
Annals of Biomedical Engineering, Vol. 19, pp. 429-455, 1991 0090-6964/91 $3.00 + .00
Printed in the USA. All rights reserved. Copyright �9 1991 Pergamon Press plc

Parallel Cascade Identification and Kernel Estimation
for Nonlinear Systems

M i c h a e l J. K o r e n b e r g

Department of Electrical Engineering
Queen's University

Kingston, Ontario, Canada

(Received 3/16/91)

We consider the representation and identification o f nonlinear systems through the
use o f parallel cascades o f alternating dynamic linear and static nonlinear elements.
Building on the work o f Palm and others, we show that any discrete-time finite-
memory nonlinear system having a finite-order Volterra series representation can be
exactly represented by a finite number o f parallel L N cascade paths. Each L N path
consists o f a dynamic linear system followed by a static nonlinearity (which can be
a polynomial). In particular, we provide an upper bound for the number o f parallel
L N paths required to represent exactly a discrete-time finite-memory Volterra func-
tional o f a given order. Next, we show how to obtain a parallel cascade representa-
tion o f a nonlinear system from a single input-output record. The input is not required
to be Gaussian or white, nor to have special autocorrelation properties. Next, our par-
allel cascade identification is applied to measure accurately the kernels o f nonlinear
systems (even those with lengthy memory), and to discover the significant terms to
include in a nonlinear difference equation model for a system. In addition, the ker-
nel estimation is used as a means o f studying individual signals to distinguish deter-
ministic from random behaviour, in an alternative to the use o f chaotic dynamics.
Finally, an alternate kernel estimation scheme is presented.

Keywords- Parallel cascades, Kernel estimation, Nonlinear systems, Identification.

I N T R O D U C T I O N

This article concerns the representa t ion and ident i f ica t ion of a non l i ne a r system
by parallel cascades of a l ternat ing dynamic l inear (L) and static non l i ne a r (N) ele-
ments . For present purposes, the nonl inear system is defined in discrete t ime, is t ime
invar iant , causal, has finite memory , and is cont inuous , in that small changes in the
system input result in small changes in the system output .

Pa lm (21) has shown that any such system can be un i fo rmly approx imated , to an

Acknowledgments- I particularly wish to thank Professor Hun H. Sun and Professor Fred J. Looft
for organizing the mini-symposium on physiological system identification and modeling, in Philadelphia,
November 1990, out of which this article grew. This research was sponsored by the Natural Sciences and
Engineering Research Council of Canada.

Address correspondence to Michael J. Korenberg, Department of Electrical Engineering, Queen's Uni-
versity, Kingston, Ontario, K7L 3N6, Canada.

429

430 M.J. Korenberg

arbitrary degree of accuracy, by a sum of a sufficient number of LNL cascades. Each
LNL cascade comprises a dynamic linear system followed by a static nonlinearity
which is, in turn, followed by a dynamic linear system. Palm (21) actually allowed the
nonlinear system under approximation to have finite anticipation, in addition to fi-
nite memory, but in the present article we consider approximation of nonanticipatory
(i.e., causal or physically realizable) nonlinear systems. Previously, Kolmogoroff (7)
had shown that a finite sum of NLNL cascades could be used to represent exactly a
very wide class of continuous nonlinear systems.

The capability of parallel LNL cascades to represent a wide variety of nonlinear
systems is a very useful result, but Palm (21) did not describe a method for obtain-
ing this representation. Korenberg (8,9,13) proposed a procedure for building up such
a parallel cascade representation for any nonlinear system having a Wiener functional
expansion. The individual cascade paths of the parallel arrangement were identified
one at a time. It was shown that, for the procedure to be general, it sufficed if each
cascade path comprised a dynamic linear system followed by a static nonlinearity.
However, it was also pointed out that the procedure could be extended very simply
by adding a second dynamic linear system following the static nonlinearity.

The parallel cascade identification method (8,9,13) does not require use of a Gauss-
ian input. The method made it possible to construct accurate mimetic models of non-
linear systems, even those with high-order nonlinearities and lengthy memory. Indeed,
the parallel cascade method was significantly faster and more accurate than represent-
ing the nonlinear system by a Wiener (23) functional expansion and estimating the
kernels in the expansion by the Lee-Schetzen (16) cross-correlation technique. More-
over, once the parallel cascade representation had been constructed, it could be rear-
ranged into a corresponding functional expansion. This enabled accurate estimation
of the Wiener or the Volterra kernels in the obtained expansion. Kernel estimation
via the parallel cascade method is accurate even for lengthy system memories (e.g.,
up to 150 lags). While the method does not require a Gaussian or white input signal,
nor one having special autocorrelation properties, the kernel estimates may depend on
the choice of input. Thus, a Gaussian input is used to obtain Wiener kernel estimates.

Recently, Shi and Sun (22) have considered the representation of nonlinear systems
by parallel cascades. They point out that a discrete-time, finite-memory, finite-order
Volterra series can be exactly represented by the sum of a finite number of LNL cas-
cades. Earlier, Palm (21) had shown that the kernels of such a Volterra series could
each be exactly expressed as a finite sum of separable functions.

In the next section we show that, in fact, the sum of a finite number of LN cas-
cades suffices to represent exactly any discrete-time, finite-memory, finite-order
Volterra series. [Such an LN cascade is frequently referred to as a Wiener model (6).]
Moreover, we provide an upper bound for the number of LN cascades required to
represent exactly a Volterra functional of given order. We also point out that the par-
allel cascade representation of a given system is not unique. In subsequent sections,
we describe the parallel cascade identification approach (8,9,13) and illustrate its abil-
ity to estimate accurately the kernels of a system with lengthy memory. The method
is also used to discover the significant terms to include in a difference equation model
for a nonlinear system. Also, we show how the kernel estimation can be applied to
individual signals to distinguish random noise from chaos produced by determinis-
tic systems. Finally, an alternate scheme for estimating kernels is presented.

Parallel Cascade Identification 431

REPRESENTATION OF DISCRETE-TIME FINITE-MEMORY
VOLTERRA F U N C T I O N A L S BY P A R A L L E L LN C A S C A D E S

Consider first a cont inuous- t ime, time-invariant, finite-memory, causal nonlinear
system which is a continuous functional of its input. It follows f rom the work of
Frechet (3) that such a system can be uniformly approximated over a uniformly
bounded equicontinuous set of input signals, to an arbitrary degree of accuracy, by
a Volterra series of sufficient but finite order.

Next, for the discrete-time nonlinear system, the corresponding approximation re-
sult follows immediately from the Stone-Weierstrass theorem (2,21). The finite-order
Volterra series which is capable of uniformly approximating the (finite-memory) non-
linear system over a uniformly bounded set of input signals has the fo rm

M

y s (n) = ko + ~_a Vm , n = 0,1 (1)
m=l

where M is the order of the series and, for m _> 1, the mth order Volterra functional
is

R R

Vm = ~a " ' " ~] k m (i l i m) x (n - i l) . . . x (n - im) .
il ~o im=O

(2)

The zero-order functional is the constant ko, x in Eq. 2 is the system input, k m is
the m th order symmetric Volterra kernel, and (R + 1) is the memory length (since the
series output y s (n) depends on input delays f rom 0 to R lags).

We will show that each Volterra functional of Eq. 2 can be exactly represented by
a finite sum of LN (i.e., dynamic linear, static nonlinear) cascades. We will also find
an upper bound for the number of LN cascades required to represent a given order
functional.

The zero- and first-order functionals are each exactly represented by a trivial case
of a single LN cascade.

To represent the second-order functional (m = 2 in Eq. 2), consider first the sum
of two particular LN cascades. (Slices of the second-order functional will be con-
structed f rom these cascade pairs.) The first system in each of the two cascades is lin-
ear and has the delta (discrete impulse) response

h i (j) = k 2 (j , A) + (- 1) i c 6 (j - A) , i = 1, 2 . (3)

Here A is a constant selected f rom 0 R, C r 0 is a real constant, and the delta
function 6 (j) = O, j 4: O, and 6(0) = 1. The corresponding outputs of the linear sys-
tems in the two cascades are

R

u i (n) = ~a h i (j) x (n - j) (4)
j=o

where i --- 1, 2.

432 M.J. Korenberg

The second system in each cascade is a (static nonlinear) squarer defined by

zi = Fi(u~)

= (- 1) i u 2 / (4 C) , i = 1 , 2 .
(5)

It follows f rom Eqs. 3 through 5 that the sum of the two cascades has output

z (n) = z~(n) + z2(n)

R

= ~a k 2 (j , A) x (n - j) x (n - A) .
j=0

(6)

Suppose each pair of cascades is defined using a different value of A (in Eq. 3) from
0 R. Then the sum of the (R + 1) cascade pairs (corresponding to A = 0 R)
will exactly represent the second-order Volterra functional, so that at most 2(R + 1)
cascades of LN type are required. Note that this parallel array of LN cascades is not
a unique representation of the second-order functional: for example, any real C #: 0
can be used in Eqs. 3 and 5 in defining each cascade pair. In addition, notice that we
have shown equivalently that the second-order kernel (m = 2 in Eq. 2) can be exactly
expressed as

2(R+I)
k2(il , i2) = ~a (-1)%(i l))~ (i2)

/=1

which is a little stronger than the separability result of Palm (21).
To represent exactly the third-order Volterra functional (m = 3 in Eq. 2), consider

first the sum of four LN cascades. The first (linear) system in each of the cascades
has delta response respectively:

h i (j) = k 3 (j , A 1 , A z) - C I 6 (j - A ~) - C 2 6 (j - A z) (7)

h2(j) = k 3 (j , A I , A 2) + C 1 6 (j - A 1) - C 2 6 (j - A 2) (8)

h3(j) = k3(j , A1 ,A2) - CI6 (j - A1) + C 2 6 (j - Az) (9)

h4(j) = k3(j , A1 ,A2) + C t 6 (j - A1) + C 2 6 (j - A2) �9 (10)

Here A~ and A2 are constants chosen f rom 0 R; C~ :g 0, C2 ~ 0 are real
constants.

Let ui(n) (Eq. 4), i = 1 4, be the corresponding outputs of the linear systems
in the cascades. The second (static nonlinear) system in the cascades is defined respec-
tively by

Zj = u3~/(ECI C2) (11)

Z2 = -u32 / (ECl C2) (12)

Parallel Cascade Identification 433

Z3 = - u 3 / (E C I C2) (1 3)

Z4 = u~/ (ECI C2) �9 (14)

In Eqs. 11 through 14, E = 12 if A, :# A 2 and E = 24 if At = AE.
It follows from Eqs. 4 and 7 through 14 that the sum of the four LN cascades has

output

4

z(n) = ~, z~(n)
i=l

R

= 2 ~,, k3 (j , A i , A 2) x (n - j) x (n - A l) x (n - Z2) ,
j=0

R
= ~,, k 3 (j , A , A) x (n - j) x 2 (n - A) ,

j=0

Ai ~ A 2

At = A 2 = A .

In general, in defining a set of f o u r LN cascades, select Az from 0 R and A 2

from At R, for a total of (R + l) (R + 2) /2 sets. The sum over these sets (of
four cascades each) will represent exactly the third-order Volterra functional, so that
at most 2(R + 1)(R + 2) cascades of LN type are required. Clearly, since Cz ~ 0 and
C2 :~ 0 are arbitrary real constants, the parallel LN cascade representation of the
third-order functional is not unique. Notice we have shown that the third-order kernel
(m = 3 in Eq. 2) can be exactly expressed as

2(R+I)(R+2)

k3(il , i2, i3) = ~ gt(i l)gt(i2)gt(i3)
/=1

Fourth- and higher-order functionals can be represented exactly by parallel LN cas-
cades in an analogous fashion. For the mth order functional (m > 1) in Eq. 2, it re-
quires at most

2 m - ~ ' (R+m-m-1 1)

of such cascades for exact representation.
Note that in the representation of a discrete-time, finite-memory, finite-order

Volterra series by parallel cascades, an arbitrary number of the cascade paths can be
chosen at will. For example, in each of the first 10 parallel paths, one may choose any
finite number of arbitrarily selected finite-memory linear systems and (polynomial)
static nonlinearities. The difference between the original Volterra series and the 10
parallel paths is itself a discrete-time, finite-memory, finite-order Volterra series, and
so can be represented exactly by a parallel array of LN cascades. This parallel array
plus the 10 parallel paths will exactly represent the original Volterra series. This fur-

434 M.J. Korenberg

ther illustrates that the parallel cascade representation of the Volterra series is not
unique.

Recall that, by the Stone-Weierstrass theorem, a discrete-time, finite-memory
Volterra series of sufficient order can (over a uniformly bounded set of input signals)
uniformly approximate to an arbitrary accuracy any time-invariant, causal, finite-
memory, discrete-time nonlinear system which is a continuous functional of its input.
Hence, such a nonlinear system can also be approximated to an arbitrary degree of
accuracy by a sufficient number of LN cascades in parallel. One method for con-
structing such a parallel array (8,9,13) is described in the next section.

PARALLEL CASCADE IDENTIFICATION

Suppose that the nonlinear system to be identified has input x(n) and output y (n) ,
n = 0 T. We assume that the input x is sufficiently "rich" to make it possible to
solve for least-square estimates of the kernels km in Eqs. 1, 2; that is, unique values
for the kernels which minimize the mean-square error of approximating y(n) by the
Mth order series of Eq. 1. However, we do not solve for such kernel estimates di-
rectly. Instead, we construct a parallel cascade approximation for the given nonlin-
ear system. Assume that the system output depends on input delays from 0 to R (e.g.,
as in Eqs. 1, 2) so that (R + 1) is the memory length.

Parallel cascade identification (8,9,13) begins by approximating the nonlinear sys-
tem with a first cascade of alternating dynamic linear and static nonlinear systems.
The unidentified residue (i.e., the difference between the nonlinear system output and
the cascade output) is treated as the output of a new nonlinear system. Another cas-
cade is identified to approximate the new nonlinear system, the resulting residue is
computed, and so on. Assume that the original nonlinear system has a Wiener (23)
functional expansion. This displays convergence in the mean-square sense, a weaker
convergence than the uniform convergence discussed earlier for continuous func-
tionals. Then we will show that the nonlinear system can be approximated to an ar-
bitrary degree of accuracy in the mean-square sense by a sum of a sufficient number
o f the individually identified cascades.

The estimation of a cascade may be outlined as follows. Begin the cascade with a
linear system whose delta response is defined using a first- or higher-order cross-
correlation of the input with the residue. Thus, the delta response is set equal either
to the first-order cross-correlation or to a slice of a higher-order cross-correlation to
which delta functions are added or subtracted at diagonal points (as in Eqs. 3 and 7
through 10). After defining the linear system, its output is computed (as in Eq. 4),
and then a static nonlinearity (e.g., a polynomial) is best-fit to the residue. The pro-
cedure may be continued by adding a second linear system (8) following the static
nonlinearity. For example, in implementing the parallel cascade identification (8), Mo
and Elkasabgy (20) followed the static nonlinearity with a linear differential equation
best-fit to the residue. Once a cascade has been estimated, the new residue is calcu-
lated, and then a further cascade can be estimated analogously. The procedure will
be illustrated next when each cascade consists of a dynamic linear system followed
by a static nonlinearity. However, it will be appreciated that any number of alternat-
ing dynamic linear and static nonlinear systems can be added to a cascade path
(8,9,13).

Parallel Cascade Identification 435

Outline o f One Version o f Algori thm

Let Yi (n) be the residue remaining after adding the ith cascade path to the paral-
lel cascade model. Thus, yo(n) = y (n) . Let zi(n) be the output of the i th cascade.
Hence,

y i (n) = Y i - l (n) - z i (n) , i = 1, 2 (15)

Consider fitting the ith cascade (i > 1) to the residue Yi-i (n). Begin by defining
the delta response hi (j) of the dynamic linear system in the cascade. Let '~xyi_~ and
~b~y~_, denote the first- and second-order cross-correlations of the input with the res-
idue, computed over the port ion of the recording extending f rom n = R to n = T:

1 T
~_a Yi-1 (n) x (n - j) (16) (t~xYi-I (J) & T - R + 1 ,,=R

1 T
Z Yi-I (n) x (n - j l) x (n - J 2) �9 (17) dPxxyi_l (Jl,J2) ~ T - - R + 1 n=R

Set hi (j) to be one of

Pl (J) = ~xyi-i (J) (18)

Pz(J) = C~xxyi_l (j , A) ++_ C6(j - A) . (19)

Whether Eq. 18 or Eq. 19 will be used to define hi (j) is decided at random. I f
Eq. 19 is used, then the integer A is randomly selected f rom 0 R, the sign of the
6 term is chosen at random, and C is adjusted to tend to zero as the mean-square of
the residue approaches zero. For example, set

C - y21 (n) (20)
y2(n)

where (here and elsewhere), the overbar denotes time-average over the portion of the
record extending from n = R to n = T (as in Eqs. 16, 17). Since the nonlinear system
to be identified is assumed to have finite memory lasting up to R lags, therefore
hi(j) = O, j > R. Note that, in addition to Eqs. 18 and 19, slices of third- or higher-
order cross-correlations may be used to define hi (j) with 6-functions added or sub-
tracted at diagonal values, analogous to Eqs. 7 through 10. This is discussed later.

Once the delta response hi (j) of the linear system has been determined, calculate
its output ui(n) via Eq. 4. To obtain the static nonlinearity, best-fit a polynomial
having input ui(n) to the residue Yi-1 (n) over n -- R T. The cascade output is
then

436 M.J. Korenberg

z i (n) = F~(u~)

M
= Z ailu/

l=O

(21)

and the new residue y~(n) is given by Eq. 15.
Hence, the polynomial coefficients aa minimize the mean-square of the new resi-

due over n = R , T, and therefore

y 2 (n) = (y i _ l (n) - z i (n)) 2

= yiZ_l (n) - z T (n) .
(22)

Thus, the reduction in mean-square error (mse) be adding the ith cascade equals the
mean-square of the output of the ith cascade.

We can then repeat the procedure to fit the residue y~(n) by an (i + 1)th cascade,
having output Zi+l (n) . Note that for i = 1,2

r = (Z~+j (n) /y iZ(n))1/2 (23)

is the correlation of zi+~ (n) and yg(n) over n = R T. I f the residue were inde-
pendent zero-mean Gaussian noise, then for sufficiently large T

Irl < 2 / ~ / T - R + 1 (24)

with probabili ty of about 0.95. Hence, before accepting a given candidate for the
(i + 1)th cascade, one may optionally require that

4
zF+, (n) > y 2 (n) . (25)

T - R + I

This requirement (a standard correlation test) helps to avoid choosing unnecessary
cascades which are merely fitting noise. Note that 4 / (T - R + 1) on the right side of
Eq. 25 can be replaced by other factors (corresponding to different confidence inter-
vals), or by the square of the critical correlation coefficient value for sample size
T - R + I .

I f the test is used and a candidate fails to satisfy the immediately above inequal-
ity, then we may construct and test a new candidate for the (i + 1)th cascade. Begin
by redefining the delta response hi+j (j) of the linear system in the cascade. This may
be done (analogous to the right sides of Eqs. 18, 19) via a first-order cross-correlation
of the input with the residue yi, or using a slice of a second- or higher-order cross-
correlation with di-functions added or subtracted at diagonal values. Then the static
nonlinearity (e.g., polynomial) is estimated by best-fitting the residue, and the new
candidate cascade may be tested for compliance with the inequality shown in Eq. 25.

Parallel cascade development may be stopped when a specified number of cascades
have been added or tested, or when the mse has been made sufficiently small. Ter-
mination may also occur when no remaining candidate cascade can cause a reduction
in mse exceeding a small threshold level.

Parallel Cascade Identification 43 7

Outline o f Proof o f Convergence o f Algorithm

In obtaining the ith cascade, the static nonlinearity represented by Eq. 21 is best-
fit to the residue yi_~. Since the polynomial's constant term aio is a least-square es-
timate, it follows that

Z i = ~ i _ 1 , i>_ 1

Zi =)~i--1 = 0 , i > 2 ,

in view of Eq. 15.
Recall from Eq. 22 that each cascade added to the parallel array reduces the mse

by an amount equalling the mean-square of that cascade output. Clearly, the mse of
the parallel array approximation can be reduced at most to zero. Hence, if the par-
allel cascade development is continued sufficiently long, eventually no remaining can-
didate cascade can reduce the mean-square of the residue more than a negligible
amount. Suppose that when this occurs, the existing residue is Yi-~ (n). Thus, i is
sufficiently large (i.e., a sufficient number of parallel cascade paths have already been
added), so no matter which candidate is considered for the ith cascade, the mean-
square (z2(n)) of that cascade's output is negligible.

Suppose that the first-order cross-correlation on the right side of Eq. 18 is used to
define hi(j) (for the linear system in the cascade). As just noted, the corresponding
z 2 (n) can be made arbitrarily small by choosing i sufficiently large. We will now
show that this implies that the first-order cross-correlation of the input with the res-
idue can itself be made arbitrarily small.

First, note that if the system to be identified has order (i.e., degree) of nonlinear-
ity of at least 2, then M in Eq. 21 will be chosen to be greater than or equal to 2.
Thus, the mse reduction, which equals z2(n), cannot be less than the reduction in
mse if only the linear term all u i were best-fit to the residue Yi-l. Least-square fitting
the linear term alone would cause a reduction in mse equalling

Reduction (linear) =
(Yi-I (n)ui(n)) 2

u~(n)
(26)

which must be less than or equal to z2(ni. Since the first-order cross-correlation on
the right side of Eq. 18 is used to define hi(j), it follows from Eq. 4 and the Schwarz
inequality that

uZ(n) _< yZ(n) xZ(n - j)

Again, from Eqs. 4 and 18,

R

Yi-i(n)ui(n) =)-] 4~ 2 (j) xyi - 1
j=O

Hence, it follows from Eq. 26 that

438 M.J. Korenberg

z}(n)
~xzui_, (j)

j=O

/ R)2
y2(n) ~ a x Z (n - - j)

\j=O

and since zZ(n) can be made arbitrari ly small, then so can [4~xy~_~ (J)[for j =
0 R.

Next, suppose that the right side of Eq. 19 (which employs a slice of a second-order
cross-correlation) is used to define hi(j) for the ith cascade. Again, the resulting mse
reduction, equalling z~(n), is negligible, since by assumpt ion we have reached
the stage where no further cascade addition can reduce the mse significantly. Thus,
whether the &term is added or subtracted on the right side of Eq. 19, and for each
value of A chosen therein, the corresponding z~Z(n) for the cascade is negligible.
Recall that this reduction in mse results from best-fitting zi (n) (defined by Eq. 21 with
M___ 2) to the residue. Such a reduction cannot be less than the following mse reduc-
tion, which results f rom best-fitting only the quadratic t e r m ai2 u2 to the residue:

Reduction (quadratic) =
(yi_l (n)uiZ(n)) 2

u~(n)
(27)

Thus, the right side of Eq. 27 must be less than or equal to zZ(n) , which can be
made arbitrarily small. Using Eq. 4 and the Schwarz inequality, it is easy to show that
the denominator u4(n) in Eq. 27 is less than a bound which depends only on x and y.
This implies that the numerator on the right side of Eq. 27 can be made arbitrarily
small. Now, from Eq. 4,

R R

Yi-i (n)uZ(n) = ~a 2~a 4~xxy,_, (Jl,A)c~xxy~_, (j2,A)4~xxyg , (Jl,J2)
Jl = 0 j2=O

R

+ C2c~xxyi_t(A,A) +_ 2C Z 2 ~xxYi-I (J, A)
j = O

(28)

where the sign of the last term on the right side matches the sign of the &term in
Eq. 19. Since the magnitude of the right side of Eq. 28 can be made arbitrarily small
for either sign of the last term, therefore

R
2

~)XXYi_ I (J , A)
j=0

can be made arbitrarily small. Since this is true for each value of A, therefore
I Oxxy~_, (j ,A) [can be made arbitrarily small for j = 0 R and A = 0 R.

Next, suppose that hi(j) is defined using a slice of a third-order cross-correlation
of the input with the residue; that is, set hi(j) equal to

P3(J) = C~xxxyi I(j, AI ,A2) + C I 6 (j - A,) + C 2 6 (j - A2) �9 (29)

Parallel Cascade Identification 439

In Eq. 29, Al is randomly selected from 0 R and A 2 from A1 R, and the
sign of each 6-term is chosen at random. The real constants C~ ~ 0 and C2 :~ 0 each
tend to zero as the mean-square of the residue approaches zero (for example, as in
Eq. 20). Notice the similarity between Eq. 29 and Eqs. 7 through 10.

As noted, the mse reduction, equalling zi2(n), can be made arbitrarily small (for
sufficiently large i). This is true irrespective of the signs of the 6-terms in Eq. 29, and
the values chosen for A l, A2, in defining hi(j) . Assume that in defining the static
nonlinearity via Eq. 21, we choose the polynomial degree M >_ 3. Then it may be
shown that, for sufficiently large i, [C~xxyj_~ (j,A~,A2)[can be made arbitrarily small
f o r j = 0 R; Al = 0 R; and A2 = 0 R.

In summary, the delta response hi(j) of the linear system in the cascade can be
defined using the right side of Eqs. 18, 19, 29 (and analogous expressions involving
slices of higher-order cross-correlations) chosen at random. If the parallel cascade de-
velopment is continued sufficiently long, we will eventually achieve a residue Yi-l(n)
whose cross-correlations (with the input) are arbitrarily small, up to order M, the
polynomial degree in Eq. 21.

Assume we have noise-free conditions and that the nonlinear system to be identi-
fied can be very accurately approximated, in the mean-square sense, by a Volterra se-
ries of order not exceeding M. Then the residue Yi-~ can itself be very accurately
approximated by a Volterra series of order M. Hence, the fact that)~i-~ -- 0 and that
the cross-correlations C~xy~_,, d~xxy~_, (up to Mth order) can be made arbitrarily
small for sufficiently large i implies that the mean-square of the residue Yi-~ (n) can
be made arbitrarily small for sufficiently large i. Hence, the sum of the individually
obtained cascades can approximate the given nonlinear system to an arbitrary degree
of accuracy, in the mean-square sense. Note that this result does not require that the
input x to the nonlinear system be Gaussian or white, nor have special probability
density or autocorrelation properties.

Further Details o f the Algorithm

Kernel Estimation. Suppose that the parallel array has been developed until no fur-
ther cascade can reduce the mse more than a negligible amount. (The mse itself may
not be negligible due to noise contamination or because the polynomial degree M in
Eq. 21 was not chosen sufficiently large.) The identified parallel cascade array can
be rearranged into a corresponding Volterra series of order M. This particular
Volterra series will approximate the nonlinear system with very nearly the minimum
mean-square error out of all series of order M and memory length R + 1. (This is be-
cause the residue mean is zero and the input-residue cross-correlations up to order M
have been made very nearly zero.) Thus, the kernels in the obtained Volterra series
are very nearly least-square estimates.

Suppose the nonlinear system to be identified has a Volterra series representation
(Eq. 1) of order M a n d memory length R + 1. Then in the absence of noise contam-
ination, the kernels obtained via parallel cascade will be very close to the actual
Volterra kernels of the system. Note that there will be one value estimated for the
zero-order kernel/Co, (R + 1) values for the first-order kernel k~, (R + 1)(R + 2) /2
distinct values for the second-order kernel k2, and so on. The parallel cascade
method (8,9,13) is particularly suited to estimating kernels of systems with lengthy
memory. For example, if the nonlinear system had a second-order Volterra series

440 M.J. Korenberg

(M = 2 in Eq. 1) with memory length (R + 1) equal to 150, then the 11,476 distinct
kernel values could readily be estimated via the parallel cascade method. (See an ex-
ample following for a memory length of 100.) However, attempting to obtain the ker-
nel values by direct least-squares estimation would instead require the numerically
formidable inversion of a 11,476 x 11,476 symmetric matrix, which is not Toeplitz
or near Toeplitz to enable rapid inversion. The advantage of the parallel cascade ap-
proach becomes even more pronounced in estimating third- and higher-order kernels.

Suppose that the input x is a zero-mean white Gaussian process, and that an Mth
order Volterra series approximation is obtained via parallel cascade. Then the Mth
and (M - 1)th order kernel estimates obtained will closely approximate the Wiener
kernels of corresponding order. These estimates tend to be significantly more accu-
rate than those found by the cross-correlation method (16), when the record length
is relatively short.

Modeling High-Order Nonlinear Systems. Aside from its use in kernel estimation,
parallel cascade identification is convenient for modeling systems with high-order
nonlinearities. This is because approximating a higher-order nonlinear system via a
parallel cascade merely requires increasing the degree of the (polynomial) static non-
linearities in the cascade paths, and/or the number of static nonlinearities in a given
path. The key advantage is that the nonlinearities in the parallel cascade array always
occur as static functions. Hence, their estimation is far faster than computing the
higher-order cross-correlations required to approximate higher-order nonlinear sys-
tems via the Wiener-Lee-Schetzen functional expansion approach. Note that while the
static nonlinearities in the cascade paths have been represented by polynomials above,
other sets of basis functions, such as gate functions, could equally well be used.

Recall that each cascade began with a linear system whose delta response was de-
fined above using a slice of a cross-correlation (first- or higher-order) of the input with
the residue. First, notice that when a higher-order cross-correlation is used, only a
single slice need be computed, rather than the entire cross-correlation as in the Lee-
Schetzen (16) approach. Second, note that slices of cross-correlations of first-,
second-, and possibly third-order may sometimes suffice (in defining the linear sys-
tems in the cascade paths) even when the system to be identified has much higher-
order nonlinearities. This is because the static nonlinearity in the path allows the
cascade to approximate higher-order nonlinear components of the residue even if a
lower-order cross-correlation was used in defining the linear system preceding the
static nonlinearity.

More on Developing a Cascade Path. In place of slices of input-residue cross-
correlations, one may define the linear system at the beginning of a cascade using a
set of basis functions such as the Laguerre functions, sinusoids, exponentially decay-
ing sinusoids, and exponentials. Thus, the delta response of the linear system can ran-
domly be set equal either to one of the basis functions or to sums and/or differences
of two or more of the functions.

Whichever way the linear system (in, say, the ith cascade) is defined, its output ui
is next calculated. Then least-square procedures are used to fit a static nonlinearity
(having input ui) to the residue (8). Previously, Korenberg (8) pointed out that this
parallel cascade identification could trivially be extended by adding a second linear
system following the static nonlinearity in the cascade under development. Mo and

Parallel Cascade Identification 441

Elkasabgy (20) noted that this significantly accelerated the rate of convergence in sim-
ulated examples. In their simulations, least-square procedures were used to fit a dif-
ferential equation (to the residue) for the second linear system. The process of adding
static nonlinear and dynamic linear elements to the cascade may be continued indef-
initely (9,13), and of course each linear system can be defined in terms of its delta re-
sponse or as a difference equation. Note that once the first linear system has been
determined, the same approach is used each time thereafter to add a new element to
the cascade under construction. Namely, the output, say vi, of the last block in the
cascade is calculated, then least-square procedures are used to fit the new element
(having input vi) to the residue.

Alternately, instead of adding the additional systems one at a time to the cascade,
one may adapt (9) a relaxation technique (1) to parallel cascade identification. Thus,
suppose only the linear system at the beginning of the cascade has been determined.
We may then add a static nonlinearity followed by a second linear system, and iter-
atively update one based on the current estimate of the other. For example, best-fit
the static nonlinearity, with the delta response of the second linear system initially set
equal to a &function. Then best-fit the second linear system based on the current es-
t imate of the static nonlinearity. Next, update the estimate of the static nonlinearity
based on the latest estimate of the second linear system, and so on in an alternating
procedure to hone the estimates of the two systems. A variation of this (6) can be used
to fit the initial pair of linear and static nonlinear systems in any path.

Alternately, a nonlinear mean-square-error minimization technique can be used to
fit the current residue with the "best" LN or LNL model (8) in the path under con-
struction. Then the new residue is computed and the minimization technique is used
to fit another LN or LNL cascade, etc.

Multiinput Multioutput System Identification. The parallel cascade identification
(8,9,13) can readily be extended to model multiinput mult ioutput systems. Suppose
that the nonlinear system to be identified has inputs x~ (n) , x2(n) and output y(n) .
Then, when a new path is to be added to the parallel array, one of Xl ,x2 is chosen at
random to be the input to the cascade. The cascade may then be constructed as set
out earlier. In addition, we can introduce cross-products of xx,x2 into the parallel
array. For example, for the ith cascade, we may define the first linear system using
a slice of a cross-correlation of the residue Yi-~ with both x~ and x2. Thus, let

1 T
~a y i - l (n)x l (n - - j l) x z (n - - J2) �9 (30) ~)XlX2Yi--I (Jl,J2) ~- T - R + 1 ~=R

I f xl is to be the input to the ith cascade, set the delta response hi(j) of the first lin-
ear system to equal

P4(J) = Ckxlx2yi_, (j ,A) (31)

where A is chosen at random from 0 R. Next, calculate the output ui of the lin-
ear system using Eq. 4 with x = Xl. Then let

wi(n) = ui(n) ++- Cx2(n - A) (32)

442 M.J. Korenberg

where the sign is chosen at random, and C is adjusted to tend to zero as the mean-
square of the residue approaches zero (for example, as in Eq. 20). Next, we can best-
fit a static nonlinearity (having input wi) to the residue, and subsequently proceed as
for any other cascade.

Whether Eq. 18, 19, 29, or 31 will be used to define hi(j) is decided at random.
In addition, hi(j) can be defined using a slice of a higher-order cross-correlation
(than in Eq. 30) of the residue with both xl and x2.

The identified parallel array can be rearranged to obtain estimates of the self- and
cross-kernels for the nonlinear system.

Difference Equation Development via Parallel Cascade. This procedure is particularly
useful for discovering the significant terms to include in a difference equation model
for a nonlinear system with unknown structure. For example, if x and y are respec-
tively the single input and output, we can construct a parallel array having two inputs
Xl (n) = x (n), x2 (n) = y (n - 1), and one output y (n). Once the parallel cascade ar-
ray has been identified (and rearranged into a functional expansion format), the re-
sulting self- and cross-kernels reveal the significant terms for a difference equation
model. (See an example following.) This exploits the ability of parallel cascade iden-
tification to handle lengthy memories (which here means many lagged values of both
x and y) and effectively perform a global search for significant terms.

Once the significant terms (or a much reduced set of candidate terms) have been
earmarked by this process, their coefficients should be determined by other proce-
dures; see, for example, (1 l , 12). This is because the parallel cascade development is
conveniently continued just long enough for the resulting kernel shapes to reveal the
significant terms, but not the precise coefficient values.

This procedure can clearly also be used to discover the significant terms to include
in multiinput, multioutput difference equation models.

Distinguishing Chaos from Random Noise. A great deal of attention (4,17) has been
paid to the problem of distinguishing between chaotic behaviour due to a determin-
istic system and noise due to random processes. Parallel cascade identification and
kernel estimation can provide a useful approach (10) to this problem. Suppose y (n) ,
n = 0 Tis given time-series data and we wish to determine whether y(n) is de-
terministic chaos or random noise. One approach to doing this is to treat a delayed
version of y as the system input, and the original (undelayed) signal y as the system
output; then identify a parallel cascade approximation for the created system. This
exploits the ability of parallel cascade identification to model readily high-order non-
linear systems, which may be necessary to "copy" the created system, particularly if
a lengthy delay is used in creating the system input.

Suppose that the correlation test of Eq. 25 is used as a requirement for accepting
a candidate cascade into the parallel array. If the signal y (n) is chaos, then the iden-
tified parallel cascade array will have a smaller mse (as a percentage of the variance
of y), and more cascade paths will be chosen than if y were independent noise. In-
deed, if y were merely independent noise, the expected performance (for the number
of candidate cascades tested) can readily be calculated and compared with the actual
result of the parallel cascade identification.

In addition, kernel estimates can be obtained from the identified parallel array. If
y is due to a deterministic system, the obtained kernels characterize the signal and may

Parallel Cascade Identification 443

detect subtle changes in it (10). For example, we may wish to study changes in a mon-
itored physiological variable due to disease or aging, or due to an administered drug
or other treatment. (Note that the kernels obtained will of course depend [10] on the
amount of delay used in creating the input signal.) If y were independent noise, the
kernel estimates would tend to be very noisy and negligibly small.

Finally, note that both the identified parallel cascade and the kernel estimates can
be utilized to predict future values for a chaotic signal.

E X A M P L E S

Kernel Estimation

The system to be identified was a second-order Volterra series (M = 2 in Eq. 1)
with a memory length (R + 1) equal to 100. Hence one zeroth-, 100 first-, and 5050
distinct second-order kernel values were to be estimated, via the cross-correlation (16)
and parallel cascade (8,9,13) methods. A second-order series was chosen because then
the corresponding Volterra and Wiener kernels of first and second order are equal.
A zero-mean Gaussian white-noise input was used to generate 10,000 input-output
data pairs.

The identified parallel cascade model had an mse of 0.053%. The actual first-order
kernel and the close parallel cascade estimate are shown in Fig. 1. The second-order
kernel (Fig. 2) was also estimated accurately (Fig. 3) by the parallel cascade method.
(The parallel cascade kernel estimates can be made even more accurate simply by add-
ing more cascades to the parallel array.) The cross-correlation first-order (Fig. 4) and
second-order (Fig. 5) kernel estimates are significantly less precise. Cross-correlation
estimates do approach the actual kernel values with increasing record length. How-
ever, even with a record of 100,000 data pairs, cross-correlation estimates do not at-
tain the accuracy of the parallel cascade results in Figs. 1 and 3. Parallel cascade
estimation of kernels is robust; see (13) for performance when noise contaminates the
system output.

Note that attempting to solve for the kernel values by direct least-squares estima-
tion would here entail inversion of a 5151 x 5151 symmetric matrix, which is neither
Toeplitz nor near Toeplitz.

Determining the Significant Terms in a Difference Equation Model

The test system was a nonlinear difference equation which had been identified by
McIlroy (19) to model a simulated communications channel. By searching through
a set of candidates, he found (in the order shown) 15 significant terms, including a
constant, and x, y, xx, yy (but no xy) terms:

y (n) = -0.636507 + 1.08717x(n - 24) + 0.914799x(n - 23)

- 0.698645x(n - 27) + 0.967739x(n - 25) + 0.787682x(n - 22)

- 0.630834x(n - 28) + 0.160929x(n - 30) - 0.209741x(n - 32)

+ 0.397268x(n - 21) - 0.117377x(n - 29) - 0.49215y(n - 2)

+ 0.114922y(n - 5) + 0.129476x(n - 24)x(n - 23) + 0.211136yZ(n - 1) .

444 M.J. Korenberg

0 . 3 0
TRUE 1ST ORDER KER & PARAL CAS EST

0 . 2 5

0 . 2 0

0 . 1 5

0.10

0 . 8 6

0 . 0 0

- e . e s I , I
e.ee 2eJee 4eJee ~Jee 8e.ee lee.ee

FIGURE 1. Actual first-order Wiener kernel and parallel cascade estimate, obtained using 10,000
points of white Gaussian input.

FIGURE 2. Actual second-order Wiener kernel.

Parallel Cascade Identification 445

FIGURE 3. Parallel cascade estimate of second-order Wiener kernel, obtained using 10,000 points
of white Gaussian input.

0 . 3 0
TRUE 1ST ORDER [ER & CROSS-COR EST

0 . 2 5

0 . 2 0

0 . 1 5

0 . 1 0

0 . 0 5

0 . 0 0

- 0 . 0 6

- 0 . 1 0 I ! !

o . ~ 2 o . ~ 4 o . ~ ~ : 0 0 8oZoo 100.00

FIGURE 4. Actual first-order Wiener kernel and cross-correlation estimate, obtained using 10,000
points of white Gaussian input.

446 M.J. Korenberg

FIGURE 5. Cross-correlation estimate of second-order Wiener kernel, obtained using 10,000 points
of white Gaussian input.

0 .80
1ST ORDER X-KERNEL (DIF EQN MOOEL)

0.60

0 . 4 0

0.20

0.00

-0.20

-0.40

- 0 . 6 0

a-e

- 0 . 8 0 I ! I

0 . (~ E ; .~ 10:00 15:00 20:1~ 25.00 30.00 35.1~

FIGURE 6. First-order x kernel, giving an indication of the significant linear x terms for (nonlinear)
difference equation model,

Parallel Cascade Identification 447

This difference equation was used in the present example to generate 2000 input-out-
put data pairs. The input was white noise uniformly distributed between - 1 . 5 and 1.5.

With this input-output data, parallel cascade was utilized to identify a difference
equation model having lags in x from 0 to 34, and lags in y from 1 to 35. The pro-
cedure set out earlier (multiinput/output and difference equation via parallel cascade)
was employed, except that cross-product terms were not introduced.

The linear x terms selected by parallel cascade are shown in the first-order x ker-
nel in Fig. 6. Note that this kernel indicates (correctly) that there are no significant
linear x terms with a lag less than 21. The first-order y kernel (Fig. 7) does not as
clearly reveal the significant terms, but does appear to rule out, for example, linear
y terms with lags 16, 17, 20, 22, 28, 30, 35 (this is clearer f rom the actual kernel val-
ues). Since linear x and y terms are relatively few in total, there is little inconvenience
in retaining as candidates any terms which are not clearly ruled out by this parallel
cascade screening.

Parallel cascade is very useful in revealing the significant x x and yy terms, where

0.16 --

1ST ORDER Y-KERNEL (D [F EQN MOOEL)

0.10

0.05

0.00

-O.EE;

-0.40

- 0 . 1 5
 0J00 200 J00 J00 .00

FIGURE 7. First-order y kernel, giving an indication of the significant linear y terms for (nonlinear)
difference equation model.

448 M.J. Korenberg

FIGURE 8. The (second-order) x x kernel, giving an indication of the significant x x terms for nonlinear
dif ference equation model.

there are 630 candidates of each type. The (second-order) x x kernel (Fig. 8) correctly
had its largest magnitude at the lag pair (23,24), and there were 67 other distinct terms
with a kernel magnitude of at least 10% of the largest kernel magnitude. The (second-
order) yy kernel (Fig. 9) correctly had its largest magnitude at (1,1), and only eight
other distinct terms had a kernel magnitude at least 10% of this size. Thus, when there
are many candidate terms of a given class, parallel cascade can pick out a much re-
duced subset of terms to explore.

FIGURE 9. The (second-order) yy kernel, giving an indication of the significant y y terms for nonlinear
dif ference equation model.

Parallel Cascade Identification 449

ALTERNATE M E T H O D FOR KERNEL ESTIMATION

Over the past 20 years, kernel estimation has played an increasingly important part
in mathematically characterizing the functioning of nonlinear physiological systems;
see in particular the book by Marmarelis and Marmarelis (18). A major breakthrough
in the calculation of Wiener kernels (23) was the cross-correlation method of Lee and
Schetzen (16). The following method (11,12,14) of kernel estimation is briefly pre-
sented here to clarify a few points about its operation.

For convenience, we will illustrate the method by estimating the kernels in a
second-order Volterra series approximat ion of a nonlinear system (M = 2 in Eq. 1,
except that the memory length is now R rather than R + 1):

R - I R - I R - I

z~ (n) = ko + ~ k l (i) x (n - i) + ~ ~ k 2 (i l , i 2) x (n - - i l) x (n - i2)
i=0 i1=0 i2=0

n = 0 , 1 T .
(33)

To estimate the kernels ko, kl , k2, begin by rewriting Eq. 33 as follows (15):

P

Zs (n) = ~ a (m) q m (n) . (34)
m=O

Here P = R + R (R + 1)/2, and for n = R , T , q o (n) = 1,

q ,n (n) = x (n - m + 1) , m = 1 ,R . (35)

For m = R + 1 P, the q,, (n) are defined as follows (colons are used below to
separate portions of the code which should be set out on separate lines for increased
readability):

r n - - R : F O R J I = 0 T O R - I : F O R J 2 = J 1 T O R - 1

m - - m + I : F O R n - - R T O T

q m (n) = x (n -- J 1) x (n - J2)

NEXT n: NEXT J2: N E X T J 1
(36)

The coefficients a (m) in Eq. 34 are directly related to the kernels in Eq. 33, and
are found to minimize the mse

e = (y (n) - zs(n)) z

computed over the record port ion n = R T. To estimate the a (m) , we may use
a Cholesky factorization, for example, via the following pseudocode:

450 M.J. Korenberg

D(0,0) = 1: F O R m = 1 T O P

D(m,O) = qm(n) (37)

F O R r = 1 T O m

D (m , r) = q m (n) q r (n) (38)

N E X T r: N E X T m: F O R j = 0 TO P - 1

F O R m = j + 1 TO P : D D = D (m , j) / D (j , j) : F O R r = j + 1 TO m

D (m , r) = D (m , r) - D (r , j) . D D

N E X T r: N E X T m: N E X T j

F O R j = 0 T O P - I : F O R m = j + 1 T O P

D (m , j) = D (m , j) / D (j , j)

N E X T m: N E X T j

G(0) = y (n) (39)

F O R m = 1 TO P

G (m) = y (n) q m (n)

N E X T m : F O R j = 0 T O P - I : F O R m = j + 1 T O P

G (m) = G (m) - D (m , j) . G (j)

N E X T m: N E X T j : F O R m = 1 TO P

G (m) = G (m) / D (m , m)

N E X T m .

(40)

Other codes, for example , the Cho lesky ou te r p r o d u c t vers ion [see G o l u b and Van
Loan (5)], m a y also be used. However the code set out above has proved par t icu la r ly
robus t in extensive test ing.

The a (m) can now be calculated f rom the G (m) and the D (m , j) according to the
fo l lowing f o r m u l a (15):

P

a (m) = y] G (i) v (i) (41)
i = m

where

v (m) = 1 (42)

i i 1

v(i) = ~], D (i , r) v (r) , i = m + l , . . . , P . (43)
r = m

Hence , the zero- and f i r s t -o rder kernels are

ko = a(O)

k i (i) = a (i + 1) , i = 0 , R - 1 .

Parallel Cascade Identification 451

The second-order kernel k 2 (I 1,I2) can be obtained as follows:

m = R : FOR 11 = 0 T O R - 1

FOR 12 = I1 TO R - 1: m = m + 1: k 2 (I 1 , I 2) = a (m)

IF I1 r 12 T H E N k 2 (I 1 , I 2) = 0.5 k 2 (I 1 , I 2)

NEXT I2 : NEXT I1 .

This yields the (best) second-order Volterra series approximation, with mse

P

y 2 (n) - - ~] G 2 (m) D (m , m) .
m~O

Replacing P with R in the foregoing expression gives the mse of the best first-
order Volterra series approximat ion (having memory length R). Replacing P with R
in Eqs. 41 and 43 yields the a (m) (and hence the corresponding zero- and first-order
kernels) for the best first-order Volterra series approximation.

The time-average on the right side of Eq. 39 is, clearly, the output mean, computed
over the port ion of the record n = R T. The time-average on the right side of
Eq. 40 is, for m = 1 ,R, the first-order input output cross-correlation 4~xy(m - 1)
and for m = R + 1 P, the second-order cross-correlation C~xxy(J1,J2). These
cross-correlations are defined as in Eqs. 16 and 17 with Yi-i replaced by y.

A key part of the algorithm (11,12,14) is the efficient calculation of the time-
averages on the right sides of Eqs. 37 and 38, and to overlook this aspect is to miss
what makes the algorithm fast. The time-average in Eq. 37 is, for rn - 1, the input
mean (as computed over n = R T), and for m = 2 ,R can be calculated f rom
the mean using the relation

l m--2

q m (n) x(n) +
T - R + 1 j=z'a o

[x (R - j - 1) - x (T - j)] . (44)

Eq. 44 simply "corrects" for the finite record length. This correction, and in fact all
the corrections for finite record length, can be carried out recursively. For example,

ql (n) = x (n) (45)

qm(n) = qm-l(r t) +
T - R + I

[x (R - m + 1) - x (T - m + 2)]

m = 2 , . . . , R .
(46)

However, in correcting the more complicated time-averages for the finite record
length, recursive calculations tend to be less accurate, and so efficient nonrecursive
schemes are also pointed out following and in refs. (11,14).

The remaining time-averages in Eqs. 37 and 38 can be calculated efficiently f rom
the input autocorrelations of first, second, and third order, respectively qSxx, 4~x~,
and 4~xx~, defined analogously to earlier correlations (e.g., for first and second or-

452 M.J. Korenberg

der , rep lace ..vi_ 1 in Eqs. 16 and 17 with x) . This m e t h o d o f ca lcula t ing the requ i red
t ime-averages is much fas ter than c o m p u t i n g them independen t ly .

F o r example , in view o f Eq. 36, the t ime-ave rage in Eq. 38 for m = R + 1 P
and r -- R + 1 m has the fo rm

q m (n) q r (n) = x (n - J 1) x (n - J 2) x (n - J 3) x (n - J 4) . (47)

I f this t ime-average were i ndependen t ly c o m p u t e d , for J 1 = 0 R - 1, J 2 =
J1 R - 1, J 3 = J 2 R - 1, and J 4 = J 3 R - 1, then the number o f mul-
t ip l i ca t ions would be a b o u t R 4 T / 4 ! Ins tead , the t ime-ave rage is r ead i ly ca lcu la ted
f r o m th (J 4 - J 1 , J 3 - J 1 , J 2 - J 1) by correc t ing for the f inite r eco rd length,
and then the to ta l number o f mul t ip l ica t ions (for requi red values o f J 1 , J 2 , J 3 , J 4)
is a b o u t R 3 T / 3 ! I f the m e m o r y length R is 60, then we do abou t 1/15 o f the mul-
t ip l ica t ions otherwise requi red .

Refe r r ing to Eq. 36, def ine the func t ion D L (J 2 , J 1) which gives the va lue o f m
co r r e spond ing to given values o f J 1 , J 2 :

m = R : F O R J 1 = 0 T O R - I : F O R J 2 = J 1 T O R - l : m = m + 1

D L (J 2 , J 1) = m

N E X T J 2 : N E X T J1 .

(48)

Cer ta in o f the requ i red t ime-averages on the r ight side o f Eqs. 37 and 38 are ex-
act ly given by the au toco r r e l a t i ons 4~xx, Chxxx, Chx~xx and m a y be specif ied as fol lows:

F O R J = 0 t o R - 1: m = DL(J ,O)

qm (n) = Oxx(J)

qJ+l (n) q l (n) = Oxx(J)

N E X T J

F O R J1 = 0 T O R - 1: m l = D L (J I , O)

F O R J 2 = J 1 T O R - 1 : m 2 = D L (J 2 , 0) : m 3 = D L (J 2 , J 1)

qml (rt)qJ2+l (n) = 0 ~ x (J 2 , J 1)

q m 2 (n) q j l + l (n) = dPxxx(J2,J1)

q m 3 (n) q l (n) = O~x~(J2 ,J1)

N E X T J 2 : N E X T J1

F O R J l = 0 TO R - 1: m l = D L (J I , O)

F O R J 2 = J 1 TO R - 1 : m 2 = D L (J 2 , 0) : m 2 1 = D L (J 2 , J 1)

F O R J 3 = J 2 TO R - 1 : m 3 = D L (J 3 , 0) : m 31 = D L (J 3 , J 1) : m 32 = D L (J 3 , J 2)

qm32(n)qml (n) = dPxxxx(J3,J2,J1)

qm31 (n)qm2(r /) = daxxxx(J3,J2, J 1)

qm3(n)qm21(n) = q~xxxx(J3,J2, J 1)

N E X T J 3 : N E X T J 2 : N E X T J1 .

Depend ing on the p r o g r a m setup, it m a y be i m p o r t a n t to note tha t m 3 can be less
t han , equal to, or grea ter t han m21.

Parallel Cascade Identification 453

The remaining t ime-averages required in Eqs. 37 and 38 can be calculated f rom the
au toco r r e l a t i ons 4~xx, Oxx~, q~xxxx by cor rec t ing for the f ini te record length. Cons ide r
the t ime-averages der ived f rom 'bxx. These t ime-averages can be ca lcu la ted recur-
sively using the re la t ion:

1
x (n - J l) x (n - J 2) = x (n - J l + l) x (n - J 2 + l) + T - R + I

• [x (R - J 1) x (R - J 2) - x (T - J 1 + 1) x (T - J 2 + 1)]/
)

(49)

The fol lowing pseudocode carries out this recursive ca lcula t ion and assigns the result
to each o f the t ime-averages having the same value:

F O R J = 0 TO R - 1: A I (J) = ~ x x (J) : N E X T J

F O R J1 = 1 T O R - I : F O R J 2 = J 1 T O R - I : m = D L (J 2 , J 1)

A I (J 2 - J 1) = A l (J 2 - J l) + (x (R - J l) x (R - J 2)

- x (T - J 1 + 1) x (T - J2 + 1)) / (T - R + 1)
q m (n) = A I (J 2 - J 1)

q g 2 + l (n) q g l + l (n) = A l (J 2 - J 1)

N E X T J 2 : N E X T J1 .

T ime-averages der ived f rom ~xxx can be ca lcu la ted recurs ively using a r e l a t ion
ana logous to Eq. 49. This can be expressed in the fol lowing pseudocode , which again
assigns the resul t to every t ime-ave rage having the same value.

F O R J1 = 0 T O R - I : F O R J 2 = J 1 T O R - 1

A 2 (J 2 , J 1) = r N E X T J 2 : N E X T J 1

F O R J l = 1 TO R - 1: F O R J 2 = J 1 TO R - 1 : m 2 1 = D L (J 2 , J 1)

F O R J 3 = J 2 TO R - l : m31 = D L (J 3 , J 1) : m32 = D L (J 3 , J 2)

A 2 (J 3 - J 1 , J 2 - J 1) = A 2 (J 3 - J 1 , J 2 - J l)

+ x (R - J 1) x (R - J 2) x (R - J 3) / (T - R + 1)

A 2 (J 3 - J 1 , J 2 - J 1) = A 2 (J 3 - J 1 , J 2 - J 1) - [x (T - J 1 + 1)

• x (T - J 2 + l) x (T - J 3 + 1)] / (T - R + 1)

qm21 (n) q j 3 + l (n) = A 2 (J 3 - J 1 , J 2 - J 1)

qm31 (n)qj2+x (n) = A 2 (J 3 - J 1 , J 2 - J 1)

qm32(n)qJ l+l (n) = A 2 (J 3 - J 1 , J 2 - J 1)

N E X T J 3 : N E X T J 2 : N E X T J 1 .

F ina l ly , t ime-averages der ived f rom q~x~x~ can be ca lcu la ted recurs ively v ia a for-
m u l a ana logous to Eq. 49, which can be expressed in the fo l lowing p s e u d o c o d e :

454 M.J. Korenberg

F O R J1 = 0 T O R - 1 : F O R J 2 = J 1 T O R - 1: F O R J 3 - - J 2 T O R - 1

A 3 (J 3 , J 2 , J 1) = Ox~xx(J3,J2,J1): N E X T J 3 : N E X T J 2 : N E X T J1

F O R J1 = 1 TO R - 1: FOR J 2 = J1 TO R - 1 : m 2 1 = D L (J 2 , J 1)

F O R J 3 = J 2 TO R - 1 :m31 --- D L (J 3 , J 1) : m32 --- D L (J 3 , J 2)

F O R J 4 = J 3 T O R - 1 :m41 = D L (J 4 , J 1) : m 4 2 = D L (J 4 , J 2)

m43 = D L (J 4 , J 3)

A 3 (J 4 - J I , J 3 - J 1 , J 2 - J 1) = A 3 (J 4 - J 1 , J 3 - J 1 , J 2 - J 1) + [x (R - J 1)

x x (R - J 2) x (R - J 3) x (R - J 4)] / (T =- R + 1)

A 3 (J 4 - J 1 , J 3 - J 1 , J 2 - J1) = A 3 (J 4 - J 1 , J 3 - J 1 , J 2 - J1)

- [x (T - J l + l) x (T - J 2 + l) x (T - J 3 + l)

x x (T - J 4 + 1)] ~ (T - R + 1)

qm43 (n)qm21 (n) = A 3 (J 4 - J 1, J3 - J 1, J 2 - J 1)

qm42 (n)qm31 (n) = A 3 (J 4 - J 1, J 3 - J 1, J 2 - J 1)

qm41 (r/)qm32(r/) = A 3 (J 4 - J 1 , J 3 - J 1 , J 2 - J1)

N E X T J4: N E X T J3: N E X T J2: N E X T J1 .

Again, depending on the setup of the program, it may be impor tan t to note that
m41 may be less than, equal to, or greater than m32.

The time-averages in Eqs. 37 and 38 can also be obta ined nonrecusively, but still
efficiently. For example, t ime-averages derived f rom (~xxx can be calculated via the
fo rmula (where 1 _< J 1 _ J 2 _< J3) :

x (n - J l) x (n - J 2) x (n - J 3)

= Oxxx(J3 - J 1 , J 2 - J1)

[1 ~ [x (R - 1) x (R - l + J 1 - J 2) x (R - l + J 1 - J 3)
+ T - R + 1 t=~

(x (T + 1 - l) x (T + 1 - 1 + J 1 - J 2) x (T + 1 - l + J1 - J 3))]] I

Analogous formulas exist for calculating t ime-averages derived f rom 0xx and 4~x
and the foregoing pseudocode can readily be modif ied to utilize these nonrecursive
formulas . It is emphasized that the pseudocode presented here is merely illustrative,
and it is trivial to set down more efficient code. Note tha t the terms qm(n) need not
be created or stored. Rather, only t ime-averages involving these terms are required,
and can be obtained efficiently and accurately as illustrated above.

C O N C L U S I O N

There are many variations possible in parallel cascade identification (8,9,13). The
essential feature (8) is to approximate the nonlinear system by a first cascade, then
approximate the residue using a second cascade, and so on. This enables the cascade
paths in the parallel array to be identified one at a time. As we have seen, under broad
conditions the nonlinear system can be approximated to an arbitrary accuracy, in the
mean-square sense, by a sum of the individually obtained cascades. Note that in place

Parallel Cascade Identification 455

of some or all o f the cascade paths, one could substitute a parallel array of simple
nonlinear difference equations (8), which are successively fit to the (updated) residue
one at a time.

R E F E R E N C E S

1. Banyasz, C.S.; Haber, R.; Keviczky, L. Some estimation methods for nonlinear discrete time identi-
fication. IFAC Syrup. Ident. Sys. Param. Est. 3:793-802; 1973.

2. Dieudonn6, J. Foundations of modern analysis. Berlin, Heidelberg, New York: Springer; 1976.
3. Frechet, M. Sur les fonctionnelles continues. Annales Scientifiques de l'Ecole Normal Superieure

27:193-219; 1910.
4. Glass, L.; Mackey, M.C. From clocks to chaos, Princeton: Princeton University; 1988.
5. Golub, G.H.; Van Loan, C.F. Matrix computations (2nd ed.). Baltimore: Johns Hopkins Univ. Press;

1989.
6, Hunter, I.W.; Korenberg, M.J. The identification of nonlinear biological systems: Wiener and Ham-

merstein cascade models. Biol. Cybern. 55:135-144; 1986.
7. Kolmogoroff, A.N. On the representation of continuous functions of several variables by superpo-

sition of continuous functions of one variable and addition (Russian). Dokl. Akad. Nauk. SSSR
114:953-956; 1957; AMS Transl. 2:55-59; 1963.

8. Korenberg, M.J. Statistical identification of parallel cascades of linear and nonlinear systems. IFAC
Syrup. Ident. Sys. Param. Est. 1:580-585; 1982.

9. Korenberg, M.J. Functional expansions, parallel cascades and nonlinear difference equations. In: Mar-
marelis, V.Z. ed. Advanced methods of physiological system modeling. Los Angeles: USC Biomedi-
cal Simulations Resource, Vol. 1; 1987: pp. 221-240.

10. Korenberg, M.J. Exact orthogonal estimation of kernels with biological applications. IEEE Montech
Conference on Biomedical Technologies, pp. 27-32; 1987.

11. Korenberg, M.J. Identifying nonlinear difference equation and functional expansion representations:
The fast orthogonal algorithm. Ann. Biomed. Eng. 16:123-142; 1988.

12. Korenberg, M.J. A robust orthogonal algorithm for system identification and time-series analysis. Biol.
Cybern. 60:267-276; 1989.

13. Korenberg, M.J. A rapid and accurate method for estimating the kernels of a nonlinear system with
lengthy memory. 15th Biennial Symp. Communications. June 1990; Queen's University, Kingston, Can-
ada, pp. 57-60.

14. Korenberg, M.J. Some new approaches to nonlinear system identification and time-series analysis. Proc.
12th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
12(1):20-21; 1990.

15. Korenberg, M.J.; Bruder, S.B.; McIlroy, P.J. Exact orthogonal kernel estimation from finite data
records: Extending Wiener's identification of nonlinear systems. Ann. Biomed. Eng. 16:201-214; 1988.

16. Lee, Y.W.; Schetzen, M. Measurement of the Wiener kernels of a non-linear system by cross-corre-
lation. Int. J. Control 2:237-254; 1965.

17. Liebovitch, L.S. Introduction to the properties and analysis of fractal objects, processes, and data.
In: Marmarelis, V.Z., ed. Advanced methods of physiological system modeling. New York: Plenum
Press, Vol. 2; 1989: pp. 225-239.

18. Marmarelis, P.Z.; Marmarelis, V.Z. Analysis of physiological systems. The white-noise approach. New
York: Plenum Press; 1978.

19. McIlroy, P.J.H. Applications of nonlinear systems identification. Kingston, Ontario, Canada: Queen's
University; 1986. M.Sc. thesis.

20. Mo, L.; Elkasabgy, N. Elec-841 Report, Dept. Elect. Eng., Queen's Univ., Kingston, Ontario, Can-
ada; 1984.

21. Palm, G. On the representation and approximation of nonlinear systems. Part II: Discrete time. Biol.
Cybern. 34:49-52; 1979.

22. Shi, J.; Sun, H.H. Nonlinear system identification via parallel cascaded structure. Proc. 12th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society 12(4): 1897-1898;
1990.

23. Wiener, N. Nonlinear problems in random theory. New York: Wiley; 1958.

