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On the Structure of the Pareto Set of 
G e n e r i c  M a p p i n g s  

W. de Melo 

We consider the problem of optimizing functions defined on a compact 
manifold. 

When there is only one function to be optimized the problem is well 
understood. To find the local maxima of the function we look at the critical 
points, i.e., points where the first derivative vanishes and using higher order 
derivatives we get some criteria to decide whether a critical point is a local 
maximum or not. In fact for almost all functions these criteria allways work 
and we have only to examine the second derivative at the critical points. 
Furthermore the set of critical points and local maxima is very simple. There 
is only a finite number of critical points and they are related to the topology 
of the manifold. These global results are studied in Morse-Theory. 

In many situations that occur in Economics and Engineering there are 
several functions to be optimized simultaneously and since in general there 
is conflict among them it is impossible to find a point which is a local maxi- 
mum for all the functions. Therefore it is necessary to define another notion 
of optimum. This was done by an Economist called Pareto at the end of the 
last century. More recently Smale introduced methods of Global Analysis 
in the study of this problem. He defined the set of critical Pareto points which 
contains the set of optima. The purpose of this paper is to study the structure 
of this set for generic mappings. 

1. We recall some definitions which can be found in ['4]. Let M be a com- 
pact C ~~ manifold without boundary and let f l  . . . . .  f~ : M -§ R be C ~~ functions. 
We consider the f { s  as the coordinate functions of a mapping f :  M -~ R c. 
A point p �9 M is a local Pareto optimum o f f  if there is a neighborhood Vof p 
such that there is no q �9 V with j~(q) _ j~(p) for all i = 1,..., c and .D(q) > J)(P) 
for some j. We denote by 0op or 0o~f) the set of local Pareto Optima offi  
In order to study those points using differential calculus we define a larger 
set called the set of critical Pareto points off. Denote by R'+ the positive cone 
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of R c, i.e., the set of points of R' whose coordinates are positive. We say that 
p ~ M is a critical Pareto point o f f  if the image of the derivative of f a t  p does 
not intersect the positive cone of R': Im dfpc~ •% = ~b. Denote by 0 or 0(f) 
the set of critical Pareto points off. Clearly 0 is contained in the set Y~ of critical 
points o f f  which are the points where the derivative is not surjective. 

Example 1. Let f : S  2 ~ R 2 be the projection as in the pictures below 

z 

b 

I 

c '  b '  

Here 0(f) is the union of the closed intervals I'a, b] and [c, d] and 0op is the 
segment [a, b]. 

Example 2 Let f :  S 2 ~ R 2 be the mapping whose image is the following: 

b' 3 

b ' l  
b': 

a' 1 

a '  4 

Let as = f - l ( a [ )  and b~ =f-i(b~). Then 
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4. 

00 r) = U [a,, b,] 
i = l  

0,p = [al, bl]  u (a3, b3) 

f n+l t Example3 Consider the sphere S * =  x ~ "  +1; ~ x~ = 1  and let f :  
/=1 

S"--* R k be defined by 

f ( x l  . . . . .  x,+ 1) = ( x t , . . . ,  x~). 

Consider the closed k - 1  simplecies 

AI = { x  e S"; xi > 0 for all i and xj = 0 for j > k}, 
A 2 = { x e S " ;  x i < 0  for all i and x ~ = 0  f o r j > k } .  

Clearly 0 = Ax u A2 and 0op = At. 

Example 4 Let f :  R 2 -~ R 2 be defined by f ( u ,  v) = (u, uv + v 3 - u). Here 
E( f )  = 0(f)  = {(u, v); u = - 3 v  2} and Oogf)  = {(u, o); u = -302  and v <0}. 

/9 (f) 

Oop (f) 

f 
-9- 

In the examples above the critical Pareto set is a union of submanifolds 
of M and so is its image. To describe the structure of the critical Pareto set 
for generic mappings we  need another definiton. 

Let A c M be a closed subset. A stratification 6" of A is finite collection 
of connected submanifolds of M satisfying the following properties: 

1) U S = A .  
SE$" 

2) If S r :7 then dS = Cl(S) - S is a union of elements of :7 of lower 
dimension. Here CI(S) denotes the closure of S. 

3) If S ~ :7 and U is a submanifold of M transversal to S at x ~ S then 
U is transversal to all elements of :7 in a neighborhood of x. 

The elements of :7 are called strata and A is called a stratified set. It is 
easy to see that if f :  M ~ N is a C ~ mapping transversal to all strata of a 
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stratified set Y c N then f -  1(I') is a stratified subset of M. The stratum through 
a point x ~ f -  ~(~ is the connected component of the preimage of the stratum 
through f (x) .  

Consider the space C~(M, R ~) endowed with the C a topology. Here 
M is a compact manifold without boundary and dimension m > c. 

Theorem. There is an open and dense set f~ ~ Ca(M, R ~) such that if 
f ~ f# then O(f) is a stratified set of dimension c-1. 

This theorem will be proved in the next section. We now give an idea of 
the proof of a special case of it. Suppose dim M = m > 2c-4. It follows from 
Thorn's transversality theorem [1] that there exists an open and dense set 
Go c C~(M, Rc)-such that i f f e  Go then the singular set o f f ,  S(f),  is a compact 
manifold of dimension c - I .  Furthermore at each point p E S(f)  dfp has rank 
c -1 .  For each p ~ S(f)  denote by N r(p) the line through the origin of R c 
orthogonal to the image of dfp. It follows that the mapping N~: S(f)  ~ R t x -  
is C ~~ In RP c- 1 we consider the stratification 6 ~ defined by the coordinate 
subspaces of R c, namely, two lines belong to the same stratum of Se iff the 
smallest coordinate subspace containing each line contains the other. Let 
Gx e G o  be the set of m a p p i n g s f e  Go such that N I is transversal to 6#. If 

f ~  G t h e n f - l ( ~ )  is a stratification of S(f)  and 0(f) is a stratified subspace. 
Thus it is enough to prove that G is open an and dense. For this we construct 
a stratification of the jet bundle Jr(M, R ~) such t h a f ~  G ifff l f :  M ~ J l (M,  ~ )  
is transversal to this stratification. Therefore using Thorn's transversality 
theorem we conclude that G is open and dense. 

From example 4 it follows that the stratification constructed above is 
not fine enough to separate the local optima from the other critical points. 
In other words a stratum may contain critical Pareto points which are local 
optima and also critical Pareto points which are not local optima. To refine 
this stratification we have to deal with higher order jet bundles. 

Conjecture. There is an open and dense subset G c C~~ R c) such 
that i f f ~  G then 0(f) is a stratified set and 0op is a union of strata. This con- 
jecture has been verified for c = 2 [5] and c = 3 [3]. Another interesting 
problem is to study the relations between this stratification and the topology 
of M. In 12] Wan described the Morse Inequalities for c = 2. 

We now consider some local questions and state some open problems 
in this direction. Let f :  ( R " , 0 ) ~  (R',0) be a C | map germ with 0 t 0 ( f ) .  
Let flf(O) be the k-jet of f at 0 which can be identified with the Taylor  poly- 
nomial of order k. We say t h a t f i s  Pareto k-determined if for any map-germ 
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g : ( R  m, 0)--, (R', 0) with fig(O)=fif(0) we have: 0 is a local Pareto optimum 
o f f i f f  0 is a local Pareto optimum of g. Denote by Jk(m, C) the space of k-jets 
at 0 of map-germsf  : (R m, 0) ~ (R', 0). We can identify fi(m, c) with the vector 
space of polynomial maps from R ~' to I~ ~ of degree less or equal k. 

Conjecture. There exist semi-algebraic sets A1, A2 c Jk(m, c) such that  
a map-germ f : (R m, 0) --, (R ~, 0) is Pareto k-determined if and only fif(O) 

At ~ A2. Furthermore if f i f (0)e  At then 0 is a local Pareto optimum o f f  
and if fif(O)~ Az then 0 is not a local Pareto optimum. 

For  k = 2 the semi-algebraic set At has been defined in [6]. 

2. Proof of the Theorem 

Let f : M - - - ,  ~c be a C ~~ mapping. For each sequence of integers 
I = (G, .-.-, is) with 1 < ij < c, consider the projection 7rz : R c --, R c-s which 
drops the coordinates with index in I. Given two such sequences I = (G, . . . ,  is) 
and I' = (it . . . .  , is,) we say that III >- I z' I if s >__ s'. We denote by fz : M --+ R c-s 
the mapping 7rt of. 

Let us recall Thom's stratification of the singular set of generic mappings. 
Consider the jet bundle Jr(M, R ~) which is a fiber bundle over M x R ~ whose 
fiber JX(m, R ~) is the space of linear mappings from R m to I~ ~. The structural 
group of this bundle is L(m), the space of isomorphisms of I~ m. The set Sh(m, c) 
of linear mappings of rank c-h  is a submanifold of codimension (m-h) (c-h) 
which is invariant by the group L(m). Therefore it induces a subbundle 
Sh(M, R ~) ofJX(M, ~) .  By Thom's transversality theorem the set Go of mappings 
f : M ---, ~ such that the jet extension jX f : M ~ R') is transversal to Sh(M, R ~) 
for all h is open and dense in C~~ R'). Since m > c, the singular set of f ,  
S(f), is equal to (jxj)-1 (SI(M, IRe)). Thus the above decomposition of St(M, R ~) 
induces a stratification Seo(f) of S(f). This is Thorn's stratification. We observe 
that Ao = Sl(m, c) is an algebraic set. The projection nt : R ' ---, R "-s induces 
a projection hi:Jr(m, c)---, JX(m, c-s). Let At = rci t (St(m, c'-s). Then At is 
an algebraic set which is invariant by the group L(m). It follows from a theorem 
of Lojasiewicz 12] that there is a stratification 5a(m, c) of Jr(m, c) which is 
compatible with the stratification of At considered above. This means that 
if z ~ At then the stratum through z is containned in the stratum of At induced 
by nt. Furthermore this stratification is Lx(m)-invariant and therefore gives 
rise to a stratification ~'(M, R ~) of JX(M, R ~) with the same properties. 

Let G c C~ R ~) be the set of mappings f such that j t f  is transversal 
to the stratification ,Sa(M, R'). It follows from Thorn's transversality theorem 



126 W. de Melo 

that G is open and dense. For f ~ G we have a stratification 6e(f)  of S(J) induced 
by j t f :  the stratum through x ~ S(f)  is (jlf)-I(Sj,s(~j ) where SH(x ~ is the stra- 
tum of ,~'(M, R c) through jlf(x). It is clear from the above construction that 
,Se(f) refines Thom's stratification of S(f). Furthermore if I is a sequence 
of integers as above then S(f i) is  a substratified set of S(f)  and the stratifi- 
cation induced in S(fi) refines Thom's stratification. 

It remains to prove that ,~ ( f )  induces a stratification in 0(f). Denote 
by Oh(f) the set of points p ~ Sh(f) such that the image of dfp does not intersect 
the closure of the positive cone of R e except at the origin. Then Oh(f) is open 
in Sh(f). Let x ~ Cl(Oh(f))- U Ok(f), where Cl(Oh(f)) denotes the closure 

k>h 

of Oh(f). Then there exists a sequence of integers I = (i~ . . . .  , i,), 1 < it < 
< i2 < . . .  < is < ~:, such that x ~ O(ft) and for any other sequence I '  with 
I I'1 > I I I, x ~ S(fF). Therefore, there exists an integer k such that x ~ Ok(fr). 
Hence O(f)= U U 0h(3~). From this fact it follows that ~ ( f )  defines a 

1 h_>l 

stratificatioti on O(f). 

Remark. If the dimension of M is less then c we can prove, using the 
same arguments as above, that for a generic mapping f,  0(f)  is a stratified 
set of the same dimension as M. 
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