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The kernel identification method is a powerful technique for mathematically rep- 
resenting the dynamic behavior o f  a nonlinear system. This technique has been ap- 
plied to a number of  physical and physiological systems. An important development 
which has enhanced the usefulness o f  the kernel method has been the interpretation 
o f  the internal structure of  a system by examining the shapes of  the higher-degree ker- 
nels. Examples o f  various nonlinear models with known structure are illustrated to 
show a repertoire o f  kernel shapes. Variations in parameters o f  these models result 
in well-defined changes in the shapes o f  the kernels. Also, examples are shown of  ker- 
nels obtained from physiological systems to demonstrate how examination o f  kernel 
shapes can lead to accurate predictions o f  the dynamic behavior o f  the physiological 
system. Finally, limitations of  the applicable range o f  the kernel identification method 
are discussed. 

Keywords-Interpretation, Kernel shapes, Models, Physiological systems, Usefulness, 
Limitations. 

The  kernel  iden t i f i ca t ion  m e t h o d  is a m a t h e m a t i c a l  t echn ique  used for  represent -  
ing a nonl inear  dynamic  system in a manner  ana logous  to that  o f  a po lynomia l  expan-  
s ion for  a static nonl inear i ty .  Vol terra  (1) was the first to formal ize  the  ma themat i ca l  
expression for  an integral  series by  means  o f  higher degree kernels. Wiener  (2) showed 
how this series could be or thogonal ized  and how a circuit  might  be const ructed  to rep- 
resent  the kernels .  Over  the next three  decades  fo l lowing  Wiener ,  the re  has  been  a 
g rea t  deal  o f  research  done  on  the ef f ic ient  c o m p u t a t i o n  o f  kernels  o f  phys ica l  sys- 
tems.  In  add i t i on ,  a number  o f  inves t iga tors  have  con t r i bu t ed  to  the  t h e o r y  and  
a p p l i c a t i o n  o f  the  kerne l  i d e n t i f i c a t i o n  m e t h o d .  F o r  s o m e  d e t a i l e d  r e v i e w s ,  

see (3-6).  
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510 G.K. Hung and L. W. Stark 

In a number of systems, most of the nonlinearity is contained in the 2nd-degree 
kernels. For such systems, the double-pulse approach is particularly suitable since the 
experimental and computational requirements are relatively simple. Sandberg and 
Stark (7) obtained 2nd-degree kernels of the human pupillary system by using the dou- 
ble-pulse approach (Fig. 1). However, for systems containing significantly higher- 
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FIGURE 1. (a) Double-pulse light stimulus of the human pupillary system. (b) Associated 2nd-degree 
kernels derived from double-pulse experiments (7). 
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degree kernel contributions, other approaches are needed. For example, if the shape 
of the system responses are similar to well-known functions, such as the Laguerre and 
Legendre functions, an orthogonal basis-function approach could be used. Watanabe 
and Stark (8) obtained a hyperplane of the 3rd-degree kernels by using this approach 
(Fig. 2). On the other hand, for the general system, standard techniques such as the 
cross-correlation method developed by Lee and Schetzen (9), and the frequency do- 
main method described by Brillinger (10), have been used. For example, Sandberg and 
Stark (7) obtained the lst- and 2nd-degree kernels of the human pupillary system by 
using the cross-correlation method (Fig. 3). 

A significant development in the application of the kernel identification technique 
has been the interpretation of the internal structure of systems by examining the shape 
of the higher-degree kernels (11-13). Some examples of the expected kernel shapes for 
various model configurations are shown in Table 1 (11). A model consisting of two 
pre-multiplier linear elements followed by a linear element (11) has been examined in 
detail (Fig. 4a). The simulation results (Fig. 4b) illustrate that the smaller pre- 
multiplier time constant controls decay of the 2nd-degree kernels parallel to the main 
diagonal, whereas the larger pre-multiplier time constant controls decay in the off- 
diagonal direction. Also, the post-multiplier time constant smears the kernels paral- 
lel to the main diagonal. 

The human pupillary system has been studied to determine the relationship be- 
tween its well-known nonlinear dynamic behavior and the shape of the kernels. Pu- 

/ 

,:_-c'~1 ,~ ""  ~4.eZ Z z - ' z ,  ' 

" ' -  r, 
FIGURE 2. 3rd-degree kernels of the human pupillary system; cross section at hyperplane T 1 = 

0.4 sec. (8). 
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FIGURE 3. 1st- and 2nd-degree kernels of the human pupil lary system obtained by means of the 
cross-correlation method (7). 
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FIGURE 4(a). Model  consisting of pre-multipl ier linear elements wi th  t ime constants 1/A and l /B ,  
and post-mult ipl ier element w i th  t ime constant (1/C). 
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pillary response to on-step of  light consists of  a rapid constriction with overshoot,  
followed by redilation, whereas the response to off-step of  light shows only a slow 
dilatation. Thus, the pupillary system exhibits asymmetry to on and off  stimuli. For 
the pupillary kernel model, the pupillary lst- and 2nd-degree main-diagonal kernels 
were examined in terms of their signs. It can be shown that the I st-degree kernels are 
analogous to the linear term, whereas the 2nd-degree main-diagonal kernels are anal- 
ogous to the quadratic term, in a power series expansion. Thus, it is expected that the 
lst-degree kernels should show asymmetric responses to on- and off-steps of  input, 
whereas the 2nd-degree main-diagonal kernels should show symmetric responses to  
on- and off-step inputs. If the lst- and 2nd-degree kernels are of  the same sign, then 
in response to an off-step input, the contribution from the main-diagonal of  the 2nd- 
degree kernel would partly cancel the negative response contribution from the lst-de- 
gree kernel. Therefore,  the total system response should show an asymmetry to on 
and off  stimuli. Indeed, consistent with the above, experimentally determined lst- and 
2nd-degree main-diagonal kernels of the pupillary system have been found to exhibit 
the same sign (14). 

The overshoot following pupillary constriction in response to a step of  light input 
is called pupillary escape. It was proposed that larger amplitude 2nd-degree off- 
diagonal kernels corresponded to larger amounts of  escape in the system response 
(15). To quantify this behavior, a heuristic model, consisting of linear and quadratic 
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FIGURE 5. Heuristic model used in the simulation of the pupillary escape phenomenon. It contains 
linear and quadratic sections, each composed of combinations of simple linear elements. Recipro- 
cal time constants: A = 2.0,  B = 4 .0 ,  C = 2.5,  D = 1.5, ALIN = 2.0,  BLIN = 35 .0 .  Gain KLIN = 35 .0 .  

Gains K2B and K2D were varied to produce different amounts of escape (15) .  
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sections, was developed. This allowed for the control of varying amounts of escape in 
the model response (Fig. 5). Simulation results showed that, indeed, the off-diagonal 
kernel magnitude increased as the amount of escape increased (Fig. 6). 

A novel approach for obtaining the nonlinear open-loop transfer function of the 
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human operator was developed by Hung (16). In a typical experiment, the human op- 
erator controlled a joystick which in turn drove a simulated plant (either K, K/s, or 
K/s2). The error between a random input signal (of various bandwidths) and the 
plant output were displayed on a screen. The operator's task was to minimize this er- 
ror, The paradigm was repeated for random signals of  various bandwidths over a 
number of experimental sessions. Then, unknown to the subject, in certain sessions, 
the pre-recorded error signal itself was presented to him. Thus, the subject was op- 
erating under open-loop conditions. At the end of  all the experiments, the subjects 
reported that they were unaware of  the open-loop conditions. The kernels were cal- 
culated using the open-loop experimental data. A mathematical kernel representation 
of  the human operator under open-loop conditions is shown in Fig. 7. Table 2 lists 
the (rms) of the difference between experimental and kernel model responses for dif- 
ferent sums of  lst-, 2nd-, and 3rd-degree kernels. It was noted that in a number of  
cases the rms increased as higher-degree kernel contributions were added. One pos- 
sible explanation is that the human operator is essentially linear and that additional 
nonlinear contributions were near the noise level. Another explanation is that the 
plant filtered out much of the nonlinear contributions from the human operator dur- 
ing the closed-loop experiments, leaving mainly the linear contribution in the error 
signal. 

HUMAN OPERATOR 

ho 

. uT - h2,T.2, s i SYSTEM OUTPUT 

i:  x(t) , . ,  , lY3 ( t ) i ' ~  Ii I ~  m 

OPERATOR 
OUTPUT 

. / ' ,  
. ] Yn (I) I 

I 

FIGURE 7. Block diagram of open-loop compensatory system showing human operator as a sub- 
system represented mathematically by higher degree kernel terms (16). 
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TABLE 2. RMS difference between experimental response and 
response of (sum of degrees) kernel models for different plants 

and input bandwidths. Values in equivalent visual angle of 
manual control movements, in degrees [16]. 

Degree Model 
Type of Input Bandwidth 

Controlled Plant (rad/sec) 1 1 & 2 1, 2 & 3 

K 4.17 0.099 0.098 0.122 

10.9 0.141 0.136 0.158 

K/S 2.58 0.347 0.257 0.261 

4.17 0.178 0.166 0.183 

10.9 0.291 0.294 0.346 

K/S 2 2.58 0.198 0.215 0.204 

6.75 0.231 0.232 0.279 

The kernel ident if icat ion method is a powerful  technique for mathemat ica l ly  rep- 
resenting nonl inear  systems. However,  this technique is not  a panacea for treating all 
nonl ineari t ies ,  and indeed, must  be used with care. We wish to point  out  two impor-  
t an t  l imi ta t ions .  First ,  the kernels are mean ingfu l  only at the dc level and  at the ac 
ampl i tude  of  the applied signal. In  other words, it may require an  "army"  of  kernels 
(17) to represent  a system at all practical dc and  ac levels (12). Second,  the kernel 
me thod  may  not  be sui table for sharply non l inea r  systems, bu t  instead is more  use- 
ful for weakly nonl inear  systems, especially if on ly  lower-degree kernels can be cal- 

culated accurately (18). 
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