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ON THE NUMBER OF LIMIT CYCLES WHICH APPEAR BY PERTURBATION 
OF SEPARATRIX LOOP OF PLANAR VECTOR FIELDS 

R. ROUSSARIE 

Consider a fami ly of vector fCelds x~ on the plane. This 

fami ly depends on a parameter ~ ~ /R A, for  some A ~ /~, and 

is supposed to be 0 ~ in (m,~) 6 /i~ 2X /~A. 

Suppose that for  ~ = O, the vector f i e l d  X o has a 

separatrix loop. This means that X o has an hyperbol ic saddle 

point  s o and that one of the stable separatr ix  of 8 o coincides 

with one of the unstable one. The union of th is  curve and s o is 

the loop ?. A return map is defined on one side of r .  

Loops on the plane 

Figure l 

We are interested in the number of l i m i t  cycles ( iso la ted 

closed o rb i t s )  which may appear near r ,  for  small values of ~. 

This problem was f i r s t  studied by A.A. Andronov and others EA]. 

They showed that for  l-parameter f am i l i es ,  with the condi t ion 

that div XoCso) ~ O, i t  appears at most one cycle. Next, 

Recebido em 30/06/86. 
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L.A. Cherkas in [C], considered the question of the structure of 

the t rans i t i on  map near a saddle point ,  for a family of vector 

f i e l ds  X% Cbelow, I cal l  i t  the "Dulac map" of the saddle). He 

derived from his study some resul ts  about the number of cycles. 

For example, he showed that i f  dlv Xo{~o) = 0 and i f  the 

Poincar~ map of the loop is hyperbolic, then this number doesn't 

exceed 2. 

I want to present a general izat ion of these resu l ts .  Suppose 

that div Xo(So) = O. Then, i t  is known from Dulac [D], that 

the Poincar~ map PoCx) of X o, along the loop ? has an expansion 

equal to: ~ a. .x i (Lnx)  j .  (This means that for each k 6 ~ ,  
OJ~i ~: 
l<i 

the Poincar~ map is equal to a f i n i t e  sum of the above serie for 

0 < j ~ i ~ i ( k )  and some i(.kl 6 IN, up to some C k, k - f l a t  

funct ion; k - f l a t  means that a l l  the der ivat ives are zero, at 

x = O, up to the order k) .  In fac t ,  i f  the function Po(x)-x is 

not C~-f la t  ( i . e . :  a = l and a . .  = 0 for  ( i , j )  # ( l , O ) ) ,  
Io ~j 

Bkxk k+1 then i t  is equivalent to or ~k+iX Lnx, B k or ak+ I # O, 

for some k > I .  (po(x)-x equivalent to B~m means here that 

~(x) is C I and hyperbol ic).  Now, the pr incipal  resu l t  is as 

fo l lows: 

Theorem A. Let X~, ~ 6 ~A, a C ~ fami ly  of vector f i e l ds  on 

the plane, which has a separatr ix  loop F for ~ = O, at some 

hyperbolic saddle point s o . Suppose that div Xo(So) = O. Let 

Po(X), the Poincar~ map of X o, r e l a t i ve  to the loop F. 

Suppose that P0(x)-x is not f l a t .  Then, for ~ small enough, 

X~ has an uniform f i n i t e  number of l i m i t  cycles near r .  More 

prec ise ly ,  i f  Po(x)-x is equivalent to Bk xk , with Bk # O, 

then X~ has at most 2k l i m i t  cycles for  small ~, near ?; 

x k+~" # O, then X h has i f  Po{x)-x is equivalent to k+1 ~nx'~k+1 
at most 2 k + l  l i m i t  cycles. CHere, "near ?, for ~ small enough" 

2 
means: there ex is t  a neighborhood U of ? in ~ and a 
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neighborhood Z of 0 6 /~A such that X~ has at most the 

specif ied f i n i t e  number of l i m i t  cycles in U for ~ 6 F). 

Remark. Recently, J.S. I l ' Iasenko proved that ,  for any isolated 

loop of analy t ic  vector f i e l d  X0 on the plane, the function 

P0(z)-x is not f l a t .  ( Isolated means here: isolated among the 

l i m i t  cycles) I l l .  So, for  ana ly t ic  vector f i e l d s ,  the theorem A 

works in the fol lowing form: 

Le t  x~ an a n a l y t i c  v e c t o r  f i e l d  f a m i l y  on t h e  p l a n e ,  w i t h  

an i s o l a t e d  loop  ~ a t  ~ = O. Then,  f o r  ~ s m a l l  enough,  

has an un i fo rm  f i n i t e  number of  l s  c y c l e s  near F. 

Now I want to indicate why the non-flatness condition in the 

theorem A w i l l  be ve r i f i ed  in any generic family of vector f i e l d s ,  

depending on a f i n i t e  number of parameters. 

0 ~ De f in i t i on :  Let 8 an hyperbolic saddle point of a vector 

f i e l d  X, with div X{s) = O. Recall that the i n f i n i t e - j e t  of 

X at s is C~-equivalent to: 

@ @ �9 @ 

i > i  

(The C ~ - e q u i v a l e n c e  is  the  e q u i v a l e n c e  up a C ~ d i f f e o m o r p h i s m  

C ~ o and mu l t i p l i ca t i on  by a pos i t ive  function) We say that 

i s  a s a d d l e  of o r d e r  k ~ l ,  i f  ak+l  i s  the  f i r s t  non ze ro  

coe f f i c ien t  ~., in th is expansion. 

Remark: Let ~, z, two transversal segments to the local stable 

and unstable manifolds of s, such that a t rans i t i on  map D(~) 

is defined from c to T by the flow of X. 
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0 

X 

Figure 2 

Then, i t  is easy to show that s is a saddle of order k i f  

and only i f  k+l is the order of the f i r s t  unbounded de r i va t i ve  
xk+~ 

of D(x) at x = O. (In fact  D(x) ~ ~k+1 Ln= in th i s  case). 

So the notion of order does not depend on the above representat ion 

of j x(s). 

Now, we come back to a vector f i e l d  X o 

at a saddle So, such that div Xo(so) = O. 

Poincar~ map of - x 0, from a to 3: 

with a saddle loop r 

Call R(x) the 

R 

Figure 3 

{H(x) is the Poincar~ map above the regular part of r ) .  

This map has a Taylor expansion equal to: 

R(_x) = X-Bo-BIx-B2x z-. .... -~k xk - ... 
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Clear ly the coe f f i c ien ts  ~ , ~ 2  . . . . .  ~k . . . .  and B0,B ~ . . . . .  B k . . . .  

are independent of each other. So, i f  X o belongs to a h-parameter 

fami ly of C ~ vector f i e l d s ,  we can suppose gener i ca l l y  that one 

of the ~+l f i r s t  coe f f i c i en ts  in the l i s t :  Bo,~I,BI,~ 2 . . . . .  Bk,~ k . . . .  
is non zero. {Generical ly means: for  X~ in some open dense 

subset in the space of a l l  h-parameter fami l i es ,  wi th the 

compact-open C ~ topology). 

I f  B k is th is  f i r s t  non zero c o e f f i c i e n t ,  then P~)-x%~-1(x)-~c 
k 

is equivalent  to B k x ~ I f  ~k+z is the f i r s t  one, 

p(=)-= ~ D(m)-x ~ ~k+ x +~Lnx {As we w i l l  show in the f o l l o w i n g ) .  

So, we have the fo l lowing generic co ro l la ry  of the theorem A: 

C ~ Corol lary  B: Let a h-parameter generic  family of vector f i e l d s  

x~, X 6 ~ ,  ~ > I .  Suppose that X o has a separat r ix  loop at 

a saddle point  s o . Then there ex i s t  at most ~ l i m i t  cycles of 

X~ near r ,  for  ~ small enough. 

We are also interested to the case of a fami ly which is a 

per turbat ion of an Hamiltonian vector  f i e l d .  This type of fami ly 

has the fo l low ing  form: 

x~  = x o - ~ f  + o c t )  

where X = (~,R) with ~ near zero and ~ in some f i n i t e  

dimensional space of parameters. We suppose also that  Xo is an 

hamiltonian vector f i e l d .  This means that for  some area-form 
C m on /i~ ~ there ex is ts  a funct ion H, such that  ZoJfl = dH. 

The vector f i e l d  ~ depends on the parameter ~ only.  The term 

o(c) depends on {m,~,~). We suppose that the level  {H = O} 

contains a loop F at a saddle point  So of Xo and that  the 

levels  {H = b} for  b > O, near O, contain closed curves r b 

near r = ?o. We define the in tegra l  funct ion I (b,~) by: 

I(b,~) = f m where ~ = X ] ~ .  
J r b 

I t  is known that th is  funct ion is very i n te res t i ng  to study 

the l i m i t  cycles of XX for  small c # O. In fac t ,  i f  ~ is a 
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transversal segment to F, parametrized by the posi t ive values 

of H, the Poincar~ map P~ of x~ on a, has the fo l lowing 

expansion: 

P~(b)-b : c I ~ + o(~). 
F b 

I t  is easy to see that I(b,~) admits an expansion equal to 

~i(~)b i + ai(~)bi+ICnb] for  C ~ functions a i ,  b i in ~. 
i>0 

(.The convergence i s ,  as above, up to C k, k - f l a t  functions, for  

any k). The number of cycles near F is related to th is expansion 

of I :  

Theorem C: Let X~ = Xo - ~X + o(~) a perturbation of an 

Hamiltonian vector X o, defined as above. Suppose that 

I(b,~o) ~bk(~o)bk with bk(~o) ~ 0. Then X~ has at most 2k 

cycles near F, for ~ = (E, X) near (0,~o) and c # 0. 

Suppose that I(b,~o) ~ ak(.~o)bk+IL~b, with ak(~o) # O. Then 

X~ has at most 2 k + l  cycles near F, for  ~ near (0,~o) and 

c # 0. 

The proofs of theorems A and C are based on a structure 

theorem for the Dulac map of X~. Such a resu l t  was established 

by Cherkas in [C]. I present here a l te rna t i ve  demonstration and 

formulation for  the structure of the Dulac map, in f i n i t e  class 

of d i f f e r e n t i a b i l i t y ,  and not in analy t ica l  class as in [C]. 

I shall indicate also the re la t ion  between the coef f ic ients  of 

the normal form of X~ at the saddle point,  and the expansion 

of the Dulac map. Find th is re la t ion  is important to obtain the 

precise bounds 2k, 2k+l on the number of cycles, in the 

theorems A and C. We begin with the fo l lowing:  

C ~ Proposition D: Let X~ a fami ly of vector f i e l ds  such that 

X o admits a saddle point s, with div Xo(s ) = 0. Then there 

exists a sequence (~N)N , 0<'''<6N+I < aN < " ' "  < al and 
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C ~ f u n c t i o n s  aN(h ) ,  d e f i n e d  on w N = { ~ I I a 1 ( h ) l  _ < aN } such 

t h a t ,  f o r  each N: 

~ N i 
J2N+Ixs(sh) a~ x ~  - y~-y + C ~ ai+~(~)(xy) )YTy 

i : 0  

for ~ ~ WN+ l . Here, s~ is the saddle point of X~ near s 0 

(sh is supposed to ex is t  for  ~ G w~). The a ~ equivalence, 

is the C ~ equivalence of (2N+l) - je ts :  mu l t ip l i ca t ion  by 

posi t ive a ~ funct ions, and conjugacy by C ~ diffeomorphisms, 

depending C ~ on (x ,y ,h ) .  Of course the jets are taken only 

in the ( x , y ) -d i rec t i on .  

Now, i t  i s  known from S. S te rnbe rg  ~ ] ,  t h a t  f o r  each 

K C 2V, a g i ven  C = v e c t o r  f i e l d  i s  a lways c K - c o n j u g a t e  to i t s  

(2N(K) + I )  p o l y n o m i a l  j e t ,  i n  a ne ighborhood o f  a g i v e n  

h y p e r b o l i c  s a d d l e ,  f o r  some N(K) .  The same r e s u l  i s  a l so  

a v a i l u a b l e  f o r  ~ - f a m i l i e s ,  in  a ne ighborhood o f  the sadd le  w i t h  

c o n j u g a c i e s  depending on the pa rame te r .  Combining t h i s ,  w i t h  the 

p r o p o s i t i o n  D, we o b t a i n  the f o l l o w i n g  r e d u c t i o n  o f  the f a m i l y ,  

in  C K c lass  o f  d i f f e r e n t i a b i l i t y :  

Proposit ion E: Let a C ~ family X, such that X o admits a 

saddle point s. Let some K C /IV. Then, in some neighborhood 

of the path { ( s (h ) ,h ) l h  G WNCK)+I} in /IR2§ A, the family is 

cK-equivalent to the polynomial family of vector f i e l d s :  

x-~-~ - y~-~ - ( i = 0  
=i+1(.~)(=y)i))y-~y. 

Here s(h) is the saddle of x~, near s o , and the aj(~) are 

the functions defined in the proposit ion D. The cK-equivalence 

is now the mu l t i p l i ca t i on  and conjugacy by functions and 

diffeomorphisms, depending C K on (.=,y,~). 

Remark: The C K equivalence sends the saddle slh on the f ixed 
2 

point 0 G azR . Now an homothecy in /R 2 doesn't change the 
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form of the polynomial vector  f i e l d  in the p ropos i t i on  E ( I t  j u s t  

modif ies the values of the func t ions  a.) .  So, we can suppose 

that  the image of the equivalence contains any given f i xed  

neighborhood of 0 G ~2 (For example the ba l l  of radius 2) .  

So, i t  is s u f f i c i e n t  to consider a polynomial fami ly  of 

vector  f i e l d s :  

where a = (al . . . . .  aN+l)" Let ~ = {x ~ 0, y = l }  and 

z = {y > 0, x = l } ,  two t ransversa l  segments, in the same 

quar ter  {x,y ~ 0} of the saddle�9 We ca l l  Dulac map O~ of X a, 

r e l a t i v e  to o, T, the t r a n s i t i o n  map defined by the f low of  X 

from o to T (Of course we parametrize ~ by x,  and T by 

y)�9 

We suppose tha t  we r e s t r i c t  a to the neighborhood of 

0 G /R N+l defined by: f a l l  < ~, l~/I < M fo r  2 ! i ~ N+l and 

some M > 0. Then the Dulac map Da is def ined on some 

neighborhood of 0 C ~ independant of ~. (We take O (.0) = 0). 

In fac t  D~(x) is a n a l y t i c  in i x , a )  fo r  x > 0. We want to 

make precise the nature of D~ at x = 0. For t h i s ,  we in t roduce 

the f u n c t i o n :  

k _xkLnx Note tha t  f o r  each k > 0, x ~ § as ~i § 0 CUniformely 

fo r  x C [0 ,x ]  fo r  any x > 0). We are going to consider f i n i t e  

conbinat ions of the func t ions  x~m J wi th i , j  6 ~V and 0 < j < i .  

These func t ions  x~m J form a t o t a l l y  ordered set wi th  the 
�9 " i '  j '  i '  = f o l l ow ing  order:  xz~J~  x ~ < > > i or i i '  and j > j '  

(I K x~ < = ~ x2~ 2 < x2~ ~ =z K . . . ) .  

The no ta t ion  x ~  J + . . .  means that  a f t e r  the sign + one 

f inds a f i n i t e  combination of x i '  j '  w of order s t r i c l y  g reater  

than x~m J. Then, we have the f o l l o w i n g  s t ruc tu re  fo r  Pa: 
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Theorem F. Let any K G ~V. Then the Dulac map D~ of X 

( r e l a t i v e  to the segments ~, T defined above) has the fol lowing 

expansion: 

� 9  . [ z  N + I 
0 (=) : : + ~i ~ + . . . ]  + % [ = 2  + .] + . . +  ~N+I ~+... ]  +~k 

where each term between brackets is a f i n i t e  combination of x~m J 

(with the above convention); the coef f ic ients  of the non wr i t ten 

C ~ x~m J a f te r  the signs + are functions in ~, which are zero 

for ~ = 0. The remaining term ~k is a cJC-function in (x,~) ,  

which is K - f l a t  for x = 0, and any ~.(~K(0,~) . . . . .  

@K~ K 
= . . .  - : o ) .  

@x K 

Remark: The expressions in the brackets depend on K. But the 
�9 �9 

ordered expansion of D~(x) in term of the x~m J is unique. 

Next, i f  we take K < N (.which is always possib le) ,  we can reduce 

the brackets up to the monomials xSm J with i ~ K+l. (Because 

these nomomials are C/< and K - f l a t ) .  So the expansion of D~(x) 
reduces to: 

: = + + . . . +  . - . ]  + % 

with. . @K' OK and K - f l a t ,  and the brackets depending only on the 

x ~  J for  0 ~ j ~ i ~ K. 

A na tu ra l  g e n e r a l i z a t i o n  of  loops are the s i n g u l a r  h y p e r b o l i c  

cyc les  (made by h y p e r b o l i c  saddles and s e p a r a t r i c e s ) .  I t h i n k  

t he re  are some d i f f i c u l t i e s  to extend the above r e s u l t s  to the 

p e r t u r b a t i o n s  of  genera l  such cyc les .  Of course ,  i t  would be very  

i n t e r e s t i n g  to have r e s u l t s  f o r  n o n - h y p e r b o l i c  s i n g u l a r  cyc les ,  

I wish a lso to emphasize t h a t  the expans ion of  the map D in term 

of f u n c t i o n s  x~w J is  o f  the type i n t r o d u c e d  by A. Hovansky in ~ ]  

and the proo fs  of  the theorems A, C below use arguments s i m i l a r  

to those used by A. Hovansk i .  
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I - Normal form of a family of vector f i e l ds  near a saddle point  

(Proof of the proposit ion D) 

Let x k a family of vector f i e lds  as in the statemente of 

proposit ion D. One may suppose that Xk is defined on some f ixed 

neighborhood V of 0 g /~2 which contains for each k g y 

wz = {~ l la  I < ~ } ,  a saddle point at 0 g /~2 as unique singular 

point.  We may also suppose that there ex is t  coordinates (x,y) 
in V such that:  

iz (o) : x!Bx - (l - %C~))y~ (1) 

where ~(k) is a C = function of k G W I, with ~i(0) : O. 

I want to establ ish the proposit ion D by an induction on N. 

The formula (1) is the f i r s t  step of this induction for N = I .  

So, suppose that one has found 6~ > 6 2 > . . .  �9 6N+l �9 0 and 

C ~ functions ~ . . . . .  ~N+I' ai: W i § such that for ~ G WN: 

j2N+Ix~(O) ~ " @ @ [i ! i ] B 
C~ x-~x " YTy + -0 ~i+l(k)(xY) y~ (IV+l) 

(.The equivalence " ~" being defined in the statement of prop. D). 
C = 

Consider the (2N+3)-jet. The formula (N+l) gives that :  

J2N+3X~(0) ~ X~ + Y2iv+2(~) + Y2N+3(~) (N+2) I 
C ~ 

where X~ is the r igh t  term of (N+l) and Y2N+2(~), Y2IV+3(~) 

are O ~ maps of WN+ l in V2N+2, V2N+3 respect ively 

(V L designates the space of homogeneous polynomial vector f i e l ds  

of degree L). 

Let pL the Lie bracket operator: 

Z C V L § [X~I,Z] g V L 

where Xal is the l - j e t :  X~1 z - ( I - ~ i )  Y . For ~i 0, 

p~N+2 is invers ib le .  So, one may choose ~N+2' 0 < 6N+2 < ~N+l' 
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2N+2 smal l  enough to have p~ (k )  

one can r e s o l v e  the  e q u a t i o n :  

inversible for each h g WN+ 2. Then 

[ X  (X)' U2N+2(X)] : Y2N+2 (x) 
I 

C ~ with U2N+2(k ) a map of WN+ 2 in V2N+2 

The diffeomorphism Id  - U2N+2(~ ) brings the je t  X~+y2N+2+Y2N+3N 

C on a j e t  + Y2N+3' w i t h  Y'  , C ~ 2N+3 a map of  WN+ 2 i n  V2N+3. 

Le t  now: N o = Ker p~N+3 = (my)N+l { x ~ ,  y~-~-}. Th is  k e r n e l  

2N+3, 2N+3 is  a supp lemen t  space o f  Bo : Image(p0 ) .  So, po i s  an 

~v+3 . isomorphism of Bo onto i t s e l f .  By continuity the space Bh=P~l(~)(Bo) 

is of codimension 2 in V2N+3. Taking perhaps a smaller ~N+2' we 

can suppose that BX is transversal to No for each X g WN+ 2 

SO, we can f i n d  ( .unique)  C ~ maps V�89 ) and W~N+3(k ) 
of  WN+ 2 i n  B o and N O r e s p e c t i v e l y ,  such t h a t :  

Y�89 = [ X ~ I ( k  ) ,  U�89 + W~N+3(X). 

I N y ,  The d i f f e o m o r p h i s m  Id - U2N+3(X ) b r i n g s  the  j e t  Xk + 2N+3(X) 
N 

on the  j e t  Xk + W2N+3(~ ) .  Now: 

. ~= -y~) + (sCx) + ,~(x))(=~) ~+I Y~ 

So we have : 

k'"~+3 : (l+F(k) )(x-~- y~-) + ( ~ mi+l.(XW) )y-~-+ (13+7) y-~- 
i=O 

and, dividing by l + B(xy) N+l, we obtain: 

x~. , N . , ,N+ I @ T2N+3, X+W2N+3 ~ @ @ )~)y_~ ~IB. 

, , N + I  '~ + (S+y).~xy) y--~- 
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This j e t  is O~-equivalent to the i n i t i a l  one, in the formula 

+2)i .  So, we have proved that:  

N+I ) i  j2N+3x~ (0) ~. x~-~- - y~-~- + ( ~ ~i+i )Y~  
C ~ i=0 

for  ~ ~ WN+ 2, with ~N+2(~) = -~iC~).B(~) + 8(~) + 7(X). 

(N+2) 

I I  - The structure of the Dulac map. (Proof of Th. F) 

Let a given constant M > 0. We consider a l l  the ana ly t i c  

fami l ies  X in normal form: 

a a _ . . a 

where Pa(u) = ~ i+I 
i=0 i+lu is an cncZgtic entX~g ~neZs of 

u 6 /~, with u g A where A is the set of a ~ defined by: 

A = {a I f a l l  < } ,  l ~ i l  < M for  i } 2}. Let the transversal 

segments o, T and the Dulac map D~(x) defined as in the 

introduct ion.  Observing the normal form above, i t  is natural to 

make the singular change of coordinates (u = xy, x = x).  

The d i f f e r e n t i a l  equation for  t ra jec to r ies  of xa: 

{" X = X 

(2 

Y = -Y + (X ai+1(=Y)~)Y 
0 

is brought in the fol lowing equation: 

{ x = x  

e~(u) = 
i=1 

i (% . . U  

(3 

We see that in (3) the var iables (x,u) are separated. 
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The f i r s t  equation gives no trouble. So, we concentrate ourself  

on the second equation: ~ = Pc(u)(4) which is analy t ic  in lu l< l  

for  each e as specif ied above. Call u ( t , u )  the t ra jec tory  

of th is  equation (solut ion of (4), such that u(0,u) = u).  

This function is ana ly t ic  for each t ,  in some neighborhood 

of u = 0. So we can expand u( t ,u ) :  

~ g i ( t )ui c~ I t u(t,u) = ~ (5), with ga(t) =e and gi(0) = 0 for all r >2. 
i :  

We want to study the form of the g i  and the convergence of the 

above series, in function of t .  For t h i s ,  we are going to compare 

u ( t , u )  to the solut ion of the hyperbolic equation: 
am 

= T u *  [ ~ (6) 
i--a 

We have the fol lowing estimations: 

Lemma l :  Let UCt,u) = GiCt)u ~ the power serie expansion of 
i--a 

the t ra jec to ry  of (6). Then for each i > l and t > 0: 

I g i ( t )  I <_ G i ( t )  ( for  any ~ 6 A). 

~u 
Proof: Substituing (5) in the equation: ~T(t ,u)  = P~(u ( t ,u ) )  
obtain recurrent equations for  the g i ( t ) ,  the system Eg: 

r  -- ~Igl 

g2(t )  = %92 + %g~ 

3 g3 ( t )  = ~Ig3 + 2e2glg2 + ~3gi 

we 

and more general ly: 

gi = a I g i  + PiC~2 . . . . .  ~ i 'gz  . . . . .  gi-1 ) for  i > 2 

where Pi is a rat ional  polynomial in ~z, . . .~ i ,#1, . . . ,g i_  z with 

pos i t ive coe f f i c ien ts .  
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Now, U C~,u) 
~ =  (~, ~,  ~ . . . .  ). 

is  the t r a j ec to r y  of [} = PaCU} with 

So we have fo r  the G i(t), the system EG: 

i =TGz  

-~ TG2 + 

and more genera l ly :  

1 

r = TS i  + Pi (~ . . . . .  M,G~,...Gi_~) 

(wi th the same polynomial p. as above). 

We can r e s o l v e  the  sys tem E G by:  

1 --t ~ t  
G1(t ) = e a , G2(t ) = *a(t)e with *a ( t )  = 

t 

r t 
~0 

and more genera l ly :  

~t t _!z  
Gi(t ) = ~ ( t ) e  2 with * i ( t )  = I e 2 

0 
Pi(M . . . .  M,G~ (T) . . . . .  si-~ (T))~= 

I t  fo l lows eas i l y  from these formulas, that Gi(t ) > 0 for  

t > O. 

Now, we are going to show the estimations I g i ( t ) l  ~ Gi(t ) 
fo r  each t > O. F i r s t ,  i t  is true for  i : l :  

Tt 

Suppose now that we have shown that I g j ( t ) l  ~ Gj( t)  fo r  

each j :  l ~ j ~ i - l ,  and t ~ O. 

We compare the two equations: 

gi(t) = ~ig i + Pi(~a . . . . .  ei,g I . . . . .  gi_1) 

~ ( t )  ~ ~ + ~i(~ . . . .  ~,al . . . .  ~ i ' I ) "  

Because the coe f f i c i en ts  of P~ are pos i t i ve ,  we have: 
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l [ ( = ,  . . . . .  = i ' ~  . . . . .  g i_ : ) l  ~_ P i ( l=~ l  . . . . .  I=< I ,  Ig:I . . . . .  Igi_11) <- 

-< Pi (~ . . . . .  ~,a . . . . .  ~i- I  )" 

Now, fo r  t = 0, we have G I C 0 )  = 1 and Gi(.O ) = 0 fo r  

i ~ 2. So, we have Gi(O ) : Pi(M . . . . .  M,GI(0) . . . . .  Gi_1(O)) : 
MG,(O) i = M and also l r  C l~i l lg1(O)l  i < - l~i l  < M. 

So, fo r  t = 0 we have gi(.0) = Gi(O) = 0 and l r  

This g ive ,s  by c o n t i n u i t y ,  f o r  t small enough: 

I r  < Gi ( t ) .  

We want to show tha t  t h i s  i n e q u a l i t y  is ava i luab le  fo r  

V t 7 0 .  (and so we w i l l  have: l # i { t ) l  ~ Gi(t) f o r  V t ~ 0). 

On the con t ra ry ,  suppose tha t  t o > 0 is the i n f e r i o r  bound of 

the  v a l u e s  t ,  such t h a t  I~iCt)I- ~ ~ i ( t ) .  For a l l  t 6 [ O , t o ]  

we have:  I ~ i ( t ) l  ~ ~ i ( t ) .  $o f o r  a l l  t G ~ , t o ]  we a l s o  have:  

l # i ( t ) l  <_ GiCt). 

Now, f o r  t = t o :  

gi(to ) : algi(.to) + PiC~2 . . . . .  c~ i ' g l { to )  . . . .  'gi-1 ( t o ) )  

I 
Gi(to ) = T Gi(to) + Pi (M . . . . .  M'G1(to) . . . . .  Gi-1 ( to))"  

By induc t ion  on i ,  we know tha t  Gj(to) ~ Ig j ( to ) l  fo r  

i < j 5 i - l .  By the choice of t o , we have already not ice  tha t  
Z 

GiCto) ~ Ig i ( to ) l .  So the i n e q u a l i t y  I~ i I  < T imp l ies :  

l # i ( to ) I  < Gi(to). 

But, by c o n t i n u i t y  t h i s  s t r i c t  i n e q u a l i t y  is ava i luab le  fo r  the 

t > to ,  t near to:  t h i s  l a s t  po in t  con t rad ic ts  the d e f i n i t i o n  

o f  t o .  

N e x t ,  we prove the  f o l l o w i n g :  
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Lemma 2: There exists constants O, O o > 0 such that:  

l g i C t )  I < CoLCet/2]~--- f o r  any i > l ,  t>O and any- A, 

Proof: Using the lemma l ,  ~t is  s u f f i c i e n t  to show that 
i 

~i(t) ~ aoloet/21 for some constants Co, O, i ~ l ,  t > 0, ~ 6 A. 

Recall that the function UCt,u) = ~Gi(it)u i is the t ra jec to ry  

B : I ~ ui of an hyperbolic vector f i e l d :  X = P{u)T~ with P(u) Tu+M 
i=2 

From a theorem of H. Poilncar~ on the analy t ic  l i n e a r i z a t i o n ,  

there exists an analy t ic  dfffeomorphism ~(u) = u+ . . . ,  converging 

for [ul ~ K I ,  for some K I > 0, such that:  

3 i 3 g.CPC.)T~ u) = ~ "T~" 

This diffeomorphism sends the flow UCt,u) of P-~-@ Bu I 
T t I 

flow Uo(.t,u) = ue of iu----"  This means: ~U 

into the 

Uo{t,g{u)) = g UCt,u) for  I~I , l u C t , u ) l  < K I 

Because gCu) is invers ib le  for  lu l  ~ K I ,  there ex is t  constants 

a, 0 < a < A such that:  

~1~1 < I g (~ ) l  <_ AI~I for  1~1 < ~1. 
1 

- ~ t  a - ~ - t  
Suppose that I.I < ~ Kle Then Ig(~)l <_ AI-I _< =KI~ 

t 

lu0Ct,gC~))l I g (u) IJ  = < aK . Nor U(t ,u)  = g 1oU ( t ,gCu) ) .  
- -  0 

This implies that:  luCt,.) l  ~ ~lUoCt,gC~))l ~ K. Nor ,  using 

i nequa l i t i es  of Cauchy for the coef f i c ien ts  Gi(t ), we f ind :  

t 
K1 l a i ( t )  I < Sup{lu(t,u)Illul=RCt)} < i f  B(t) a -T 

i R ( t ) l i - -  _ i R { t ) l i  =~ K1e 
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So, we obtain: 
it 

A -~ )i - i -  IGi(t)l <_ K:(E~ e 
a o = K I and O : A~ K~.- 

w~nich is the desired estimation with 

We w i l l  show below that the functions giCt) are analyt ic  

functions of t > 0. For the moment, we notice that the formula: 

T~(. t@u ,u) = P (u ( t , u ) ) ,  shows that the seriesin u of ~Bu has 

the same radius of convergence that u ( t , ~ ) .  (Recall that P (u) 

is supposed to be an ent i re  funct ion) .  The same is true for any 

der ivat ive ~ u f t  u) by an induction on k. This remark gives 
Bt k~ , , 

an estimate for the coe f f i c ien ts  ~ C t )  of the der iva t ive :  

@ku _ 

9t k i>i 

of radius 

dkgi i 
E-~-t u , using the Cauchy inequal i ty along the c i r c le  

i - !,t 
- E t 2 a 

H ( t )  = ~ K~e = a e  as above:  

r ak u Sup~l-~(t,u)II[ul=R(t)} 
I ~ ( t ) l  ~ IR(tll ~ 

which gives: 1 "Ct)l ~ CkCCe t /2) for some 

have: 

C k > 0. SO, we 

kemma 3: For each k ~ 0, there exists a constant O k > 0 such 

that: 

dkgi et/2] i 
l - - - -F( t ) l  ~ ak[C. for  any i ~ I ,  t>0 and ~ G A. 

dt'" 

(Here # i s  the same c o n s t a n t  as i n  lemma 2 ) .  
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We w i l l  give now some preclsions about the form of the 

functions g i ( t ) .  For th is ,  we introduce the funct ion:  

e - l  ~ (a : , t )  = a - -  for t # 0 and 

R(O,t) = t .  ~i th this notation we have: 

~t 
Proposit ion 4: For each k ~ l ,  gkCt) = e QkCt) where Qk is 

a polynomial of degree ~ k- l  in ~. The coef f i c ien ts  of Qk are 

polynomials in al . . . . .  a k. More precisely:  

Qk = ak~ + Qk(% . . . . .  ~k '~) 

where Qk is a polynomial of degree ~ k-I in ~ with coe f f i c i en ts  
2 

in 7(aI . . . . .  ak-1) n 7(ai . . . . .  ak ) ~ ~[a l  . . . . .  ak ] 

(7(u,v . . . .  ): for  the polynomial ideal generated by u,v . . . .  ) .  

Proof: Write again the system E for  the g i :  g 

~'1 = ~1 g 1 

2 

#2 = ~1 g2 + ~291 

gk = ~ + PkCOL2''''~ ..... gk-1 ) 

k The polynomial Pk is obtained from the coe f f i c i en t  of u 

expansion Z ~. | ~  giu~| J . ~  ~ I t  follows easi ly  that P k i s  
j>2 J Li~ J 

- ~ s 
1 

homogeneous linear in ~2 ..... ~k" Each monomial g~ "''gk-~ 

such that :  k-~ k-~ 
~. ~j_>2 and ~. j . ~ .  = k. 

j=~ j=~ : 

Fi rs t  we show that gk( t )  = e 

i n the 

is 

(*) 

Qk(t) with Qk a polynomial 
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in R of degree < K- l ,  with c o e f f i c i e n t s ,  polynomials in 
~t ~t 

~ . . . . .  ~k ( i . e . :  a ( t )  = e , g~( t )  = ~ e .~ . . . .  ). 

Look at the equation for  gk: 

#k = ~gk  + Pk (~  . . . . .  ak' # : , ' ' ' ' g k - ~ )  

and use an induction in k. We suppose known that fo r  each j s k - l :  
~it ~l t 

g j ( t )  = e Q j ( t )  with deg(Qj) ~ j - l .  Notice tha t :  e = m Q+l 

So, each gj is of degree ~ j in Q. Now, i t  fo l lows from the 

f i r s t  i nequa l i t y  in (.*) that :  
2m t 

pk(~2 . . . . .  a k , ~  . . . . .  ~k ) = e 

polynomial of degree _< k-2 in 

in each monomial g~ " ' ' g k - i  of 

2~ I t 
gig j by e QiQj and the other factors g~ by 

a t 
1 

Now, gk = e Qk wi th :  

t -a I t 
Qk(t) = I e Pk(~2 . . . . .  ~k'g~ . . . . .  gk-~)dT 

JO 

Xk(~ ),  where X k is a 

(.To see th is  po in t ,  replace 

Pk, a product of two factors 

(~i~+I)Q~) �9 

I 
t a I t (t 

0 JO 

(Because ~ = e ). 

So, we see that  Qk(t) is a polynomial of degree ~ k-I in ~. 

From the induction i t  follow's eas i l y  that the c o e f f i c i e n t s  are 

polynomials in ~i . . . . .  ~k" To obtain the precise form of the 

statement, notice that  fo r  k > 2: 

Pk(~2 . . . . .  ~k,g l  . . . . .  ~k_1) = ~kgl + 

Pk , and each monomia where is l i nea r  homogeneous in a2 . . . .  ak-1 
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in Bk contains at least one of the gi 

know that the coefficients of such a gi 
~ . . . . .  ~i" So, the coefficients in Pk 

J(~i . . . . .  % - I )  ~ ~(.~i . . . . .  %)  

t 
Now: Qk = ~k 

with i ~ 2. But, we 

are div is ib le by 

are in 

(k-i + it -(lit )~i~d~ e fk(T)d~ 
JO 

ft Ck--~ ) % 
I @ d'c: 

JO 

(k-~)%T 
-I 

Look f i r s t  at the term 

I t e(k-~)%~T = e 
JO 

aiT 
Use again: e = ~ig+l. We obtain: 

( k - i ) m j  t 

e = I + (.k-l)c~ n+~S( .~ )  

where S(~) is a polynomial i'n ~. 

i 
t ( k - i ) c~  i t c~kc~ I 

e : ~kR + ~ s (~ ) .  So, we have: ~k 0 

t -r% T 
The term �9 I e ~ Pkd~ gives a polynomial in ~, with 

1 0 

](~ ...~k_~) N 1(~ ...ak )2 So, we obtain coefficients in 

f ina l l y :  Qk(t)  = aka + ~k with  Qk as in t h e  s t a t e m e n t .  

We go back to the map D (m). The time to go from s to 
is equal to: 

y ~  t {x)  = -Ln ~ {where (.=,I) G ~ is a 

given point on ~). 
T 

X 

F i g u r e  4 
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Now, we have ~Is = x and ul~ = ~. So, we can ca lcu la te  o~Cx) 

as the value u{t,u) f o r  u = x and t = t(~=) = -On x :  

D (x) = u(-Lnx,=) fo r  x > 0. 
C~ 

in 0 by D (0) = 0). (We extend O , 

There i s  no problem to see that  P is wel l  def ined fo r  x 6 [0 ,X] ,  

where x is some value greater  than 0, and is a n a l y t i c ,  fo r  

= # 0. We want to study i t s  behavior in x = 0. For t h i s ,  we 

not ice that  the lemma 2 impl ies that  for  each t > 0, the 
i 

convergence radius of the ser ie ZgiCt)u is greater  than 

i 
- - s  

e So, fo r  any x small enough, the ser ie  ~ gi(t)xi I_ 
C 

converges fo r  each t <-2Lnx and Sn p a r t i c u l a r  fo r  t = -Ln x. 

So we can u tCl ise  the expansion Z g i ( t )  u~ to ca lcu la te  D~(x): 

D C= } = ~ gi{-Ln=)= i 
i=I 

The convergence is normal on an i n t e r v a l  

X > 0. Now, we can u t i l i z e  the estimates on gi" 

lemmas 2, 3 to obtain the f o l l o w i n g :  

[0,X] fo r  some 
dkgi 

of 

Propos i t ion  5: Let any k 6 /~/. Then there ex is ts  a K(k) 
that :  

K~k) 
0 (x) = gi {-cn=)=~ + ~k 

i : i  

where @~ is a C k func t ion  in (x,~), k - f l a t  at  = = 0. 

such 

Proof: Given k, we want to f i nd  K(k) such tha t :  

= gi(-Lnx)x~ C k ok(x) ~ is a , k - f l a t  func t ion .  
K+I 
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K 
We are going to see that  the series Dm can be derived term by 

term. F i r s t ,  we have: 

�9 . j - I  : - '  + 

(where g ~ l  ) dgj~ �9 = -ZF~- J �9 

Now, from the est imat ions of lemma 3 we have: 

_J 

I g~.:" ) ( -c .= )  I c G I c'=l 
2 

And from lemma 2: 
_J 

2 Igs(->~=)l <_ ColC-=l 
So, f o r  some constant M , we have: 

1 
J - l  

More genera l l y ,  using lemma 3, we have fo r  each s ! J: 

J 
d s 2. 

Id-- 7 gs(.-~n=lJl : ~ ~lC'=l 

fo r  some constant M s depending on s. 

I t  f o l l o w s  f r o m  t h i s ,  t h a t  i f  K �9 2k 

s e r i e s :  

and i f  0 < s < k ,  the 

d 8 �9 

Z - iggc-cnC=))=a I 
j>K+I dx s 

f o r  m : 0 .  

So, we obtain tha t  the f unc t i on  

converges and is equal to zero 

. . .  = D k '  is  k - f l a t  and O k . 
j>K+I 

N+i 
S , ,ppoSe  now t h a t  PaCu) = ~ a . u  i s  a p o l y n o m i a l  as i n  t h e  

i n t r o d u c t i o n .  We show how to rearrange the expansion D=(x) to 
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derive the theorem ~ of the in t roduct ion from the proposi t ions 

4 and 5 above (with K replaced by k). 

F i r s t ,  as in the in t roduc t ion ,  we introduce: 

~(~ i ,=  ) _ x % - I  _ R(~1,_Ln=). 

The proposi t ion 4 gives us the fo l low ing :  

- ~ l L n x  
g~(Cn=) = e Qk(-Cn=) 

--~1 = = [%~ + ~k(o~ . . . . .  %,~)] 

with Qk of degree 5 k - l  in m, and coe f f i c i en t s  in 
2 k 

3(o I . . . . .  Ok_z) fl ] ( O l . . . a k )  So, the general term gk(-Lnx)x 

in Do(x) is equal to: 

g~(-~a)=k = = (%~ + ~k )" 

This term can be rewr i te  as: (using x 
-Ct 

l 
= C~lm+ l ) 

for  

gk ( -Lnx )a: k = c*kxkoa+~ I ~k xkm2 +xk ( l +a I oa ) ~'k (c~ I . . . . .  o k ,oa ) 
l -OL 1 

k >_ 2 and xg1(-Ln=) = = = alxm+:c. 

So, we have: 

2 
D (x )  = x+alxa)+o;2x ca+alo2x C~ 

2mz+x2+x3 (I +olm)~2 + 

3 3 3 
+ a~=3oa+c, 1~3x oa += (l+~1~)Q a + " ' "  + *k 

8 
where + . . .  is for  the expansion of the x gs(-Lnx) fo r  45S~K(k) 

(The coe f f i c i en t s  ~i are taken to be zero for  i > N+ l ) .  

~k ) 
Now, we rearrange the sum gi(-Lnx)~ ~ in the fo l lowing 

i = i  

way: f i r s t ,  we take a l l  the terms whose c o e f f i c i e n t  is d i v i s i b l e  

by o I . Next, a l l  the remaining terms (not d i v i s i b l e  by ~ i )  but 
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d i v i s i b l e  by ~ and so on, un t i l  ~ We obtain the fo l lowing 
2 N+I 

expansion: 

D0~ (X)  : =ar~1 E=(t}arC~ 2 2 - 3 3 ~= ~+= ~ + ~ =  ~ + = ~ + . . . ]  

+ ~2[xa~+terms in x3Q3 . . . .  ~/CQ K d i v i s i b le  by ~2, not by a l l  

�9 N 
+ c~V~ re+terms in x N+I~N+I . . . . .  xKQ K div. by ~N' not by ~l . . . . .  aN-l] 

N+l 
+ ~Z+l = m + Ck" 

From the above expansion i t  is clear that each term a f te r  xem 

in the bracket re la t i ve  to ~ is of order greater that xem and 

has coe f f i c ien ts  Tn ( ~  . . . . .  aN+l) (because i t  comes from a term 

w~th coe f f i c ien ts  ~n ] ( ~ . . . ~ N + l  )2, next divided by ~e). The 

sum is stopped at ~N+l because ~i = 0 for  i > N+l. The 

~;k is C k l'n (x,c~), k - f l a t  in x. So, we have function 

ve r i f i ed  a l l  the statements of the theorem F. 

I l l  - Finiteness of the number of cycles in the generic case 

is a 

(Theorem A ) .  

As in the statement of Theorem A, we suppose that x~, ~ 6/2 ~A, 

C ~ family of vector f i e lds  such that: 

l )  For ~ = 0, X o has a loop (saddle connexion) r at some 

hyperbolic saddle point s. 

2) div Xo(S ) : 0. 

3) The Poincar~ map Po of X o around r ,  

transversal segment c parametrized by x .> 0, 

"Case Bk": Po{X)-x = Bk=k+oC= k) with B k # 0 

,, k+1 Cnx+o ( x k+1 Lnx ) "Case ~k+1 : Po (~)-m = eLk+ira 

some k > l .  

re la t i ve  to some 

is such that :  

or 

with 
k+i 

0, for 
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The preposition E (which is a d i rec t  consequence of the 

proposition D proved in part I f )  shows that for any /C G /~/, we 

can choose a O E change of coordinates around the saddle point 

~% of x%, bringing th is vector f i e l d  in the fol lowing normal 

form, defined in the bal l  V w~th coordinates ( x , y ) ,  x~+y 2 < 4: 

~(~) i _a_ )Y~y 

where the functions aj()~) are C • on some neighborhood W of 

0 6 /~A, and N(K) G 1~/ is some number depending on K. For 

what fo l lows,  i t  w i l l  su f f ice  to take K �9 2k+l. 

We can also suppose that the change of coordinates is chosen so 

that the Poincar~ map Po is defined on o= {y= l ,  x>_0}, near 0. 

Let also T = { ~ l } .  

For ~ 6 W, the Dulac map D~(x) is defined from a 

neighborhood of 0 6 ~ (parametrized by x > 0) to T (parametrized 

by Y). We can extend the chart V in a C/C-chart defined in a 

neighborhood of r .  This chart is an union V tJV I where I zl is a 

neighborhood of the regular part of F, between ~ and ~. The 

vector f i e l d  X~ is 6 J< on T/~. 

Now, l e t  R~(x), the map from ~ to z defined, in a 

neighborhood of 0 G ~, by the f low of -X~. This map is 

d i f f e ren t i ab le  of class 6 J<. So, we can wri te i t :  

R;~(=) : =-[Bo(~,  ) + S1(;~)=+S2(~, )= ~ + . . .  + BK(~)=/C+~K ] 

with @K a O K function in Cx,%), /c - f la t  at x = 0. The functions 

go . . . . .  8/c are at least continuous. (In fac t ,  .Bj(I) is of class 

/c-y). 
Now, the Poincar~ map r e l a t i v e  to c is equal to: P%=R~oDx. 

I t  is clear that the case 6 K is equivalent to: 

BoC0 ) = . . . . . . . . .  = Bk_1=0, ~k(0) = Bkr and at (0) : .  . . . . . . . .  = ak(0)= 

The case ~k+~ is equivalent to: 
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~0(o) = . . . . . .  = ~ (o)  = o, 

~ + ~ ( 0 )  = ~+~ f 0. 

~i(0) = . . . . . .  = ~k(0) = 0 and 

To look for the fixed points of P% we prefer to consider 

the map A% = DI-R%: the fixed points of P% wi l l  correspond to 

the zeros of a X. Choosing NCK) �9 K in the theorem F (which 

is always possible), we can wri te:  

D~(=)=D C~)(~)==+%(~) ~ +  . . . .  ] + . . .  +~K(~) ~ K , . . . ] §  

So that: 

~.xCxl=BoC~)+~C~) ~ + . . . ]  + 81C~)x+~(~) [ x ~ + . . . ]  + . . .  

+ ~ - i  (a)=K-'+~K (~) [=~"" "]+*K+*K" 

Using the remark after the statement of theorem F in the 

introduction we can wri te:  

A~ C=)=~ o C~)+~ (~) ~+ . . . ]+  . . . .  +~C~)=k+%+, (~) "=~+' ~ + . . . . . . .  +~ 

where the functions ~K,r are O x, K- f la t  in z = 0. 

The p r e c i s e  meaning of t he  n o t a t i o n :  + . . . .  i s  g i ven  in  t he  

i n t r o d u c t i o n .  
To study the number of zeros of A. , .  we have to extend 

somewhat the algebra generated by the ~z~ J. We introduce now 

the algebra of functions, continuous in (z,X) which are f i n i t e  
~+n~1 m 

combinations of the monomlals z ~ , s 6 ~, m G 2V, 

~i = ~I (X)' with coefficients, any continuous functions of I. 

[~e call i t  the algebra of admi~si61z f~nctions). 
Of course, we consider also the monomials as functions of 

Cz ,~ ) ,  but when we consider .combinations of monomials, e~ is 

always replaced by the function ~ (X). 
1 

Now, we Introduce between the monomials, the following par t i a l  
a ~ r i c t  order: 
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(Notice that 

ordered). 

Z+n= I m [ s < s or 

Z ~ = s n'=n and m'>m 

Z+nt(~l m' Z+nC~l m 
z m and z ~ with n # n', are not 

L a t e r  on,  t h e  n o t a t i o n :  f + . . .  where  f i s  a monomia l  w i l l  

mean t h a t  a f t e r  t h e  s i g n  + t h e r e  e x i s t s  a (non p r e c i s e d )  f i n i t e  

c o m C i n a t i o n  of  monomials  g i '  w i t h  g i  > f"  (Th i s  n o t a t i o n  

extends the one defined in the in t roduct ion) .  We also ~se the 

symCol  �9 to  r e p l a c e  any c o n t i n u o u s  f ~ n c t i o n  of  ~, non ze ro  a t  

~=0, and we w r i t e  ~ f o r  t h e  d e r i v a t i o n  i n  2: @ = ~z" 

With these conventions, we indicate now some easy properties of 

the algebra of admissible functions. 

a) Let g, f two monomials with g ~ f ;  then ~ (m,ml) § 0 

for (X,~l) ~ (0,0). This follows from the two fol lowing 

observations: ~ [ I n f (  , -Lnz) and x ~ § 0 ( for  any 
1 

continuous function s (~ l ) ,  with s(O) > 0), i f  (=,=1) § (0,0),  

and m S IN. 

b) Let a monomial f >  I .  Then f (X ,a l )  § 0 for  x § 0 

s 1 
(uniformely, for ~z bounded): f ~ 1 means that f = x m 

with z ~ l ,  and we can use the same argument as in a). 

c) f1>f2 and any g > gfl>gf2 . 
s 1 

d) Let f=z m. Then: 

} = ~m - m~ E~+ (n_m) ~i] X~-I +n~. ~-~+n~ I ..I 

From this formula follows eas i l y :  

e) Let f = x m with z # O, and g any monomial such 

that g > f .  Then g is a combination of two monomials g' and 

g" and f = * f '  + . . . .  with f ' <  g ' ,  f ' K  g" 
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We shall  also use rat ional  functions of the algebra of the 

f +  . . . . .  (The adms r a t i o n a l  f u n c t i o n s ) .  fol lowing type: l+ . . . . .  " 

For them, we have: 
~ + n ~  i .  . ~-1+n~ I 

x ~m+ �9 z m+ . . . . . .  i f  ~ # 0 
f )  ( l ~  . . . . . . .  1 1 ~ : )  : * l +  . . . . . . . . . . . . . . .  �9 

We can give now a proof of theorem A. We shal l  consider 

successively the two cases ~k+z and B k. 

A. Proof of Theorem A in the case ~k+a 

Recall that:  

where ~ i '  Bj are continuous functions; ~K is a 0 z function 

of (x ,~) ,  K - f l a t  in z, with K > 2k+l. Next, we suppose that 

Bo(O) = . . .  = Bk(O ) = O, ~ ( 0 )  = . . .  = ~k(O) = 0 and ~k+1(O)#O. 

From the property d) above i t  fo l lows: 

(xJm) " = (j-~1)x#-Im+... i f  j#O and 
- 1 - 0 ,  

1 

So, deriving ~ ,  we obtain, using also property e): 

(For the notations , ,  + . . . ,  see the conventions introduced above). 

I f  we derive A~, k+l times, we f ind:  

-k-% -(k-1)-a (~+~) 
~*~)C~)  = ~i[*x * . . . .  ]+~2[*x * . . . .  ] * . . . * ~ , ~ +  . . .  * ~ 

All the monomials Six J, for j ~ k, have disappeared. Mul t ip ly ing 
k+~ I 

by x , we obtain (use property c) ) :  

k+% k+% (k+1) 
=~*=h:~ [-I+...] ~2[,~,...], .... ,,%+~ ~, ... , : ,K (I) 
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(Above and afterwards each bracket designates an admissible 

funct ion).  

Locally ( in some neighborhood of ;~=0, z=O), the zeros of 
z k  +~l  A (lr + l ) 

A~k+i)r are zeros of the fol lowing function ~z = [,l+......] 
where the denominator is the function with coe f f i c ien t  ~z i n  (1). 

k+o&  I 

*(X X- 0> I - . , ,  2 . k - z +  . . . .  k+z * = §  

~ = % + %  . . . . .  + % *-TTT " + ' ' ' + %  + ' + ' ~  . . . . .  ,l+ . . . . . . .  -I+ . . . . . . . . . . . .  

k+~ . (~+~) 
z z 0 ]C-k- z 

~K is a function at least  K-k-I Here, @z = * l+ ' 

f l a t  in z=O. Using the property f ) ,  we have: 
k-z +~i 

k -  2 * ~ k + ~  x u . , + . . .  
*I+ . . . .  ,~ + . . . .  + + @z 

~ = ~2- I+. .  + ' ' ' + ~ k  , I +  *I+.  . . �9 �9 ~  . . . . . .  �9 ~ 

where @2 = @i is c IC-k-2 K-k-2 f l a t  in z = O; ~i = ezul + 

where u~ 

{2 = 41 ~i 

is invers ib le  as an rat ional  admissible funct ion. Let 

and derive again ~2: 

* l + . . .  
~2 =~3 ~ + "'" + ~2" 

We wri te i t  ~2 2 = ~n uz + ' ' "  where w is invers ib le  as admissible 

rat ional  function. We define ~3 = u ~ { 2  , and so on. By th is  way, 

we f ind a sequence of functions: ~z,~2 . . . . .  ~k such as { j  is the 

product of ~ j - i  by some invers ib le  admissible rat ional  funct ion. 

For the las t  one ~k' we have: 

z+~ 
*~k~ x ~ . . .  

, o , , , , , , ~  

where Ck is C K-Zk (K -Zk ) - f l a t  

Deriving a las t  time, we obtaTn: 
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(%3 
*=k+1 x + ... 

= + ~k" 
~k *l+ . . . . . . . . . . .  

Then, using the fact that @k is ~-2k- I  _ f l a t ,  

K-2k-l>0 and the property a), we obtain that: 

"(%1 -i �9 

= ~ ~k = *~k+1 + o( I ) .  

with 

(~here the term o(1) is continuous). The assumption ak+t(0)#0 

implies that local ly x ' ~ -1  ~k and also ~k are non zero for 

small (~,x) (z ~ 0). So, the function ~k has at most one 

zero, for small {~,x), ~k-~' at most 2 zeros, and so on: ~ 

has at most k most k zeros local ly. Now ~ has at least the 
( i )  

same number of zeros as A~ k+ , so f ina l l y  we obtain that the 

map A~ has at most 2k+ l  zeros for small (~,x). 

B. Proof of Theorem A in the case B~ 

We derive the map A% only k times: 

( = ) _  . . . .  + ,  (Kk) +. . . ]  + . . . .  + ~ [ * ~ + . . . ] +  . ~+ 

and introduce, next: 
~k) k-~+~ /~-i+(% I 

(=) *~k~ ,~+,~kx +... *~ I ' . . .  E -  

h = - k + 1 - ~  ~ =(% + ~ 2 ~  + . . . .  + +l+ . . . . . . . . . . . . . .  + ~ §  . . . . . . . . . .  

where ~i is O K-k , (KTk)-flat in x = 0. 

As in paragraph A, we define a sequence of functions 

~i . . . . .  ~k-1 with ~j equal to ~j-1 multiplied by an inversible 

admissible rational function. The last function ~k-1 is equal to: 
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1+C~ 1 I+C~ 1 

*~k= ~+*BkX + . . . .  
~k-1 = *~k-1 + + @k-1 

* l +  . . . .  . . . . . .  . . . . . . . . . .  

and t h e n :  

*~k x a+*BkX + . . . . .  

~k-1 = *I+ . . . . . . . . . . . . . . . .  + @k-1 

�9 C K - 2 k + l  CK-2k+l ) - f l a t .  where ~k-~ is of classe 

We take now {k a s :  

"~ i  - i  * I+ . . . .  1 

w h e r e  the bracket is the denominator in the expression of ~k-1' 

cK-2k The funct ion @K is , CK-2k) - f la t .  

I f  we der ive 

and: 

~k' we obta in:  

~k = * * I+ . . . . . . . .  " ~ + k' 

2 ,l+_1_a I . . . . . . . .  " ~k = *Bk +~2 *l+_1_a~ . . . . . . . .  " ~k" 
* =  + . . .  *= + . . .  

The res t  is o(1) .  So, because Bk(0 ) # 0, we have that  ~k # 0 

from (X,x) small enough. I t  fo l lows eas i l y  that  the map AX has 

at most 2k zeros fo r  small {~ ,x ) .  

IV - F~n~teness of  the number of  cycles f o r  a pe r tu rbed  Hami l ton ian  

v e c t o r  f i e l d  (P roo f  of  Theorem C) 

As in the statement of Theorem C, we suppose that  the fami ly 

takes the special form: 

x~ = X ~ + ~X + o(.~) where ~ = C~,~). 
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For ~=0 ,  the hamiltonian vector f i e l d  Xo is C �9 equivalent to 

x ~  ~ - y_BB~y. I t  fol lows from this that the functions ~i(~) in the 

normal form are d i v i s i b le  by ~: ~iC~) = ~ iC~,~)  for  some C ~ 

function ~.. So the proposit ion E gives a OK-normal form equal 

to: 

~ - ~ -  L i=o %+~(x)t=y) y ~y 

I t  suf f ices now to consider a polynomial family X a with 

= ~ '  ~ = {~I . . . . .  ~N+l )" From the proof of theorem F in the 

part I I ,  i t  is clear that the funct ion D~(a)-x is also d i v i s i b l e  

by ~. This means that there ez ls ts  some 0 X function @K(x,~), 

K - f l a t  in x=0, such that: 

o~(x) = =+~(~i [=~+''']+''-~K[ =K=+.-.] + ~K) 

where ~ _ x - l  with ~ = ~ i .  ~We choose N(K) > K) 

Return now to the i n i t i a l  family Xl. As in the part I I I ,  

we can choose some oK-chart around of the loop F, transversal 

segments ~, z for  which, the t rans i t i on  maps are respec t ive ly ,  

the Dulac map :D~{=) = D (~)(=) and a map R~(=) such that  

R~(x)-x is also d i v i s i b l e  by c: 

R~C=) = =-~(~o+~i = +...+B:K+~ K) 

where the B. are continuous functions of 
J 

function of ( z , l )  which is K - f l a t  in z=0. 

and ~K a O K 

Now, the map A~ = DI-R ~ is equal to A~ = ~A~ with: 
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~ = ~~ [==+...] + .... +;K[=K=+...] *[K=K+~K 

for some C K, K-flat function @K" 

As in the part Ill, we say that we are in the ~k or ak+1 

case at ~o if 8k(0,~o) or ~k+1[0,Xo) is the first non zero 

coefficient in the expansion of ~C0,Xo). The zeros of the map A k 

pour e ~ 0 are the zeros of ~X' and if (e,X) § (0,Xo), at(X) § 0. 

So, the study of the part Ill a]lows the following conclusion: 

in the case 8k' the map A X has at most 2k zeros for (e,~) 

near (0,Xo) , r # 0; in the case ~k+~' the map A X has at 

most 2k+l zeros for (~,~) near (0,~o), s # 0. 

It remains to show how the two cases ~k+z' ~k are related 

to the zxp~nsZon o~ thz s I. Recall that: 

z(b,~) : [ Z, ~ : ~Jn dH=X.~n 
J 
r b 

where r b is a cycle of the Ham~Iton~an function H, near the 

loop. ~e suppose that these cycles are defined for b > O. 

({b=O} corresponds to the loop~. To compare Z(b,~) to the 

a~-map we change the parametrization b by the parametrization z. 

CbCx) is a diffeomorphism of the segment ~, preserving 0). So 

we take: I(=,~) = I(b(=),~). 

Now, notice that: 

axC=) : Px(=)-= + o(~). so: 

Px(=)-= = ~ + o(~). 

I f  we compare this expression to the one using I ,  given in the 

introduction, we obtain that: 
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~%(~) = Z{~,~) + r where @ is some function tendon 9 

to O, for ~ § O. I t  follows from th is  that ,  for each ~: 

Z(x,~) = ~Cz) where ~Cx) = ACO,~)Cx). 

{In fact,  we have to notice that ~ { z )  is continuous in E, 
L ~ 

because x~J  § z~(Cnz) j ,  uniformely in x, when ~ and also 

§ O, for each i ~ 0). Return to the map ~%: 

In each bracket F x ~ + . . . ] ,  ~ <. /c, the term +. . .  is zero for 

~ . . .  =...=e. k = O. So, th is term is d i v i s ib le  by E. I t  follows 

that: 

~(=)=BoCo,~)+G~ Co,~)=cnx+~ (o,~)=+...+~k(O,~)=~+G~+~ (o,~)=~+~c~+o(=~+~c~=). 

Now, i f  Z(b,~o) ~ bk(~o)b k with bkC~ ) ~ O, we have in the 
0 

z-coordinate : 

Z(x,~o) = A~o- (=) ~ BkCO,~o)=/( with ~k(O,~o) ~ 0 

.~ a r~ ~,k+~ 
- ". Also, i f  I(b,~o) /e~ o~o Cn~, then So we are in the "case B k 

I(X,~o) ~ ~k+~(O,~o)Zk+~Lnz with C~k+~(O,~o) # O, i f  ak(~o)~O 

and we are in the case ~k+~" 
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