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Abstract--Power law analysis provides a quantitative method 
for characterization of spatial fluctuations in the cellular micro- 
structure of the ocular lens. In the power law analysis, Fourier 
components of the spatial fluctuations are computed, and the 
relationship between the amplitude, A, and spatial frequency, f, 
of the components is defined by a power law function: 
IA] 2 ~ (l/f) ~. The exponent of the function, 13, defines the scal- 
ing of the amplitude of the Fourier components as a function of 
spatial frequency. We performed two-dimensional power law 
analysis on electron micrographs of lens cells ranging from trans- 
parent to opaque. We identified two values of power law expo- 
nent, 13, for the spatial fluctuations of all lens cells, one for low- 
and a second for high-spatial frequencies. In the low-spatial fre- 
quency region, the value of [3 was in the range of 0.53 to 1.33, 
for transparent and opaque cells. In the high-spatial frequency 
region, the value of 13 increased from 2.78 for transparent lens 
cells to 3.60 for opaque lens cells. The power law analysis pro- 
vides a new method for quantitative characterization of the spa- 
tial fluctuations in the microstructure of transparent and opaque 
lens cells. 

Keywords--Fourier analysis, Transparency, Opacity, Scaling, 
Cataract 

INTRODUCTION 

It is important to characterize the cellular microstruc- 
ture of the ocular lens because the microstructure is an 
important measure of the transparent or opaque conditions 
of the lens. Minimum light scattering in a transparent lens 
is due to cellular microstructure that contains spatial fluc- 
tuations in the refractive index with dimensions small 
compared with the wavelength of visible light (400-700 
nm) (2,3,10,14). Significant light scattering in an opaque 
lens is due to cellular microstructure that contains spatial 
fluctuations in the refractive index with dimensions of the 
order of the wavelength of light. 

Figure 1 shows electron micrographs of transparent 
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(Panel a) and opaque (Panel b) mouse lens cells. The 
spatial fluctuations in the stain density are a measure of the 
fluctuations in the refractive index because osmium tetrox- 
ide and uranyl acetate stain the proteins (11), which com- 
prise 97% of the cytoplasm (9), and the cytoplasmic pro- 
tein density is proportional to the refractive index (6). The 
microstructure of transparent cells in Fig. la  contains a 
homogeneous distribution of cytoplasmic proteins, result- 
ing in spatial fluctuations with dimensions small compared 
with the wavelength of light. The microstructure of 
opaque cells in Fig. lb contains a heterogeneous network 
of condensed cytoplasmic proteins, resulting in spatial 
fluctuations with dimensions of the order of the wave- 
length of light. In a linescan, which is a plot of stain 
density across a horizontal line of the micrograph, one can 
observe the dimensions of the spatial fluctuations, consis- 
tent with the expected microstructure of transparent and 
opaque cells (2,3). 

In the micrographs and the linescans, we observe that 
the spatial fluctuations in the microstructure of the lens 
cells are not simple fluctuations with obvious dimensions. 
Instead, these fluctuations are complex and consist of 
many components. In this paper, we report a quantitative 
characterization of the spatial fluctuations in the micro- 
structure of lens cells using power law analysis which has 
proven to be capable of analyzing complex fluctuations 
(17,20). 

Figure 2 demonstrates the power law analysis of two 
complex fluctuations: white noise (Panel a, top plot) and 
l / f  noise (Panel b, top plot). Using the power law analysis, 
these fluctuations are characterized by their Fourier spec- 
trum or specifically, the slope of the log-log plot of the 
spectrum. The middle plots in Fig. 2 are the Fourier spec- 
tra of the fluctuations, and the bottom plots are the log-log 
plots of the Fourier spectra. The Fourier spectrum of the 
fluctuations is a plot of IAI 2 vs  f ,  where A and f are the 
amplitude and spatial frequency of the Fourier compo- 
nents, respectively. The log-log plot of the Fourier spec- 
trum is a plot of log IAI 2 vs logf.  The Fourier spectrum of 
the white noise is flat, and the log-log plot has a slope of 
zero. A slope of zero characterizes random white noise 
fluctuations (20). The Fourier spectrum of the 1/ f  noise 
decreases as a function of increasing frequency, and the 
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log-log plot has a slope of - 1. The steeper slope of 1/f 
noise compared with that of the white noise indicates a 
greater degree of order in the fluctuations of the 1/f noise 
compared with the random fluctuations of the white noise. 

A linear log-log plot of the Fourier spectrum is an 
indication of a power law relationship between the ampli- 
tude and frequency of the Fourier components of the fluc- 
tuations. Many natural phenomena are observed to have 
spatial and/or temporal fluctuations with a power law 
function. Some examples are heart beat (8), myocardial 
blood flow, (1), ion channel flow (12), colloid aggrega- 
tion (21), and phase transitions (18). The power law func- 
tion is a mathematical description of the Fourier spectrum 
of the fluctuations (16): 

where A and f are the amplitude and frequency of the 
Fourier components, respectively, and 13 is the exponent 

defining the exact form of the power law function (17,20). 
The exponent, 13, defines the scaling of the amplitude of 
the Fourier components as a function of frequency, and is 
equal to the negative of the slope in the log-log plot of the 
Fourier spectrum (log IAI 2 vs log 3'): 

log 'A12 ~131og ( f )  = - 1 3 1 o g f .  

In the above examples, the white noise fluctuation had a 
slope of zero (13 = 0), and the l / f  noise fluctuation had a 
slope of - 1 (13 = 1). Complex fluctuations consisting of 
many components are characterized easily by the power 
law analysis, yielding characteristic integer or fractional 
values for 13. The exponent, 13, quantifies the extent of 
order in the fluctuations. Larger values of 13 represent 
fluctuations with higher degrees of order. In this paper, we 
report on the first application of the power law method to 
the analysis of two-dimensional (2D) spatial fluctuations 
of the microstructure in transparent and opaque lens cells. 

FIGURE 1. Electron micrographs of transparent (a) and opaque (bl lens cells. The microstructure of transparent cells contains a 
homogeneous distribution of cytoplasmic proteins, with the spatial fluctuations in microstructure having dimensions much 
smal|er than the wavelength of light. The microstructure of opaque ceils contains a heterogeneous distribution of cytoplasmic 
proteins, with the spatial fluctuations in microstructure having dimensions of the order of the wavelength of light. In the linescans 
of the micrographs (c from a and d from b) one can observe the dimensions of the spatial fluctuations. The linescans are plots of 
normalized pixel intensity (0-1) which represents the stain density in the electron micrograph. The micrographs and the linescans 
demonstrate that the spatial fluctuations in microstructure of the lens cells are complex and composed of many components. Bar 
= 1 ixm. 
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FIGURE 2. Power law analysis of two complex fluctuations: white noise (a) and 1/f noise (b). The power law analysis utilizes 
Fourier transformation of the fluctuations to resolve the components of the fluctuations. White noise, representing a random 
signal with no order, is composed of many Fourier components with equal contributions (a, middle plot). The log-log plot of the 
Fourier spectrum has a slope of 0 for white noise (a, bottom plot). 1/f noise is composed of many Fourier components with 
decreasing contributions as a function of increasing frequency of the components (b, middle plot). The log-log plot can be fitted 
to a straight line with slope equal to -1 (b, bottom plot). Complex fluctuations such as the spatial fluctuations in microstructure 
of the lens cells are characterized easily by the power law analysis, yielding characteristic integer or fractional slopes. 

This application extends the utility of the power law 
method that has been used mostly to analyze temporal 
fluctuations to the analysis of spatial fluctuations in elec- 
tron micrographs. 

MATERIALS AND METHODS 

The neonatal mouse lens develops a central opacity 
when its temperature is lowered sufficiently below body 

temperature. We fixed the lens of a 6-day-old mouse at 
25~ in a solution of 2% glutaraldehyde and 2% 
paraformaldehyde in 0.1 M Cacodylate buffer of pH 7.4. 
After 40 hr in the fixative, the anterior and posterior re- 
gions of the lenses were cut away leaving a disk that 
included all the cells from the lens equator to the nucleus. 
The disks were postfixed in 1% osmium tetroxide for 3 hr 
at room temperature in the same buffer used for fixation. 



They were subsequently stained en bloc in 1% uranyl ac- 
etate at 37~ for 2.5 hr. The lens tissue was infiltrated and 
embedded in Poly/Bed 812 epoxy resin (13). A section 
that contained cells from the lens epithelium (the outer 
anterior layer) to the center of the lens was used to take 
electron micrographs of the cells from transparent periph- 
ery to opaque center of the lens. Micrographs of the lens 
cells were taken using JEOL 1200EX electron micro- 
scope, in conventional transmission mode, operating at 
100 kV, with a magnification of 5,000x.  A magnification 
bar was recorded on the micrograph negative to determine 
the magnification of each micrograph. The accuracy of the 
recorded magnification was confirmed using calibration 
grids. Electron micrographs were printed with the same 
magnification of those of the negatives (contact sheet 
prints). 

Electron micrographs were digitized using an HP Scan- 
Jet Plus scanner at a resolution of 72 pixels per inch and a 
magnification factor of 300%. These settings resulted in 
digitized electron micrographs with a magnification of 
15,000• (three times that of the printed positives). The 
range of pixel intensity in the digitized micrographs was 
256 levels of gray. The digitized electron micrographs 
were displayed on a high resolution "Apple"  monitor 
using the application software, " Image" (15) that has 
been modified in our laboratory to perform the power law 
analysis. Each digitized micrograph was divided into 6 
regions of 256 x 256 pixels that cover the entire micro- 
graph. Each 256 x 256 region was called a region of 
interest (ROI). All six ROI of each micrograph were an- 
alyzed by the power law method. In the digitized micro- 
graph of Fig. 3a the selection of one ROI (Fig. 3b) is 
shown. 

The 2D Fourier spectrum of the ROI was computed 
(Fig. 3c). The 2D Fourier spectrum is a plot of the squared 
amplitude of the Fourier components, IAI 2, as a function of 
the spatial frequency, f. The amplitude of the Fourier com- 
ponents is represented by the pixel intensity in the Fourier 
spectrum, on a log scale: 

Pixel intensity = log IAI 2. 
Pixels with high intensity (dark pixels) represent Fourier 
components with large amplitude. The pixel intensity (log 
~AI 2) was normalized between 0 and 1. The spatial fre- 
quency of the Fourier components is represented by the 
distance from the center of the Fourier spectrum, in units 
of n m -  1. The Fourier components having the lowest spa- 
tial frequency were at the center of the 2D Fourier spec- 
trum. The spatial frequency of the Fourier components 
increased with distance from the center of the 2D Fourier 
spectrum. The spatial frequency of the Fourier compo- 
nents was within the resolution limits of the ROI, deter- 
mined by the magnification of the electron micrograph. In 
the case of the micrographs of the lens, the minimum 

FIGURE 3. Outline of the method of 2D power law analysis. 
An electron micrograph of the lens cells was obtained (a). A 
256 x 256 pixel region of interest (ROI) of the micrograph was 
selected for the 2D power law analysis (b), The ROI was Fou- 
rier transformed to obtain the 2D Fourier spectrum (c) of the 
spatial fluctuations in the ROI. In the 2D Fourier spectrum, 
pixel intensity and pixel position represent amplitude and 
spatial frequency of the Fourier components respectively. 
Dark pixels represent large amplitudes. Pixels near the center 
of the spectrum represent low-spatial frequency, and pixels 
near the periphery represent high-spatial frequency. The gen- 
eral shape of the Fourier spectrum is represented in a profile 
of the spectrum (d). The wavelength ranges of the profile and 
the 2D Fourier spectrum are 43-5,565 nm. The log-log plot of 
the spectrum (e) is used to determine the power law scaling of 
the amplitude of the Fourier components as a function of in- 
creasing frequency. The slope of the line fitted to the log-log 
plot is the negative of [3, the exponent of the power law func- 
tion. Two regions having two different power law scaling 
were found in the 2D Fourier spectra of the lens cells. The 
low-frequency region is near the center of the plot and the 
high-frequency region is near the edge of the plot. These two 
regions are separated by a vertical dashed line which is posi- 
tioned at the bend wavelength. 
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spatial frequency of the Fourier components was (1/43) 
nm-1 and the maximum spatial frequency was (1/5565) 
nm-1.  In terms of the wavelength (1/spatial frequency), 
the 2D Fourier spectrum contained Fourier components in 
the range of 43-5,565 nm. 

The profile of the Fourier spectrum (Fig. 3d) was the 
average of log IA] 2 (pixel intensity) as a function of the 
spatial frequency of the components. The profile was ob- 
tained by averaging the pixel intensity (log IAI 2) as a func- 
tion of radial position (spatial frequency, f) in the upper 
half of the largest circle in the spectrum (19). The left and 
right hand sides of the profile were the averages of the 
upper left and right quadrants of the largest circle in the 
spectrum respectively. The lower half of the 2D Fourier 
spectrum was not included in the profile because it was 
identical to the upper half (third quadrant was identical to 
first and fourth quadrant was identical to second) due to 
the fact that the ROI had a real part with no imaginary 
part. The left and right sides of the profile were not aver- 
aged with each other to preserve possible asymmetries in 
the quadrants of the 2D Fourier spectrum. Asymmetry in 
the spectrum arises from the orientation of structural com- 
ponents such as cellular membranes in the ROI. As in the 
2D Fourier spectrum, the wavelength range of the profile 
was 43-5,565 nm. 

The log-log plot of the 2D Fourier spectrum (Fig. 3e) 
was used to calculate the exponent, [3, of the power law 
function for the spatial fluctuations of the microstructure 
of the lens cells. The log-log plot was obtained by aver- 
aging the pixel intensity (log [AI 2) as a function of the 
logarithm of the spatial frequency of the components (log 
3'). As in the 2D Fourier spectrum and the profile, the 
wavelength range of the log-log plot was 43-5,565 nm. 
The slope of the log-log plot was calculated using least- 
squares linear regression for the right hand side of the plot. 
The slope of the line fitted to the points of the log-log plot 
was equal to negative of [3, the exponent of the power law 
function. In calculating the slope and the value of [3, log 
IAI 2 was not normalized between 0 and 1, to provide a 
comparison of our value of [3 with those of the literature 
values. 

In the log-log plots for the lens we found two regions 
with different slopes (Fig. 3e). The slope of a line fitted to 
the points of the log-log plot in the low-frequency region 
(close to the center of the plot) was smaller than that of the 
high-frequency region (close to the edge of the plot). The 
position on the x axis where the change in the slope was 
observed was defined as the bend wavelength in the log- 
log plot. The position of the bend wavelength is indicated 
by a vertical dashed line in Fig. 3e. The spatial frequency 
at which the bend occurred was found using the following 
procedure: an initial correlation coefficient was calculated 
for fitting a line to 50 points of the highest frequency 
component. As more points from the low-frequency side 

were included in calculating the slope, the correlation co- 
efficient was calculated. When the correlation coefficient 
deviated from the original value by 0.5%, the spatial fre- 
quency of the last point included in calculating the slope 
was defined as the spatial frequency of the bend. The bend 
wavelength was 1/spatial frequency of the bend. 

RESULTS 

The appearance of the lens of a 6-day-old mouse at 
25~ is represented in the schematic drawing in Fig. 4. 
The lens was transparent in the periphery and opaque in 
the center. The increase in opacity was gradual across the 
radius of the lens from the periphery to the center. The 
approximate locations of the five electron micrographs, 
selected for the 2D power law analysis, are shown by 
numbered squares. Five representative ROI of the micro- 
graphs are shown in Fig. 5. All ROI had the same mag- 
nification. ROI 1 shows cells from the most peripheral 
region of the lens, near the lens epithelium. These cells 
contained some organelles and their cytoplasm was 
smooth and homogeneous. ROI 2-5 show cells in progres- 
sively deeper regions of the lens. These cells had no large 
organelles, and were composed mainly of cytoplasmic 
proteins. From ROI 2 to ROI 5, the microstructure dem- 
onstrated a progressive aggregation of cytoplasmic pro- 
teins resulting in a heterogeneous distribution of cytoplas- 
mic proteins. Thus, the dimensions of the spatial fluctua- 
tions in the cell microstructure increased gradually from 
ROI 2 to ROI 5. Using the power law analysis we char- 
acterized the microscopic spatial fluctuations of the lens 
cells observed in the electron micrographs. 

The 2D Fourier spectra of the five ROI in Fig. 5, and 
the profiles of the spectra are shown in Fig. 6. All spectra 
and profiles had the same wavelength range of 43-5,565 
nm. In all 2D Fourier spectra, pixels near the center of the 
spectrum had higher intensities than those near the edge of 
the spectrum. This general shape of the spectra indicated 

FIGURE 4. The appearance of the lens of a 6-day-old mouse at 
25*C. The lens was transparent in the periphery and opaque in 
the center. The opacity increased gradually across the radius 
of the lens. Numbered squares 1-5 represent approximate 
locations of five electron micrographs taken for the analysis. 
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FIGURE 5. Five representative ROI from the electron micrographs of the lens cells. ROI 1 is from the cells immediately under the 
lens epithelium, containing organelles and cytoplasmic inhomogeneities. Across the radius of the lens (ROI 2 to 5) there is a 
gradual increase in the dimensions of the spatial fluctuation in microstructure, due to aggregation of proteins. Bar = 1 ixm. 

that the amplitude of the Fourier components decreased as 
a function of increasing spatial frequency of the compo- 
nents, The decrease in the amplitude of the Fourier com- 
ponents as a function of increasing spatial frequency in 
each spectrum is demonstrated in the profiles. The profiles 
demonstrated that the decrease in the amplitude of the 
Fourier components was not the same for all ,spectra. Pro- 
files 1 and 2 appeared flatter than profiles 3-5. 

Using the log-log plot of the 2D Fourier spectra (Fig. 
7), we determined the exponent of the power law function 
of the spatial fluctuations in microstructure. The exponent 
is the negative of the slope of the log-log plot. We found 
that the log-log plot of each spectrum had two regions with 
two different slopes. The position of the bend wavelength 
that separated the two regions is indicated by a vertical 
dashed line in each log-log plot. The slopes of the log-log 
plots in the low- and high-frequency regions were deter- 
mined. The results are listed and plotted in Fig. 8. The 
values in the table of Fig. 8 represent average values based 
on six different ROI covering the entire area of each elec- 

tron micrograph. The values in the parenthesis are the 
standard deviations. The results listed and plotted in Fig. 
8 are described below: 

(i) In all log-log plots, the slope in the high-frequency 
region was larger than the slope in the low-frequency 
region. 

(ii) The slopes in the low-frequency regions of plots 2-5 
were not different statistically and varied from 
- 0.95 to - 0.53, with a maximum standard devia- 
tion of 0.51. In plot 1, the slope in the low-frequency 
region ( - 1 . 3 3  -+ 0.19) was slightly larger than 
those in plots 2-5. 

(iii) The bend wavelength increased from 186 to 1232 nm 
from plot 1 to plot 5. The standard deviation was 
approximately 10-15% of the bend wavelength 
throughout. 

(iv) The slope of the log-log plot in the high-frequency 
region increased gradually from plot 1 to plot 3 
( -  2.78 to -3 .57) ,  and was approximately constant 
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FIGURE 6. The 2D Fourier spectra of the five ROI in Fig. 5, and profiles of the Fourier spectra. In all spectra the Fourier components 
near the center of the spectrum have larger amplitude (pixel intensity) compared with those near the edge of the spectrum. 
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FIGURE 7. The log-log plots of the five 2D Fourier spectra in Fig. 6. The log-log plots were used to determine the power law scaling 
of the spatial fluctuations in microstructure. Two regions of different power law scaling were found for each log-log plot: low- and 
high-frequency regions. For each log-log plot, a line fitted to the points of each region is shown. 

for plots 3-5. The standard deviation in the slope of 
the high-frequency region decreased generally from 
plot 1 to plot 5. 

D I S C U S S I O N  

Using the 2D power law analysis, we characterized 
quantitatively the spatial fluctuations in the cell micro- 
structure of the ocular lens. The microstructure of lens 
cells, ranging from transparent to opaque, was observed in 
electron micrographs taken across the radius of a mouse 
lens with a central opacity. The 2D Fourier transformation 
of the micrographs provided the amplitude, A, and the 
spatial frequency, f, of the Fourier components of the 
spatial fluctuations in microstructure. We found that in the 

Fourier spectrum of all lens cells the amplitude of the 
Fourier components decreased as a function of increasing 
spatial frequency. In all Fourier spectra, the amplitude of 
the Fourier components was scaled as a power law func- 
tion: IAI 2 ~ (l/j0 ~. The exponent, 13, determined from the 
slope of the log-log plot of the 2D Fourier spectrum, de- 
fined the power law scaling of the amplitude of the Fourier 
components as a function of the spatial frequency. 

All log-log plots of the Fourier spectra of the lens cells 
demonstrated two regions of power law scaling, separated 
by a bend. The region extending from 5565 nm to the bend 
was the low-frequency region, and the region extending 
from the bend to 43 nm was the high-frequency region. 
The slope of the log-log plot in the two regions defines the 
power law scaling of the Fourier components and charac- 

Quant i ta t ive  pa ramete rs  of  the  log-log plots  

Log-log p lo t  
N u m b e r  

Low-frequency 
slope 

-1.33 (+_ 0.19) 

Bend Wavelength  
(nm) 

186 (_ 29) 
2 -0.95 (_+ 0.26) 245 (+ 19) -3.03 (+ 0.11) 
3 -0.75 (+ 0.51) 437 (+ 70) -3.57 (+ 0.04) 
4 -0.60 (+ 0.36) 779 (+ 119) -3.60 (+ 0.07) 
5 -0.53 (+_ 0.45) 1232 (+ 149) -3.60 (+ 0.04) 

High- f requency  
slope 

-2.78 (+_ O.18) 

-2 1400 . -3.7  0:TJ 
I I I I i I I I I I - 2 . 5  I I I I I 
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

Plot # Plot # Plot # 

FIGURE 8. The slopes of the log-log plots in the low- and high-frequency regions and the bend wavelength. The values represent 
the average values based on six Fourier spectra of six ROI covering the entire area of each electron micrograph. The values in the 
parenthesis represent the standard deviations. Under each column, the data of the column are plotted as a function of plot 
number. 
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terizes the extent of structural order in the microstructure 
of the lens cells. As shown in the example of Fig. 2, a 
slope of zero defines random microstructure and an in- 
crease in the slope defines increase in the structural order. 
In the low-frequency region, the slopes were similar with 
values < - 1 for plots 2-5. The close-to-zero value of the 
slope in the low-frequency region indicates a close-to- 
random structure of the cytoplasmic protein distributions 
for dimensions larger than the bend wavelength. Plot 1 
had a slope ( -  1.33) slightly steeper than those of plots 
2-5, indicating more order in the low-frequency compo- 
nents of ROI 1 compared with ROI 2-5. This difference in 
the slope is due to presence of organelles in RO] 1 that are 
not present in ROI 2-5. In fact, using image processing 
techniques, the organelles in ROI 1 were replaced by pro- 
tein distributions copied from neighboring cytoplasmic re- 
gions and a slope of - 0 . 9 5  was found in the low- 
frequency region of the log-log plot (not shown), similar 
to those of ROI 2-5. In the high-frequency region, the 
slope became steeper in plots 1 to 3 ( -  2.78 to -3 .57) ,  
indicating an increase in the structural order. The increase 
in the slope for plots 1 to 3 may be due to reorganization 
in the microstructure of the lens cells in the transition from 
transparency to opacity. In ROI 1 and 2, there is a homo- 
geneous distribution of cytoplasmic proteins, showing lit- 
tle structural order. In ROI 3, the cytoplasmic proteins 
condensed into large heterogeneous structures, organized 
along membranes and as a cytoplasmic network. Plots 3-5 
had a similar slope of approximately - 3 . 5 7  to - 3 . 6 0 ,  
indicating the similarity in the organization of the micro- 
structure, and specifically the organization of protein ag- 
gregates in the opaque lens cells of ROI 3-5. 

The value of 13 has been related to the Hurst coefficient, 
H (16). In the 2D Fourier spectrum, we have: 

where 13 is the exponent of the power law and H is the 
Hurst coefficient. Three distinct categories of H have been 
discussed by Saupe (16): H < V2, H = 1/2, and H > V2. 
H < 1/2 defines negative correlation, indicative of fluctu- 
ations with major contributions from high-frequency com- 
ponents. H = 1/2 defines Brownian fluctuations, obtained 
from integration of white noise in the spatial domain. 
H > 1/2 defines positive correlation, indicative of fluctu- 
ations with major contributions from low-frequency com- 
ponents. In the high-frequency region of the log-log plots 
we have the values in Table 1. 

The three categories of H are represented in plots 1 
through 5. Plot 1 has H < 1/2, which indicates a negative 
correlation in the spatial fluctuations, due to dominant 
contributions of the high-frequency components resulting 
from homogeneous distribution of cytoplasmic proteins of 

TABLE 1. Values of the exponent of the power law, I~, and 
the Hurst coefficient, H, for plots 1-5. 

Plot# ~ H 

1 2.78 0.39 
2 3.03 0.52 
3 3.57 0.78 
4 3.60 0.80 
5 3.60 0.80 

the lens cells in ROI 1. Plot 2 has H ~ 1/2, which indicates 
Brownian spatial fluctuations, due to nonrandom distribu- 
tion of cytoplasmic proteins in the normal transparent 
cells. Plots 3-5 have H > 1/2, which indicates a positive 
correlation in the spatial fluctuations, due to major con- 
tributions of low-frequency components introduced by the 
aggregation of cytoplasmic proteins in abnormal opaque 
cells. The value of 13 and the Hurst coefficient may be 
directly related to the fractal dimension of the lens cell 
microstructure which might be measured using grid tech- 
niques (7). 

From log-log plot 1 to 5, the bend shifted to larger 
wavelengths (Table of Fig. 8), concomitant with the in- 
crease in the size of the spatial fluctuations in the micro- 
structure from ROI 1 to ROI 5 (Fig. 5). The bend wave- 
length may represent a measure of the size of the ordered 
structures formed in the cytoplasm of the transparent and 
opaque lens cells. The mean size of the ordered structures, 
measured using light scattering techniques (5), will pro- 
vide a basis for quantitative correlation between light scat- 
tering and the parameters of the power law analysis. It is 
interesting that ROI 1 and 2, yielding bend wavelengths of 
approximately 200 nm, are from the transparent region of 
the lens, while ROI 3-5, yielding bend wavelengths con- 
siderably greater than 200 nm, are from the opaque region 
of the lens. These results are consistent with the theory of 
transparency of the eye (2). 

The power law analysis has promising applications in 
the study of microstructure of biological cells and tissues 
in differentiation, aging, and pathogenesis. The method 
will provide new quantitative information on structural 
organization of cytoplasmic and extracellular architecture. 
The error associated with the power law analysis involves 
the several steps of the analysis: tissue preparation, elec- 
tron microscopy, scanning, digitizing, Fourier transforma- 
tion, and linear regression of the average log-log plots of 
the 2D Fourier spectra (13,16,17,19). The error associated 
with tissue preparation was monitored by observing the 
transparency or opacity of the lens from the periphery to 
the center. The transparency or opacity are functions of 
the cell microstructure, and alterations in the microstruc- 
ture were found to be minimal due to minimum change in 
transparency or opacity of the lens at different radial po- 
sitions. The error associated with electron microscopy and 
scanning were minimized by calibration of the microscope 
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and selection of  an appropriate magnification to prevent 
aliasing, respectively. The Fourier transformation of  the 
micrograph is an exact mathematical formulation and con- 
sidered to be free of  error as a step in the power law 
analysis. The error associated with the linear regression of  
the log-log plots was quantified by the correlation coeffi- 
cient of  the regression. The correlation coefficients for 
high-frequency slopes were in the range of  0.98-0.99,  
increasing from plot 1 to plot 5. The correlation coeffi- 
cients for low frequency slopes were in the range of  0 .89-  
0.37, decreasing from plot 1 to plot 5. The changes in the 
value of  the correlation coefficient were due to the pro- 
gressively larger number of  points in the high-frequency 
region, and smaller number of  points in the low-frequency 
region, from plot 1 to plot 5. The standard deviation of  the 
slope is an indirect measure of  the correlation coefficient, 
decreasing in the high-frequency region, and increasing in 
the low-frequency region in plots 1-5, respectively. 

In this paper, we presented the first characterization of  
the lens cell microstructure using 2D power law analysis. 
The Fourier components of  the spatial fluctuations in mi- 
crostructure of  the lens cells follow a power law function: 
IAI 2 ~ (l/J) I~, in two regions of  the low- and high-spatial 
frequency. The power law scaling in the two regions was 
found for the lens cells ranging from transparent to 
opaque. We are currently researching the specific charac- 
teristics of  the lens microstructure that are responsible for 
the low- and high-spatial frequency regions and the mea- 
sured power law scaling in these regions. We expect the 
power law analysis to have numerous applications in 
quantitative evaluations of  cell and tissue microstructure. 
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