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DEDICADO A BENEDITO DE MORAIS 

1. We give a proof of the following 
Theorem: Let  x : M -~ R ~+1 , n > 1, be a C ~~ isometric immersion, 

in euclidean space ~n+ 1, o f  an n-dimensional, complete, orientable, C ~~ 
Riemannian manifold M, whose sectional curvatures are non-negative 
and, at one point, are all positive. Then: 

i) M is either homeomorphic to a sphere S" or to 7~", 
ii) x ( M )  c ~"+l is the boundary o f  a convex body in particular 

x imbeds M topologically as a closed subset o f  ~"+~, 
iii) For almost all points v ~ S ~ c ~,,+1, the hvperplanes which are 

normal to v intersect x(M) in a set which, when non-empty, is either a 
point or homeomorphic to S ~. 

iv) The total curvature o f  x(M) ~ ~ + 1  is either 2re (if M is compact) 
o r  <_ TL 

If, in particular, M is non-compact and all sectional curvatures are 
positive, then: 

v) The normal map v : M - ~  S ~ is a diffeomorphism onto an open 
set contained in a hemisphere o f  S ~ . 

vi) A point v o ~ S ~ can be so chosen that x(M) is the graph o f  a convex 
function defined on a set contained in a hyperplane normal to Vo; in 
particular, the volume o f  x(M) is infinite. 

i) and (ii) follow from a paper of Sacksteder [9] combined with 
a result of Heijenoort [7], and generalize previous result of Hadamard 
[6], Stoker ['10] and Chern-Lashof [5]. We will say a few words about 
Heijenoor t-Sacksteder proof. 

According to Heijenoort, x ( M ) c  R ~+l is called locally convex 
at p if there exists a neighborhood U of p such that x(U) is contained 
in one of the closed hag-spaces H determined by the hyperplane of 
x(M) at x(p). If, in addition, x(U) has only one commo,l point with 
the boundary of H, then x(M) is called strictly locally convex at p. Heije- 



noort proved in [7] that if x(M) is locally convex everywhere, strictly 
locally convex at some point and complete, then x(M) is (globally) 
convex. Local convexity (strict local convexity) implies that the eigen- 
values of the second fundamental form of the immersion x are non- 
negative (positive), which by its turn is equivalent to the fact that the 
sectional curvatures .of M are non-negative (positive). 

The following example, pointed out by Sacksteder, shows that 
the converse is not true. Let z = x 3 (1 + y2) be a surface defined i:i 
the neighborhood y2 < 1/'2 of (0, 0). It is easily seen that the curvature 
is non-negative in this neighborhood apd the surface is not locally 
convex at (0, 0). 

Sacksteder proved in [9] the striking fact that the above example 
cannot coexist with completeness. More precisely, it was proved that 
if M is complete, has sectional curvatures which are non-negative and, 
at one point, are all positive, then x(M) is locally convex everywhere 
and stricly convex at some point, thus reducing the problem to Heije- 
noort's theorem. 

Heijenoort-Sacksteder proof is rather long. We present here an 
independent proof. It should be remarked that Sacksteder proves in 
[9] a more general result, but we will not go into that. 

(iii) - (vi) generalize results of Stoker [10] (for n = 2, M non- 
compact and positive curvature) and were obtained independently by 
H. Wu ['11]. We are much indebted to Wu for pointing us that lemma 
3 below is not true without the closu~'e condition. It should also be 
remarked that a version of (vi) caa be obtained in the general hypo- 
thesis of the theorem. We refer to Wu's paper [11] for details. 

This paper is a reorganization of an earlier preprint which was 
critically read by F. Warner. Thanks are also due to H. Wu for drawing 
our attention back to the subject. 

2. Manifolds are supposed to be connected, unless explicitly stated, 
and differentiable means C ~176 We denote by S " ~  R "§ the sphere of 
unit vectors of ~,,+1. The choice of an orientation for M defines, for 
each p ~ M, a unique normal unit vector v(p) of x(M) at x(p), and this 
gives rise to an obvious (called normal) map v : M  ~ S". Whenever 
we speak of a normal map, we assume that an orientation of M has 
been chosen. The total cun~ature of x(M') is the integral over M of the 
absolute value of the determina.ut of dr(p), p ~ M.  

For each v o ~ S", we define a height function h : M ~ ~ by h(p) = 
= (x(p), Vo), p e M, where ( , )  is the usual scalar product of R "+ t .  
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A level surface of h is a counected component of the set {p E M; h(p) = 
= constant}. We denote by grad h the vector field in M defined by 

(grad h(p), v)p = dh(p)" v, v ~ M p ,  

where Mp denotes the tangent space of M at p ~ M, and ( , )  is the 
inner product in Mp given by the Riemannian metric in M. 

A trajectory of grad h is a curve ~o(t) in M with r = grad h(~o(t)); 
a trajectory is issuing form (respect. going into) a point p E M if there 
exists a neighborhood V c M of p such that tp(0) ~ V and lim tp(t) =p  

t ~ - - r  

(respect. lira tp(t) = p). 
I ~ o O  

Lemma I: Assume the hypothesis o f  the theorem. A point p ~ M is 
a critical point o f  the height function h = ( x ,  Vo), v o ~ S  ~ , i f  and only 
i f  v o is a normal vector at x(p). I f  v o is a regular value of  v, all critical 
points o f  h are non-degenerate and are either maxima or minima. 

Proof:  The first statement comes immediately from the relation 

dh(p) - v = ( dx(p) " v, Vo) = 0, 

for all v E Mp. Observe that the hessian of h at a critical point p e M 

d 2 h(p) = ( d  2 x(p), Vo) (1) 

is the second quadratic form of x(M) in the normal direction v o . Since 
the determinant of this quadratic form is, except for a sign, the deter- 
minant of the differential dv at p, we conclude that p is a pon degenerate 
critical point. 

Of course, the above conclusions do not depend on the hypothesis 
o n  the curvature. Now, because the sectional curvatures of M are 
non-negative, we see that the second member of (1) maintains a fixed 
sign for all vectors of Mp. From this and the fact that p is a non dege- 
nerate critical point, it follows that p is either a maximum or a mini- 
mum, which finishes the proof. 

The foUowixag lemma was proved in 1"2]. 

Lemma 2: Let  x : M ~ R -+l be an isometric immersion o f  an n-di- 
mensional complete riemannian manifold. Let  h ( p ) =  (x(p), v), v ~ S ~ , 
be a height function on M and let A t )  be a trajectory of  grad h. Then 
tp(t) is defined for  all t ~ ( -  oo, oo). 

Proof: We first observe that II grad h II-- 1 In fact, since x is a 
local isometry 
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d 
-d-~- (h o At))  = (dx(~a' (t)), v) = (dx (g rad  h), v) = ( g r a d  h, v)  ; 

on the o ther  hand,  by definit ion of  grad h, 

d 
----(ho @(t)) = dh(tp(t)) = dh(grad h) = ]1 grad hll 2 . 
dt 

Hence  [[grad hll2 = ( g r a d  h, v)  and the assertion follows. 
N o w  suppose  that  q~(t) is defined for t < t o but  not for t = t o . 

Then  there exists a sequence Jtti~,~ i = 1 . . . . .  n . . . .  converging to to such 
that {tp(ti)} does not  converg~ Since ] lgradhl l  < 1, we obtain  

f, lJLI  tj)) grad h ( o(t))II at 

where d is the dis tance in the intrinsec metric  of  M. If follows that 
{~p(tl)} is a Cauchy  sequence, and this contradicts  the completeness  
of  M q.e.d. 

The  following l e m m a  was proved  in [4]. A p roof  in the m o r e  
general  context  of  cont inuous  convex surfaces can be found in [ I  1]. 

Lemma 3: Let x: M ~ ~"+1 be an isometric immersion of  an n-di-- 
mensional complete and orientable riemannian manifold M. Assume that 
x(M) = R "+ l is the boundary o f  a convex body. Then the closure v(M) o f  
the image of  the normal map v : M --* S" is com~ex in S". 

Proof: Consider  first the case where v o = v(po), v, �9 v(pt) are two 
non an t ipoda l  points  of  S". Let v be a point  in the smallest  arc of  the 
sphere joining v o and v I . Cons ider  the height function h(p) = (x(p), v). 
Since x(M) is conta ined in the convex intersection of the half-spaces 
bounded  by the (non-paralllel)  tangent  hyperplane  at X(po) and x(p,), 
there exists a hyperp lane  H no rma l  to v such that x(M) is in the same 
side of  H. Thus  h is bounded.  

N o w  let p �9 M and q~t) be the trajectory of grad h with tp(0) = p. 
By l emma  2, ~o(t) is defined for all t �9 ( - o o ,  oo). We claim that 
II grad h(q~' (t)l [ is not  bounded  away  from zero in [0, oo). Otherwise,  
we have 

lim h(tg(t))-h(tp(O)) = h(q~(t)) dt = - grad  h(tp(t 2 dt = - ~ ,  

which contradic ts  the fact that h(tp(t)) is bounded  below. 
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It follows that either there is a critical point Ato), of h, to ~ [0, ~ ) ,  
and then the normal vector at Ato) is v, or there exists a sequence of 
points in M whose normal vectors converge t o  v. In any case, v belong 
to the closure of v(M). 

We now consider the remaining cases. If some or both v o and v I 
belong to the boundary of v(M) and are not antipodal, we take the limit 

o i where {v ~ --, Vo, {v~} --* vl and of minimal geodesics joining v, to vn, 
no pair v,~ vnl is antipodal  If v 0 and v~ belong to v-~-) and are anti- 
podal, we take a third point v2 = v(p2) v2 ~ v l ,  v~ q: Vo (which exists 
because M is connected). By the previous argument, the minimal geo- 
desics vo"v2, v~'v2 belong to v(M). TakirLg sequences of points on roy 2 
and vl v2, which converge to vo and v t , respectively, and considering 
the minimal geodesics joining these points, we easily see that Vo'-'v~, 
belong to v(M), q.e.d. 

The following proposition shows that the theorem is true if M 
is assumed to be compact. 

Proposition 1: Let x 'M- -*  ~n+l, n > 1, be an isometric immer- 
sion of an n-dimensional, compact, orientable, riemannian manifold M, 
with the property that the second quadratic forms are semi-definite. Then 
x(M) is boundary of a convex body and the total curvature of x(M) is 
equal to 2n; in particular M is homeomorphic to a sphere. 

Proof: The proof is easy and is essentialy contained in [3-1; for 
sake of completeness, we will give the details. 

By compactness of x(M), there exists a point r ~ M, such that the 
second quadratic form of x(r) is definite. This means that dr(r) is non 
singular and, by Sard's theorem, there is a point p a M is a neighborhood 
of r, such that v(p) = v o is a regular value of v. It follows from lemma 1 
that p is a non degenerate critical point of the height function h = (x ,  Vo), 
and it is either a maximum or a minimum. 

For  definiteness, let us assrame that h(p) is a minimum. Let At)  
be a trajectory of grad h issuing from p. By compactness, At)  is defined 
for all t > 0 and h is bounded above. It follows that II grad II is not 
bounded away from zero on At), t > 0. Therefore there exists a critical 
point q in the (compact) closure of the trajectory i.e., lim At)  = q. 

t ~  -t- aO 

Now, let S be a level surface of h sufficiently closure to p. Let A c S 
the set of points in S which are intersections of trajectories of grad h 
issuing from p and going into q. By continuity and the fact that p and 
q are not saddles, A is an open set in S. On the other hand, a trajectory 
which issues from p and intersects S in a point belonging to the com- 
plement of A, goes into a critical point, say r. By the above argument, 
the complement of A is open in S. Since S is connected, A = S. By 
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a similar argument, these trajectories cover an open and closed subset 
of M, hence the entire manifold M. Therefore h has exactly two critical 
points p and q. 

It follows that the inverse image of the regular values of v contain 
only one element. The degree of v is then + I, and the proposition 
follows from Theorem 4 of [5]. 

Proposition 2: Let x : M ~ R "+t be an isometric immersion of an 
n-dimensional riemannian manifold M (not necessarily connected) com- 
plete and orientable in each connected component. Assume that x(M) 
c R "+1 is contained in no hyperplane of R *+t and, for each p ~ M, x(M) 
is entirely contained in one of the closed half-spaces bounded by the tangent 
hyperplane dx(p)(Mp)= Tp. Then x(M) is the boundary of a convex 
body. If, in addition, the second quadratic form of x is definite at some 
point of M, then x is a homeomorphism and the total curvature of x(M) 
is either 27z (if M is compact) or ~ ~. 

Proof: The intersections of all closed half-spaces, bounded by 
Tp, p ~M, and cor~taining x(M), is a closed convex set K of ~"§ 
Because x(M) is contained in lao hyperplane of R "+ ~, K contains interior 
points, hence is a convex body. Clearly x ( M ) c  K' the boundary of 
K. We want to show that x ( M ) =  K'. 

By the classification of boundaries of convex bodies (I l l ,  p. 3), 
K' is either connected or the union of two parallel hyperplanes; in the 
latter case, there are points of x(M) in both components of K'. x(M) 
is clearly open in K'. We will show that x(M) is closed in each com- 
ponent of K' .  

We first consider K' connected and remark that as the boundary 
of a convex body, K' has an intrinsic metric defined as the infimum of 
the arc length of all rectifiable curves in K ' ,  joining points of K ' .  It 
is clear that this metric is complete and it is an elementary fact ([1], 
p: 78) that it is topologically equivalent to the metric induced in K' 
by R "+l ~ K' .  Since K' is complete in the ilJtrinsic metric, given two 
points x(p), x(q) ~ K' ,  p, q e M, there exists a segment (shortest geodesic) 
), in K' joining them ([1], p. 79). Because x is a local isometry and x(M) 
is open in K ' ,  there is a neighborhood V of p in M such that (x/V)- ~ o 
is a geodesic in M; here x /V is the restriction of x to V. If this "lifting" 
cannot be extended to the whole geodesic ),, there exists a geodesic 
in M which cannot be defined for all values of the parameter, and this 
contradicts the completeness of M. It follows that V is entirely contained 
in x(M), and is a segment in x(M). Therefore x(M) ~- K' is a metric 
subspace of K ' .  Since x(M) is complete, it is closed in K' .  Because 
K' was assumed to be connected, we have x ( M ) =  K' .  
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If K' is not connected, we repeat the above argument for each 
connected comporent ,  which proves the first part of the proposition. 

To prove the second statement, we observe that the hypothesis 
on the second quadratic form implies that K '  is neither a cylinder nor 
the union of two parallel hyperplanes. By the classification quoted 
above, K' is then simply connected. On the other hand, since x : M -+ K' 
is a local isometry onto K' ,  and M is complete, x is a covering map 
([6], p. 74). It follows that x is a homeomorphism. The assertion on 
the total curvature of x(M) is then a consequence of lemma 3, and this 
finishes the proof of proposition 2. 

3. In this section we prove part (i) of the theorem, which will be 
a simple consequence of proposition 3 below. The proof of proposition 
3 has some points of contact with 18]; the proposition itself will also 
play a vital role in the proof of the remaining items of the theorem. 

Proposition 3" Assume the hypothesis of the theorem and let v(p)= v o , 
p e M, be a regular value ofv. Then either the height function h = (x ,  Vo) 
has only one critical point p, and the trajectories of grad h issuing from 
p cover M, or h has two critical points p and q, and the trajectories of 
grad h issuing from p go all into q and cover M. In any case, the hyper- 
planes which are normal to v o intersect x(M) in a set which, when non- 
empty, is either a point or homeomorphic to S". 

Proof: By lemma i, h has non degenerate critical points which 
are either maxima or minima, and p is a critical point of h. For defi- 
niteness, let us assume that p is a minimum and that h(p) = 0. 

We shall say that a level surface S,t of h, where 2 denote the value 
of h at S~t, is normal at p if the following conditions are satisfied: 

1) Sx is homeomorphic to a sphere and bounds an open region 
E~ c M containing p as the only critical point i_n Ex. 

2) There exists a homeomorphism 0 from the closed ball Bx = 
- -  I lx l l  < = R "  onto the closure Ex of Y-x, such that the 
image of the sphere {x ~ R" ; II x II = -< 2, by 0 is a level surface S,. 

Ex is then called a normal region of p and 2 a normal value of h 
relative to p. 

We observe that the level surface of h near p are normal at p. From 
(2), it follows that if a level surface S has one point in a normal region 
Z, then S = Y., and S is a normal level surface. 

It is also easy to see, using the trajectories of grad h and the fact 
that the critical points of h are isolated, that if Sx is a normal level sur- 
face, which contains no critical point of h, there exists a normal level 
surface S ~ ,  21 > 2. 
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Now, let Z be the union of all normal region of p. X is a non void 
open subset of M, and we have the following possibilities: a) Z -- M; 
b) ~. # M, and the boundary ~.' of x contains a critical point q of h; 
c) Z # M, and 5" contains no critical point of h. 

Suppose that (a) holds. Then all level surfaces of h are normal at 
p and p is the only critical point of h in M. Let r # p be an arbitrary 
point of M. Let S be the level surface of h which passes through r and 
tp(t) a trajectory of grad h, with tp(0) = r. It is clear, that, for t < 0, 
At) belongs to the (compact) closure ~ of the region Z bounded by 
S. By compactness At) is defined for all t < 0 and, since h is bounded 
on ~ ,  1[ grad hi[ is not bounded away from zero on ~ ( - o o ,  0"l). It fol- 
lows that lim At) = p, i.e., (p(t) is issuing from p. Since r is arbitrary, 

we conclude that M is covered by the trajectories of grad h issuing 
from p. 

Suppose that (b) holds: Then, using the above argument and the 
fact that the level surfaces near q are again homeomorphic to spheres, 
we obtains that any trajectory of grad h which goes into q is issuing 
from p. Therefore q is a maximum and, exchanging the roles of p and 
q, we see that the trajectories of grad h issuing from p go all into q. 
By the same argument, it is easily seen that these trajectories cover 
an open and closed set of M, hence the entire manifold M. 

Suppose that (c) holds: We will show that this assumption leads 
to a contradiction and, by the above, this will prove proposition 3. 

A sketch of the proof is as follows. We first show that X' is a union 
of level surfaces. Next we show that Z' is not compact mid its total 
curvature (restricting the immersion) is 2~ On the other hand Z' is 
arbitrarly close to the normal level surfaces, which are shown to be 
convex. It follows that X' is convex and has a point of strict local con- 
vexity. Beivg non-compact, its curvature is, by Proposition 2, < ~, 
and this is a contradiction. 

FIG.  1. 
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We now give the details. A good example to keep in mind during 
the proof is a sphere with an infinite tube of negative curvature "atta- 
ched" to its side (see preceding figure). 

Let 22* be the supremum of the normal values of h relative to p. 
We first show that if q r ~ ' ,  then h(q)= 22--22*. Clearly h(q)< 22*. 
Assume that h(q) = 22 < 22* and consider the level surface Sa through 
q. Since ,,l is a normal value, there exists a normal level surface S~ = X, 
which contains no critical points. It follows that there is a neighborhood 
of S~ in M, which contains all points of 5". whose levels are close enough 
to 2, hence, by a limit argument, S~ passes through q. By cop.nectedness 
S~ = Sa, and this contradicts the fact that q is a boundary point of 7_,. 

Now, let Sa. be a level surface passing through q ~ g~. We assert 
that Sx. c 2;'. Clearly the set A c Sx. which has the property A = E ' ,  
is a closed set in Sa.. To show that A is open in Sa.,  let r ~ A. Because 
r is not a critical point, we can choose a neighborhood V of r in M 
such that the closure V of V contains no critical points, and that all 
points in V at the level 22* are in V n Sa.. Now, using the trajectories 
of grad h, we fill up a neighborhood W of V c~ S~. in M. Since r ~ V c~ S~. 
and r ~ 27, there is a point s r 2; n W in the trajectory passing through 
r, and therefore there is a neighborhood U of s, U =  2; c~ M. Projec- 
ting U onto V n S~. along the trajectories, we find a neighborhood 
of r in Sa, which is entirely contained in ~ ' .  It follows that A is open 
and by connectedness A = Sx. as we asserted. 

From the above we conclude that ~' is a union of level surfaces 
at the level 2*. Observe that if q E ~ ' ,  there exists a trajectory g% (t) 
of grad h, with ~p~(0) = q. For  small t < 0, ~% (t) will certainly intersect 
a level surface through a point of ~ sufficiently near q, hence r (t)~ Y-. 
By the argument in (a), it follows that ~p~ (t} is issuing from p. Due to 
the absence of critical points in ~ - {p}, it follows that we may parame- 
trize such a trajectory in an interval 1-22o, 22"], 220 @ 0, such that 
h(cpq (22)) = 2, 22 r [2 o, 22*]. Since q~,z (22) is clearly differentiable in [2o, 22*] 
and cp'q(22) is orthogonal to the tangent space of Sx at ~0q(22), it follows 
that the tangent space of 22' at q i s tbe  limit as it --. 22", of the tangent 
spaces of S~ at r 

Now, let Sx c E, 0 ~ 2 < 2" ,  be a level surface in E, and denote 
by y :Sx--, ~ c R ~+i the restriction of the immersion x :M---  g~+l 
to S~, where R~ denotes the hyperplane of R "+~ which contains x(Sz). 
It will be convenient to organize the rest of the proof into some lemmas~ 
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Lemma 4: The second quadratic forms of the immersion y : S a ~ R~ , 
0 :~ 2 < ,;t*, are semi-definite. 

Proof: Let q ~Sx.  Then  

and 

(dy(q)" v, Vo) = 0 

( d  ~ y(q)" v, Vo) = 0 

for any vector  v ~ (S~)q, the tangent  space of S~ at q. Let v be the unit 
no rma l  vector  of  x(M) c R "+1 at x(q), and vy be the unit no rma l  vector  
of  y(Sa) c R,~ at y(q) = x(q). It is clear that v, vy and v o are o r thogona l  
to dx((S~)q) and that (v  o , vy) = O. It follows that  

v = ~vy + fly o , 

where ct = (v,  vy) is non  zero because q is not a critical point. There-  
fore, for any v~(S~)~, 

( d  2 .v(q)" v, v , )  = 1 ( d  2 .v(q)" v, v ) .  

Since at is a pon  zero cont inuous  function in the connected set E -  {p}, 
the l e m m a  follows f rom the hypothesis  of  the theorem. 

Lemma 5: E'  is not compact and the total curvature of y(~') c Rn~. 
is equal tO 2~z. 

Proof: We first consider the case n > 2. By l emma 2, the fact 
that  S~ is compac t  for ,,l < 2* ,  and propos i t ion  1, it follows that the 
total  curva ture  of  y(S,0 c R~,  2 < 2" is 2m As an integral, the total 
curva ture  is a cont inuous  function of  the p a r a m e t e r  2, hence the total  
curva ture  of  y(E') in 2m M o r e o v e r  a level surface S,~. c E'  is not 
compac t ;  otherwise,  by propos i t ion  1, it is h o m e o m o r p h i c  to a sphere 
m~d, since E'  contains  no critical points  there is a normal  value ,,l > 2* ,  
which is a contradict ion.  Therefore  E' is not compact ,  and this proves  
the l e m m a  for n > 2. 

F o r  n = 2, p ropos i t ion  1 cannot  be applied and we must argue 
directly. All we have  to show is that, for any circle S~, 2 < 2* ,  the 
total  curva ture  of  the closed plane curve y(S~) is equal to 2~. This  is 
clearly t rue near  p. On the o ther  hand,  the only o ther  possible values 
are integer mult iples of  2m By continuity,  the value must be 2z for 
all 2, which finishes the l e m m a  

Lemma 6: For each q ~ . ' ,  y ( E ' ) c  R,~. is entirely contained in 
one of the closed half-spaces of R~.. bounded by the tangent hyperplane 
dy(q) (E'q) = T of y(~.') at y(q). 
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Proof: Project the sets y(S,t) c R,~, 2 6 [20 , 2"], onto R,~., using 
the common normal v o , and denote the projected sets by the same letters 
as before. For  each x(q)E x02'), denote by ~kq (2), 2 e [20, 2*] the con- 
tinuous curve obtained by projecting x(tp~ (2)) onto R] . .  

Now, assume that there are points x(ql) and x(q2), ql, q2eE' ,  
in both sides of T. By continuity and the remarks made before lemma 4, 
T is the limit as 2 --+ 2" ,  of the tangent spaces Tx of x(S9 at ~bq (2). 
Therefore, we may choose a 2 ' e  [2o, 2"], close to ;t*, such that x(ql) 
and x(q2) are in different sides of Tx, for 2 > 2'. Because ~kq, (,,l) and 
~kq2 (,,l) converge to x(ql) and x(q2), respectively, as 2--+ ;t*, there is a 
2 " >  2' such that ~q, (2") and ~q2 (2") are in different sides of Tx,,. 
But this means that x(Sx,,) will have points in different sides of some 
of its tangent spaces, which contradicts the convexity of x(Sx,,) and 
proves the lemma. 

We now finish the proof  of proposition 3. x(E') is not contained 
in a hyperplane of R" ; otherwise its total curvature is zero which con- 
tradicts lemma 5. By the same reason, the second quadratic form of 
y :E'  ~ R~. is definite at some point of Z' .  Since Y.' is not compact, 
and is complete in each connected component, it follows from lemma 6 
and proposition 2 that the total curvature x(E') is < ~, which is again 
a contradiction to lemma 5, and finishes the proof of proposition 3. 

The proof of (i) of the theorem now follows easily. Let r ~ M be 
a point where the sectional curvature are all positive. By Sard's theorem. 
there exists a point p e M, near r, such that v(p) = v 0 is a regular value 
of v (cf. proof of proposition 1). Now applying proposition 3 we can 
easily construct the homeomorphisms claimed in (i). 

Remark: Part (i) of the theorem may also be obtained as a corol- 
lary of part (ii), which will be proved in the next section. 

4. Before proving part (ii) of the theorem, we need another lemma. 
Lemma 7 below is an adaptation of an argument in [5] to our non 
(necessarily) compact case. In fact, use is made of lemma 2 of [5], which 
is clearly local. 

Lemma 7: With the hypothesis of the theorem, the set of regular 
values of the normal map v : M --+ S n is dense in the image v(M). Moreover, 
if v(q) is a critical value of v, there exists a sequence of regular values 
v(pl) . . . . .  v(p,,,) . . . .  converging to v(q), such that the tangent hyperplanes 
of x(M) at x(pl) . . . . .  x(p,~).., converge to the tangent hyperplane at q. 

Proof: Let v(q), q ~ M, be a critical value of v and V a neighborhood 
of v(q) in S". We first show that there is a point v(p) ~ V, such that rank 
(dr (p)) = tt We may assume that rank (dr(q)) = k < n and it will be 
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convenient to denote by Uz the set of points in M in which rank (dr) 
is equal to i. 

Since rank (dr(q))= k, either there is a neighborhood of q in M 
contained in U~ or in every neighborhood of q there are points of 
U=, m > k Repeating this argument, if necessary, we find, in any case, 
a point pt e M, with v(p~)r V, and such that a neighborhood W of 
Pl is contained in U . ,  m > k. By lemma 2 of ['5], the image x(W) c R "+1 
of this neighborhood is generated by (n-m)-dimensional plaaes, avd 
the normal map in the (n -  m)-plane 7~ t , passing through Pl ,  is constant, 
hence equal to v(pt ). 

We claim that ~r I is not entirely contained in x(M). To see this, 
let r �9 M be such that v(r) is a regular value of v, and let h be the height 
function h - - ( x ,  v(r)). By proposition 3, given any point s �9 M, there 
exists a trajectory of grad h issuing from r and passing through (or going 
into) s. It follows that x(M) belongs entirely to one side of the tangent 
hyperplane 7r at x(r). If 7r~ intersects lr, then ~ is not entirely contained 
in x(M). If 7r I is parallel to lr, it belongs to a level surface of h; by pro- 
position 3, the level surfaces ofh are compact, and again 7rx is not er.tirely 
contained in x(M), which proves our claim. 

It follows that the set of points in nx which belong to x(M) has a 
boundary point which, by completeness, belongs to x(M); denotes it 
by x(p2). It is Clear that v(p2) -- v(p~) and that P2 is a boundary point 
of U , .  By lemma 2 of ~5], P2 �9 U,,. Therefore, in every neighborhood 
of P2 there are points of U~, i > m > k. It follows that there is a point 
P3 �9 M, such that v(p3) �9 V and P3 �9 U~. Proceeding with this argument, 
we arrive at a point p �9 M, such that v(p) �9 V and p �9 Un, which proves 
the assertion made at the beginning of the proo[ We remark that the 
construction used, makes it possible to .choose such a p in a way that 
the tangent hyperplarte of x(M) at x(p) is arbitrarily near to the tangent 
hyperplatte at x(q). 

The first statement of the lemma follows immediately if we observe 
that arbitrarily close to a p whith rank (dr(p)) = n, there is a point 
r �9 M, the image of which is a regular value of v (cf. proof of propo- 
sition 1). The second statement follows from the above remark on the 
tangent hyperplane at x(p), and this completes the proof of lemma 7. 

We now prove part (ii) of the theorem. 
Let p �9 M. If v(p) is a regular value of v, it follows from proposition 

(cf. proof of lemma 7) that x(M) lies in one side of the tangent hyper- 
plane of x(M) at x(p). If v(p) is a critical value of v, then, by lemma 7, 
v(p) is the limit of a sequence of regular values v(pl) . . . . .  v(p,,) . . . . .  
and the tangent hyperplane 7r at x(p) is the limit of the tangent hyper- 
planes at x(pt) . . . . .  x(p~ . . . . .  It follows that x(M) lies in one side of 
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each of its tangent hyperplanes. Because then) exists one point at which 
the second quadratic form of x : M - ~  R "+~ is definite, the set x(M) 
is contained in no hyperplane of R "+~ . Now, we apply proposition 2 
to obtain (ii) of the theorem, and this finishes the proof. 

(iii) and (iv) are immediate consequences of Proposition 3 and 2. 
Now let M be non-compact and have positive sectional curva- 

tures. Then all height functior, s have exactly one non-degenerate critical 
point. Thus the map v :M ~ S" is injective, hence a diffeomorphism 
into its image, and the image v(M) c S" is an open set containing no 
antipodal points. By lemma 3, v(M) is contained in a hemisphere of 
S", and this proves (v). 

To prove (vi), take the pole of the hemisphere which contains 
v(M) and denote it by Vo. We claim that any line l in R ~+t parallel 
to v o intersects x(M) at most once. Assume that l intersects x(M) in 
two distinct points x(pt) and x(p2). Observe that the segment co = 
= x ( p l ) ~ r ~  belongs to the convex body K c ~ ,+t  whose boundary 
is x(M) and set the conventior, that normal vectors to x(M) point away 
from K. Let Ir t and lr z be the hyperplanes normal to v o and passing 
through x(pl) and x'(p2), respectively. By convexity, v(pl) and v(p2) 
point to the sides of 7r t and n2 which do not contain the segment co. 
This means that either v(pt) or v(p2) do not belong to Z, which is a 
contradiction. 

This clearly establishes x(M) as the graph of a function f defined 
in a set contained in a hyperplane ~r normal to v o . From the assumptions 
on the curvature, the hessian of f is positive definite, hence f is convex. 
f is unbounded in one direction, otherwise by the argument used in 
the proof of lemma 3, we would have that both vo and - Vo belong to 
the closure of the spherical image, which is a contradiction. From that, 
it easily follows that the volume of x(M) is infinite. 

Remark: It is possible to choose the pole Vo such that Vo ~ v(M). 
This will force the function f above to be non-negative. For  details, 
see r t l ] .  
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