
BOL. SOC. BRAS. MAT., VOL 11 N ~ 2 (1980), 139-190 

Dif ferent iab le  funct ions 

139 

Edward Bierstone* 

Contents 

~ 

2. 

3. 

4. 

5. 

6. 
References 

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  139 

Whitney's extension theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  145 
The linear structure of ideals of differentiable functions . . . . . . . . . . . .  I57 

Composition of differentiable mappings . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . .  165 

The Malgrange-Mather division theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  172 

Resolution of singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  180 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 7  

1. Introduction. 

This article, based on lectures given at the Instituto de Matem~itica 
Pura e Aplicada in 1979, is an introduction to some problems in "ideals 
of differ~ntiable functions" or "differential analysis". The problems are 
local questions in real analysis, focussing, in particular, on the relationships 
among differentiable functions, analytic functions and formal power series. 
The paper includes an exposition (with complete proofs) of some of the 
fundamental classical theorems, and a discussion of recent results and 
several important open problems. 

The development of differential calculus in this century has its origin 
in the work of Whitney on differentiable functions. The profound theorems 
proved during the last three decades were motivated on the one hand by 
problems of Laurent Schwartz concerning division of distributions and 
differentiable functions, and on the other by the theory of singularities of 
differentiable mappings, developed at first by Thorn and Whitney. Some 
of the most fundamental results are due to Schwartz's students Glaeser, 
Grothendieck and Malgrange. Schwartz's division problems were resolved 
by the work of Hormander, ,Lojasiewicz ~ind Malgrange concerning ideals 
of differentiable functions generated by analytic fufictions. 

* Supported by Natural Sciences and Engineering Research Council grant A9070, the 
Conselho Nacional de Desenvolvimento Cientifico e Tecnoi6gico, and NSERC under the 
exchange of scientists program with CNPq (1978/79). 
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The results of Mather concerning stability and generic properties of 
differentiable mappings will not be studied here. Outside the generic theory, 
we can distinguish three closely related themes: extension of functions 
defined in closed sets to differentiable functions, division of differentiable 
functions, and composition of differentiable mappings. 

We will begin with an elementary theorem on differentiable even 
functions, which introduces some important, if simple, techniques and 
which provides a good illustration of the fundamental problems and the 
relationships among them. 

Let  U be an open subset of IR'. We denote by d"n(u) (respectively g(U)) 
the algebra of m times continuously differentiable (respectively infinitely 
differentiable) functions in U, with the topology of uniform convergence 
of functions and all their partial derivatives on compact sets. This is the 
topology defined~by the seminorms 

J t~lklf I 
Ifl~ = supper --~'r-xk (X)' 

jkl_*m 

where K is a compact subset of U (and m runs through IN in the ~ case). 
Here x = (x l , . . . , x , ) ,  k denotes a multiindex k = ( k  I . . . . .  kn)~lN", Ikl = 
= k  I + . . . + k , ,  and 

~lkl tglkl 

We will sometimes use m for either a nonnegative integer or + Qo, and 
write #§174 = dr(U). 

Let ~'m(IR).v,, be the closed subspace of 8m(IR) consisting of even 
functions (me IN or m = + oo). 

Theorem 1.1. I f  f ( x )  is a c~2m even function of one variable (m~  IN br 
m = + oo), then there exists a cr function g(y) such that f ( x )  = g(x2). In 
fact there exists a continuous linear operator L :d'2m(IR)c,c. ~ d"(ll~) such 
that f ( x )  = L ( f )  (x 2) for all , f  ~ gzm(IR)c,,.. 

The fii'st assertion is due to Whitney [42]. The second follows from 
a theorem of Seeley [32]. It will be clear that an analogous result holds 
for functions of several variables that are even in some of them. 

We will prove the theorem using the following elementary but impor- 
tant lemma. 

Lemma 1.2. (Hadamard's lemma). I f  f ( x ) =  f ( x  1, ... , x  n, Xn§ 1 . . . .  ,Xp) is 
a ~ function such that 
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f{O . . . . .  O, x . .  l . . . . .  xp) = O, 

then there exist c~,,-~ functions gi(x t . . . . .  xp), I <- i <- n, such that 

f(x)  = ~ x i gi(x). 
i=l 

Proof. By the fundamental theorem of calculus and the chain rule, we have 

f (x)  = ;o Of(txl . . . . .  tx~,Otx~+~ . . . . .  xp) dt = i=t ~" xi gi(x)' 

where 

fo I Of dt. gi(x) = ~ (tx,  . . . .  , tx , ,  x~+l  . . . . .  xp) 

It. is clear that the gi(x) defined in the proof of Lemma 1.2 depend in 
a continuous linear way on jr. 

Hadamard's lemma is a very simple type of division theorem for 
differentiable functions. In the rr case, the assertion of the lemma is equi- 
valent to the statement that the ideal in d'(IR p) generated by x~, . . . ,  x, is 
closed. Malgrange [19] proved that if U is an open subset of IF, then any 
ideal I in r which is generated by finitely many analytic functions is 
Closed. Malgrange's theorem has a more concrete formulation: a cr func- 
tion f on U belongs to  I if and only if it "belongs formally to I". "Belongs 
formally to E' means that the formal Taylor series of f at each point of U 
is the formal Taylor series of some element of i. In fact according to 
Whitney's spectral theorem [43 ], the closure of any ideal I in d'(U) equals 
the ideal of cr functions which belong formally to I. 

Proof of Theorem 1.1. Let f(x)  be a ~r even function. There is a unique 
continuous function g(y) defined in [0, oo) such that g is rr in (t3, oo) and 
f (x)  = g(x2). If x g: 0, we have 

d# tk) (x2) = 2xg(~+ 1~ (x2), 0 -< k < 2m. 
dx 

On the other hand we can use Hadamard's lemma to define ~r 
even functions h k inductively as follows: 

h o = f 

h k = 2 x h ~ §  0 < k < m .  
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It follows that hk(x) = o[kJ(x 2) outside the origin, so that each derivative 
gtk~, 0 < k < m, can be continued up to the origin. We will prove that g 
is the restriction to [0, co) of a ffm function. 

The problem of extending # to a differentiable function is a very 
special instance of Whitney'a extension problem: When is a function defined 
in a closed subset X of IR" the restriction of a cr function? (cf. [40], [41]). 
In fact we want to extend g in a continuous linear way. The existence of 
such an extension in the ~r case was first proved by Mityagin [27] and 

~ Seeley [32]. 

Let d'm([0, oo)) denote the space of continuous functions g in [0, or) 
such that g is ctr in (0, co) and all derivatives of 01 (0, oo) extend continu- 
ously to [0, oo). Then d'm( [0, 00)) has the structure of a Frdchet space defined 
by the seminorms 

Igl~ = sup Igk(y)l, 
~,EK 

Ikl_<ra 

where K is a compact subset of [0, oo) (and m runs through IN in the ~= 
case), and where gk denotes the continuation of (~/dy k) (01 (0, oo)) to [0, oo). 
The following theorem completes the proof of Theorem 1.1. 

Theorem 1.3. There is a continuous linear operator 

E : d'm( [0, oo)) ~ $"(IR) 

such that E(g) [0, co) = # for all  g~drm([0, oo)). 

Proof. Our problem is to define E(g)(y) when y < 0. If m = 0, we can 
define E(g)(y) by reflection in the origin: E(g)(y) = g ( -  y), y < 0. If m = 1, 
we can use a weighted sum of reflections. Consider 

E(g) (y) = atg(bly) + a2g(b2Y), y < O, 

where bl, b 2 < O. Then E(g) determines a ~r extension of g Provided 
that the limiting values of E(g)(y) and E(g)'(y) agree with those of g(-- y) 
and g ' ( - y )  as y--,  0 - ;  in other words if 

a I + a 2 = l  

�9 alb 1 + a2b 2 = 1. 

For distinct bl ,b  2 < 0 ,  these equations have a unique solution a 1, a 2. 
This extension is due to Lichtenstein [15]. 
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Hestenes [10] remarked that the same technique works for any m < oc: 
a weighted sum of m reflections leads to solving a system of linear equations 
determined by a Vandermonde matrix. 

If m = oo, we can use an infinite sum of reflections [32]: 

E(g) (y) = ~ a k Jp(bj, y) 9(bkY), y < O, 
k = l  

where {ak}, {bk} are sequences satisfying 

(1) bk<O, b k ~ - o o  as k ~ :  

(2) E~=t la~l Ibkl" < oo for all n > 0; 

(3) I~ ~ " =  k=lakb~ 1 for all n > 0 :  
and ~b is a ~| function such that ~b(y)=l if 0 < y - < l  and ~b(y)=0 if 
y > 2. In fact, condition (1) guarantees that the sum is finite for each y < 0. 
Condition (2) shows that all derivatives converge as y--* 0 - ,  uniformly 
in each bounded set, and (3) shows that the limits agree with those of the 
derivatives of 9(Y) as y - * 0  +.  The continuity of the extension operator 
also follows from (2). 

It is easy to choose sequences {a~}, {b~} satisfying the above conditions. 
We can take b k = - 2 ~ and choose ak using a theorem of Mittag-,Leffler: 
there exists an entire function E~=~ak~ taking arbitrary values (here ( -  1)") 
a sequence of distinct points (here 2"), provided that the sequence does not 
have a finite accumulation point. 

It is clear that Seeley's extension operator actually provides a simul- 
taneous extension of all classes of differentiability. 

In this article we will be concerned mainly with ~r functions. Whitney's 
theorem on even functions in the ~ case is equivalent to the statement 
that the subalgebra of ~'(IR) of functions of the form g(x 2) is closed. This 
is a special case of Glaeser's composition theorem [9]. Let U, Y be open 
subsets of IR", IR p (respectively), and ~ :U- -*  V a scmiproper analytic 
mapping. Glaeser proved that if ~ has rank p in a dense subset of U, 
then ~*~'(V)is  closed in g(U). H e r e  ~* :~(V)--,g(U) is the algebra 
homomorphism defined by ~b*(g) = g o q~, where g ~ 8(V). Glaeser's theorem 
also has a more concrete formulation: $*g(V) equals the subalgebra of 
d'(U) of functions which are "formally compositions with ~b". If f E g(U), 
we denote by T,,f the formal Taylor series of f at a ~ U. We say f is "for- 
mally a composition with ~b = ( ~ ,  . . . ,  ~bp)" if for each b ~ ~(U), there is a 
formal power series G~ in the variables y - b = (y~ - b~ . . . . .  yp - b~ such 
that for each aeq~-~(b), Tof is obtained by substituting for each yj in Gb, 
the formal Taylor series at a of the function q~. 

One of the most significant open problems on differentiable functions 
is the following. 
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Conjecture 1.4. The conclusion of Glaeser's theorem holds without the 
hypothesis on the rank of ~. 

Tougeron [35] has proved that if ~b : U ~ V is any analytic mapping,  
then the closure of ck*g(V) equals the subalgebra of 8(U) of functions which 
are formally compositions with qk 

Theorem 1.1 in the ~ case also follows from the Malgrange-Mather  
division theorem [20], [23], which is an analogue for ~r174 functions of the 
classical Weierstrass division theorem. Suppose that U is an open subset 
of IR" and u~ . . . . .  up are cg~o functions on U. Let 

P 

p(t, x) = t p + "~. ui(x ) t p- i. 
i = 1  

Given a cg~o function f ( t ,  x) on IR x U, we can ask whether there  exist r 
functions q(t, x), r ~(x) . . . . .  r p(x) such that 

p 

f ( t ,  x) = p(t, x) q(t, x) + ~. rj(x) t p-j. 
j = l  

The answer is "'yes", although the solution is not unique unless all roo ts  
of the polynomial t --* p(t, x) are real for each x~ For example, if p(t, x)  = 
= t 2 + 1, then we can choose rl ,  r 2 arbitrarily since t 2 + 1 is invertible. 

The Malgrange-Mather division theorem provides a continuous l inear  
mapping 

#(rR x u) --, #(IR x U) x (#(U)y  

f ~ ( q f ,  r l ,  f . . . . .  r p . f )  

such that for all f e g(IR x U), 

f = pqf + r I ,  

where 

�9 p tp_j. ry(t,x) = ~ ri.s(x ) 
j = l  

In fact r x U) is a module over the ring g(U), and the continuous l inear  
mapping above can be chosen #(U)-linear. 

Let us again consider a if| even function f (x) .  According t o  the divi- 
sion theorem we can write 
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f(x) = (x 2 - y)q(x, y) + xrt(y ) + r20,), 

where q, rl ,  r 2 are ~ functions which depend in a continuous linear way 
on f Putting y = x  2, we have f ( x ) = x r l ( x  z)+r2(x2). Since f is even, 
then r 1 = 0 and we have f ( x ) =  r2(x2). 

2. Whitney's extension theorem. 

In this section we will prove the classical extension theorem of Whitney 
[40]. Let U be an open subset of IR', and X a closed subset of U. Whitney's 
theorem asserts that a function F ~ defined in X is the restriction of actr 
function in U(me IN or m = + ~ ) p r o v i d e d  there exists a sequence (Fk)lkl_< m 
of functions defined in X which satisfies certain conditions that arise natu- 
rally from Taylor 's  formula. 

First we  consider m ~ IN. By a jet of order m on X we mean a sequence 
of cohtinuous functions F = (Fk)lklzM on X. Here k denotes a multiindex 
k = (ki-, . . . .  k , )e  IN'. Let J'(X) be the vector space of jets of order m on 
X. We write 

IFI~ x = sup IFk(x)l 
x~K 

Ikl<m 

if K is a compact subset of X, and F(x) = F~ 

There is a linear mapping jm : d~'(U) ~ Jm(X) which associates to each 
f E d~(U) the jet 

i f a lk l f  I 'X 
J' f) : t x),,,<_. 

For each Ikl ~ m, there is a linear mapping /~  : J = ( X ) ~  jm-lkl (X) defined 
tF ~+Jt~ We also denote by D k the mapping  of d"~(U) by D~F = ~ #lgl_<m_lk I. 

into d~-Ikl(U) given by 

631k!f 
Dkf = ~ "  

This should cause no confusion since 

D k , jm = jm-lhl o D k. 

If a r X and F *  J=(X), then the Taylor polynomial (of order m) of F 
at a is the polynomial 
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T~F(x) = ~ Fk(a) 
]kl< m k[. " ( X  - -  a )  k 

m m F of degree < m. Here k! = kl ! ... k,!. We define R " ~ F = F - J  (T~ ), so 
that 

(RTF)k(x) = Fk(x) -- 

if }kl ~ m. 

F~'* Z(a) �9 (x  - a) ~" 

iLl_<m- Ikl L! 

Definition 2.1. " A jet F ~ i f (X )  is a Whitney field of class ctr on X if for 
each Ikl < m, 

(2.1.1) (R~F)k(y) = o(Ix - y[ m-lkl) 

'as Ix - yl --,0, x , y ~ X .  

Let d 'm(X)c Jm(X) be the subspace of Whitney fields of class ~m. 
d~(X) is a Frdchet space, with the seminorms 

I(RTF)k(y)I 
IIFII~ = IF[~ + sup Ix - y],~-tkl ' 

X, yEK 

Ikl <_m 

where K c X is compact. 

R e m a r k  2 .2 .  If FeJm(U) and for all x ~  U, [kt ~ m we have 

( R'~ F) k (y ) 
lira Ix - y[ ra-lkl  = O, 
y - - x  

then there exists f ~ l m ( U )  such that F = J'~(f). This simple converse of 
Taylor 's theorem shows that the two spaces we have denoted gin(U) are 
equivalent. On 8re(U), the topologies defined by the seminorms I" l~, lt" Ilk 
are equivalent (by the open mapping theorem). 

r , 

T h e o r e m  2.3. (Whitney. [40]). There is a cohtmuous linear mapping 

w : ~ ( x )  ~ ~,m(u) 

such that DkW(F) (x) = F~(x) i f  F ~ gin(X), x ~ X, ]k] < m, and W(F) ] U - X 
is ~'| 
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Remark 2.4. The condition (2.1.1) cannot be weakened to'  

m k 
(2.4.1) lim , (R,,F) (y) = 0 

y_~ Ix - ),[~-Ikl 

for all x r  X, Ik[ < m. 
For example, let n = m = 1. Choose sequences of numbers {xk}, {Yk} 

as in the following figure, where the line segment joining (Xk, Yk) and 
(x~+ 1, Y~+ 1) has slope ( -  1) k. 

~ y = x  2 

,y2) 

~ Y l )  

~ y = _ X  2 ~ 

Let X = {0} w {x 1, x 2, ...}. Define F E JI(X) by F~ = 0, F~ = Yk, 
F 1 --0.  Since each x k is isolated, then (2.4.1) holds trivially for x = x k. 
On the other hand, (R~F)~ and (R~F) l (xk)=0 ,  so that (2.4.1) 
holds for x = 0. But F has no eg~ extension to IR since 

Yk+I-Y~ = (_ l)k 
X k  + 1 - -  Xk  

does not approach a limit as k - ,  oo. 

The proof of Theorem 2.3 is based on the following fundamental lemma 
("Whitney partition of unity"). 

Lemma 2.5. Let K be a compact subset of IR'. There exists a countable 
family of functions @t eg ' ( IR"-  K), L ~ I, such that 

(1) {supp@L}~l /S locally finite: in, fact each x belongs to at most 3" of 
the supp @L : 

(2) @C >--0 for all L r  and Et~ z ~ ( x )  = 1, xeIR" - K :  
(3) 2 d(supp Or., K) _> diam(supp ~t) for all L r I: 

(4) there exist constants C~ depending only on k and n, such that i f  
x r IR" - K, then 
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( ' )  IDkOr.(x)l <- C k 1 + d ( x , K )  Ikl " 

Proof. The proof is based on a certain decomposition of I R ' - K  into 
cubes. For each nonnegative integer p, we subdivide IR ~ into closed cubes 
with sides of length 1/2 p, by the hyperplanes x i = j i /2 p, where 1 < i < n 
and each Ji runs through the set of all integers. Let Ep be the set of these 
cubes. 

Let S o be the subset of Y0 consisting of cubes L such that d(L, K) _> 
diam L = ~/-n. We define Sp inductively: Sp is the subset of E o consisting 
of cubes L which are not contained in any cubes of S o . . . . .  S v - t ,  and such 
that d(L,K) > d i a m L  = ~/n/2 p. Then I = wp, N Sp is a subdivision of 
IR" - K into closed cubes such that each cube of Sp meets only cubes of  

So -  t, So, So+ x" 
Let ~, �9 d'(IR') be a function such that 0 < @ -< 1, @(x) = 1 if Ixil < 1/2 

for each i =  1 , . . . , n ,  and @(x )=0 i f l x / I  > 3 / 4  for some i. For each L � 9  
let 

-- x L ~JL(X) = ~ I (X  ~. L ) '  

where x L is the center of L and 2 z 

OAx) = 

is the length of its sides. 

Z MGI 

We define 

It is easy to see that  the family {q>t.}za satisfies (1) and (2). 

If L �9 S o, then 

d(supp q~_, K) > d(L, K) - ~ 3.fff 1 > ~ > -~- diam(supp q~ ,  

which proves (3). 

To prove (4), we first estimate ID~OL(x)[ in terms of ,l,. We have 

I ' ( -C')I= =T . l/k#t.(x)l = ~ Dk @ .x C 

where C is a constant depending only on k and n. Also 

1 < Y. 3" 
MGI 
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for all x e IR" - K, by (I). Using Leibniz's rule and the preceding inequalities, 
we get 

a t 

for all x e I R " - K ,  where C' is a constant depending only on k and n. 

If L e S 0, then it` = 1, so that tDk~t`(x)l ~ C. Let L E S ,  p > 1. Let 
E be a cube of Ep_ 1 containing L. Then d(L', K) < ,V/-~/2 p-~, so that for 
all x ~ L, 

d(x, K) < ~ + d i a m E  = ~ 
2 r -  1 2 p- 2 ' 

and for all x e supp ~t., 

d(x,K) < ~ ~ 17"v/-n ';~L" 
- 2p_ 2 + 2p+-----/- = 

Thus for any L ~ I and all x E IR " -  K, 

j s) 
ID~OL(x)L < C' 1 + 41kid(x, g)l~ t �9 

This proves (4). 

Proof of Theorem 2.3. By a simple partition of unity argument it is enough 
to assume U = IR" and X = K, a compact subset of IR". Let {~L}ua be a 
Whitney partition of unity on I R " - K .  

For  each L E I, choose at. e K such that 

d(supp Ot`, K) = d(supp ~L, at.). 

Let F e d"(K). Define a function f = W(F) on IR" by 

f(x) = F~ x ~ K, 

m f(x) = ~ ~L(x)T',LF(x), x r K. 

Clearly f = W(F) depends linearly on F, and is ~r on IR" - K. We must 
show that f is ~" ,  D~fl K = F ~, Ik[ < m, and W is continuous. If Ik[ < m, 
we write 
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f*(x)  = Fk(x), x E K, 

fk(x)  --- Oy(x) ,  x r K. 

By a modulus of  continuity we mean a cont inuous increasing funct ion 
a �9 [0, ~ )  --, [0, or) such that a(0) = 0 and a is concave downwards.  The re  
exists a modulus  of cont inui ty a such  that  

I(R~F)k(x)l -< a(Ix - at) ' lx  - a[ "-Ikl 

for all a, x 6 K ,  Ikl ~ m, and 

a(t) = a(diam K), t > diam K, 

IIFII~ = IFI x + a(diam K). 

In fact,, define /~" [0, oo)---, [0, o o) by fl(0) = 0 and 

I(RmF) k (y)l 
/~(t)= sup t > 0 .  

x .~ r  Ix - yl "-Ikl ' 
x~:y 

Ix-Yl<t 
Ikl ~ ra 

Then 1/is increasing and cont inuous  at 0. We get a from the convex enve- 
lope of the positive t-axis and the graph of ]/. 

Let A be a cube in IR" such that K c l n t A .  Let 2=supx~Ad(x ,K) .  
We will  prove the following assertion. 

(2.3.1) There exists a constant  C depending only on m, n, 2 such tha t  
if [kl < m, a ~ K, x ~ A, then 

[fk(x) -- D~TmF(x)I < Ca(Ix - al)" Ix - ai 'n-lkl. 

Once  (2.3.1) is established, the p r o o f  of the theorem can be comple ted  
as follows. Let (j) denote  the multi index whose j ' th componen t  is 1 and  
whose o ther  components  are 0. If a ~ K, x r K, Ikl < m, then 

[fk(x) - fk(a) - ~ (x j  - a ~ ) f k + o 3  (a)J --< [ f k ( x )  - DkT~'F(x)[ + 
j = l  

+ IDkT~"F(x) - DkT~mF(a) - ~, (xj - a~) Dk+O37~F(a)l. 
j = l  

t h e  first term in the right hand side is o(Ix - al) by (2.3.1), while the second 
s o(Ix - a l )  since T~=F(x) is a po lynomia l .  Hence fk  is con t inuous ly  diffe- 
:entiable and Of~/ax~ = f~  +U~. 
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Applying (2.3.1) to a point  x e A and a point a e K such that  d(x ,K)  = 
= d(x, a), we have 

IDkf(x)l ~ IDJ'T~'F(x)I + C~(2) ;,,,-l~,l 

,;1s 
~ t !  IFI~ + C2"-'kI(I[FII~ - I F I ~ ) .  

ls 

Hence  there is a constant  Cx (depending only on m, n, ;.) such that  

In part icular ,  W is a cont inuous linear operator .  

It remains to prove (2.3.1). First  we claim that i r a ,  b E K, ]kl < m, then 

(2.3.2) IO~T~'F(x) - O * ~ F ( x ) l  < 

< 2" - Ik l  en/2 0~([a b[)" (Ix -- a[ m- lk l  "4" IX - -  bl " - I k l )  

for all x e IR ~. To  see this, we observe 

Ikl<m 

= y~ (~ - ~)~ (R;'F) ~ (a), 
ikl_<m k [  

so that  

l~'l~ F(x) - D~T'~ F(x) = ~., (x - a) 9" (R~F)k+~.(a). 
i~l<m_ ikl J~[ 

Hence  

IDkT~F(x) - D ~ ' b  F(x)l < 

< ~ 'Ix-alibi 
Is s "la - b] "- Ikl- l t l  ~(la - bl) < 

< y .  t! Is 

Ix - bl "-I~1 
�9 2 "  - I L l - I t l  st(i a _ b l )  

< 2 " - t~ l  e "/2 ~( la  - bl) "Ix - b (  ~--I~1 

�9 ff  Ix - al ~; Ix - b l .  L i k e w i s e  
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IDkT~',F(x) - DkT~bF(x)l < 2 m-lhl e ~/z ~(la - hi)" Ix - al m- I~1 

if Ix - bl < Ix - al. O u r  claim follows�9 

N o w  to p rove  (2.3.1)�9 We can assume x r  K. Then  

S(x)- t ~ t.(x) ( T,~ F(x) 

Hence 

where 

~ k i f (x)  DkT~ ' ,F (x )= t<k( t )S t ( x ) ,  

Sz(x) = ~, Did#t.(x) �9 D k-s (T.~F(x) - T~ F(x)). 
IA! 

Here  Z N k m e a n s  l~j < kl, 1 < j  < n, a n d  = l t ! (k  - 6)! 

To es t imate  tSo(x)l , we note  that  if x ~ supp  q~t., then 

Ix - at.I < d iam ( s u p p ~  + d ( s u p p  q~t-, K) < 

< 3 d ( s u p p  q~t-, K) < 3Ix  - al, 

by L e m m a  2.5(3), so that  la - at.I < 4 Ix - al and  ~(la - all)  < 4~(lx - -  a)) 
because  e is concave  downwards .  Therefore  

ISo(x)l ~ C~lx - a l ) ' l x  - a l " - Ik l  

where C depends  only on m, n, by  (2.3.2) and L e m m a  2.5(1). 

N o w  consider  IS~(x)[, Jt ~ 0. F o r  all b eK ,  

Sg(x) = ~ Did#t.(x) �9 O k-s (T~F(x) - T~bF(x)) 
1~I 

since ~ DZOt.(x)= 0. Choose  b so that  I x -  bl = d(x, K). As before,  if 
/ ~ I  

x r supp  Ot-, then Ix - at-] < 3 Ix - bl = 3 d(x, g), so that  Ib - at.) < 4 d(x, K) 
and  : ' ( I b -  at.I) < 4~(d(x, K)). By (2.3.2) and  L e m m a  2.5(4), 

I o t O L ( x )  �9 o k- t(T~F(x) - TIF(x))I < Ck ~(d(x, t<)), d(x, K)'-ihl, 

where C k depends  only o n / ~  ~ n, ~.. This comple tes  the p r o o f  of  (2.3.1), a n d  
therefore  of the theorem.  
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We now turn to the ~| case of Whitney's extension theorem Let U 
be an open subset of IW and X a closed subset of U. A jet of infinite order 
on X is a sequence of continuous functions F = (F~)~,,~. on X. Let J(X) be 
the space of such jets. For each ms IN, there is a projection n., : J(X)  - .  Jm(X) 
associating to each jet (F~)~,,~. the jet (F~)lkl_<m. Let 

r = .% n;  '(t"(x)). 

An element of ~'(X) is a Whitney f'~ld of class if| on X. 8(X) is a Fr~chet 
space, with the seminorrm II �9 H~, where m s IN and K c X is compact. 

There is a linear mapping J :~'(U)--* J(X) defined by 

I ) J ( f )  = ~k O-----~--- X k , . "  

where f r $'(U). 

Theorem 2.6. ,s(x) = J(g(u)). 

It is again enough to prove the theorem when U = IR ~ and X =  K, 
a compact subset of IW. We will use the following proposition. 

Proposition 2.7. For all mE IN, let g ,  s d~(IR ") such that g is c~,o on IR" - K 
and gm+l - g m  is m-fiat on K. Then there exists gE d~(lR ~) such that g - g M  
is m-fiat on K for all m e  IN. 

(A ~'~ function is m-fiat on K if it vanishes on K together with all its 
derivatives of order Am). 

To obtain Theorem 2.6, let F Eg.(K) and F,, = x,,(F), m r IN. By 
Theorem 2.3, there exists 0 ,  E ~r-(iw) such that 0m is r~| on IR" - K and 
�9 P'O, -- F , .  Clearly g~,+ l - g m  is m-flat on K, so the result follows from 
Proposition 2.7. 

We will need the following two lemmas to prove Proposition 2.7. 

Lemma 2.8." There are constants Ck > 0 (depending only on k:r IN ~) such 
that for any compact subset K of  ~ and any 8 > O, there exists a ~'| 
function ~ on ~r satisfying: 
(~  0 ~ ~ < 1, ct ffi 1 in a neighborhood of  K, and ~(x)  = 0 i f  d(x, K) >_ 8: 

(2) for all x f II~ and k r IN", 

iD~cc(x)l ~ Cg 

Proof. Let �9 r 8(IW) such tha t  ~) > 0, ~ = 0 if Ixl ~ 3/8, and J" �9 = 1. Put 



154  E d w a r d  Bie . r s tone  

= �9 �9 

Let Z, be the characteristic function of the set {x e IR" : d(x, K) < e/2}. We 
can define =~ by the convolution ~,= = Z, * *,.  

Lemma 2.9. I f  g r /s m-flat on K, then l im, .  o la= "gl~ = 0 (where 
=, is given by Lemma 2.8). 

Proof. Let K,  -- {x r IR" : d(x, K) < ~}. Then 

x �9 R" x=,~ J,_ 

( ~ )  C t "  
< T.. 

s 

where /~(8)~ 0 as s--* 0, by Lemm, 2.8, Hence I=, "#l~ --* 0 as s ~ O. 

Proof of Proposition 2.7. By Lemma 2.9 there exists a sequence of positive 
numbers %, ~1, .-- such that 

I 
- gp)l " < 2 7- .  

Then the series 

go + ~ =,p(gp+ 1 - 0,) 
p > 0  

converges uniformly on IR" to a function g. For  each m ~ IN we write 

# = g o  + ~ ~ , p ( g p + l - a p ) + R , , "  
O<p<m 

Clearly the sum of the first two terms in the right hand side is cte" and 
coincides with gm in a neighborhood of K. On the other hand, R,, is cte" 
and m-flat on K. Therefore g is ~ o  and g - g , ,  is m-flat on K for all nt 

Remark 2.10. I f X  = {a}, Theorem 2.6 is the generalized lemrna ofE. Borel: 
given a family of real numbers {~k}~-, there exists f ~ ( I R " )  such that 
Dkf(a) = ~ for all k~ IN". 

Remark 2A1. For each m ~ IN, Theorem 2.3 provides an "extension operator"  
W "  : ~I~(X) ~ ,ff'(U); i.e. a continuous linear mapping W = : d'=(X) --* ~" (U)  
such that 14m(F)l X ffi F for all F a d"(X). The operators 14m are o f  
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increasing complexity in m, however, and therefore do not induce an exten- 
sion operator on the space of ~| Whitney fields. According to Seeley's 
formula (Theorem 1.3), there exists an extension operator for the cr174 
Whitney fields on a half space (or, more  generally, on a domain with 
~r boundary). On the other hand, the following example of Grothendieck 
shows there does not in general exist a continuous linear extension operator 
in the cr174 ease. 

Let U = IR", X = {0}. It is enough to prove there does not exist an 
extension operator ~ ( 0 ) ~  8(B"), where /~ is the closed unit ball in IR". 
The topology of ~'(0)cannot be defined by an infinite sequence of norms 
(since every neighborhood of 0 contains lines). On the other hand, d'(B") 
is topologiz/xl by an infinite sequence of norms. The result follows. 

Therefore the following extension problem is interesting. Under what 
conditions on X is there a continuous linear extension operator d'(X) --* r 
We will take up this question in Section 3. 

We conclude this section with some remarks on the seminorms I" I~ 
and I1" I1~, and a problem concerning the definition of if| functions on a 
domfiin with boundary. 

Deflnltlea 2.12. Let K be a compact subset of IR" which is connected by 
rectifiable arcs, and let 6 be the geodesic distance on K (if x, y E K, 6(x, y) 
is the greatest lower bound of the lengths of the rectifiable arcs joining x 
and y). Let p be a positive integer. We say that K is p-regular if there 
exists a constant C > 0 such that 

Ix - Yl > C~(x, y~' 

for all x, y ~ K. 
Let U be an open subset of IR ~. A dosed subset X of U is regular if fot 

all x ~ X there exists an integer p and a p-regular compact neighborhood 
of x in X. 

Proposition 2.13. Let K be a p-regular compact subset of IR n. Then for 
each m e  IN, there exists a constant {7, such that for all F ~ r 

ItFll. ~ -<- C.IFI.~p. 

Proof. Suppose # e ~'q(IR"), where q > 1. If x, y~  IR n, then 

Ig(Y) - g(x)l < ,r .- yl sup JDtff(~)l, 
etlx, y.l 

Is = 1 

according to the mean value theorem Therefore if a is a piecewise linear 
are joining x and y, of lenght lal, we have 
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10(Y)- 0(x)l < ,4rff'lol sup IDZo(~)I. 

In fact this inequality holds for any rectifiable a, by passage to the limit. 

Suppose g is (q-1)-flat at x. Iterating the preceding inequality, we get 

Ig(Y)I < ha'2 tol a sup IDtg(~)l. 

Now let K be a compact subset of IR" which is connected by rectifiable 
arcs. Let F r  d~(K). Applying-the inequality above with x, y ~  K, q = 
= m - Ik l ,  and O = D~(W(F) - T~'F) (where W is given by Theorem 2.3), 
we have" 

(2.13.1) i(RTF)k(y)l <, nO,-Ikl>/2 6(X, y)~-Iklsup t F Z ( r  - FZ(x)! <- 

< 2n~ :m-lk0t2 6(x, y)~-lkl IFIX. 

Suppose K is p-regular. Let melN and Ikl < nt For all x, y ~ K  and  
F ed~P(K), there exists a constant C' such that 

(2.13.2) I(RmF)k(y)l < I(RT~ + C'lx - yl m-lkl+ ~ "lFl~p. 

But by (2.13.1) and the hypothesis, there exists a constant C" such that  

(2.13.3) I(R~PF)t(y)I 2n t'p-I~t~/2 6(x, y) mp-lkl IFl~p < C'lx - 3~ m-lkl IFl~p. 

The proposition follows immediately from (2.13.2) and (2.13.3). 

Corollary 2.t4. Let U be an open subset of  IR'. I f  X is a reoular closed 
subset of U, then the topology of 8(X) is defined by the family of  seminorms 
l" I~, where m r IN and K ~ X is compact. 

Remark 2.15, ~When p = 1, Proposition 2.13 has the following converse, 
due to Glaeser [8 ]. Let K be a compact subset of IR n. If the norms t "I~ 
and I1"11~ are equivalent, then K has a finite number of connected compo-  
nents, each of which is 1-regular. 

Let U be an open subset of JR". If X is a closed subset of U such that  
I n t X  is dense in X, we can consider the following strong regularity 
condition. 
(2.16.1) For all a ~ X  there exists a positive integer p and a compact  
neighborhood K of a in X with the following property: there exists a~ 
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constant C such that any two points x, y e/r  can be joined by a rectifiable 
arc or which lies in Int X except perhaps for finitely many points, and 
satisfies 

Ix - Yl >-- Clol p. 

In Section 6 we will prove that a closed "subanalytic" set X such that 
IntX is dense in X satisfies (2.16.1). 

Proposition 2.16. Let X be a �9 subset of  U such that Int X is dense 
in X. Suppose X satisfies (2.16.1). I f  F e J ( X )  and F I I n t X e S ( I n t X ~  
then F r 8(X). 

This can be proved by a~plying estimates similar to those of the proof 
of Propositidn 2.13, to rectifiable arcs satisfying (2.16~1). 

We conjecture that the converse of Proposition 2.16 is true. 

Conjecture 2.17. Suppose that every continuous function f on X such that 
f is if| in Int X and all partial derivatives of f l Int X extend continuously 
to X, is the restriction of a q~| function in U. Then X satisfies (2.16.1). 

Example 2.18. Let X be the complement of the open subset of R 2 deft- 
ned by 0 < x 2 < e ~ 1/~I, xt > 0. Let f be the continuous function on X 
defined by f(xl,x2)= e-t/"~ if x 1 >0,  x 2 >__ e-t/x~, and f ( x t , x 2 ) = 0  
otherwise. Then f is qf| in In tX and all partial derivatives o f f  l In tX 
extend continuously to X (in particular, to zero at the origin). But f is 
not the restriction of a ~| function in [R 2 because if x I > 0, then the diffe- 
rence quotient 

f ( x  x, e-  1/~) _ f ( x l  ' O) = 1. 
e- t/~,~ _ 0 

3. The Iinem- structure of  Ideals of  differentiable ~anct io~ .  

Let X be a closed subset of IR". In Remark 2.11 we raised the following 
question: Under what conditions on X is there a continuous linear extension 
operator ~(X)- ,  r In fact we can formulate a more general liftino 
problem: Let Tx:8( IR ' ) - ,  8(X)  be the canonical projection associating to 
each ~| function its jet of infinite order on X. If V is a topological vector 
space and G : V - - ,  8.(X) is a continuous linear mapping, then under what 
conditions is there a continuous linear mapping G : V - ~  8(IR ~) such that 
the following diagram commutes? 
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r 
,p 

I 
i 

/ /  
/ 

/ 

V G , g(X)  

We will show that i f  V is a locally convex topological vector space, 
then a lifting G of G exists provided the~e exist "pointwise" liftings, uniformly 
in the points of X. 

Our main interest in the lifting Theorem 3.1 lies in its application to 
the extension problem. We will discuss the extension theorems of [1]. 
According to Whitney's Theorem 2.6, there is an exact sequence 

0 ; J ( X ;  SR') ~- t0R')  Tx .., t ( X )  , O, 

where J (X~lW) 'denotes  the ideal in #(IW) of functions which are flat on 
X; .i.e. which vanish on X together with all their partial derivatives. The  
existence of an extension operator $'.(X)--* $'(IR ~) is equivalent to the split- 
ting of this exact sequence or, in other words, to the existence of a closed 
linear subspace of 8(IR') complementary to the closed ideal d '(X; IR'). 

Some other theorems and problems concerning splitting properties of 
ideals of differentiable functions will also be surveyed in this section. The 
only result here which will be used in the rest of the article is E. Stein's 
extension theorem: a special case of Theorem 3.7 that we will prove in full. 

Theorem 3.1. [3]. Let X be a closed subset o f  }R ~, and V a topological 
vector space, topoiogized by a family o f  seminorms II "Ila.^. Let G : V ~ g ( X )  
be a continuous linear mapping. Suppose that for each a e X ,  there is a con- 
tinuous linear mapping G a : V ~ 8(IR n) such that 

(1) Ga(~)k(a) = G(~)k(a) for all ~ ~ V and k ~ IN': 
(2) for each m ~ IN and L c I~ compact, there exist 2 = 2(m, L )~  A and a 
constant c = c(m, L) such that for all ~ e V, 

IGa(~)l ~ ~ c II~ll~. 

Then there exists a continuous linear mapping G : V - ,  g(IR ~) such that 
the diagram (3.1.1) commutes. 

Idea of  the proof. It is enough to assume X = K, a compact subset of IR'. 
Let {OL}t,Z be a Whitney partition of unity on IR" - K (Lemma 2.5). 

Let F = G(r e d'(K). For each L e I, choose at. e K such that 

~suppOL,  K ) = ~ s u p p ~ L , a  ~. 
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Define f = d(~) e g(IR") by 
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f (x)  = F~ x e K, 

f (x)  = ~ (1)c(X) G~ (x)(x), x ~ K. 

We can show that (~ has the required properties by an argument 
patterned on that of Whitney's theorem 2.3; the pointwise liftings Go(~) 
here take the place of the Taylor polynomials T~mF in Whitney's theorem. 

Let X be a closed subset of IR". Let F : ~'(IR p) --* dr(X) be a continuous 
linear mapping. Say that F is null at x e IR p if there exists a neighborhood 
U of x such that if f e 8(IR v) and supp f ~ U, then F( f )  = O, The support 
of F is the cbmplement of the set of points where F is null. Clearly supp F 
is closed. 

Corollary" 3.2 [3]. I f  F has compact support, then there exists a conti- 
nuous linear mapping F :8(IR v) --, ~'(IR ~) such that the following diagram 
commutes: 

SOR") 

rx p. 
/ 

/ '  
/ 

~(iRV) F ,  8(X) 

In the case that X is a point, Corollary 3.2 reduces to Mather's inte- 
resting variant of Borers lemma [24, Section 7 ] .  The general case is a con- 
sequence of Mather's theorem and Theorem 3.1. According to [24], for 
each a e X  there exists a continuous linear mapping Fo :~(IR ~ -* ~(IR") 
such that F(f)k(a)= Fo(f)k(a) for all f e~'(IR v) and k e IN". Moreover, 
Mather's estimates show that the pointwise liftings F~ are uniform in a e X, 
so. the assertion follows from Theorem 3.1. 

Let X be a closed subset of IR". We recall that Seeley [32] and 
Mityagin [27] proved that an extension operator E : 8 ( X ) ~  $'(IR') exists 
if X is a closed half space. E. Stein [33] showed that an extension operator 
exists when X is a domain with boundary which is locally the graph of a 
function of Lipschitz class 1. Moreover, the extension operators of Seeley 
and Stein are universal in the sense that they simultaneously extend all 
classes of differentiability (in contrast with the sequence of operators W" 
of increasing complexity given by Whitney's extension theorem 2.3)~ In 
fact Seeley's and Stein's formulas define extension operators from the 
Sobolov spaces L[(IntX) to L~(IR") for all k e IN" and 1 _< p _< oo. A 
Lipschitz condition of order 1 for the boundary of X is in the nature of 
the best possible for such an extension [33, p. 182]. 
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For Whitney fields, on the other hand, extension operators exist for 
closed sets X such that Int X is dense in X and which (roughly speaking) 
have singularities of finite order on the boundary. 

Definition 3.3. [17]. A subset A of I1~' is semianalytic if for each point  
x e IR ", there exists an open neighborhood U of x in IR ~ and a finite number  
of real analytic functions fq, gu on U such that 

A r ~ U = u { f o = 0 ,  go > 0  for all j}. 

The image of a semianalytic set by a proper analytic mapping need 
not be semianalytic [17]. The class of subanalytic sets is obtained by 
enlarging the class of semianalytic sets to include images under proper  
analytic mappings. 

Def'mitlon 3.4 [12 ], [13 ], A subset A of IR ~ is subanalytic if for each x r IR', 
there exists an open neighborhood U of x in IR ~ and a finite system of proper  
real analytic mappings f~j : N o --, U (j = 1, 2), such that 

A r~ U = u (Im f~l - Im f J .  
t 

(Here each Nij is a real analytic manifold). 

Theorem 3.5 [1]. Let X be a closed subanalytic subset of IR ~. Then 
there exists an extension operator E : dr(X) ---, 8(IR ~) i f  and only i f  lnt  X is. 
dense in X. 

The necessity of the hypothesis follows easily from Grothendieck's  
example 2.11. Thetheorem can be proved using Theorem 3.1 and Hironaka 's  
resolution of singularities, by induction on the lengths of the finite sequences 
of local blowings-up with smooth centers needed locally to reetilinearize 
the singularities on the boundary of X. (The notion of "b lowingup"  and  
the application of resolution of singularities to problems on differentiable 
functions will be introduced in Section 6). 

Definition 3.6. Let ~b:lR n-~ --,,IR" be a function which satisfies a Lips- 
chitz condition of order 7, 0 < y < 1; i.e. there is a constant M > 0 such 
that 

Iq~(x) - q~(x')l < M Ix - x ' 7  

for all x, x' e IR "- 1. We consider points in IR ~ as pairs (x, y), x e IR ~- l, y e IR 

The open subset 

{(x, y) � 9  : y > ~(x)} 
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is called a special Lipschitz domain of class Lip 7. A rotation of such a domain 
will also be called a special Lipschitz domain. 

Let f~ be an open subset of I~ and / ~  its boundary. We say, more 
generally, that f~ is a Lipschitz domain if for each a ~ 3f2, there exists an 
open neighborhood U, of a in IR ~ and a special Lipschitz domain ~2o, such 
that fl c~ U, = f~o c~ U~ If each f2o is of class Lip 7 (independent of a), then 
we say ~2 is a Lipschitz domain of class Lip 7. 

Stein's extension theorem for qf~o functions is the case k = 1 of the 
following theorem. 

Theorem 3.7 [1]. I f  X is the closure of  a Lipschitz domain f2, then 
there exists an extension operator E : ~r(X) --* 8(IR'). I f  ~2 is of class Lip 1//~, 
for some positive integer k, then E can be chosen so that for every compact 
subset L o f  IR', there exists a compact subset K of  X such that E satisfies 
the following estimates: for each me  IN there is a positive constant C such 
that 

IE(F)I~ ~ C IFIkr= 

for all F ~ 8(X). 
Idea of the proof. It is enough to prove the theorem in the case of a special 
Lipschitz domain. The general case follows using a partition of unity. 

Let ~b:lRn-I ~ IR be a function which satisfies a Lipschitz condition 
of order l/k, where k is a positive integer; i,e. there is a constant M > 0 
such that 

I~b(x) - tk(x')l < M Ix - x'l 1/k 

for all x, x ' e  IR'-1. We can assume 

X = {(x, y)~ IR' :y >__ q~(x)}. 

Let F be the compact subset ot' IR" defined by 

M Ixl x/k < y -< M. 

The Lipschitz condition on $ implies that a + F c X for all a E X. 

We claim it is enough to prove there exists an extension operator 
E o : r  ) ~ 8(IR') (which satisfies estimates like those in the theorem). In 
fact let E, :t{a + lO--* 8(IR ~) be the operator obtained by translating E o 
to a. Our theorem follows from Theorem 3.1 with V = 8(X), G the identity 
mapping of 8(X), and the pointwise lifting G, given by composing Eo with 
the restriction 8(X) -.* t (a  + F). (For the estimates on the seminorms, it is 
necessary to check the estimates involved in the proof of Theorem 3.1). 



162 Edward Bierstone 

When k = 1, F is defined by linear inequalities, and there exists an 
extension operator S : dr(F) --* dr(IR n) by Seeley's theorem. Hence we can use 
E o = S to prove Stein's theorem. 

In general, it is clear that instead of Eo, we can use an extension ope- 
rator  E o :dr(F')~dr(IRn), where F ' c  F is some domain with boundary  
containing the origin. We first find E o in the case k = 2. Let it :IR n ~ IR" 
be the mapping given by 

(xl, x _  1 Y) = (tt z, t2 1' Y)" 

Let K be the compact subset of IR" defined by 

M ltl < y < M ,  

and F' = 7t(K). Clearly F' c F. There is an extension operator S :dr(K)~, dr(IR") 
as above. Let n* : dr(F) ~ dr(K) be the composition n*(F) = F o n, F ~ dr(F'). 
Let A :dr(IR n) ---, dr(tR n) be the operator  defined by taking the even part of 
f ( t , y )~dr ( IR" )  with respect to each coordinate t r By Theorem 1.1, there 
exists a continuous linear mapping L : l m  A --* dr(IR") such that L ( f )  o n = f 

for all f ~ I m A .  We can take E o = L o A o S o n * .  

Repeating this process m times, we find E o in the case k = 2". F r o m  
these cases, our result follows for any positive integer k, but with less 
precise estimates on the seminorms of the extension when k r 2" for some 
m. We refer to [1] for the precise estimates. 

Remark 3.8. In each of Theorems 3.5 and 3.7 we can in fact choose an 
extension operator which simultaneously extends all classes of differen- 
tiability, though with a certain loss of differentiability depending on the 
singularities of the closed set X [1 ]. The loss of differentiability in extending 
from a Lipschitz domain of class Lip I/k, for example, is exactly tha t  
indicated by the estimates of Theorem 3.7. 

Remark 3.9. M. Tidten [34] has proved there does not exist an extension 
operator  for the closed subset of IR 2 defined by 

0 < y < e-l/~*, x _> 0. 

We have already observed that if X is a closed subset of IR", then there 
exists an extension operator E :dr(X)--. dr(IR") if and only if the ideal 
,~'(S; IR") in r n) admits a complementary closed linear subspace. This 
suggests some questions concerning the linear structure of ideals of diffe- 
rentiable functions. Let U be an open subset of IR" and I a closed ideal in 
dr(U). 

(3.10.1) Does I admit a complementary closed linear subspace? 
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(3.I0.2) Suppose I is generated by r162 Do there exist continuous 
linear operators L~ : I --* r 1 < i < p, such that any g e I can be written 

These questions arise also in the solution of linear equations in /(U): 

1  j/il 
A q x p matrix ~b = (~b~l) of qr174 functions in U determines an /(U)-linear 
mapping r :8(UF ~ $(U) q. Questions (3.10.1) and (3.10.2) of course can 
be stated for'submodules of g(U) q and deal, respectively, with the existence 
of a projection onto Im ~b, and with the linear structure of the solution 
space of the system of equations. 

-The solution of linear equations is obviously important in various 
spaces of functions. Let us recall two classical criteria for solution. 

(3.11.1) If ~bo, at are convergent power series in several variables (over 
IR or C say), then there exists a convergent power series solution f/ if and 
only if there exists a formal power series solution. This follows from ele- 
mentary properties of the completion of a local ring. 

(3.11.2) Suppose the q~o are real analytic functions in U and gie 8(U). Mal- 
grange's division theorem [19] (cf. [21, VIA.F], [36, VI.1.5]) asserts there 
exists a solution f j e  ~(U) if and only if there exists a formal solution at 
every point of U. Equivalently, Im ~b is closed, so we can ask the questions 
(3.10.1) and (3.10.2). 

General results on the linear structure of the solution space are quite 
recent, even in analytic cases. The answer to both questions concerning 
the submodule Im qb is "yes" for: 

(3.12.1) Entire functions (defined over IR or C) when the ~b~j are polyno- 
mials. This is a beantiful elementary theorem of Djakov and Mityagin [7 ]. 
It can be proved by an explicit decomposition of the monomials in the Taylor 
series expansions. 

(3.12.2) Convergent power series (defined over IR or C). This is Malgrange's 
privileged neighborhood theorem [22]. In this case we must be more 
precise about the topological structure. We can ask whether linear splittings 
in (3.10.1) and (3.10.2) induce continuous operators in the space of  power 
seri~ which converge in a given polydisk. Malgrange's theorem asserts 
there exist linear splittings such that the polydisks for which this is true 
form a fundamental system of neighborhoods of the origin. 
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The answer to question (3.10.2) is "yes" for submodules of g ( U )  ~ 
generated by q-tuples of analytic functions: 

Theorem 3.13 [4]. Let dp = (qbis) be a q x p matrix of real analytic 
functions in U. Then the surjection 

~b : d'(U) v --+ Im 

splits. 

Of course when p = 1 :this follows from the open mapping theorem. 
Theorem 3.13 is a consequence of Oka's coherence theorem and results 
of D. Vogt and M. J. Wagner [37], [38], [39] and M. Tidten [34] concer- 
ning the splitting of exact sequences of nuclear Frdchet spaces. The latter 
results also provid~ an approach to question (3.10.1); in particular another 
approach to the extension problem (cf. [4], [34]). 

Remark 3.!4. ]~ven for ideals generated by analytic functions, the answer 
to  question (3.10.1) is sometimes "no". For example, the ideal I generated 
by x z + y2 in I(IR z) does not split. This follows from Grothendieck's example 
2.11 since J(0;  IR 2) c I and d'(IRZ)/I is of,infinite dimension. 

Conjecture 3.15. I f  X is a closed subanalytic subset of  U, then the ideal 
J ( X ;  U) /11 d'(U) consisting of all functions which vanish on X splits. 

The space of restrictions to X of e(r functions in U has a natural Fr6chet 
algebra structure as the quotient 8 ( U ) / J ( X ;  U). The exact sequence 

o -~ , , a ( x ;  u) --, ~ (u )  --. ~ ( u ) / J ( x ;  u )  -~ o 

shows that the extension problem for the space of restrictions to X of qe *~ 
functions is equivalent to the splitting problem for ,,r U) This problem 
is interesting when the space of Whitney fields is too large to represent a 
reasonable class of "smooth" functions on X; for example when X is a 
proper closed analytic subset of U. 

In the important case that 'X is a coherent analytic subset of U (cf. 
Section 6), J ( X ;  U) is (locally) generated by finitely many analytic functions, 
In this case Conjecture 3.15 follows from the difficult Conjecture 1.4. 
Special cases are treated in [2 ] and [4]. For example, if X is coherent and 
either X has isolated singularities or dim X < 2, then J ( X ;  U) splits. 

Question (3.10.1) is also interesting in 8"(U), me IN. Whitney's theo- 
rem 2.3 shows that for any closed subset X of U, the ideal in d ' (U) of 
functions which are m-flat on X splits. Merrien [25] used a construction 
of Whitney [41] to prove that every closed ideal I in d~(!R) splits. 
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Conjecture 3,16. Every closed ideal in I s (U)  splits. 

4. Composition of differentiable mappings. 

If N is a ~| manifold, we denote by 8(N) the Fr~chet algebra of qf~ 
functions on N, with the ~| topology. 

Let N, P be cr174 manifolds, and ~ : N --* P a qr mapping,. There are 
two natural questions concerning the composition of qb with dffferentiable 
functions on P. 

(4.1.1) If f 6 #(N) is constant on the fibers of ~, does there exist g ~ ~(P) 
such that f = 0 ~ 

(4.1.2) If f r  is formally a composition with ~ (cf. Section 1), does 
there exist g ~ d'(P) such that f = g o ~b ? 

These questions, of course, have interesting analogues in various spaces 
of functions. For holomorphic functions, there is the following result. 

Proposition 4.2. Let N, P be complex analytic manifolds of dimensions n, p 
respectively, n >_ p. Suppose P is connected. Let qb : N - ~  P be a proper 
holomorphic mapping such that the set N' of regular points of dp is dense in 
N. Then dp is surjective, and every function g : P ~ C such that g o d? is 
holomorphic on N, is holomorphic on P. 

Proof. Since ~b is proper, then ~(N) is a closed analytic subset of P, by 
Remmert's proper mapping theorem [ 29, VIL2, Theorem 2 ]. Since 
q~(N) is the closure of the open set 0(N'), then the dimension of 0(N) is p 
at each of its points. Therefore 0(N) is open and closed in P, so that 
~(N) = P. 

Now g is holomorphic in ~b(N'), since ~blN' is a submersion. But g 
is continuous on P, because ff is proper. At each of its points, the dimension 
of the analytic set P -  q~(N5 is less than iv. Therefore O is holomorphic 
on P .  

The real analytic and ~o  analogues of Proposition 422 are false. For 
example, let ~b:lR-~ IR be the proper mapping ~ x ) =  x a. Then f ( x ) =  x 
is constant on the fibers of ~, but is not a r174 composition with qb. Never- 
theless, question (4.1.1) does have a positive answer for certain classes of 
~ functions (cf. Corollary 4.5, Remark 4.6, and [28]), one of which will 
play an important part in Section 5. 

The main result of this section, Glaeser's composition theorem [9], 
gives a positive answer to question (4.1.2) in the case that ~ is a real analytic 
mapping satisfying the hypothesis of Proposition 4.2. 

Let U, V be open subsets of g~', ~P respectively (n > p). A qr174 mapping 
: U -* V defines a homomorphism of Fr~chet algebras ~* : ~'(V) --, 8(U); 

~b*(g) ffi g o ~b for all g e ~'(V). 
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Theorem 4.3. Suppose c~ is a semiproper analytic mappino. I f  the set 
of regular points of cp is dense in U, then the subalgebra dp*g(V) is closed in 
r 

"Semiproper" means that ~b(U) is closed in V, and for every compact 
subset L of ~(U), there exists a compact subset K of U such that L = ~k(K). 
For example, a projection of ItS' onto a linear subspace is semiproper but 
not proper. 

Remark 4 . 4 .  In the context of Theorem 4.3, there exists, moreover, a con- 
tinuous linear operator r162 r which is a section for the surjec- 
tion ~r This follows from Theorem 3.5. 

Corollary 4.5 [9], Let ~1 . . . . .  o, be the elementary symmetric polynomials 
in n variables, a n d  o = (o I . . . . .  a,). I f  f~dr(IR'). /s symmetric in its n 
variables, then there exists g ~ dr(IR") such th~ J = g  o a. 

Proof. The mapping cr :lR'--* I~ satisfies the hypotheses of Theorem 4.3. 
If f r d~(IR~)~ then f can be approximated in the topology of ~'(IR ~) by  a 
sequence of polynomials; if f is symmetric, then by averaging over the 
symmetric group, we can take the polynomials symmetric too. Therefore, 
if f is symmetric, then f e a*8([R"); hence f e o*~(IR') by Theorem 4.3. 

Remark 4.6. G. W. Schwarz has extended Corollary 4.5 to functions 
invariant under any linear action of a compact Lie group [31 ]. Let G be a 
compact Lie group acting linearly on IR'. Let ~(IR') ~ (respectively 8(IR") c) 
be the algebra of G-invariant polynomial (respectively qr174 functions on )R ~. 
The algebra ~(IR")~ is finitely generated, by a classical theorem of Hilbert. 
Let p~ . . . .  ,p~ be a set of generators, and put p = (pl . . . . .  Pk)- Schwarz's 
theorem asserts ~'0R") ~ = p*8(l~). Mather [24] has proved the analogue of 
Remark 4.4 for Schwarz's theorem (cf. also [4]). 

In order to prove Theorem 4.3, we will first reformulate it more con- 
cretely in terms of formal composition (cf. (4.1.2)). 

Let a ~ U, a = (a t , . . . ,  a,). We denote by ~'o the IR-algebra of formal 
Taylor series at a of elements of $'(U). Then .~o identifies with the ring of 
formal power series IR[[x 1 - a ~ , . . . , x , -  a,]], by the lemma of E. Borel 
(Remark 2.10). Let f ~ ~ be the projection 8 ( U ) ~  ~'a which associates 
to  each function its formal Taylor series at a. 

If b = ~b(a), then ~b = (~bl, "",~o) induces a homomorphism ~* :Jr  b --* ._~- 
as follows: if G = ~ GJ~(y - b)~/r then q~*(G) is obtained by substituting 

L C N  p 

for each yj in G, the formal Taylor series q~l.a of ~bj at a; i.e. ~*(G) = G o ~o. 

Let (~b*~(V)) ̂  be the subalgebra of d~(U) of functions which are "for- 
really" in (k*8(V); i.e. functions f6~ ' (U) such that for each b Ed~(U), 
there exists G ~  J r  b such that ~ = q~*(Gb) for all a edp-l(b). 
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In order to prove Theorem 4.3, we will show q~*t(V)c (~b*~(V)) ̂  
and q~*~(V) = (~b*r ^. Before beginning the proof, we give three exam- 
ples concerning the necessity of the hypotheses. 

Example 4.7. Let ~b:lR--* IR be the mapping defined by q~(x)= e-t,~, if 
x # 0, ~b(0) = 0. Then ~b*8(IR) is the set of even functions which are flat 
at 0. Let f ( x ) = e  -I/2:'~ if x # 0 ,  f ( 0 ) = 0 .  Then fe~b*8(IR), but f = 
= r 

Example 4.8. Let U: be a non-empty proper open subset of lit", and let 
~b : U =-* IR" be the inclusion mapping (so that q~(U) is not closed in IR'). Then 
q~*~'(IR") is the space of restrictions to U of functions in d'(IR"). But 
~b*~(IR ") = ~'(U) # ~b*l(IR"). 

Example 4.9. Let U = ( - 3 , - 2 )  w ( -  1,1) c IR  and V = ( -  1,1) c iR.  
Define cp :U- -*V  by q ~ l ( - 3 , - 2 ) : x ~ x + 2  and ~ b l ( - 1 , 1 ) : x ~ x  2. 
Then L :- [ -  1/2, 1/2] c V is not the image of a compact subset K of U. 
Clearly f e(~*~(V)) ^ if and only if f I ( -  1, 1) is even. On the other hand, 
if f eck*,~(V), then f and all its derivatives extend by continuity to 
a = - 2 e U, giving a condition of formal composition simultaneously at 
the points a = - 2, a' = 0. Therefore q~*~'(V) r (q~*d'(V)) ̂ . 

For the proof of Glaeser's theorem, which occupies the rest of the 
section, we will need two results which we haven't yet proved: Lojasiewicz's 
theorem on division by an analytic function, and the ~,ojasiewicz inequality 
[16]. We will prove these theorems in Section 6, using resolution of singu- 
larities. 

Proof of Theorem 4.3. Let F e th*8(V). We have to find a ~r Whitney 
field G on ~b(U) such that G o t~ = F. 

Step 1. There exists a unique jet G~J(~b(U)) such that G o cp = F. (In 
particular, ~ * g(  V) c (q~*$'(V))^). Moreover, ( Ds o ~p ~ ~( U) for all ~ ~ IN p. 

Let a e U  and b = ~ ( a ) .  We denote by ~o the maximal ideal of ~ .  

Lemma 4.10. There exists a positive integer r such that for all q e IN, 

c 

In particular, the:homomorphism ~p* is injective. 
Proof. Since ~b is analytic and the set of regular points of ~b is dense in U, 
there exists a Jacobian determinant, say 
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& = D(q~, . . . . .  q~p) 
D(x l  . . . . .  xp) ' 

such that ~{. # 0. Let r be the smallest integer s such that $. r dr'.. 

We argue by induction on q. The assertion is true when q = 1 since 
q~* is a local homomorphism. Suppose q > 1. Let S ~ f f  b such that 
s .  ~. ~ ,~.,'. 

We differentiate S*q~, with respect to xt . . . . .  xp: 

~ ~m~ "-l, 1 <j < p .  
t = I  

By Cramer's rule, 

.( as o ) ,L k-~y, $" ~ '~:'-' l ~ i ~ p .  

Since ~. C rfi', we have 

dS o q~.~rh~_t~ , 1 -< i -< p. 
C3y i 

By induction, OS/dy i e dt~-1, 1 < i < p. Clearly S(0)=  0, so that S r rh~,. 

We will now find. G. Suppose x is another point of U such that 
Oh(x) = b. Let m~!x ~ be the ideal of functions in dr(U) which are (s-1)-flat 
at a, x. Clearly m~ x~ is closed and of finite real codimension. It follows 
that ~b*6'(V) + ml~.x ~' is closed in ~'(U), and therefore that F belongs to this 
subspace. Hence there exists S, ~ #'b such that 

%~ - P, ~,~: 

I f  s, s ' >  qr, then S s - S s , r  by Lemma 4.10. Therefore the sequence 
S 1, S 2 . . . .  converges in ~a~ b (with its pfib-adic topology) to an element 

t e i N t  
Z! 

.~uch ~at G~o $ , - -~ , ,  %~ $~ = p~. 
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By Lemma 4.10, G b is defined in a unique way by the single condition 
G b , ~ ,  = F , ;  hence does not depend on the point x~c~-~(b). Clearly the 
G~ define a field of formal series G on ~b(U) such that G * ~b = F. 

We will now show (DOG)* ~p e l (U) ,  for all t ~  IN p. (This implies each 
mapping G t :q~(U)~ IR is continuous, since ~b is semiproper.) By hypo- 
thesis, G * ~ = Fee(U) .  Proceeding by induction on Itl, it is enough to 
prove the following lemma. 

Lemma 4.11. Let H afield of formal series on c~( U) such that H o~be/(U).  
Then (aH/~y~) o dp ~ r 1 <_ i <_ p. 

Proof. Let y~ = (dH/dy~) * ~p. By hypothesis, there exists ~ ~ ~'(U) such that 

.r 

for all x e U. 
Let a e U. There exists a Jacobian determinant, say 

= D(~ 1 . . . . .  ~p~D(x I . . . . .  xp), 

0 in a neighborhood of a. Differentiating the preceding equation with 
respect to x I . . . . .  xp, and applying Cramer's rule to the resulting system 
of linear equations in the unknowns ~;i.:, = (dH~xv/aYi)~ ~x, we have 
~x');i.~ =~i.x for all x ~ U ,  where ~i e r  In other words, ~i belongs 
formally to the ideal generated by the analytic function 6 in ~r(U). Therefore 
~ = fi'Y'i, where y'i~6'(U), by Theorem 6.14. In the neighborhood of a, 
we necessarily have y~ = Yl, so that ~'i is if| in the neighborhood of a, and 
hence on U. 

Step 2. G is a Whitney field of class qr on dp(U). 

Our assertion is a consequence of the following lemma, which we 
will prove using the Lojasiewicz inequality. Glaeser (el. [91 [36, IX.l]) 
proves G is a ff~ Whitney field by an analytic argument based on Lemma 4.11; 
we will use a geometric argument and Proposition 2.16 instead. 

Lemma 4.12. Let K be a compact subset of  U, and K' a compact neighbor- 
hood of K in U. Then there exists C > 0 and an integer ot >_ 1 such that for 
all a, x ~ K, there exists a', x '~  K' such that ~p(a')= qb(x') and 

14,(a) - ~(x)l 1/" > C(la - a'l + Ix - x'l). 

Example 4.13. This example shows the reasons leading to the use of 
Lemma 4.12. Let U = ( - 3 ,  - 1 )  u (I, 3) and V = ( - 1 ,  1~ Define 

d p : U ~ V  by ~ b l ( - 3 , - 1 ) : x , - * - ( x + 2 )  2 and ~b[(l, 3 ) : x ~ ( x - 2 )  2. 
Then ~b satisfies the hypotheses of Theorem 4.3. Positive and negative 
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values near 0 in V have distant inverse images a, x; the points a' = 2, 
x ' =  - 2  are the intermediary points involved. 

Proof of Lemma 4.12. Let * : U x U --* IR be the analytic function ~b(a, x) = 
= l o b ( a )  - r 2. We will use the distance d((a, x), (a', x')) = la - a ' l  + 
+ I x -  x'l ou U x U. By the  ,Lojasiewicz inequality (Corollary 6.15) 
applied to the function @ on the compact subset K x K of U x U, there 
exists C' > 0 and an integer ct > 1 such that 

Iqb(a) - 4,(x)l a/" >_ C' d((a, x), ~-x(0))  

for all (a, x)~ K x K. We consider two cases. 

Case 1. If d((a, x), O-  1(0)) = d((a, x), O -  l(O) c~ (K' x K')~ then there exists 
(a', x') ~ @- 1(0) n (K' x K') such that 

d((a, x), ~ -  1(0)) = la - a'l + Ix - x'l. 

Case 2. Otherwise, let d = d ( K  x K, U x U - ( K '  x K')). Then 

d((a, x), ~ -  1(0)) > d >_ 
diam (K' x K') (la - a'l + Ix - x'l), 

where (a',x') is any point of ~-1(0)c~ ( K ' x  K ' ) .  

Put 

c-i~ ) 
' d iam(K'  x K') ' 

then the condition of the lemma is satisfied. 

We can now complete the proof of Glaeser's theorem. By Step 1, G 
is ~r in the image of the set of regular points of ~, and each D~-G is 
continuous in ~(U). Let X ~ U be the set of critical points of r As in 
Proposition 2.16, it will be enough to show that ~(U) satisfies the following 
condition: For every compact subset L of r there exists a cons tam c 
and an integer ~ > 1 such that, any two points b, y ~ L can be joined by  a 
rectifiable arc of length _> c l b -  ytl/~, which lies in q~(U)- ~b(X) except 
perhaps for finitely many points. 

Lemma 4.14. I f  ~ is a rectifiable arc in U, then 

I~b(a)l < px/'n lal "supx=. ~ (x)]" 
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Proof 
Then 

Let {x ~ x ~, . . . ,  x k} be a partition of a, and let y~ = ~b(x~), 0 < i < k. 

/, k /~ p 

~. l Y ' -  Yi-tl = Z I~b(.x")- ~p(x'-~)l < ~ ~ lepj(x')- ~bj(x'-a)l < 
i = I  i = l  i = 1  j = l  

]O4~i ] ___ p~/-n Icrl �9 supx,. ~ (x) 

(cf. the p roof  of Proposition 2.13). Our assertion follows by passage to 
the limit. 

Let L be a compact subset of ~U) .  Let K be a compact subset of U 
such that ~ K ) =  L, and K' a compact neighborhood of K in U. 

Lemma 4.15. There exists a constant c 1 such that any two points ag x ~ K' 
can be joined by a polygonal arc of length < c I ]a - xl in U, which intersects 
the sfngular set X of dp in at most finitely many points. 

Proof X is the zero set of a finite system of analytic functions ~q, 1 < i < k, 
in U. Working locally, we can assume a, x lie in an open ball V c U. 
Let A be the perpendicular bisector of the line segment ~ (A is an at'fine 
hyperplane in IR"). If 2 ~ A c~ V, then the segments a~, ~ lie in X if and 
only if 

2 r - t)a + t~)dt = 0, 

] r - t)x + t~)dt = o, 

1 N i <: k. Since these integrals are analytic in 2, they define a proper 
closed analytic subset of A :a V The result follows because any line segment 
which does not lie in X intersects X in at most finitely many points. (This 
lemma also follows from a theorem of Kropman and Brown [17, Section 
221). 

Given b, y e L, choose a, x e K such that ~b(a) = b, q~(x) = y. We apply 
Lemma 4.12 to K c K'; let a', x' be points of K' associated to a, x by the 
lemma. Let al ,  a 2 be polygonal arcs of length < c t l a -  a'] < c t I x -  x'l 
respectively, which join a, a' and x, x' respectively, and intersect X in at 
most finitely many points. Then a = ~b(al)u ~b(a2) is a rectifiable arc 
joining b, y in ~b(U), which intersects ~b(X) in at most finitely many points. 

We have lal < I~(aa)l + t~b(a2)l <Cz(faal + la2t), where c: i s  the su- 
premum of the p~/-~l(dCJaxj)(r over a certain compact neighborhood of 
K' in U, by Lemma 4.14. Hence 
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Itrl < clc2(la - a'l + Ix - x'l) -< c)cz - C Nb(a) - ~b(x)l t/= = 

"ClC 2 
= C [b - Yll/~ 

by Lemma 4.12. This completes the proof. 

5. The Malgrange --  Mather division theorem. 

There are two fundamental theorems concerning division of differen- 
tiable functions: Malgrange's theorem on ideals generated by finitely many 
analytic functions, and the Malgrange-Mather division theorem. In this 
section, we will present a recent proof of the latter due to P. Milman [26 ], 
which pinpoin~ the close relationship between division problems and the 
other main topics of this article. Stein's extension theorem (Theorem 3.7 
with k = 1) is the only non-elementary result needed for Milman's proof; 
however, we will give a somewhat shorter version which also uses Glaeser's 
theorem 4.3 and its Corollary 4.5. 

Theorem 5.1. 
Let  

Suppose that U is an'open subset o f  IR", and u i . . . . .  up ~ ~(U) .  

P 
p(t, x) = t" + ~ ui(x) t p-i. 

i= 1 

Then there exists  a continuous linear mapping 

~'(IR x U) ~ ,t(IR x u )  x ( r  

f ,-+ ( q : , r l , :  . . . . .  rp,:) 

such that for  all f ~ ~'(IR x U), 

f = Pqf  + rx, 

where 

,r:(t,  x) = ~, ri, z(x)  t p-! .  
j = l  

In fac t  the above spaces are modules over the ring 8(U),  and the mapping is 
~( U)-linear. 
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The local existence of a quotient and remainder was first proved by 
Malgrange [20], without regard to continuous linear dependence on the 
function f. The stronger result was established by Mather [23]. Different 
proofs were subsequently given by ,Eojasiewicz [18] and Nirenberg [30]. 
G. Lassalle [14] then proved a division theorem for 9~' functions (with a 
certain loss of differentiability of the quotient and remainder). 

In order to prove Theorem 5.1, it will be enough to prove the following 
generic division theorem. 

Theorem $.2. Let P be the generic polynomial 

P 

P(t, 2)" t p +  ~. 2 i : - i ,  
i = 1  

where ). = (21 . . . . .  ,;.p). I f  U is an open subset of II~', then there exists a 
continuous 8( U)-linear mapping 

8(IR x U ) . - ,  d'flR ~ +p x U) x (d'(IR p x U)) p 

f ~ (Q:, RI.: ..... Rv,/) 

such that for all f e ~'(IR x U), 

f ( t ,  x) = P(t, ~) Ql(t, 2, x) + Rl(t, Z, x), 

where 
p 

Rl(t, 2, x) = ~, Rj./(Z, x) t p-i. 
j = l  

To see that theorem 5.1 follows from Theorem 5.2, we let u = (u a . . . .  , up), 
so that p(t, x) = P(t, u(x)). Then 

p 

f ( t ,  x) ='p(t, x) qf(t, X) + ~, rj, f(x) t p-j, 
j = l  

where qi(t, x) = Qf(t, u(x), x) and rj.s(x) = Ri.i(u(x), x). 
We will, in fact, prove a result which is more precise than Theorem 5.2, 

and which is formulated with a view to proving the division theorem by 
induction on the degree of the generic polynomial. 

We consider the generic polynomial 

P 

/,~(t, 2.) = tp + Y ,;.:~- 
i = l  
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for any nonnegative integer p (we set P~ 2) = 1). Then for each positive 
integer p, we can define a mapping 

2P : IR x IR ~ -  1 ._, i re  

by the following polynomial identity: 

P~ )Y(s, U)) = (t - s) PP- '(t, #), 

where (s,/~) e IR x IRP-1; i.e. the mapping 2 p is defined by 
? 

)'l = / a l  --s, 

2j = / z j - / ~ j _ ~ s ,  2 < j < p -  1, 
t 

,;~p = - / l p _  Is" 

Theorem 5.3 [26].. Suppose U is an open subset of IR". 
p ~ IN, there exists a continuous ~(U) - linear mapping 

gOR x U) --,, 8(IR' +p x U) x (g(IW' x U)) p 

f ~ (Qy, R1, f . . . . .  , 

such that 

(I) 

where 

for all f e $'(IR x U), 

f ( t ,  x) = W(t, 2) Q~(t, 2, x) + R~(t, 2, x), 

P 

1=1 

Then for each 

(2) for every positive integer p, and all f e g(IR x U), 

Q~- '(t, lz, x) - Q~- l(s, p., x) 
Qpf(t, 2p(s, #), x) = t s 

We will prove Theorem 5.3 using Theorem 5.4 below. The equat ion 
PP(t, 2) = 0 defines a nonsingular closed algebraic subset X = X p of IR 1 +P 
In fact X is the graph of the function 
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p - 1  

itp = - tP - )", iti F-~, 
i = 1  

so that the projection (t, 2),-., (t, it, . . . .  ,2p_,)  of IR* +p onto IR p restricts to 
a global coordinate system ~b:X-- ,  tRP on X. 

Let n : IR l +p --* IR p be the canonical projection n(t, 2) = 2. We denote 
by r x U) the closed subspace of dffX x U) consisting of all functions 
which are constant on the fibers n-*(2) x x of n x /d U. 

Theorem 5.4. There exists a continuous l(U)-linear mapping 

J : d'.(X x U) --* dr(IRP x U) 

such that /f h ~ d ? ( X  x U), then 

(Jh) (2, x) = h(t, 2, x) 

for all (t~ it) ~ X and x ~ U. 

We will first .prove Theorem 5.3 assuming the result of Theorem 5.4, 
and prove Theorem 5.4 afterwards. Since the variable x = (x~, . . . ,  x~) in 
U will play no part in the proof of either theorem, we will simplify our 
notation by neglecting U and x. It will be clear that the mappings given 
in both theorems are r 

Proof of Theorem 5.3. We will first prove the theorem in the cases p = 0 
and p = 1, and then argue by induction on p. 

When p = 0, the desired result clearly holds with Q~ 2)= f(t)  and 
R~ = 0. Suppose p = 1, so that our generic polynomial is Pl(t, it) = t + it,. 
We have 

f(t)- f(-it,)=(t + it*) ~ ~(st- (I-S):u)ds 

(this is just Hadamard's formula). Hence we can define 

Qlf(t,A)--- ;~-~--t ( s t - ( 1 - s )  

R~(t, 2) = R[,f(2) = f(- 2~). 

;h ) ds 

Then since 2*(s, it)= - s ,  we have 

Q)(t, 2*(s, It)) = f(t)  - f is)  
t - - S  

= Q (t, It) - Q~ It) 
t - - S  
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N o w  assume the theorem has been proved  for O, 1 . . . . .  p - 1 (p >_ 2). 
We denote  points in IR p, IR p- 1 and IR p-2 respectively by  

= (;'i . . . . .  ;'p), 

/~ = (/~1 . . . .  , /~p- ,), 

v = (vl, . . . ,  vp_2) 

and write 

2(s, #) = 2P(s, #), (s,/a) ~ IR x IR p-  1, 

f /~(r, v) = 2P-l(r,v),  ( r ,v)~lR x IR p-2.  

Then 

PP(t, ~ s ,  9(r, v))) = (t - s) P P -  l(t, #(r, v)) = (t - s ) ( t  - r) P P -  2(t, v), 

so that 2(s,/~(r, v)) is symmetr ic  in (s, r). 
By the induction hypothesis,  

(5.3.1) f ( t )  = P ' -  ~(t, Iz) Q~- l(t,  ]z) -b R ~ -  ' ( t , /~) = 

= er( t ,  2(s, Iz)) Qrr- '(t, Iz) - Q ~ -  '(s, #) 
t - - S  

+ 

P 
+ Y Rj~s,.)t~-J, 

j=l  

where R l f  , . . . ,  Rpf  are given by 

P 
R~As,/~) t,-~ = P,-'(t, g) Q~.- '(s, ~) + R?.- '(t, ~). 

j=l 

We will show each Rj$(s,p.(r, v)) is symmetr ic  in .(s,r)~ By (5.3.1) and  
the symmetry  of ~(s, ~ r ,  v)), it is enough to show 

Q~- l(t, g(r, v)) - Q~- '(s, g(r, v)) 

t - s  

is symmetr ic  in (s, r). But the latter equals  
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t -  s ( Q~- 2(t' v)t _ Q~- 2(r' v) - Q~- 2(s, V)s - r Q~-  2(r' v) ) = 

(s - r) Q~-  2(t, v) - (t - r) Q~- 2(s, v) + (t - s) Q~-  2(r, v) 
( t  - r ) ( t  - s ) ( s  - r)  

which is clearly symmetric in (s, r). 

The mapping 

(s, ~1 . . . ,  ~ _  t) "-' (s, ~ ( s ,  ~), 2p ~(s, ~)) = 

= (s, Pt - s, #2 - Pt s . . . . .  # p - t  - # ~ - 2  s) 

of IR x IR p-1 to tR p is an invertible polynomial  mapping. Let  ~/ be its 
inverse. For each j = 1 . . . . .  p, let h~s o ~/o $ ~ 6qX). 

We will show that  each h~y ~ Z,(X). Consider two points (s, 2), (r, 2) ~ X, 
s # r. Then there exists v e IR p-2 such that 

PP(t, 2) = (t - s) (t - r) PP- 2(t, v), 

so that  

;L = 2(s,/.t(r, v)) = 2(r, #(s, v)). 

Hence 

. q , (s ,  ~)  = ( s , / r ,  v) ) ,  

t/ o ~(r, A) = (r,/z(s, v)), 

and we have 

hj.t(s , 2) --- Rl~s  , /~r ,  v)) = Rjf(r,  #(s, v)) = h jr(r, 2). 

This shows that  h jr  E Z~,(X). 

Let  R~y = J(hjr), 1 < j < p, where J :dr~(X)--. ~(IR p) is the mapping 
given by Theorem 5.4. For  each j, the mapping f ~ R~y of d'(IR) i n t o / ( I a  p) 
is continuous and linear. 

We will finally show that  f ( t )  - Z~= x R~z(2)t p-j  is divisible by PP(t, 2). 
By Hadamard 's  lemma, it is enough to show this function vanishes on the 
zero set of P(t, 2). If P(t, 2) = 0, then 2 = 2(t,/~) for some # ~ IR p- t, so that 

R ~ / O  = (Jhjs) (~(t, Z)) = h~z(t, ~(t, Z)) 
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since (t, 2(t, #)) E X; i.e. R~:(2) = Rjf(t ,  #). Hence 

p P 

f ( t )  -- Z R~f(2) t "-J = f t t )  - Z Rjf(t,  Iz) t "-J  = O, 
j = l  1 =1 

by  (5.3.1). In other words, f ( t )  -Z~___ 1 R~:(2)t p-J vanishes on the zero set 
of PP(t, 2). 

We now have 

f(t)  = P~(t, 2) Q~(t, 2) +. ~ R j,:(2) p tP-J 
1=1 

where 

Q~(t, 2) = 

p 

f ( t ) -  ~, R~$(A)t ' - J  
1=1 

PP(t, 3.) 

The mapping f ~ Q~ of Z(IR) to ~(IR I+p) is clearly' continuous and linear. 
Moreover if 2 = g(s, #), we obtain 

Qrf(t, ~(s, Iz)) = Qpf- '(t, Iz) - Q~- ~(s, lZ) 
t - - S  

from (5.3.1). This completes the proof of Theorem 5.3, assuming Theorem 5.4. 

Proof  o f  Theorem 5.4. The mapping x I X is proper, and is a diffeomorphism 
in some neighborhood of any point (t, 2)~ X such that (~P/at)(t ,  2 ) ~  O. 
If p is odd, then ~(X) = IR p since for each 2 ~ IR p, the polynomial P(t, 2) = 
= PP(t, 2) has at least one real root. On the other hand, if p is even, then 
~X)i~:,[R p. In this case, IR p - ~ ( X )  is convex since P is linear in 2, and  
2 ~ IR p - ~ X )  if and only if P(t, 2) > 0 for all t ~ IR. Therefore by Stein's 
extension theoiem (Theorem 3.7 with k = 1), it will be enough to show 
that for all f E $',,(X), there exists g E Z(n(X)) such that f = (xl X)* (g)- 

Our proof is by induction on p. By Glaeser's theorem 4.3, it is 
enough to show that if f ~  dr (X), then f is formally a composition with 
x IX over every point 2 ~ ( X ) .  

Let ~r~(w), 1 <; i < p, be the elementary symmetric polynomials in 
w = ( w  1 . . . . .  wp). Put 

o" = (- ~t, ~2 ..... (- 1~%). 

Then ~(IR p) = n(X) is the set of 2 such that P(t, 2) has p real roots. Since 
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P 

FI (t - w,) = t ,  - ~ ( w ) t  , - ~  + ~ 2 ( w ) t  . - ~  + . . .  + ( -  1~, %(w), 
i = 1  

there are mappings tpi :IR p ~ X defined by cbi(w) = (w i, tr(w)), 1 < i < p. 
We can work with any one of the mappings q~. We have tr = n o @~. 

If f ~ 8,(X), then @~(f) is symmetric in (w 1 . . . . .  wp). Hence by Corollary 4.5, 
there exists h e g(c(IR")) such that 

@*(f) = o*(h) = r [ X ) *  (h)). 

In particular, f is formally a composition with it IX at the fiber over every 
point 2 such that P(t, 2) has p real roots. 

On the other hand, we can use the induction assumption to show f 
is formally a composition with n l X over every other point of n(X).  Consider 
(t ~ 2 ~ ~ IR • IR ~ such that t o is a real root of P(t, 2 ~ of multiplicity k < p. 
Then 

P(t, 2 ~ = (t - t~ p-k (t, r/~ 

for some ~/o ~ iRP-k. Therefore PP-k(t~ r/o) ~ O. 
We define a mapping ,E : IR k ' x IR p- k _., IR p by the following polynomial 

identity: 

Pn(t, 2(~, r/)) = /~ ( t ,  r pp-k  (t, r/), 

where (~, r/)e IR k x IR p-k. Then 2 is a local diffeomorphism at all points 
(~, r/) where the resultant of Pk(t, ~) and PP-k(t,r/) (as polynomials in t) is 
nonzero, because this resultant is the Jacobian determinant D2(~, rl)/D(~, r/). 
(We recall that the resultant of two polynomials is nonzero if and on ly  if 
the" polynomials have no common factors). 

Define r e irk by Pk(t, G ~ = ( t -  to) k. Then 2 0 =  2(r176176 and the 
mappings 2(r r/), (t, 2(r r/)) are diffeomorphisms in some neighborhoods of 
the points (co, r/o), (toGo, r/o) respectively. Since PP-k(t~ ~ v~ 0, then 
.PP-k(t,r/) # 0 in a neighborhood of (t ~ r/~ If 

PO(t, 2(~, 17)) = pk(t, ~) PP-k(t,  r/) = O, 

it follows that pk(t, ~ ) =  O. Hence the mapping (t, ~, ~/)~ (t, 2(~, ~/)) induces 
a commutative diagram 

X k x IR ~  ~ '* X p 

~k X id n ~ 

IR k x IR p-~ ,t ~ lRp , 
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where the upper and lower arrows are diffeomorphisms in some neighbor- 
hoods of the points (t ~ r ~o) and (~o, ~o) respectively. By the induction 
hypothesis on p, it follows that f is formally a composition with ~IX over 2 ~ 

Remark 5.5. Theorem 5.4 suggests two interesting problems. Let f ( x )  = 
= f ( x  1, . . . ,  x,) and F(x, u) = F(x  1, . . . ,  x , ,  u 1 . . . . .  Up) be polynomials such 
that F is a "miniversal unfolding" of f ;  i.e. F(x, O ) =  f ( x ) ,  and 

dF dF 
1, ~ ( x , O )  . . . .  ' Ou, (x, 0) 

form a basis for the real vector space IR[[x]]/(~gf/dxi). (Here kR[[x]] = 
= IR[[x 1 . . . . .  x,]]  denotes the ring of formal power series in the variables 
x x . . . . .  x,, and (af/~xi) is the ideal generated by df/dx~, 1 < i < n). 

Let Z(F) be the closed algebraic subset of I1~ § defined by 

dF 
dx~ = 0; 1 < i < n. 

Then E (17) is nonsingular and of dimension p. Let n r : Z (F) ~ IR p be the 
restriction of the projection x(x, u) = u. We ask the following questions. 

(5.5.1) If gr  is constant on the fibers of he, does there exist 
h �9 Z.(IR p) such that g = h * he? 

(5.5.2) Does every ~g| vector field in IR p which is tangent to the set of 
critical values of nF lift to a ~ vector field in E (F)? 

Theorem 5.4 shows the answer to (5.5.1) is "yes" for the "simple singu- 
larities" of type A k. P, Milman has shown it is also "yes" for D~. 

We can show that the answer to (5.5.2) is "yes" for all the simple singu- 
larities. 

6. Resolution of  singularities. 

Some ideas from analytic geometry which play an important part in 
local differential analysis are introduced in this final section. We will 
show how Hironaka's powerful desingularization theorems can be used ro 
prove the division theorem and inequality of Lojasiewicz, as well as the 
strong regularity property (2A6.1) for subanalytic sets. 

Let N be a real analytic manifold. 

Def'mition 6.1. A subset X of N is analytic if every point of X has an open 
neighborhood U such that X c~ U is ~ e  set of common zeros of a finite 
family of analytic functions in U. 
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Let r (respectively g) be the sheaf of germs of analytic (respectively 
~f| functions in N. If X is a closed analytic subset of N, we denote by 
d x  the sheaf of germs of analytic functions vanishing on X. Then J x  is a 
sheaf of ideals in ~. 

Definition 6.2. Let X be a closed analytic subset o f  N, and a e X. We 
say that X is coherent at a if there exists an open neighborhood U of a, 
and a finite number of analytic functions f ~ , . . . ,  fk in U, which vanish on 
X and have the following property: for any b ~ U, the germs of f t  . . . . .  f~ 
at b generate JX.b (.the stalk of J x  at b). 

Contrary to the complex analytic case, this property is not satisfied 
by all real analytic sets. 

Examples (6.3.1). "Whitney's umbrella" X = {x] - x t x ~  = 0} in IRa is not 
coherent at 0, since X intersects the halfspace {x 1 < 0} in the line 
{x~ = x 3 = 0} .  

(6.3~2) The closed analytic subset X of [R 3 defined by x 3 2 3 =  0 is - -  X I X  2 

not coherent at 0, since x 3 _ xtx2.2 3 does no t  generate Jx ,b  at nonzero 
points b of the x l-axis. 

X3 

X~ 

X3 

~ 2 

x l  

x]-x lx~=O x] 2 - -  X t X 2  = 0 

We say X is coherent if it is coherent at each of its points. Then X is 
coherent if and only if J x  is a coherent sheaf of ideals; i.e. for each point 
of N, there is an open neighborhood U and an exact sequence 

(r I UF "-' J x l  U - ,  O. 
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The following theorem indicates the importance of coherence from the 
point of view of ideals of differentiable functions. 

Theorem 6.4 [21, VI.3.10], [36, VI.4.2]. Let fl;x be the sheaf of yerms oj" 
cg~- functions vanishing on X, Then X is coherent at a i f  and only i f  

,fix. o = i x .  a " ~'a" 

Definition 6.5. Let N be a real analytic manifold, and X a closed analytic 
subset of N. We say that X is smooth at a e X  if there is an open neigh- 
borhood U of a such that X n U is an analytic submanifold of U. 

Real analytic sets may exhibit very irregular behavior (cf. [6], [5]). 
For example, there 'are  real analytic sets X such that any analytic set 
containing the set of nonsmooth points of X contains the whole of X. 
To avoid such irregularities, we restrict our attention to real analytic sets 
which can be realized as the zero sets of coherent sheaves of ideals. By 
Definition 6.1, any real analytic set has this property locally. 

For simplicity, we will restrict our attention to subsets of IR ". 

Definition 6.6. [29, Chapter V]. Let U be an open subset of I~ (which 
we regard as a subset of C~). A closed subset X of U is called Cg-analytic 
if there exists an open subset V of C n, and a complex analytic subset Z of 
V, such that X = Z n l R  ~. 

Proposition 6.7. A subset X o f  U is Cg-analytic i f  and only i f  X is the 
set o f  zeros of  a coherent sheaf o f  ideals. 

A coherent analytic set is, of course, C-analytic. Examples (6.3.1) and  
(6.3.2) show that the converse is not true in general. 

Proposition 6;8. I f  X is C-analytic in U, then there is a complex analytic 
subset X'  o f  a neighborhood o f  U in C n, which satisfies the following pro- 
perty: for any complex analytic subset Z o f  a neighborhood o f  U in C ~, 
such that X c Z, there is a neighborhood V o f  U in C ~ with X" n V c Z c~ V 

Definition 6.9. Let X be C-analytic in U. We define the singular set 
Sing X of X as the intersection with X of the set of nonsmooth points of 
X' (where X' is given by Proposition 6.8), 

Sing X is a C-analytic subset of X. Note that X may be smooth at 
some of its singular points: in Example (6.3.1), Sing X is the xl-axis; in 
Example (6.3.2), Sing X is the union of the x 1- and x:-axes, although X is 
smooth at all nonzero points of the x~-axis. If X is coherent, however, 
then Sing X coincides with the set of nonsmooth points of X .  
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Let U be an open subset of IR n, and X a C-analytic subset of U. We 
can define a sequence of subsets of X by X t~ = X and X ~+ i) = Sing X ~, 
i =  0, 1, 2 . . . . .  Then the sequence /X ")} is a smooth analytic filtration of 
X in the sense that: 
(1) X ~~ = X and X ~+ t~ is a C-analytic subset of X~~ 

(2) {X ~~ is finite: 
(3) X t~ - X  "+1~ is smooth everywhere. 

The following two theorems are the main results of Hironaka's great 
paper [11], for real analytic sets (see also [12], [13, Section 5]). The 
notion of blowing-up involved in these theorems will be discussed below. 

Theorem 6.10 (Desingularization I). Let U be an open subset of IR ", 
and X a C-analytic subset o f  U. Then there exists an analytic mapping 
rt : X'  ---, X such that x is proper and surjective, and X' is smooth everywhere. 

In more details, given any smooth analytic filtration {X (~ of  X ,  we 
can choose n in such a way that X' is a disjoint union of analytic subsets X '(i), 
each open and closed in X', and r~ induces mappings n (~) : X '(i) ~ X (~ having 
the following properties: 

(1) (n(o) -1 (Sing X (/)) is nowhere dense in X'C~ 

(2) rc (i) induces an isomorphism 

X,(0 _ (n(o)- 1 (Sing X ~~ ~ , X t~) - Sing X") : 

(3) rt ~0 is obtained by composing a locally finite sequence o f  blowings-up 
with smooth centers. 

Theorem 6.11. (Desingularization II). Let U be an open subset o f  tR", 
and c~l , . . . ,  c~ analytic functions in U. Then there exists an analytic mapping] 
rc : U' ~ U such that: 

(1) rt is proper and surjective: in fact, rc can be obtained by composirzl a 
locally finite Sequence of blowings-up with smooth centers: 

(2) U' is smooth; 

(3) i f  X denotes the set o f  common zeros of  the q~i, then U' - re-I(X) is 
dense in U', and rt induces an isomorphism U' - 7t- l(X) - ' ~  U - X :  

(4) for all x ' 6  U', there exists a local coordinate system (z 1, . . . ,  zn) o f  U' 
centered at x', such that the germs at x' of the dp~ * rc generate a principal 
ideal, which is generated by a monomial z~' ... z ~  with nonne#ative integers 
gj (we say n - l ( X )  is locally everywhere normal crossings). 

6.12. Blowing up. Let P '  denote real projective space of dimension r. 
There is a natural mapping Po : IR" - {0} --* P"-  1 such that for all r E P" -  1, 
pff 1(~) u {0} is a line through the origin in IR'. By assigning to each r a P"-  1, 
the line obtained in this way,  we get a real line bundle p : L ~ P" -  1, and 
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a natural mapping n o : L - - ,  IR ~ which is an isomorphism outside the zero 
section of p, and such that the zero section is mapped to the origin o f  IR ~. 

L has the structure of a real analytic manifold. With respect to the 
coordinates (xt . . . . .  x,) of IR ~, this structure can be defined by a covering 
L = w~i=l Li, where Li =~ IR" and L~ has a coordinate system (zi~, . ; . ,  z~) 
in which no lL  i is given by x j o n  o = z ,  if j = / ,  x j * n  o = z , z i j  if j ~ i .  
The mapping n 0 : L --* IR * is the blowing-up of IR* with center O. 

Let Z = I R "  x IR p and Z ' = L  x IR p. Then i t = n  o x i d ~ p : Z ' ~ Z  is 
the blowing-up of Z with center 0 x IR p. More generally, if Z is a real ana- 
lytic manifold and Y a smooth analytic subset of Z, then we can define the 
blowing-up rc : Z' --* Z with center Y: n is defined as before in a ne ighborhood 
of each point of Y, and is defined to be an isomorphism outside Y. 

Now let Z be a real analytic manifold, and let Y = X be analytic sub- 
sets of Z such that Y is smooth, but X perhaps singular. Let ~ :Z'---~ Z 
be the blowing-up of Z with center Y. By the strict transform X' of X by  n, 
we mean the smallest analytic subset of n-~(X) such that rt induces an 
isomorphism X' - r~- ~(Y) - ~  X - Y. The mapping p : X'  --* X induced by 
rt is the blbwing-up of X with center Y. 

For example, suppose that at a e Y, X is a hypersurface, defined by  an 
analytic equation f = 0. Pick a local coordinate system (yl , . . . ,y , ,  x~ . . . . .  x,) 
for Z centered at a, such that Y is given by x~ . . . . .  x~ = 0. Then over  
some neighborhood of a, Z' is covered by s coordinate charts Z~ in which 
can choose coordinates 

(Yl , " ' ,YF ,  Zl,'",Zs) = lYl , . . .  , Y , ,  
x i xs ) 
Xi Xi_ 

The order p of f along Y at a is the greatest integer q such that f e Jq,, 
where J ,  is the ideal of germs at a generated by xl . . . . .  x r Over a neighbor-  
hood of a, the strict transform X' of X is covered by w~= 1 X~, where X '  i is 
defined in Z I by the equation 

1 
zf f (y '  z : l '  " '" '  zi . . . . .  ziz ~) = O. 

Examples (6.13.1). In Example (6.3.1), the strict transform of X ~~ = X 
by the blowing-up of IR 3 with center the x :axis,  is the smooth hypersurface 
X '~~ = {z I = z 2} in IR 3, where the induced mapping rc c~ : X  '~~ ~ X ~~ is 
determined by (x l ,x2,  x 3 ) =  (Zl,Z2, Z2Z3). Let X m be the xvaxis  and  
n m �9 X 'm ~ X m the identity. If X' is the disjoint union of X '~~ and X ' 'm, 
and it :X'--* X.is  the mapping defined by it ~~ and n m, then n is a reso- 
lution of the singularities of X, in the sense of Desingularization I. 

(6.13.2). Example (6.3.2) can be desingularized by two blowings-up. Th e  
blowing-up of X with center the x : a x i s  is the hypersurface {z~ - z~ = 0} 
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in IR 3, together with the mapping induced by (x~ ,x2 ,x3)= (:~,z2,z2z3). 
The blowing-up of the latter hypersurface with center the zz-axis is the 
smooth hypersurface {u 3 - u  2 = 0}, together with the mapping induced 
by (:x, Zz, z 3) = (ulu 3, u 2, %). The composition of these two blowings-up 
is a desingularization of X. 

We will use Desingularization II to prove ,Lojasiewicz's division theorem 
and, as a corollary, ,Eojasiewicz's inequality. Let U be an open subset of 
IR ~, and ~b z . . . . .  q~k analytic functions in U. Let 1 be the ideal in 8(U) 
generated by q~ ,  . . . .  ~b k. We denote by Jr the ideal in 8(U) of functions 
which formally belong to I; i.e. functions f such that for all a~  U_, ~ belongs 
to the ideal generated by the q~i.o in ~ , .  Clearly I ~ [ (in fact, I = I accor- 
ding to Whitney's spectral theorem [21, II.1.7], [36, V.1.6]). Malgrange's 
theorem: I = I [19], [21, VIA.I] was first proved by ,Eojasiewicz [16] in 
the particular case k = 1. 

Theorem 6.14. Let d? be analytic in U, and let I be the ideal generated 
by dp.in ~(U). Then I = I .  

Proof. We apply Theorem 6111 with k = 1 and q51 = qb. According to 
the theorem, there is an open convering U' = u U'at of U', with isomor- 
phisms U'o ~ IR n, such that if z = (z~, z)  denotes the coordinates in U' 

" ' "  ~ at' 

.h~ e.~, u(z), where the Li are nonnegative integers, then (~b o rO (--) = - 1 . . . .  
and u is a unit. 

Suppose f ~ i; i.e. for all a 6 U, there exists G o ~ ~ ,  such that 

(6.14.1) j~ = t~, "Go. 

Then n*(f_)l U'~ belongs formally to ideal generated by n*(~b)l U' = 
= z~  ~ ... z~'"u in g(U;). By Hadamard's  lemma, n * ( f ) =  n*(dp), h, where 
h e ,t(u'). 

It follows from (6.14.1) that h is formally a composition with ~ We 
would like to use Glaeser's theorem 4.3 to conclude that there exists g e 8(U) 
such that 0o = Ga for all a e U. But we must avoid a circular argument: 
~,ojasiewicz's division theorem and inequality were used in essential steps 
(Lemmas 4.11 and 4.12 respectively) of the proof of Glaeser's theorem. 
However, rr is the composition Of locally finite sequence of blowings-up with 
smooth centers, so we need Theorem 4.3 only in the special case of such a 
blowing-up. In this case, Lemma 4.12 is clearly not needed, and for 
Lemma 4.11, it is enough to prove Theorem 6.14 in the special case that 
q~ is the Jacobian determinant 6 of the mapping 

(7.1, . . . ,  zv, Zp_ 1, " ' " ,  Zn) -+ ( "1 '  " ' "  ' "p '  Zp+ I '  7-.p+ t "p+  2' " '" ' Ze+ lZn ) 

Then 6 is a power of zp+ t, so the result follows from Hadamard's lemma. 
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Corollary 6.15. Let U be an open subset of IR", and dp a real analytic 
function in U. Let X = {x~ U :q~(x)= 0}. Then for any compact subset 
K of U, there exists C > O  and an integer ~>_ l, such that for all x ~ K ,  

I~b(x)l ~ C d(x, X) ~, 

Proof. By Theorem 6.15, (~b). I(U) is closed. Therefore, by the open mapping 
theorem, for every K c U compact and m > 0, there exists K' c U com- 
pact and m' > 0 such that if f~(~b).8(U), there exists ge~(U)  such that  
f = ~b-g and 

(6.15.1) Igl~ ~ c IflX~',, 

where c is independent of f .  

If x o e K  - X,,we can find f eg(U) such that f(Xo) = 1, f = 0 in a 
neighborhood of X, and IflX~ ', < c' d(x o, X) -~, where c' > 0 and ~ > 1 are 
independent of Xo, but depend only on K, K'. Then (6.15.1) implies 

sup l --~- l < cc' d(x~ 

in particular, 

IO(Xo)l _ (cc ' ) -  ~ d(x o, X)  ". 

Hironaka [13] has given proofs of Corollary 6.15 and several related 
inequalities of ,gojasiewicz, using his "'rectilinearization theorem" [13, 
Theorem 7.1]. The rectilinearization theorem asserts that every subana- 
lytic set can be transformed locally into unions of quadrants in Euclidean 
spaces, by means of a locally finite family of finite sequences of "local 
blowings-up" applied to the ambient space. (A subset B of IW is called a 
quadrant if there exists a disjoint partition {1 . . . . .  n} = I o W I +  u l  such 
that B is the set of points x = (x 1 . . . . .  x )  satisfying x i = Q, ialo,  xi > 0, 
i e I+,  and x~ < 0, i e l_) .  Hironaka's proof of the rectilinearization theo- 
rem uses the desingularization theorems, as well as his "local flattening 
theorem". 

We conclude by stating the rectilinearization theorem and applying 
it to prove the strong regularity ~ property (2.16.1) for a closed subanalytic 
set X such that Int X is dense in X. R. Hardt has shown me another proof  
of this regularity condition, using geometric measure theory. 

�9 Theorem 6.16. Let N be a real analytic manifold, and A a subanalytic 
subset of N. Let L be a compact subset of N. Then there exists a finite 
number of real analytic mappings ~rj : Uj-~ N such that: 
(1) Uj is isomorphic to IR nJ, for :~ome nj; . 
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(2) there exists a compact subset K~ of  U j, such that u flrj(K) is a neighbor- 
hood o f  L in N; 

(3) n f  t(A) L~ ,union of  quadrants in IR *~. 

Theorem 6.17. Let V be an open subset of  IR", and A a closed subanalytic 
subset o f  V such that Int A is dense in A. For every compact subset L of  
A, there exists c > 0 and an integer n >_ 1 such that any two points b, y ~ L 

can be joined by a semianalytic arc tr in A such that: 

(I) lal < clb - ylZ/': 

(2) a intersects ~A in at most finitely many points. 

Proof. It follows from Theorem 6.16 that there exists a finite number of 
analytic mappings nj :U~ ~ V such that: 

(1) Uj = IR ~ and rank nj = n; 

(2) n,~ Ui) = A; 

(3) there is a closed ball K. centered at the origin in U~, such that 
uflrj (K)  is a neighborhood o( L in A. 

Since .closed subanalytic subsets of V are "regularly situated' [13, 
Section." 9], it is enough to prove that for each j, there exists c > 0 and an 
integer ~ > 1 such that any two points b, y ~ 7r~(K~) can be joined by a semi- 
analytic arc a in A, satisfying (1), (2) of the theorem (cf. [17, Section 18]). 

The argument is simffar to Step 2 of our proof of Theorem 4.3. Write 
= lr i .  L e t  X = Z u ~ -  ~(aA), where Z is the set of critical points of ~b. 

Clearly dim X < n. Given b, y r O(Kj), choose a, x ~ Kj such that 0(a) = b, 
~b(x) = y. Let a', x' be points of 2Kj associated to a, x by Lemma 4.12. 
For  every c~ > 1, there are broken line segments at ,  ~ of length g c~ta - a'], 
< c~lx - x'l respectively, which join a to a', x to x' respectively, and inter- 
sect X in at most finitely many points (cf. Lemma 4.15). Then a = O(at) u O(a2) 
is a semianalytic arc joining b, y in A, which meets c~A in at most finitely 
many points. The required estimate on lal follows as in the proof of Theo- 
rem 4.3. 
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