
cycles near I, for A = (e, X) near (0,X,) and € # 0.
Suppose that I(b,A,) ~ ak(.iu)bk“mb, with a,(X,) # 0. Then
X has at most 2k+1 «cycles near T, for A near (O,Xo) and

A
e # 0.

The proofs of theorems A and C are based on a structure
theorem for the Dulac map of X,. Such a result was established
by Cherkas in [C]. I present here alternative demonstration and
formulation for the structure of the Dulac map, in finite class
of differentiability, and not in analytical class as in [C].

I shall indicate aiso the relation between the coefficients of
the normal form of XA at the saddle point, and the expansion
of the Dulac map. Find this relation is important to obtain the
precise bounds 2k, 2k+] on the number of cycles, in the
theorems A and C. We begin with the following:

Proposition D: Let X, a c® family of vector fields, such that
X, admits a saddle point s, with div X,(s) = 0. Then there

exists a sequence (GN)N, O<...<5N+l< Sy < -ee < & and
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¢® functions o (), defined on w, = e, ()] < GN} such
that, for each w:
N .
2N+1 S _ 9 Ty,8
J Xy {(sy) é; Tae T Yy t (izo %1 (M) (=Y) yg

for X € Wign s Here, s, is the saddle point of X, near &,
(SA is supposed to exist for X € W,). The ¢® equivalence,
is the ¢~ equivalence of (2¥+1)-jets: multiplication by

positive (% functions, and conjugacy by c® diffeomorphisms,
depending ¢® on (x,y,A\). OFf course the jets are taken only

in the (z,y)-direction.

Now, it is known from 5. Sternberg [S], that for each
K € W, a given ¢” vector field is always CK-conjugate to its
(28(K) + 1) polynomial jet, in a neighborhood of a given
hyperbolic saddle, for some W~(X). The same resul 1is alseo
availuable for A-families, in a neighborhood of the saddle with
conjugacies depending on the parameter. Combining this, with the
proposition D, we obtain the following reduction of the family,
in CK class of differentiability:

Proposition E: Let a c® family X, such that X, admits a

saddle point s. Let some K € IN. Then, in some neighborhood
. 2 A . .

of the path {(s(A),A)|x € WN(K)+1} in R =R, the family is

CK-equivalent to the polynomial family of vector fields:

N(K .

3 % iy, 9
Eaz = Ymy T ('v,':o % e (M) (29) ) )ugy-
Here s()) is the saddle of X,, near s,, and the aj(l) are
the functions defined in the proposition D. The CK-equiva1ence
is now the multiplication and conjugacy by functions and
diffeomorphisms, depending CK on {(z,¥,A).

Remark: The CK equivalence sends the saddle 8, on the fixed
point 0 € ®®.  Now an homothecy in IR? doesn't change the
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form of the polynomial vector field in the proposition £ (It just
modifies the values of the functions & ). So, we can suppose
that the image of the equivalence contgins any given fixed
neighborhood of 0 € ®* (For example the ball of radius 2).

So, it is sufficient to consider a polynomial family of
vector fields:

) 3 i d
X, = T5z " ¥y + (igo ai+1(xy) ) v5y

where a = (al""’aN+1)' Let 0= {z >0, y =1} and
T =1{y >0, =1}, two transversal segments, in the same
quarter {z,y > 0} of the saddle. We call Dulac map D, of X,
relative to o, v, the transition map defined by the flow of Xa’
from o to Tt (0f course we parametrize o by x, and Tt by
y)-

We suppose that we restrict o to the neighborhood of
0 e =™ defined by: lo,| <%, |ol < for 2 < s g+l and
some M > 0. Then the Dulac map Dy, is defined on some
neighborhood of 0 € o dindependant of a. (We take DG(O) = 0).
In fact py(xz) 1is analytic in (=z,a) for = > 0. We want to
make precise the nature of py, at x = 0. For this, we introduce

the function:

z C1-1

%y

w(x,a,) =

Note that for each % > 0, ka -~ -kanx as o, + 0 (Uniformely

for =z € [0,X] for any X > 0). We are going to consider finite
conbinations of the functions z"w? with 7,7 € W and 0<j < 7.

These functions =%w’ form a totally ordered set with the
. . ] vl
following order: z*w? < z*p? <= ' > ¢ of 7 = 4' and j>g'

(14 266 £ 2 < 22w £ 22w 4 224 ...).

The notation z'w’ + ... means that after the sign + one
finds a finite combination of z* wJ of order stricly greater

than z%wd . Then, we have the following structure for Dgy:
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Theorem F. Let any X & I¥. Then the Dulac map D, of X,
(relative to the segments o, T defined above) has the following
expansion:

N+1

p(z) =z +a [Eo+...] +o, [z + .. ] +.ovap [ et Ty

[

. .. . . 4
where each term between brackets is a finite combination of <« wJ

(wi;h the above convention); the coefficients of the non written
z"w?  after the signs + are ¢® functions in o, which are zero

for o = 0. The remaining term wk is a CK—function in (xz,a),

which is K -flat for = = 0, and any a-(yp(0,a) = ... =
2" Vg

ook (0,a) = 0).

Remark: The expressions in the brackets depend on K. But the
ordered expansion of Dy(x) 1in term of the z'w’! s unique.
Next, if we take X < ¥ (which is always possibie), we can reduce
the brackets up to the monomials 2w with < > K+1. (Because
these nomomials are CK and K-flat). So the expansion of Du(x)
reduces to:

D (z) = = + a ew +...] +...+ aKEwa+ R o,

with ¢K, CK and x-flat, and the brackets depending only on the

z*w? for 0 < j <1 <K.

A natural generalization of loops are the singular hyperbolic
cycles (made by hyperbolic saddles and separatrices). I think
there are some difficulties to extend the above results to the
perturbations of general such cycles. Of course, it would be very
interesting to have results for non-hyperbolic singular cycles.

I wish also to qmghasize that the expansion of the map D, in term
of functions =z"w’ is of the type introduced by A. Hovansky in [H]
and the proofs of the theorems A, C below use arguments similar

to those used by A. Hovanski.
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I - Normal form of a family of vector fields near a saddle point
(Proof of the proposition D)

Let X, a family of vector fields as in the statemente of
proposition D. One may suppose that XA is defined on some fixed
neighborhood v of 0 € ’R?, which contains for each A € W
Wi = {|la,| < 8,}, a saddle point at 0 € ®? as unique singular
point. We may also suppose that there exist coordinates (x,y)
in ¥ such that:

7, (0) = 2 - (1 - 0, ())ygy (1)

where a_ (1) is a ¢® function of A € w,, with o (0) = 0.
I want to establish the proposition D by an induction on #¥.
The formula (1) is the first step of this induction for & = 1.
So, suppose that one has found &, > §,>... > 6N+1 >0 and

¢® functions al,...,aN+], ai:Wi +IR, such that for A E WN:
28+1 9
70 was - g * [2 oy (M) (29 ] e (#+1)

(The equivalence " " being defined in the statement of prop. D).
Consider the (2N+3)-jet. The formula (N+1) gives that:

2N+3 N
7 (0) ;»XX * Y2N+2(A) * Y2N+3(A) (H+2),

where Xg is the right term of (w#+1) and Y2N+2(A)’ y2N+3(A)

are (¢* maps of Wusr 0 Vopezs Vopes respectively

(VL designates the space of homogeneous polynomial vector fields
of degree IL).

Let pg the Lie bracket operator:

1

z€VL+[Xa,z]eVL

. . B Q_ _ B
where x, s the 1-jet: x, = =z (1-0,) yay. For a, = 0O,

1 Gs
2N+2 .. .
h is inversible. So, one may choose 6N+2’ 0 < 6N+2< 6N+],
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small enough to have Qiﬂzf) inversible for each X € WN+2. Then
1

one can resolve the equation:
[Xal(k)’ Upwa2 (M1 = Topup(X)

with U2N+2(x) a ¢ map of WN+2 in V2N+2'

The diffeomorphism Id - U2N+2(%) brings the jet XA omot o3
on a jet Xf+ Yops3s With Yoo o, a ¢ map of Wyep N Vop o

28+3

Let now: N, = Ker p_ = (xy

. AR " 2.

5;, yay This kernel
Image(p§N+3). So, p§N+3 is an

is a supplement space of B,
isomorphism of B, onto itself. By continuity the space BA=°§N?iﬂB°)
is of codimension 2 in V2N+3. Taking perhaps a smaller 6N+21 we
can suppose that B, is transversal to ¥, for each X\ § W”+2

So, we can find (unique) ¢~ maps Vopez(A) and Wy o(X)

of WN+2 in By, and N, respectively, such that:

YéN+3(x) = l:Xoul(k)’ UéN+3 (W] + w5 N+3(x)
The diffeomorphism Id - Uj, (1) brings the jet X)\ + Yope3(R)

on the jet XA + W'N+3(A) Now:

Varrs () = 800 @) e v v )Ty £

ay
_ . N+1 3 3 N+1 3
= B(A)(xy) (Esz - ygg) + (B(A) + v(M))(=y) Y3y
So we have:
. 2
Gy = (14800 (@) ™) (2 2 - yp) + ( 5 oy (o) )y—+(s+y>(xy)”” =
ceas N+1 Lo
and, dividing by 1 + B(=zy) , we obtain:
X’N+W' N
20+3, "AT"on+3 9 3 Zy 3 v+l 3
J =g -y 2 L. 2 . 2
(W) Taz ¥yt (L g (@) gy - o8 (o) Y5y

I
v (ee) ()" vl
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This Jjet is Cw-equiva1ent to the initial one, in the formula
(N+2)1. So, we have proved that:

N4 .
N ] ] T 9
723 (0) v omgp s Vgt (L2 00 ) gy (§+2)
P - 7

for A € Hypoo with amz(?\) = —a; (A)-B(AY + B(A) + Y()N).

IT - The structure of the Dulac map. (Proof of Th. F)

Let a given constant ¥ > 0. We consider all the analytic
families X in normal form:

[

Ko = ogg ~vgg + (Lo (@) ) v gy (1)

o]
41 , . .
where P (u) = } ai+1“1 is an analytic entire function of

u € IR, with : g A where A 1is the set of a o defined by:
A= {af lall <3, |ai| <M for < >2}. Let the transversal
segments o, T and the Dulac map Da(x) defined as in the
introduction. Observing the normal form above, it is natural to

make the singqular change of coordinates (u = zy, =z = =x).

The differential equation for trajectories of Xy

x = X

@ .
[}

v (] o, (59) )y

is brought in the following equation:

z =z

u = Py (u) = E o ..U
1=

We see that in (3) the variables (x,u) are separated.
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The first equation gives no trouble. So, we concentrate ourself
on the second equation: u = Pg{u)(4) which is analytic in Iulfl
for each o as specified above. Call u(t,u) the trajectory
of this equation (solution of (4), such that «(0,u) = u).

This function is analytic for each ¢, in some neighborhood
of u = 0. So we can expand u(t,u):

o . at

u(tu) = F g (th" (5), with g (¢)=e and g.(0) =0 forall ¢ 2.
=1

We want to study the form of the 9; and the convergence of the
above series, in function of ¢. For this, we are going to compare
u(t,u) to the solution of the hyperbolic equation:

: - 7+1
U=3U+ ] MU (6)
=1
We have the following estimations:
Lemma 1: Let U(t,u) = 7} Gi(t)ui the power serie expansion of
£=1
the trajectory of (6). Then for each < > 1 and ¢t » O:

|gi(t)| <G .(t) (for-any a € A).

Proof: Substituing (5) in the equation: %%(t,u) = Py{u(t,u)) we
obtain recurrent equations for the gi(t), the system Eg

g,(t) = o9,

g,(t) =a,g, +a,g2
éa(-t) =@ gy + 20,99, ¥ aag:
and more generally:
gy, = a,g. + Pi(az”"’ai’g1""’gi—x) for ¢ » 2

where P, is a rational polynomial in TR Y AT TRRTY ) with

positive coefficients.
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Now, U(t,u) 1is the trajectory of U =P4(U) with
@ = (% ¥,M,...). So we have for the G.(t), the system E.:

&

[ »9)
(™

2
1

[ [ ST I

G, + MG

see L
N
[]

and more generally:

s _ 1
G.—‘Z-G

: P M, MGy, G )

z 1-1

(with the same polynomial P, as above).

We can resolve the systiem EG by:

1 1
5t 7t (t -7T 2
G, (t) = e , G,(t) = ¥,(t)e with v, (t) = e M-G dT
10

and more generally:

%'t t it
Gi(t) = \pi(t)e with wi(t) = J’oe 2 Pi(M,...M,Gl(T),...,Gi_l(T))d‘r

It follows easily from these formulas, that Gi(t) >0 for
t > 0.

Now, we are going to show the estimations lgi(t)| < 6. (¢)
for each ¢ > 0. First, it is true for < = 1:

|a1!t 5t
g (e)] < e <e =g¢ (¢).

Suppose now that we have shown that |gj(t)] < Gj(t) for
each j: 1 <4 <=1, and ¢ > 0.

We compare the two equations:

[}

g;(t) a9, + Pf(az""’ai’gl""’gi-l)

]

Go(t) =F 6, + PolMyeeisksGyseensG. )

7

Because the coefficients of Pf are positive, we have:
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IEI:(GZ,--.,ai,gl,...,gi_l)l 5Pi(‘a2|,...,|ail, Igllr-..,lgi_ll) <

<P My MG Gy )

Now, for ¢t = 0, we have G;(0) =1 and Gi(O) =0 for
i > 2. So, we have Gi(o) = Pi(M,...,M,Gl(Oz,...,Gi ,(0)) =

T _ . 7
MG, (0)" = ¥ and also [g.(0)] < |ai||g1(0)| < lail
So, for ¢ =0 we have g.(0) = G;(0) =0 and léi(o)|<éi(0)'
This give,s by continuity, for ¢ small enough:
1§, (80 < &, (¢).
We want to show that this inequality is availuable for
¥ £ > 0. (and so we will have: |gi(t)l < Gi(t) for ¥ t > 0).

On the contrary, suppose that ¢ > 0 ds the inferior bound of
the values ¢, such that [g.(¢)] > &.(¢). For all ¢ € [0,¢,]
we have: [g.(t)] < Gi(t)' So for all ¢ € [0,t ] we also have:

g (2] < e (8).
Now, for ¢t = t,:

éi(to) = algi(-to) + Pi('az"'"di’gltto)""’g‘ﬁ-l (ta))

1

éi(to) = g G (tg) * Po(My MG () s asGr )

(to)).

By induction on 7, we know that G;(%,) » |9;(%,)| for
Z<d < 2-1. By the choice of ¢,, we have already notice that
G;(t,) 2 |9;(t,)|. So the inequality |a | < % implies:

19,(t,)] < G;(%,).

But, by continuity this strict inequality is availuable for the
t > tg, t near t,: this Jast point contradicts the definition
of ¢,.

Next, we prove the following:
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Lemma 2: There exists constants ¢, ¢, > 0
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such that:

Z
lg; (e < Co[éet/z] for any < > 1, t>0 and any o € A,

Proof: Using the lemma 1,
t/2,*
Gi(t) < C,lce

Recall that the function

of an hyperbolic vector field: X =

From a theorem of H.

it is sufficient to show that

| for some constants ¢, ¢, 2 3 1, ¢ >0, a € A.

v{t,u) = ZGi(t)uﬁ is the trajectory
21 ©
= 3 . _1 7
P(u)-a—u with P(u)-;u+Mi£2u .

Poincaré on the analytic linearization,

there exists an analytic diffeomorphism g(u) = u+..., converging
for |u| < k,, for some k, > 0, such that:
3, _ 3 ]
g*(P(u)gz) =T %
This diffeomorphisT sends the flow U(t,u) of Pg% into the
St
flow U (t,u) = ue’ of 114JL, This means:
2 7 3u
Uy (tsg(u)) = g v(t,u) for |ul|,|U(t,u)]| < K .
Because g(u) 1is inversible for |u| < kK , there exist constants
as, 0 <ag< A such that:
alul < Jgu)| < Alul for Jul| < K .

., -3t -3
Suppose that |u]| < 7 Kye . Then |g(u)| < Alu| < akje

2

-1

10, (tag(u))] = |glulle < ak . Now U(t,u) =g "°U (t,g(u)).

This implies that:

l0e,ull s 210 (209 ())| < K,

Now, using

le,.(¢)

inequalities of Cauchy for the coefficients Gi(t)’ we find:
X L
| < Sup{|U(t,u)]|lu[=R(t)} < ! = if  R(%) =%,Kle z,
|R(2)| [R(t)|
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So, we obtain:
it
les () <k A e * which is the desired estimation with

(
A4 =1
Co =X, and ¢ =2 K",

We will show below that the functions gi(t) are analytic
functions of ¢ > 0. For the moment, we notice that the formula:
Ju _ R . du
3?(t’u) = P (u(t,u)), shows that the seriesin u of =f has
the same radius of convergence that u(z,x). {Recall that Pu(u)
is supposed to be an entire function). The same is true for any

derivative 3—%(t,u), by an induction on k. This remark gives
ot

d'g.
an estimate for the coefficients —~7%(t) of the derivative:
dt

Bku dkgi A
— - 7 w , using the Cauchy inequality along the circle
t i>1 dt
- - 1 - 1z
of radius R(t) = % K,e 2 zce 2 as above:
aku
s Sup{lg—;(t,u)lllu|=3(t)}
; t
l— ()] <
de [r(2)|*

g. 7
which gives: 1——7%(t)1 < Ck(Cet/z) for some ¢, > 0. So, we
dt

have:

Lemma 3: For each %k > 0, there exists a constant Ck > 0 such

that:
k

d g. 1
l—di%(t)l A

for any 7 > 1, £>0 and o € A.

(Here (¢ 1is the same constant as in lemma 2).
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We will give now some precisions about the form of the

functions gi(t). For this, we introduce the function:
o, t
Qo ,t) = e =l for ¢ # 0 and
1 °‘1

Q(0,t) = t. With this notation we have:

o.t
Proposition 4: For each k » 1, g, () = e 1

Qk(t) where 4y is
a polynomial of degree < k-1 in Q. The coefficients of 2, are

polynomials in Gysev-sy. More precisely:

Q = 3,0+ ék(al,,..,ak,ﬂ)

where ék is a polynomial of degree « k-1 in £ with coefficients
2
preea ) 0 J(ea ) = 2l o]

(J(u,v,...): for the polynomial ideal generated by u,v,...).

in J{a

Proof: Write again the system Eg for the g;°

g, = %9,

. 2
g = Otlg2 + azgl

gr = %95 ¥ Prlo . i0pug.500000, )
The polynomial Pk is obtained from the coefficient of uk in the

1
expansion ) a. [ ) giuz] . It follows easily that Pp is
J>2 21

2
2 k-1
hemogeneous linear in a ,...,% . Each monomial 911...gk_1 is
such that: kot k-1
! 2.2 and § J.%, = K, (*)
g=1 9 g=r 7
a,t

First we show that g,(¢) = e @ (%) with @, a polynomial
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in Q of degree < k-1, with coefficients, polynomials in
t a t

Cﬂl 1
,gz(t) =0.Ze '9’--')'

& a0y {i.e.: gl(t} = e

Look at the equation for Iyt
ék = 0.9, * Pk(~a2""’°‘k’ 91,---,gk_1)

and use an induction in k. We suppose known that for each j<k-1:

ot o,t
g.(t) = e Qj(t) with deg(Qj) < §-1. Notice that: e = a, 0+l

So, each g; is of degree < 4§ in &. Now, it follows from the
first inequality in (*) that:

Zalt
Pk(az,...,ak,gl,...,gk) = e X, (2), where X, is a

polynomial of degree < k-2 in @ (To see this point, replace

2 %
in each monomial 911"'gk-11 of Pk’ a product of two factors
20 £
9:9; by e ! QfQj and the other factors g, by (aIQ+1)QQ).
alt
Now, gy = ¢ Qk with:
t -a. .t
1
Qk(t) = J(Oe Pk(o{'zv'--saksgls»--:gk_l)d-r
t Of.lt (t .
Qk(_t) ={ e Xk(_Q)d'r = ) Xk(Q)QdT
0 0
a, t

(Because Q= e ).

So, we see that Qk(t) is a polynomial of degree < k-1 in Q.
From the induction it follows easily that the coefficients are
polynomials in Oy yenealp. To obtain the precise form of the
statement, notice that for k > 2:

_ k
Pk(O‘Z"--,akggl,-v-’gk__l) = akgl + Pk

where ﬁk is linear homogeneous in o,,...,0%; and each monomia
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in P, contains at least one of the g, with % > 2. But, we
know that the coefficients of such a g, are divisible by
Oys.e.s0;. S0, the coefficients in ?k are in

2

T(a sein ) 0 J(a,,...,0)

t (k-l)alt LN

Now: @, = a f e dt + ( e f’.v('r)d'r
k (3 0 i k
t (k-1)a,T

( e T drt

‘o

Look first at the term

t (k-1)a,T
( e 1dT= ~ —1.
o -tay

O.l‘t'
Use again: e

a19+1. We obtain:

(k-1)a,t
e - 1 +(k-])a19+a:8(9)

where S(Q@) 1is a polynomial in Q.

t (k-i)alt 00,
So, we have: akfo e = 0 + 4 5(Q).
t T
The term '[ e Pkdt gives a polynomial in &, with
0

coefficients in J(d "'“k-n) n J(al...ak)z. So, we obtain
finally: @, (%) = o0 + &  with ék as in the statement.

We go back to the map Da(x). The time to go from o to T
is equal to:
y a t(z) = -In « (where (x,1) € 0 is a

given point on 0O).

Figure 4
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Now, we have “10 =2z and u}T =y. So, we can calculate Da(x)

-

as the value wu(t,u) for u =2 and t = t(x) = -In =:
Da(,x) = u(=Lnz,xz) for =z > 0.
(We extend p  in 0, by »p (0) =0).

There is no problem to see that Du is well defined for = € [O,X],
where X is some value greater than 0, and is analytic, for

z # 0. We want to study its behavior in = = 0, For this, we
notice that the lemma 2 implies that for each ¢ > 0, the
convergence radius of the serie ng(t)ui is greater than

-

: ,
e . So, for any =z small enough, the serie [ gi(t)xt
A

et

converges for each ¢ < -2Lnz and in particular for ¢ = -In =z,

So we can utilise the expansion )y gi(t)ut to calculate Dgy(x):
1
S %
Du(x) = ‘zlgi(-Lnx)x .
1:

The convergence is normal on an interval [0,%] for some
d g;

i» —x of

* dt

X > 0. Now, we can utilize the estimates on g

lemmas 2, 3 to obtain the following:

Proposition 5: Let any k & IN. Then there exists a X(k) such
that:

K&k :
Dq(x) = gi(-an)ﬂc + wk
i=1

where 4 is a Ck function in (=z,a}, k~-flat at = = Q.

Proof: Given k, we want to find X(k) such that:

z) = KX gi(-Lnx)xt is a ¢*, k-flat function.
+1
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We are going to see that the series Dg can be derived term by
term. First, we have:

Lioj-1n2)=%] = g0 ) (wine)a?™ 4 g (-Dna)a?

dg .
(where ¢$') = ).

Now, from the estimations of lemma 3 we have:
-4

1 2
|g§. )(-Lm‘:)| < Cy|Cra)

And from lemma 2:

-4
|gj('Lnx)| < C,lez]
So, for some constant Ml, we have:
-1
l priCoAS Lna )z’ )l < JM, lC.x

A
<,

More generally, using lemma 3, we have for each s

.

d® J B
—_ (-0 M |C.
|27 G| < heyr Ml O

for some constant ¥  depending on s.

It follows from this, that {f X > 2k and if 0 the

series:

1A
«
1A
=
-

3
) :i— lg (-L (x))xa| converges and is equal to zero
J>K+1 dz®

for = = 0.

k.. k

So, we obtain that the function 2 oo =D is k-flat and ¢ .

J> K+l

Nyl .
Suppose now that Pa(u) = ) aiu¢ L5 a polynomial as in the
=]

introduction, We show how to rearrange the expansion Da(x) to
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derive the theorem F of the introduction from the propositions
4 and 5 above {with X replaced by k).
First, as in the introduction, we introduce:

-0'1

- Z -1 2
w(al,x) = Q(al,-Lnx).

The proposition 4 gives us the following:

—aanx
e Qk(-Lnx)

gk(Lnx)
-a

1 -
=z [o0+ Qk(al,...,ak,w)]

with ék of degree < k-1 in w, and coefficients in

2 k
J(al,.. l) n J(al...ak) . So, the general term gk(—Lnx)x

S50y
in Du(x) is equal to:

% k-o, _
gk(-Lnx)x =z (akw + Qk)-

-o
. N N 1
This term can be rewrite as: (using =z = o, w+])

2 -
gk(-Lnx)xk = akka+a]akka +mk(1+a1w)Qk(al,...,ak,m)
T-a, '
for k > 2 and =zg,(-Imx) = z = o, TWH.
So, we have:
D (z) = 2 2223_' -
o (&) = mio zwta, @ wie o,z W e 4z (T+a,w)q, +
3 3 3 3 =
+ooeiwia e et (T+a w)@, + ...+ Uy
where +... is for the expansion of the xsgs(-Lnx) for 4<s<k(k)
(The coefficients o, are taken to be zero for < > N+1).

K (k) .
Now, we rearrange the sum § gi(-Lnx)xt in the following

1=1
way: first, we take all the terms whose coefficient is divisible

by o,. Next, all the remaining terms (not divisible by al) but
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divisible by o, and so on, until aN+1. We obtain the following

expansion:
2 2 - 3 3 3 =
Dy (%) = z+a, [zota,x wtz wd,+a, 2 w +2 wdz+...]
. = K- e ..
+ azﬁx2w+terms in sta,...x Qg divisible by a,, not by o]
N+l

N N -
%@wmmsmx %ﬂﬂn,

Foeee

K= . :
z Qy div. by %, not by “1"“’“N-1]

N+1

+ o x w + wk.

N+1

From the above expansion it is clear that each term after z°w
in the bracket relative to oy is of order greater that =z%w and

has coefficients in (ul,...,uN+1) (because it comes from a term

with coefficients in J(al...aN+])2, next divided by a_). The

sum is stopped at SR because a, = 0 for < > N+1. The

function by is Ck in (x,a), k-flat in =z. So, we have

verified all the statements of the theorem F.

IIT - Finiteness of the number of cycles in the generic case
(Theorem A).

As in the statement of Theorem A, we suppose that Xy A Eﬂ%,
is a €™ family of vector fields such that:

1) For A =0, X, has a loop (saddle connexion) T at some
hyperbolic saddle point s.
2) div x (s) = 0.

3) The Poincare map P, of X, around relative to some

r,
transversal segment o parametrized by =z > 0, 1is such that:
"Case B,": Py(z)-% = Bz +o(z") with 8 # 0 or

[ N k+3 k+1 .
‘Case ST Po(m)—x = o, . x Lnzxto(x  Lnx) with ak+1 # 0, for

k+1

some &k >.1.
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The preposition E (which is a direct consequence of the
proposition D proved in part II) shows that for any X € IV, we
can choose a CK change of coordinates around the saddle point
sy of X, bringing this vector field in the following normal
form, defined in the ball ¥ with coordinates (z,y), z?+y? < 4:

N(K) ;
1, = ad -yl (L, e ) ) ody

where the functions a (A) are ¢~ on some neighborhood ¥ of

0 € IRA, and N(X) € IN is some number depending on X. For
what follows, it will suffice to take X > 2k+1,

We can also suppose that the change of coordinates is chosen so
that the Poincare map P, 1is defined on o= {y=1, >0}, near 0.
Let also T = {z=1},

For A € ¥, the Dulac map Dl(x) is defined from a
neighborhood of 0 € o (parametrized by « > 0) to 7t (parametrized
by y). We can extend the chart ¥ 1in a cX-chart defined in a
neighborhood of T. This chart is an union V¥ uv' where V' is a
neighborhood of the regular part of I, between ¢ and t. The
vector field x, is & on v,

Now, let R,(x), the map from o to <t defined, in a
neighborhood of 0 € o, by the flow of -X,. This map is

A
differentiable of class CK. So, we can write it:

Ry(2) = =-[B,(1) + 8, (M)=+8,(M)2" + ... + 8,(1)2"+s,]

with ¢K a ck function in (x,)), k-flat at’ = 0. The functions
)

x
Bo,...,BK are at least continuous. (In fact, %(2 is of class
kK-7).
Now, the Poincaré map relative to ¢ 1is equal to: P1=RiloDA.
It is clear that the case By is equivalent to:

B,(0) = ...unnn. = B,_,=0, B (0) = 8,70 and o (0)=......... = a(0)=

The case 41 is equivalent to:
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Bo(0) = vuvnnn = §,(0) =0, o (0)=...... = a,(0) = 0 and

To look for the fixed points of Py, we prefer to consider
the map Ax = Dy-Ry: the fixed points of P, will correspond to
the zeros of Al' Choosing WN(X) > X 1in the theorem F (which

is always possible), we can write:

Dy (2)=Dg 5y ()=aroy (A) [mur ... ] + ool o (3) [me+...]+wK.

So that:
8, (z)=8,(M)+a, (A) frwt ... ] + 8, (Ma+a, (M) [2rwr...] + ...

+ 8 _ ey (0) [ Jrurey.

Using the remark after the statement of theorem F in the
introduction we can write:

8, (@), (A, (3) . Joe o 48 ()b () s Lol +o

where the functions wK’¢K’QK are CK, k-flat in = = 0.
The precise meaning of the notation: +..., 4is given in Zhe
intrnoduction.

To study the number of zeros of Ax,. we have to extend
somewhat the algebra generated by the z%w’. We introduce now

the algebra of functions, continuous in (z,A) which are finite
L+na

-~ L o 1
combinations of the monomials =z W™

s 2sm € Z, m€ W,

a, = al(k), with coefficients, any continuous functions of .

(We call it the algebra of admissible functions).

0f course, we consider also the monomials as functions of
(x,al), but when we consider combinations of monomials, o, is
always replaced by the function al(k).
Now, we introduce between the monomials, the following partial
stnict order:
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1
Li4n'a; m' L+no, m
x w < x w ===
' = g, n'=n and m'>m

4
L+n alwm. !.+na1 m

(Notice that = and z w with n # n', are not

ordered).

Later on, the notation: f+... where f 4is a monomial will
mean that aften the sign + there exists a (non precised) {inize
combination of monomials g., with g;> f. (This notation
extends the one defined in the introduction). We afso use the
symbol + to replace any continuous function of A, non zero at
A=0, and we wnite & fon the derivation in =i ¢ = 3.

With these conventions, we indicate now some easy properties of
the algebra of admissible functions.

a) Let g, f two monomials with g>f; then % (x,al) + 0

for (x,al) + {0,0). This follows from the two following

s(oy)

observations: « > Inf ! s, -Lnzx) and =« + 0 (for any
z lall

continuous function s(al), with s(0) > 0), if (x,al) - (0,0),
and m g IV,

b) Let a monomial f» 1. Then f(x,al) +0 forz >0
L+na,
(uniformely, for @, bounded): f » 1 means that f = =z W™

with ¢ > 1, and we can use the same argument as in a).

¢) £i>f, and any g == gf >gf,.

L+no) n
d) Let f=x o, Then:

. L-14ndy L-1+nay m-1
= 2+ {n-m)o. [z W - mx w
f = [+(n-m)a ]

From this formula follows easily:

L47ma
1
u)”1

g) Let f ==z with % # 0, and g any monomial such

that g > f. Then g 1is a combination of two monomials g' and
g" and f = +f' +.... with f'< g', f'<g",
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We shall also use rational functions of the algebra of the

following type: ;}44444. (The admissible national functions).
For them, we have:
L+n0y. - %-147m0,
z Wik, ... .z W+, ..., ;
f) (1+ ............ ) = if 2 #0.

We can give now a proof of theorem A. We shall consider
successively the two cases O g1 and  Bg.

A. Proof of Theorem A in the case o, ,

Recall that:

A, (2)=8 +o, [zwr. .. ]+ B z+a, Elor.. I+, oy [hwe. . .]+kak+ak+ixk+lm LIRER

where s Bj are continuous functions; Vg is a c* function

of (x,A), k-flat in =, with X > 2k+1, Next, we suppose that

Bo(0) = ... = B, (0) =0, & (0)=...=0(0)=0 and o (0)#0.

From the property d) above it follows:
, - . -1-a
(z7w)" = (j-a)zTwr... if j#0 and w==z

So, deriving &A’ we obtain, using also property e):

& = o [*w+...]+81+a2|}a;u»...]+....+*ak+la:kw+ ey

(For the notations *, +..., see the conventions introduced above).
If we derive AA’ k+1 ftimes, we find:

-k-q -(k-1)-a0
A>(\k+1)(x) o[ 4 J4o,[ae 1+....:|+...+*ak+1w+ R q,I({-k“)

A11 the monomials %¢J, for J % k, have disappeared. Multiplying
k+a1
by = . we obtain (use property c)):

k+a k+o
zkmﬂ,‘:“l [*H-.J*az[*x+...]+....+*akﬂx Tt bz lwlg'kﬂ)

(1)
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(Above and afterwards each bracket designates an admissible
function).

Locally (in some neighborhood of A=0, 2=0), the zeros of

k+a,, (k+1)
(k+1) f the following function £, = —r— o)
A)\ are zeros © wing un 4] 1 < m
where the denominator is the function with coefficient a, in (1)
ko
2 k-1 *Q T wt
_ LAY *T 4, *r 4+ k1
o N F— P e Tt TdY o, I T o 2
k+Cf-1 (k+1)
z wK C,K-k—l
Here, $, = 7 is a function, at least X-k-1
flat in =x=0 Using the property f), we have:
k'—:!.-l»(}.1
ol LU + *xk'2+ e w o
& 2T+, ... O TF . P . %
N . K-k-2 . :
where ¢, = ¢, is C , K-k-2 flat in 2z = 0; &, = aU+...

where u, is inversible as an rational admissible function. Let

£, = uzlél and derive again £,:

We write it gz =a, U, t... where %, is inversible as admissible

rational function. We define §, = uzléz, and so on. By this way,

we find a sequence of functions: £ ,£,,...,8x such as &5 1is the

product of by some inversible admissible rational function.

€4-1
For the last one Sk, we have:

1o

* x
% x4 9

S = %t P + 0

where ¢, is CF2K (ko2k)-flat.

Deriving a Jast time, we obtain:
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...........

Then, using the fact that ék is cK-2k-1 -flat, with
Xk-2%-1>0 and the property a), we obtain that:

-1

x W Ek: *0p, . * o(1).

(Where the term o(1) 1is continuous). The assumption ak+1(0)¢0
implies that locally m-ab'ltk and also ék are non zero for
small (x,z) (x > 0). So, the function’ Ek has at most one
zero, for small (X,=z), gt ® at most 2 zeros, and so on: &,

has at most % most k zeros locally. Now &, has at least the
(k1)

Ak s

map AA has at most 2k+1 zeros for small (A,z).

same number of zeros as so finally we obtain that the

B. Proof of Theorem A in the case Bk

We derive the map A, only k times:

-k+t -0,

A§k)(x)=all}x tooJ v oveg Do T4 *Bk+--.-+W§k)

and introduce, next:

k~1yo k=140,
e e
1T kAo B T T A FUs rveeees te

*z +..]

where o, s Ck'k, (K=k)-flat in = = 0.

As in paragraph A, we define a sequence of functions

El,...,ak_l with Ej equal to éj’1 multiplied by an inversible

admissible rational function. The last function €r.a s equal to:
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1404 1+a1
*a, x w+*8kx +
= %
ke Oger e vo
and then: o, o,
*o, % whrBLE 4.,
% k 5
Seer T WA T * %
. K-

where oy is of classe C 2k+], (K-2k+1)-flat.

We take now §g; as:
-al -1

. *
Ep =% 1+l Erwy = *0p + *By *%::::: '% +

where the bracket is the denominator in the expression of ék-x-

The function &, s CK‘zk, (¥-2k)-flat.

If we derive Ek, we obtain:

~l-a,
z L 1
S = *B S S S
and:
L _ 2 *l4, ..., :
R I S e 2
*X +... *T +...

The rest is o(1). So, because Bk(O) # 0, we have that ék #0
from (A,x) smalil enough. It follows easily that the map Ay has

at most 2k zeros for small {X,z).

IV - Finiteness of the number of cycles for a perturbed Hamiltonian
vector field (Proof of Theorem C)

As in the statement of Theorem C, we suppose that the family

takes the special form:

Xy = X, + eX + o(e) where A = (e,}).
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For e=0, the hamiltonian vector field X, is ¢ equivalent to

z+= - y==. It follows from this that the functions ai(x) in the
normal form are divisible by e: a.(}) = e&i(s,i) for some ¢~

function &i. So, the proposition E gives a cX-normal form equal

to:
N(K) R
3 ) § - z 3
-y - (A =,
xg yay E[i=0 a‘l—"‘l( )(-”-'y) Jy ay
It suffices now to consider a polynomial family X, with
@ =€d, a= (&1,...,&N+1). From the proof of theorem F in the

part II, it is clear that the function Dy{z)-z 1is also divisible
By €. This means that there exists some % function ﬁx(z,u),

K-flat in 2=0, such that:

D (=) = z+s(&1Ezm+...]+...&K[}Km+...] + 9)

K
-a,
where w = E«E—ll with o, = €d,. (We choose WN(X) > X).

Return now to the initial family X, . As in the part III,
we can choose some cX-chart around of the loop T, transversal
segments J, T for which, the transition maps are respectively,
the Dulac map : D, (=) = Da(l)(x) and a map R,(xz) such that

Ry(xz)-x s also divisible by e:
Rx(x) = x-e(30+§1x +...+§KzK+$K)

where the Ej are continuous functions of A and @K acC

function of (z,A) which is x-flat in =z=0.

Now, the map 4, = p,-Ry 1s equal to 4, = EZA with:



ON THE NUMBER OF LIMIT CYCLES 99

& = Bo+5:E:m+"‘]+~'"+&xEme+-'~]+§XzK*°K

for some CK, k-flat function O
As in the part III, we say that we are in the &, or P

case at i, if gk(o,ia) or &k+1(0,io) is the first non zero

13
coefficient in the expansion of 5(0,50). The zeros of the map &,
pour € # 0 are the zeros of &,, and if (e,X) +(0,X,), a,(A)>0.
So, the study of the part III allows the following conclusion:

in the case ék’ the map 4, has at most 2k zeros for (£,X)

» the map 4, has at

near (0,X,), € # 0; in the case a \

k+1
most 2k+1 zeros for (e,X) near (0,X,), € # O.

It remains to show how the two cases a, ,, B, are related
to the expansion of the {ntegrafl I. Recall that:

I(b,}) = J ©, ® = X408 dH=X 4Q
s

where Pb is a cycle of the Hamiltonian function &Z, near the
loop. We suppose that these cycles are defined for & > 0.
({b=0} corresponds to the loop)}. To compare I{b,r) to the
A,-map we change the parametrization » by the parametrization .
(b(z) 1is a diffeomorphism of the segment o, preserving 0). So
we take: I(z,x) = I(b(z),A)-
Now, notice that:

Al(x) =Pk(z)‘“ + o{e}. So:
Py(z)-z = EEA + o(e).

If we compare this expression to the one using I, given in the

introduction, we obtain that:
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&, (%) = I{z,X) + ¢(z,A,e) where ¢ is some function tending
to 0, for e » 0. It follows from this that, for each 2A:

I(z,%) = E5(z) where Ez(z) = Z(O,i)(”)'

(In fact, we have to notice that Ea(x) is continuous in e,

because =z w’ - zthnx)j, uniformely in =z, when a and also
1

e + 0, for each < > 0). Return to the map Al:

k+1w+... + &

Zx = Bo+a1[:xw+"']+§1z+"' + Ekxk+ak+1x K’

In each bracket [zw+...], ¢ < k, the term +... is zero for

Gpeve =...=0y = 0. So, this term is divisible by . It follows

that:

ZX (.x)=§0 (_0 9X)+&1 (Oax)anx"'B], (0 ,X)x"" . °+§k(0 si)zk"'&-k+l (0 v)-\ )mk+1Ln.r+0 (xk+1Lm) .

Now, if I(b,X,) ~ b, (X,)5" with b, (1) # 0, we have in the

x-coordinate:
- - - - k . - -
I(z,A,) = Aio(x) ~ Bk(O,Ao)z with Bk(O,AO) # 0.

So we are in the "case Ek“. Also, if I(b,ia)”bak(xgkaLnx, then

- - - 1 . - - . -
I(zsK,) v Gy, (0,5,)% Iz with &, (0,%)) #0, if a, (R,)#0

and we are in the case Crpr
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