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We consider the representation and identification o f  nonlinear systems through the 
use o f  parallel cascades o f  alternating dynamic linear and static nonlinear elements. 
Building on the work o f  Palm and others, we show that any discrete-time finite- 
memory nonlinear system having a finite-order Volterra series representation can be 
exactly represented by a finite number o f  parallel L N  cascade paths. Each L N  path 
consists o f  a dynamic linear system followed by a static nonlinearity (which can be 
a polynomial). In particular, we provide an upper bound for  the number o f  parallel 
L N  paths required to represent exactly a discrete-time finite-memory Volterra func- 
tional o f  a given order. Next, we show how to obtain a parallel cascade representa- 
tion o f  a nonlinear system from a single input-output record. The input is not required 
to be Gaussian or white, nor to have special autocorrelation properties. Next, our par- 
allel cascade identification is applied to measure accurately the kernels o f  nonlinear 
systems (even those with lengthy memory), and to discover the significant terms to 
include in a nonlinear difference equation model for  a system. In addition, the ker- 
nel estimation is used as a means o f  studying individual signals to distinguish deter- 
ministic from random behaviour, in an alternative to the use o f  chaotic dynamics. 
Finally, an alternate kernel estimation scheme is presented. 
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I N T R O D U C T I O N  

This article concerns the representa t ion  and  ident i f ica t ion of  a non l i ne a r  system 
by  parallel  cascades of  a l ternat ing dynamic  l inear (L) and  static non l i ne a r  (N) ele- 
ments .  For  present purposes,  the nonl inear  system is defined in discrete t ime, is t ime 
invar iant ,  causal, has finite memory ,  and  is cont inuous ,  in that  small  changes in the 
system input  result in small  changes in  the system output .  

Pa lm (21) has shown that  any  such system can be un i fo rmly  approx imated ,  to an  
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arbitrary degree of  accuracy, by a sum of a sufficient number of LNL cascades. Each 
LNL cascade comprises a dynamic linear system followed by a static nonlinearity 
which is, in turn, followed by a dynamic linear system. Palm (21) actually allowed the 
nonlinear system under approximation to have finite anticipation, in addition to fi- 
nite memory, but in the present article we consider approximation of nonanticipatory 
(i.e., causal or physically realizable) nonlinear systems. Previously, Kolmogoroff  (7) 
had shown that a finite sum of  NLNL cascades could be used to represent exactly a 
very wide class of continuous nonlinear systems. 

The capability of  parallel LNL cascades to represent a wide variety of nonlinear 
systems is a very useful result, but Palm (21) did not describe a method for obtain- 
ing this representation. Korenberg (8,9,13) proposed a procedure for building up such 
a parallel cascade representation for any nonlinear system having a Wiener functional 
expansion. The individual cascade paths of  the parallel arrangement were identified 
one at a time. It was shown that, for the procedure to be general, it sufficed if each 
cascade path comprised a dynamic linear system followed by a static nonlinearity. 
However,  it was also pointed out that the procedure could be extended very simply 
by adding a second dynamic linear system following the static nonlinearity. 

The parallel cascade identification method (8,9,13) does not require use of a Gauss- 
ian input. The method made it possible to construct accurate mimetic models of non- 
linear systems, even those with high-order nonlinearities and lengthy memory. Indeed, 
the parallel cascade method was significantly faster and more accurate than represent- 
ing the nonlinear system by a Wiener (23) functional expansion and estimating the 
kernels in the expansion by the Lee-Schetzen (16) cross-correlation technique. More- 
over, once the parallel cascade representation had been constructed, it could be rear- 
ranged into a corresponding functional expansion. This enabled accurate estimation 
of  the Wiener or the Volterra kernels in the obtained expansion. Kernel estimation 
via the parallel cascade method is accurate even for lengthy system memories (e.g., 
up to 150 lags). While the method does not require a Gaussian or white input signal, 
nor one having special autocorrelation properties, the kernel estimates may depend on 
the choice of input. Thus, a Gaussian input is used to obtain Wiener kernel estimates. 

Recently, Shi and Sun (22) have considered the representation of nonlinear systems 
by parallel cascades. They point out that a discrete-time, finite-memory, finite-order 
Volterra series can be exactly represented by the sum of  a finite number of LNL cas- 
cades. Earlier, Palm (21) had shown that the kernels of  such a Volterra series could 
each be exactly expressed as a finite sum of  separable functions. 

In the next section we show that, in fact, the sum of  a finite number of LN cas- 
cades suffices to represent exactly any discrete-time, finite-memory, finite-order 
Volterra series. [Such an LN cascade is frequently referred to as a Wiener model (6).] 
Moreover,  we provide an upper bound for the number of  LN cascades required to 
represent exactly a Volterra functional of given order. We also point out that the par- 
allel cascade representation of  a given system is not unique. In subsequent sections, 
we describe the parallel cascade identification approach (8,9,13) and illustrate its abil- 
ity to estimate accurately the kernels of  a system with lengthy memory.  The method 
is also used to discover the significant terms to include in a difference equation model 
for a nonlinear system. Also, we show how the kernel estimation can be applied to 
individual signals to distinguish random noise from chaos produced by determinis- 
tic systems. Finally, an alternate scheme for estimating kernels is presented. 
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REPRESENTATION OF DISCRETE-TIME FINITE-MEMORY 
VOLTERRA F U N C T I O N A L S  BY P A R A L L E L  LN C A S C A D E S  

Consider first a cont inuous- t ime,  time-invariant, finite-memory, causal nonlinear 
system which is a continuous functional of  its input. It follows f rom the work of  
Frechet (3) that such a system can be uniformly approximated over a uniformly 
bounded equicontinuous set of  input signals, to an arbitrary degree of accuracy, by 
a Volterra series of  sufficient but finite order. 

Next, for the discrete-time nonlinear system, the corresponding approximation re- 
sult follows immediately from the Stone-Weierstrass theorem (2,21). The finite-order 
Volterra series which is capable of  uniformly approximating the (finite-memory) non- 
linear system over a uniformly bounded set of  input signals has the fo rm 

M 

y s ( n )  = ko + ~_a Vm , n = 0,1 . . . .  (1) 
m=l 

where M is the order of  the series and, for m _> 1, the mth  order Volterra functional 
is 

R R 

Vm = ~a  " ' "  ~ ]  k m ( i l  . . . . .  i m ) x ( n  - i l ) . . . x ( n -  im) . 
il ~o im=O 

(2) 

The zero-order functional is the constant ko, x in Eq. 2 is the system input, k m is 
the m th order symmetric Volterra kernel, and (R + 1) is the memory  length (since the 
series output  y s ( n )  depends on input delays f rom 0 to R lags). 

We will show that each Volterra functional of  Eq. 2 can be exactly represented by 
a finite sum of LN (i.e., dynamic linear, static nonlinear) cascades. We will also find 
an upper bound for the number of  LN cascades required to represent a given order 
functional. 

The zero- and first-order functionals are each exactly represented by a trivial case 
of  a single LN cascade. 

To represent the second-order functional (m = 2 in Eq. 2), consider first the sum 
of  two particular LN cascades. (Slices of  the second-order functional will be con- 
structed f rom these cascade pairs.) The first system in each of  the two cascades is lin- 
ear and has the delta (discrete impulse) response 

h i ( j )  = k 2 ( j , A )  + ( - 1 ) i c 6 ( j  - A )  , i = 1, 2 . (3) 

Here A is a constant selected f rom 0 . . . . .  R, C r 0 is a real constant,  and the delta 
function 6 ( j )  = O, j 4: O, and 6(0) = 1. The corresponding outputs of  the linear sys- 
tems in the two cascades are 

R 

u i ( n )  = ~a h i ( j ) x ( n  - j )  (4) 
j=o 

where i --- 1, 2. 
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The second system in each cascade is a (static nonlinear) squarer defined by 

zi = Fi(u~) 

= ( - 1 ) i u 2 / ( 4 C )  , i = 1 , 2  . 
(5) 

It follows f rom Eqs. 3 through 5 that the sum of  the two cascades has output  

z ( n )  = z~(n)  + z2(n)  

R 

= ~a k 2 ( j , A ) x ( n  - j ) x ( n  - A)  . 
j=0 

(6) 

Suppose each pair of cascades is defined using a different value of  A (in Eq. 3) from 
0 . . . . .  R. Then the sum of the (R + 1) cascade pairs (corresponding to A = 0 . . . . .  R) 
will exactly represent the second-order Volterra functional, so that at most 2(R + 1) 
cascades of  LN type are required. Note that this parallel array of  LN cascades is not 
a unique representation of  the second-order functional: for example, any real C #: 0 
can be used in Eqs. 3 and 5 in defining each cascade pair. In addition, notice that we 
have shown equivalently that the second-order kernel (m = 2 in Eq. 2) can be exactly 
expressed as 

2(R+I) 
k2(il , i2) = ~a ( -1 )%( i l ) )~ ( i2 )  

/=1 

which is a little stronger than the separability result of  Palm (21). 
To represent exactly the third-order Volterra functional (m = 3 in Eq. 2), consider 

first the sum of four LN cascades. The first (linear) system in each of  the cascades 
has delta response respectively: 

h i ( j )  = k 3 ( j ,  A 1 , A z ) - C I 6 ( j - A ~ ) - C 2 6 ( j - A z )  (7) 

h2(j)  = k 3 ( j ,  A I , A 2 )  + C 1 6 ( j - A 1 )  - C 2 6 ( j - A 2 )  (8) 

h3(j)  = k3(j ,  A1 ,A2)  - CI6 ( j  - A1) + C 2 6 ( j -  Az)  (9) 

h4(j)  = k3(j ,  A1 ,A2)  + C t 6 ( j -  A1) + C 2 6 ( j -  A2) �9 (10) 

Here A~ and A2 are constants chosen f rom 0 . . . . .  R;  C~ :g 0, C2 ~ 0 are real 
constants. 

Let ui(n) (Eq. 4), i = 1 . . . . .  4, be the corresponding outputs of  the linear systems 
in the cascades. The second (static nonlinear) system in the cascades is defined respec- 
tively by 

Zj = u3~/(ECI C2) (11) 

Z2 = -u32 / ( ECl  C2) (12) 
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Z3 = - u 3 / ( E C I  C2) ( 1 3 )  

Z4 = u~/ (ECI  C2)  �9 (14) 

In Eqs. 11 through 14, E = 12 if A, :# A 2 and E = 24 if At = AE. 
It follows from Eqs. 4 and 7 through 14 that the sum of  the four LN cascades has 

output  

4 

z(n)  = ~, z~(n) 
i=l 

R 

= 2 ~,, k3 (j ,  A i , A 2 ) x ( n  - j ) x ( n  - A l ) x ( n  - Z2) , 
j=0  

R 
= ~,, k 3 ( j , A , A ) x ( n  - j ) x 2 ( n  - A )  , 

j=0  

Ai ~ A 2  

At = A 2  = A  . 

In general, in defining a set of  f o u r  LN cascades, select Az from 0 . . . . .  R and A 2 

from At . . . . .  R, for a total of  (R + l ) (R  + 2 ) /2  sets. The sum over these sets (of 
four cascades each) will represent exactly the third-order Volterra functional, so that 
at most 2(R + 1)(R + 2) cascades of  LN type are required. Clearly, since Cz ~ 0 and 
C2 :~ 0 are arbitrary real constants, the parallel LN cascade representation of  the 
third-order functional is not unique. Notice we have shown that the third-order kernel 
(m = 3 in Eq. 2) can be exactly expressed as 

2(R+I)(R+2) 

k3(il , i2, i3) = ~ gt(i l)gt(i2)gt(i3) 
/=1 

Fourth- and higher-order functionals can be represented exactly by parallel LN cas- 
cades in an analogous fashion. For the mth  order functional (m > 1) in Eq. 2, it re- 
quires at most 

2 m - ~ ' (  R+m-m-1 1)  

of  such cascades for exact representation. 
Note that in the representation of  a discrete-time, finite-memory, finite-order 

Volterra series by parallel cascades, an arbitrary number of  the cascade paths can be 
chosen at will. For example, in each of  the first 10 parallel paths, one may choose any 
finite number of  arbitrarily selected finite-memory linear systems and (polynomial) 
static nonlinearities. The difference between the original Volterra series and the 10 
parallel paths is itself a discrete-time, finite-memory, finite-order Volterra series, and 
so can be represented exactly by a parallel array of  LN cascades. This parallel array 
plus the 10 parallel paths will exactly represent the original Volterra series. This fur- 
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ther illustrates that the parallel cascade representation of the Volterra series is not 
unique. 

Recall that, by the Stone-Weierstrass theorem, a discrete-time, finite-memory 
Volterra series of sufficient order can (over a uniformly bounded set of  input signals) 
uniformly approximate to an arbitrary accuracy any time-invariant, causal, finite- 
memory, discrete-time nonlinear system which is a continuous functional of its input. 
Hence, such a nonlinear system can also be approximated to an arbitrary degree of  
accuracy by a sufficient number of  LN cascades in parallel. One method for con- 
structing such a parallel array (8,9,13) is described in the next section. 

PARALLEL CASCADE IDENTIFICATION 

Suppose that the nonlinear system to be identified has input x(n) and output y (n ) ,  
n = 0 . . . . .  T. We assume that the input x is sufficiently "rich" to make it possible to 
solve for least-square estimates of  the kernels km in Eqs. 1, 2; that is, unique values 
for the kernels which minimize the mean-square error of  approximating y(n) by the 
Mth  order series of  Eq. 1. However, we do not solve for such kernel estimates di- 
rectly. Instead, we construct a parallel cascade approximation for the given nonlin- 
ear system. Assume that the system output depends on input delays from 0 to R (e.g., 
as in Eqs. 1, 2) so that (R + 1) is the memory length. 

Parallel cascade identification (8,9,13) begins by approximating the nonlinear sys- 
tem with a first cascade of alternating dynamic linear and static nonlinear systems. 
The unidentified residue (i.e., the difference between the nonlinear system output and 
the cascade output) is treated as the output of a new nonlinear system. Another cas- 
cade is identified to approximate the new nonlinear system, the resulting residue is 
computed, and so on. Assume that the original nonlinear system has a Wiener (23) 
functional expansion. This displays convergence in the mean-square sense, a weaker 
convergence than the uniform convergence discussed earlier for continuous func- 
tionals. Then we will show that the nonlinear system can be approximated to an ar- 
bitrary degree of accuracy in the mean-square sense by a sum of a sufficient number 
o f  the individually identified cascades. 

The estimation of a cascade may be outlined as follows. Begin the cascade with a 
linear system whose delta response is defined using a first- or higher-order cross- 
correlation of  the input with the residue. Thus, the delta response is set equal either 
to the first-order cross-correlation or to a slice of a higher-order cross-correlation to 
which delta functions are added or subtracted at diagonal points (as in Eqs. 3 and 7 
through 10). After defining the linear system, its output  is computed (as in Eq. 4), 
and then a static nonlinearity (e.g., a polynomial) is best-fit to the residue. The pro- 
cedure may be continued by adding a second linear system (8) following the static 
nonlinearity. For example, in implementing the parallel cascade identification (8), Mo 
and Elkasabgy (20) followed the static nonlinearity with a linear differential equation 
best-fit to the residue. Once a cascade has been estimated, the new residue is calcu- 
lated, and then a further cascade can be estimated analogously. The procedure will 
be illustrated next when each cascade consists of  a dynamic linear system followed 
by a static nonlinearity. However, it will be appreciated that any number of alternat- 
ing dynamic linear and static nonlinear systems can be added to a cascade path 
(8,9,13). 
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Outline o f  One Version o f  Algori thm 

Let Yi (n) be the residue remaining after adding the ith cascade path to the paral- 
lel cascade model. Thus, yo(n)  = y ( n ) .  Let zi(n) be the output of  the i th cascade. 
Hence, 

y i (n)  = Y i - l ( n )  - z i (n)  , i = 1, 2 . . . . .  (15) 

Consider fitting the ith cascade (i > 1) to the residue Yi-i (n).  Begin by defining 
the delta response hi ( j )  of the dynamic linear system in the cascade. Let '~xyi_~ and 
~b~y~_, denote the first- and second-order cross-correlations of  the input with the res- 
idue, computed over the port ion of  the recording extending f rom n = R to n = T: 

1 T 
~_a Yi-1 ( n ) x ( n  - j )  (16) (t~xYi-I (J) & T - R + 1 ,,=R 

1 T 
Z Yi-I ( n ) x ( n  - j l ) x ( n  - J 2 )  �9 (17) dPxxyi_l (Jl,J2) ~ T - -  R + 1 n=R 

Set hi ( j )  to be one of  

Pl (J) = ~xyi-i ( J )  (18) 

Pz(J)  = C~xxyi_l ( j , A )  ++_ C6( j  - A)  . (19) 

Whether Eq. 18 or Eq. 19 will be used to define hi ( j )  is decided at random.  I f  
Eq. 19 is used, then the integer A is randomly selected f rom 0 . . . . .  R, the sign of  the 
6 term is chosen at random, and C is adjusted to tend to zero as the mean-square of  
the residue approaches zero. For example, set 

C - y21 (n) (20) 
y2(n)  

where (here and elsewhere), the overbar denotes time-average over the portion of the 
record extending from n = R to n = T (as in Eqs. 16, 17). Since the nonlinear system 
to be identified is assumed to have finite memory  lasting up to R lags, therefore 
hi( j )  = O, j > R. Note that, in addition to Eqs. 18 and 19, slices of  third- or higher- 
order cross-correlations may be used to define hi ( j )  with 6-functions added or sub- 
tracted at diagonal values, analogous to Eqs. 7 through 10. This is discussed later. 

Once the delta response hi ( j )  of  the linear system has been determined, calculate 
its output  ui(n) via Eq. 4. To obtain the static nonlinearity, best-fit a polynomial  
having input ui(n) to the residue Yi-1 (n) over n -- R . . . . .  T. The cascade output  is 
then 
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z i ( n )  = F~(u~) 

M 
= Z ailu/ 

l=O 

(21) 

and the new residue y~(n) is given by Eq. 15. 
Hence, the polynomial  coefficients aa minimize the mean-square of  the new resi- 

due over n = R . . . .  , T, and therefore 

y 2 ( n )  = ( y i _ l ( n )  - z i ( n ) )  2 

= yiZ_l (n)  - z T ( n )  . 
(22) 

Thus, the reduction in mean-square error (mse) be adding the ith cascade equals the 
mean-square of  the output of  the ith cascade. 

We can then repeat the procedure to fit the residue y~(n) by an (i + 1)th cascade, 
having output Zi+l (n) .  Note that for i = 1,2 . . . .  

r = (Z~+j (n) /y iZ(n))1/2  (23) 

is the correlation of  zi+~ (n) and yg(n)  over n = R . . . . .  T. I f  the residue were inde- 
pendent zero-mean Gaussian noise, then for sufficiently large T 

Irl < 2 / ~ / T -  R + 1 (24) 

with probabili ty of  about 0.95. Hence, before accepting a given candidate for the 
(i + 1)th cascade, one may optionally require that  

4 
zF+, (n)  > y 2 ( n )  . (25) 

T - R + I  

This requirement (a standard correlation test) helps to avoid choosing unnecessary 
cascades which are merely fitting noise. Note that  4 / ( T -  R + 1) on the right side of  
Eq. 25 can be replaced by other factors (corresponding to different confidence inter- 
vals), or by the square of  the critical correlation coefficient value for sample size 
T - R + I .  

I f  the test is used and a candidate fails to satisfy the immediately above inequal- 
ity, then we may construct and test a new candidate for the (i + 1)th cascade. Begin 
by redefining the delta response hi+j (j)  of  the linear system in the cascade. This may 
be done (analogous to the right sides of  Eqs. 18, 19) via a first-order cross-correlation 
of  the input with the residue yi, or using a slice of  a second- or higher-order cross- 
correlation with di-functions added or subtracted at diagonal values. Then the static 
nonlinearity (e.g., polynomial) is estimated by best-fitting the residue, and the new 
candidate cascade may be tested for compliance with the inequality shown in Eq. 25. 

Parallel cascade development may be stopped when a specified number of  cascades 
have been added or tested, or when the mse has been made sufficiently small. Ter- 
mination may also occur when no remaining candidate cascade can cause a reduction 
in mse exceeding a small threshold level. 
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Outline o f  Proof o f  Convergence o f  Algorithm 

In obtaining the ith cascade, the static nonlinearity represented by Eq. 21 is best- 
fit to the residue yi_~. Since the polynomial's constant term aio is a least-square es- 
timate, it follows that 

Z i = ~ i _  1 , i>_ 1 

Zi  = )~i--1 = 0 , i > 2 , 

in view of  Eq. 15. 
Recall from Eq. 22 that each cascade added to the parallel array reduces the mse 

by an amount equalling the mean-square of  that cascade output. Clearly, the mse of  
the parallel array approximation can be reduced at most to zero. Hence, if the par- 
allel cascade development is continued sufficiently long, eventually no remaining can- 
didate cascade can reduce the mean-square of  the residue more than a negligible 
amount.  Suppose that when this occurs, the existing residue is Yi-~ (n). Thus, i is 
sufficiently large (i.e., a sufficient number of parallel cascade paths have already been 
added), so no matter which candidate is considered for the ith cascade, the mean- 
square (z2(n)) of  that cascade's output is negligible. 

Suppose that the first-order cross-correlation on the right side of  Eq. 18 is used to 
define hi(j) (for the linear system in the cascade). As just noted, the corresponding 
z 2 (n) can be made arbitrarily small by choosing i sufficiently large. We will now 
show that this implies that the first-order cross-correlation of the input with the res- 
idue can itself be made arbitrarily small. 

First, note that if the system to be identified has order (i.e., degree) of  nonlinear- 
ity of at least 2, then M in Eq. 21 will be chosen to be greater than or equal to 2. 
Thus, the mse reduction, which equals z2(n), cannot be less than the reduction in 
mse if only the linear term all u i were best-fit to the residue Yi-l. Least-square fitting 
the linear term alone would cause a reduction in mse equalling 

Reduction (linear) = 
(Yi-I (n)ui(n) ) 2  

u~(n) 
(26) 

which must be less than or equal to z2(ni. Since the first-order cross-correlation on 
the right side of Eq. 18 is used to define hi(j), it follows from Eq. 4 and the Schwarz 
inequality that 

uZ(n) _< yZ(n) xZ(n - j )  

Again, from Eqs. 4 and 18, 

R 

Yi-i(n)ui(n) = )-] 4~ 2 (j) xyi  - 1 
j=O  

Hence, it follows from Eq. 26 that 
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z}(n) 
~xzui_, (j) 

j=O 

/ R )2 
y2(n)  ~ a x Z ( n - - j )  

\j=O 

and since zZ(n) can be made arbitrari ly small, then so can [4~xy~_~ (J)[ for  j = 
0 . . . . .  R. 

Next, suppose that the right side of Eq. 19 (which employs a slice of  a second-order 
cross-correlation) is used to define hi(j) for the ith cascade. Again, the resulting mse 
reduction,  equalling z~(n),  is negligible, since by assumpt ion we have reached 
the stage where no further cascade addition can reduce the mse significantly. Thus, 
whether the &term is added or subtracted on the right side of  Eq. 19, and for each 
value of  A chosen therein, the corresponding z~Z(n) for the cascade is negligible. 
Recall that this reduction in mse results from best-fitting zi (n) (defined by Eq. 21 with 
M___ 2) to the residue. Such a reduction cannot be less than the following mse reduc- 
tion, which results f rom best-fitting only the quadratic t e r m  ai2 u2 to the residue: 

Reduction (quadratic) = 
(yi_l (n)uiZ(n) ) 2 

u~(n) 
(27) 

Thus, the right side of  Eq. 27 must be less than or equal to zZ(n) ,  which can be 
made arbitrarily small. Using Eq. 4 and the Schwarz inequality, it is easy to show that 
the denominator u4(n) in Eq. 27 is less than a bound which depends only on x and y. 
This implies that the numerator  on the right side of  Eq. 27 can be made arbitrarily 
small. Now, from Eq. 4, 

R R 

Yi-i (n)uZ(n) = ~a 2~a 4~xxy,_, (Jl,A)c~xxy~_, (j2,A)4~xxyg , (Jl,J2) 
Jl  = 0  j2=O 

R 

+ C2c~xxyi_t(A,A) +_ 2C Z 2 ~xxYi-I (J, A ) 
j = O  

(28) 

where the sign of the last term on the right side matches the sign of the &term in 
Eq. 19. Since the magnitude of  the right side of  Eq. 28 can be made arbitrarily small 
for either sign of the last term, therefore 

R 
2 

~)XXYi_ I ( J , A  ) 
j=0 

can be made arbitrarily small. Since this is true for each value of A, therefore 
I Oxxy~_, ( j ,A)  [ can be made arbitrarily small for j = 0 . . . . .  R and A = 0 . . . . .  R. 

Next, suppose that hi(j) is defined using a slice of  a third-order cross-correlation 
of  the input with the residue; that is, set hi(j) equal to 

P3(J) = C~xxxyi I(j, AI ,A2)  + C I 6 ( j -  A,)  + C 2 6 ( j -  A2) �9 (29) 
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In Eq. 29, Al is randomly selected from 0 . . . . .  R and A 2 from A1 . . . . .  R, and the 
sign of each 6-term is chosen at random. The real constants C~ ~ 0 and C2 :~ 0 each 
tend to zero as the mean-square of  the residue approaches zero (for example, as in 
Eq. 20). Notice the similarity between Eq. 29 and Eqs. 7 through 10. 

As noted, the mse reduction, equalling zi2(n), can be made arbitrarily small (for 
sufficiently large i). This is true irrespective of the signs of the 6-terms in Eq. 29, and 
the values chosen for A l, A2, in defining hi(j) .  Assume that in defining the static 
nonlinearity via Eq. 21, we choose the polynomial degree M >_ 3. Then it may be 
shown that, for sufficiently large i, [C~xxyj_~ (j,A~,A2)[ can be made arbitrarily small 
f o r j  = 0 . . . . .  R; Al = 0 . . . . .  R; and A2 = 0 . . . . .  R. 

In summary, the delta response hi(j)  of  the linear system in the cascade can be 
defined using the right side of Eqs. 18, 19, 29 (and analogous expressions involving 
slices of  higher-order cross-correlations) chosen at random. If the parallel cascade de- 
velopment is continued sufficiently long, we will eventually achieve a residue Yi-l(n)  
whose cross-correlations (with the input) are arbitrarily small, up to order M, the 
polynomial degree in Eq. 21. 

Assume we have noise-free conditions and that the nonlinear system to be identi- 
fied can be very accurately approximated, in the mean-square sense, by a Volterra se- 
ries of  order not exceeding M. Then the residue Yi-~ can itself be very accurately 
approximated by a Volterra series of  order M. Hence, the fact that )~i-~ -- 0 and that 
the cross-correlations C~xy~_,, d~xxy~_, . . . .  (up to Mth  order) can be made arbitrarily 
small for sufficiently large i implies that the mean-square of the residue Yi-~ (n) can 
be made arbitrarily small for sufficiently large i. Hence, the sum of  the individually 
obtained cascades can approximate the given nonlinear system to an arbitrary degree 
of accuracy, in the mean-square sense. Note that this result does not require that the 
input x to the nonlinear system be Gaussian or white, nor have special probability 
density or autocorrelation properties. 

Further Details o f  the Algorithm 

Kernel Estimation. Suppose that the parallel array has been developed until no fur- 
ther cascade can reduce the mse more than a negligible amount. (The mse itself may 
not be negligible due to noise contamination or because the polynomial degree M in 
Eq. 21 was not chosen sufficiently large.) The identified parallel cascade array can 
be rearranged into a corresponding Volterra series of  order M. This particular 
Volterra series will approximate the nonlinear system with very nearly the minimum 
mean-square error out of all series of  order M and memory length R + 1. (This is be- 
cause the residue mean is zero and the input-residue cross-correlations up to order M 
have been made very nearly zero.) Thus, the kernels in the obtained Volterra series 
are very nearly least-square estimates. 

Suppose the nonlinear system to be identified has a Volterra series representation 
(Eq. 1) of order M a n d  memory length R + 1. Then in the absence of  noise contam- 
ination, the kernels obtained via parallel cascade will be very close to the actual 
Volterra kernels of the system. Note that there will be one value estimated for the 
zero-order kernel/Co, (R + 1) values for the first-order kernel k~, (R + 1)(R + 2) /2  
distinct values for the second-order kernel k2, and so on. The parallel cascade 
method (8,9,13) is particularly suited to estimating kernels of  systems with lengthy 
memory. For  example, if the nonlinear system had a second-order Volterra series 
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( M =  2 in Eq. 1) with memory length (R + 1) equal to 150, then the 11,476 distinct 
kernel values could readily be estimated via the parallel cascade method. (See an ex- 
ample following for a memory length of 100.) However, attempting to obtain the ker- 
nel values by direct least-squares estimation would instead require the numerically 
formidable inversion of  a 11,476 x 11,476 symmetric matrix, which is not Toeplitz 
or near Toeplitz to enable rapid inversion. The advantage of  the parallel cascade ap- 
proach becomes even more pronounced in estimating third- and higher-order kernels. 

Suppose that the input x is a zero-mean white Gaussian process, and that an Mth  
order Volterra series approximation is obtained via parallel cascade. Then the Mth  
and ( M -  1)th order kernel estimates obtained will closely approximate the Wiener 
kernels of  corresponding order. These estimates tend to be significantly more accu- 
rate than those found by the cross-correlation method (16), when the record length 
is relatively short. 

Modeling High-Order Nonlinear Systems. Aside from its use in kernel estimation, 
parallel cascade identification is convenient for modeling systems with high-order 
nonlinearities. This is because approximating a higher-order nonlinear system via a 
parallel cascade merely requires increasing the degree of the (polynomial) static non- 
linearities in the cascade paths, and/or  the number of static nonlinearities in a given 
path. The key advantage is that the nonlinearities in the parallel cascade array always 
occur as static functions. Hence, their estimation is far faster than computing the 
higher-order cross-correlations required to approximate higher-order nonlinear sys- 
tems via the Wiener-Lee-Schetzen functional expansion approach. Note that while the 
static nonlinearities in the cascade paths have been represented by polynomials above, 
other sets of  basis functions, such as gate functions, could equally well be used. 

Recall that each cascade began with a linear system whose delta response was de- 
fined above using a slice of a cross-correlation (first- or higher-order) of the input with 
the residue. First, notice that when a higher-order cross-correlation is used, only a 
single slice need be computed, rather than the entire cross-correlation as in the Lee- 
Schetzen (16) approach. Second, note that slices of  cross-correlations of  first-, 
second-, and possibly third-order may sometimes suffice (in defining the linear sys- 
tems in the cascade paths) even when the system to be identified has much higher- 
order nonlinearities. This is because the static nonlinearity in the path allows the 
cascade to approximate higher-order nonlinear components of  the residue even if a 
lower-order cross-correlation was used in defining the linear system preceding the 
static nonlinearity. 

More on Developing a Cascade Path. In place of slices of  input-residue cross- 
correlations, one may define the linear system at the beginning of a cascade using a 
set of basis functions such as the Laguerre functions, sinusoids, exponentially decay- 
ing sinusoids, and exponentials. Thus, the delta response of the linear system can ran- 
domly be set equal either to one of  the basis functions or to sums and/or  differences 
of  two or more of  the functions. 

Whichever way the linear system (in, say, the ith cascade) is defined, its output ui 
is next calculated. Then least-square procedures are used to fit a static nonlinearity 
(having input ui) to the residue (8). Previously, Korenberg (8) pointed out that this 
parallel cascade identification could trivially be extended by adding a second linear 
system following the static nonlinearity in the cascade under development. Mo and 
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Elkasabgy (20) noted that this significantly accelerated the rate of  convergence in sim- 
ulated examples. In their simulations, least-square procedures were used to fit a dif- 
ferential equation (to the residue) for the second linear system. The process of  adding 
static nonlinear and dynamic linear elements to the cascade may be continued indef- 
initely (9,13), and of course each linear system can be defined in terms of  its delta re- 
sponse or as a difference equation. Note that once the first linear system has been 
determined, the same approach is used each time thereafter to add a new element to 
the cascade under construction. Namely, the output,  say vi, of the last block in the 
cascade is calculated, then least-square procedures are used to fit the new element 
(having input vi) to the residue. 

Alternately, instead of  adding the additional systems one at a time to the cascade, 
one may adapt  (9) a relaxation technique (1) to parallel cascade identification. Thus, 
suppose only the linear system at the beginning of  the cascade has been determined. 
We may then add a static nonlinearity followed by a second linear system, and iter- 
atively update one based on the current estimate of  the other. For example,  best-fit 
the static nonlinearity, with the delta response of  the second linear system initially set 
equal to a &function. Then best-fit the second linear system based on the current es- 
t imate of  the static nonlinearity. Next, update the estimate of  the static nonlinearity 
based on the latest estimate of  the second linear system, and so on in an alternating 
procedure to hone the estimates of  the two systems. A variation of this (6) can be used 
to fit the initial pair of  linear and static nonlinear systems in any path. 

Alternately, a nonlinear mean-square-error minimization technique can be used to 
fit the current residue with the "best"  LN or LNL model (8) in the path under con- 
struction. Then the new residue is computed and the minimization technique is used 
to fit another LN or LNL cascade, etc. 

Multiinput Multioutput System Identification. The parallel cascade identification 
(8,9,13) can readily be extended to model multiinput mult ioutput  systems. Suppose 
that the nonlinear system to be identified has inputs x~ (n) ,  x2(n) and output  y(n) .  
Then, when a new path is to be added to the parallel array, one of Xl ,x2 is chosen at 
random to be the input to the cascade. The cascade may then be constructed as set 
out earlier. In addition, we can introduce cross-products of  xx,x2 into the parallel 
array. For example, for the ith cascade, we may define the first linear system using 
a slice of  a cross-correlation of  the residue Yi-~ with both x~ and x2. Thus, let 

1 T 
~a y i - l (n )x l (n - - j l ) x z (n - - J2 )  �9 (30) ~)XlX2Yi--I (Jl,J2) ~- T -  R + 1 ~=R 

I f  xl is to be the input to the ith cascade, set the delta response hi(j) of  the first lin- 
ear system to equal 

P4(J)  = Ckxlx2yi_, ( j ,A ) (31) 

where A is chosen at random from 0 . . . . .  R. Next, calculate the output  ui of  the lin- 
ear system using Eq. 4 with x = Xl. Then let 

wi(n) = ui(n) ++- Cx2(n - A )  (32) 
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where the sign is chosen at random, and C is adjusted to tend to zero as the mean- 
square of the residue approaches zero (for example, as in Eq. 20). Next, we can best- 
fit a static nonlinearity (having input wi) to the residue, and subsequently proceed as 
for any other cascade. 

Whether Eq. 18, 19, 29, or 31 will be used to define hi(j) is decided at random. 
In addition, hi(j) can be defined using a slice of  a higher-order cross-correlation 
(than in Eq. 30) of  the residue with both xl and x2. 

The identified parallel array can be rearranged to obtain estimates of  the self- and 
cross-kernels for the nonlinear system. 

Difference Equation Development via Parallel Cascade. This procedure is particularly 
useful for discovering the significant terms to include in a difference equation model 
for a nonlinear system with unknown structure. For example, if x and y are respec- 
tively the single input and output, we can construct a parallel array having two inputs 
Xl (n) = x (n),  x2 (n) = y (n - 1), and one output y (n). Once the parallel cascade ar- 
ray has been identified (and rearranged into a functional expansion format),  the re- 
sulting self- and cross-kernels reveal the significant terms for a difference equation 
model. (See an example following.) This exploits the ability of  parallel cascade iden- 
tification to handle lengthy memories (which here means many lagged values of both 
x and y) and effectively perform a global search for significant terms. 

Once the significant terms (or a much reduced set of  candidate terms) have been 
earmarked by this process, their coefficients should be determined by other proce- 
dures; see, for example, (1 l ,  12). This is because the parallel cascade development is 
conveniently continued just long enough for the resulting kernel shapes to reveal the 
significant terms, but not the precise coefficient values. 

This procedure can clearly also be used to discover the significant terms to include 
in multiinput, multioutput difference equation models. 

Distinguishing Chaos from Random Noise. A great deal of  attention (4,17) has been 
paid to the problem of distinguishing between chaotic behaviour due to a determin- 
istic system and noise due to random processes. Parallel cascade identification and 
kernel estimation can provide a useful approach (10) to this problem. Suppose y ( n ) ,  
n = 0 . . . . .  Tis  given time-series data and we wish to determine whether y(n)  is de- 
terministic chaos or random noise. One approach to doing this is to treat a delayed 
version of  y as the system input, and the original (undelayed) signal y as the system 
output;  then identify a parallel cascade approximation for the created system. This 
exploits the ability of parallel cascade identification to model readily high-order non- 
linear systems, which may be necessary to "copy" the created system, particularly if 
a lengthy delay is used in creating the system input. 

Suppose that the correlation test of  Eq. 25 is used as a requirement for accepting 
a candidate cascade into the parallel array. If the signal y (n) is chaos, then the iden- 
tified parallel cascade array will have a smaller mse (as a percentage of  the variance 
of  y),  and more cascade paths will be chosen than if y were independent noise. In- 
deed, if y were merely independent noise, the expected performance (for the number 
of  candidate cascades tested) can readily be calculated and compared with the actual 
result of  the parallel cascade identification. 

In addition, kernel estimates can be obtained from the identified parallel array. If 
y is due to a deterministic system, the obtained kernels characterize the signal and may 
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detect subtle changes in it (10). For example, we may wish to study changes in a mon- 
itored physiological variable due to disease or aging, or due to an administered drug 
or other treatment. (Note that the kernels obtained will of course depend [10] on the 
amount of  delay used in creating the input signal.) If  y were independent noise, the 
kernel estimates would tend to be very noisy and negligibly small. 

Finally, note that both the identified parallel cascade and the kernel estimates can 
be utilized to predict future values for a chaotic signal. 

E X A M P L E S  

Kernel Estimation 

The system to be identified was a second-order Volterra series (M = 2 in Eq. 1) 
with a memory length (R + 1) equal to 100. Hence one zeroth-, 100 first-, and 5050 
distinct second-order kernel values were to be estimated, via the cross-correlation (16) 
and parallel cascade (8,9,13) methods. A second-order series was chosen because then 
the corresponding Volterra and Wiener kernels of  first and second order are equal. 
A zero-mean Gaussian white-noise input was used to generate 10,000 input-output 
data pairs. 

The identified parallel cascade model had an mse of 0.053%. The actual first-order 
kernel and the close parallel cascade estimate are shown in Fig. 1. The second-order 
kernel (Fig. 2) was also estimated accurately (Fig. 3) by the parallel cascade method. 
(The parallel cascade kernel estimates can be made even more accurate simply by add- 
ing more cascades to the parallel array.) The cross-correlation first-order (Fig. 4) and 
second-order (Fig. 5) kernel estimates are significantly less precise. Cross-correlation 
estimates do approach the actual kernel values with increasing record length. How- 
ever, even with a record of 100,000 data pairs, cross-correlation estimates do not at- 
tain the accuracy of  the parallel cascade results in Figs. 1 and 3. Parallel cascade 
estimation of kernels is robust; see (13) for performance when noise contaminates the 
system output. 

Note that attempting to solve for the kernel values by direct least-squares estima- 
tion would here entail inversion of a 5151 x 5151 symmetric matrix, which is neither 
Toeplitz nor near Toeplitz. 

Determining the Significant Terms in a Difference Equation Model  

The test system was a nonlinear difference equation which had been identified by 
McIlroy (19) to model a simulated communications channel. By searching through 
a set of candidates, he found (in the order shown) 15 significant terms, including a 
constant, and x, y, xx, yy  (but no xy)  terms: 

y ( n )  = -0.636507 + 1.08717x(n - 24) + 0.914799x(n - 23) 

- 0.698645x(n - 27) + 0.967739x(n - 25) + 0.787682x(n - 22) 

- 0.630834x(n - 28) + 0.160929x(n - 30) - 0.209741x(n - 32) 

+ 0.397268x(n - 21) - 0.117377x(n - 29) - 0.49215y(n - 2) 

+ 0.114922y(n - 5) + 0.129476x(n - 24)x(n - 23) + 0.211136yZ(n - 1) . 
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FIGURE 1. Actual first-order Wiener kernel and parallel cascade estimate, obtained using 10,000 
points of white Gaussian input. 

FIGURE 2. Actual second-order Wiener kernel. 



Parallel Cascade Identification 445 

FIGURE 3. Parallel cascade estimate of second-order Wiener kernel, obtained using 10,000 points 
of white Gaussian input. 
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FIGURE 4. Actual first-order Wiener kernel and cross-correlation estimate, obtained using 10,000 
points of white Gaussian input. 
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FIGURE 5. Cross-correlation estimate of second-order Wiener kernel, obtained using 10,000 points 
of white Gaussian input. 
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FIGURE 6. First-order x kernel, giving an indication of the significant linear x terms for (nonlinear) 
difference equation model, 
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This difference equation was used in the present example to generate 2000 input-out- 
put data pairs. The input was white noise uniformly distributed between - 1 . 5  and 1.5. 

With this input-output data, parallel cascade was utilized to identify a difference 
equation model having lags in x from 0 to 34, and lags in y from 1 to 35. The pro- 
cedure set out earlier (multiinput/output and difference equation via parallel cascade) 
was employed, except that cross-product terms were not introduced. 

The linear x terms selected by parallel cascade are shown in the first-order x ker- 
nel in Fig. 6. Note that this kernel indicates (correctly) that there are no significant 
linear x terms with a lag less than 21. The first-order y kernel (Fig. 7) does not as 
clearly reveal the significant terms, but does appear to rule out, for example, linear 
y terms with lags 16, 17, 20, 22, 28, 30, 35 (this is clearer f rom the actual kernel val- 
ues). Since linear x and y terms are relatively few in total, there is little inconvenience 
in retaining as candidates any terms which are not clearly ruled out by this parallel 
cascade screening. 

Parallel cascade is very useful in revealing the significant x x  and yy  terms, where 

0.16 -- 

1ST ORDER Y-KERNEL ( D [ F  EQN MOOEL) 

0.10 

0.05 

0.00 

-O.EE; 

-0.40 

- 0 . 1 5  
 0J00  200  J00  J00  .00 

FIGURE 7. First-order y kernel, giving an indication of the significant linear y terms for (nonlinear) 
difference equation model. 
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FIGURE 8. The (second-order) x x  kernel, giving an indication of the significant x x  terms for nonlinear 
dif ference equation model. 

there are 630 candidates of  each type. The (second-order) x x  kernel (Fig. 8) correctly 
had its largest magnitude at the lag pair (23,24), and there were 67 other distinct terms 
with a kernel magnitude of  at least 10% of  the largest kernel magnitude. The (second- 
order) yy  kernel (Fig. 9) correctly had its largest magnitude at (1,1), and only eight 
other distinct terms had a kernel magnitude at least 10% of this size. Thus, when there 
are many candidate terms of  a given class, parallel cascade can pick out a much re- 
duced subset of  terms to explore. 

FIGURE 9. The (second-order) yy  kernel, giving an indication of the significant y y  terms for nonlinear 
dif ference equation model. 
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ALTERNATE M E T H O D  FOR KERNEL ESTIMATION 

Over the past 20 years, kernel estimation has played an increasingly important part 
in mathematically characterizing the functioning of nonlinear physiological systems; 
see in particular the book by Marmarelis and Marmarelis (18). A major breakthrough 
in the calculation of Wiener kernels (23) was the cross-correlation method of  Lee and 
Schetzen (16). The following method (11,12,14) of  kernel estimation is briefly pre- 
sented here to clarify a few points about  its operation.  

For convenience, we will illustrate the method by estimating the kernels in a 
second-order Volterra series approximat ion of a nonlinear system (M = 2 in Eq. 1, 
except that the memory  length is now R rather than R + 1): 

R - I  R - I  R - I  

z~ (n )  = ko + ~ k l ( i ) x ( n  - i)  + ~ ~ k 2 ( i l , i 2 ) x ( n  - -  i l ) x ( n  - i2) 
i=0  i1=0 i2=0 

n = 0 ,  1 . . . . .  T .  
(33) 

To estimate the kernels ko, kl ,  k2, begin by rewriting Eq. 33 as follows (15): 

P 

Zs (n )  = ~ a ( m ) q m ( n )  . (34) 
m=O 

Here P = R + R ( R  + 1)/2, and for n = R . . . .  , T ,  q o ( n )  = 1, 

q ,n (n )  = x ( n - m +  1) , m =  1 . . . .  ,R  . (35) 

For m = R + 1 . . . . .  P, the q,, (n) are defined as follows (colons are used below to 
separate portions of  the code which should be set out on separate lines for increased 
readability): 

r n - - R : F O R J I = 0 T O R -  I : F O R J 2 = J 1  T O R -  1 

m - - m +  I : F O R n - - R T O  T 

q m ( n )  = x ( n  -- J 1 ) x ( n  - J2)  

NEXT n: NEXT J2: N E X T  J 1 
(36) 

The coefficients a ( m )  in Eq. 34 are directly related to the kernels in Eq. 33, and 
are found to minimize the mse 

e = ( y ( n )  - zs(n)) z 

computed over the record port ion n = R . . . . .  T. To estimate the a ( m ) ,  we may use 
a Cholesky factorization, for example, via the following pseudocode: 
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D(0,0) = 1: F O R  m = 1 T O  P 

D(m,O)  = qm(n)  (37) 

F O R  r = 1 T O  m 

D ( m , r )  = q m ( n ) q r ( n )  (38) 

N E X T  r:  N E X T  m:  F O R j  = 0 TO P -  1 

F O R  m = j  + 1 TO P :  D D  = D ( m , j ) / D ( j , j ) :  F O R  r = j  + 1 TO m 

D ( m , r )  = D ( m , r )  - D ( r , j ) . D D  

N E X T  r: N E X T  m: N E X T  j 

F O R j = 0 T O P -  I : F O R m = j +  1 T O P  

D ( m , j )  = D ( m , j ) / D ( j , j )  

N E X T  m:  N E X T  j 

G(0)  = y ( n )  (39) 

F O R  m = 1 TO P 

G ( m )  = y ( n ) q m ( n )  

N E X T m : F O R j = 0 T O P -  I : F O R m = j +  1 T O P  

G ( m )  = G ( m )  - D ( m , j ) . G ( j )  

N E X T  m:  N E X T  j :  F O R  m = 1 TO P 

G ( m )  = G ( m ) / D ( m , m )  

N E X T  m . 

(40) 

Other  codes,  for  example ,  the Cho lesky  ou te r  p r o d u c t  vers ion  [see G o l u b  and  Van 
Loan  (5)], m a y  also be used. However  the code set out  above  has proved par t icu la r ly  
robus t  in extensive test ing.  

The a ( m )  can now be calculated f rom the G ( m )  and the D ( m , j )  according to the 
fo l lowing f o r m u l a  (15): 

P 

a ( m )  = y] G ( i ) v ( i )  (41) 
i = m  

where  

v ( m )  = 1 (42) 

i i 1  

v( i )  = ~], D ( i , r ) v ( r )  , i = m + l , . . . , P  . (43) 
r = m  

Hence ,  the zero-  and  f i r s t -o rder  kernels  are 

ko = a(O) 

k i ( i )  = a ( i  + 1) , i =  0 . . . .  , R  - 1 . 
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The second-order kernel k 2 ( I  1,I2)  can be obtained as follows: 

m = R :  FOR 11 = 0 T O R  - 1 

FOR 12 = I1 TO R - 1: m = m + 1: k 2 ( I 1 , I 2 )  = a ( m )  

IF I1 r 12 T H E N  k 2 ( I 1 , I 2 )  = 0.5 k 2 ( I 1 , I 2 )  

NEXT I2 :  NEXT I1 . 

This yields the (best) second-order Volterra series approximation,  with mse 

P 

y 2 ( n ) - -  ~]  G 2 ( m ) D ( m , m )  . 
m~O 

Replacing P with R in the foregoing expression gives the mse of the best first- 
order Volterra series approximat ion (having memory  length R). Replacing P with R 
in Eqs. 41 and 43 yields the a ( m )  (and hence the corresponding zero- and first-order 
kernels) for the best first-order Volterra series approximation.  

The time-average on the right side of  Eq. 39 is, clearly, the output mean, computed 
over the port ion of  the record n = R . . . . .  T. The time-average on the right side of  
Eq. 40 is, for m = 1 . . . .  ,R, the first-order input output cross-correlation 4~xy(m - 1) 
and for m = R + 1 . . . . .  P, the second-order cross-correlation C~xxy(J1,J2 ). These 
cross-correlations are defined as in Eqs. 16 and 17 with Yi-i replaced by y. 

A key part  of  the algorithm (11,12,14) is the efficient calculation of  the time- 
averages on the right sides of  Eqs. 37 and 38, and to overlook this aspect is to miss 
what makes the algorithm fast. The time-average in Eq. 37 is, for rn - 1, the input 
mean (as computed over n = R . . . . .  T), and for m = 2 . . . .  ,R can be calculated f rom 
the mean using the relation 

l m--2  

q m ( n )  x(n) + 
T - R +  1 j=z'a o 

[ x ( R  - j -  1 ) - x ( T - j ) ]  . (44) 

Eq. 44 simply "corrects" for the finite record length. This correction, and in fact all 
the corrections for finite record length, can be carried out recursively. For example,  

ql (n)  = x ( n )  (45) 

qm(n)  = qm-l(r t )  + 
T - R + I  

[ x ( R  - m + 1 ) - x ( T - m + 2 ) ]  

m = 2 , . . . , R  . 
(46) 

However,  in correcting the more complicated time-averages for the finite record 
length, recursive calculations tend to be less accurate, and so efficient nonrecursive 
schemes are also pointed out following and in refs. (11,14). 

The remaining time-averages in Eqs. 37 and 38 can be calculated efficiently f rom 
the input autocorrelations of  first, second, and third order, respectively qSxx, 4~x~, 
and 4~xx~, defined analogously to earlier correlations (e.g., for first and second or- 
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der ,  rep lace  ..vi_ 1 in Eqs.  16 and  17 with  x) .  This m e t h o d  o f  ca lcula t ing  the  requ i red  
t ime-averages  is much  fas ter  than  c o m p u t i n g  them independen t ly .  

F o r  example ,  in view o f  Eq.  36, the  t ime-ave rage  in Eq.  38 for  m = R + 1 . . . . .  P 
and  r -- R + 1 . . . . .  m has  the  fo rm 

q m ( n ) q r ( n )  = x ( n  - J 1 ) x ( n  - J 2 ) x ( n  - J 3 ) x ( n  - J 4 )  . (47) 

I f  this  t ime-average  were i ndependen t ly  c o m p u t e d ,  for  J 1  = 0 . . . . .  R - 1, J 2  = 
J1  . . . . .  R - 1, J 3  = J 2  . . . . .  R - 1, and J 4  = J 3  . . . . .  R - 1, then the number  o f  mul- 
t ip l i ca t ions  would  be a b o u t  R 4 T / 4 !  Ins tead ,  the t ime-ave rage  is r ead i ly  ca lcu la ted  
f r o m  th . . . .  ( J 4  - J 1 ,  J 3  - J 1 ,  J 2  - J 1 )  by  correc t ing  for  the  f inite r eco rd  length,  
and  then the to ta l  number  o f  mul t ip l ica t ions  (for requi red  values o f  J 1 ,  J 2 ,  J 3 ,  J 4 )  
is a b o u t  R 3 T / 3 !  I f  the m e m o r y  length R is 60, then  we do  abou t  1/15 o f  the  mul-  
t ip l ica t ions  otherwise  requi red .  

Refe r r ing  to  Eq.  36, def ine  the func t ion  D L ( J 2 ,  J 1) which  gives the  va lue  o f  m 
co r r e spond ing  to  given values  o f  J 1 ,  J 2 :  

m = R : F O R J 1  = 0 T O R -  I : F O R J 2 = J 1  T O R -  l : m = m +  1 

D L ( J 2 , J 1 )  = m 

N E X T  J 2 :  N E X T  J1  . 

(48) 

Cer ta in  o f  the  requ i red  t ime-averages  on  the r ight  side o f  Eqs.  37 and  38 are ex- 
act ly  given by  the au toco r r e l a t i ons  4~xx, Chxxx, Chx~xx and  m a y  be specif ied as fol lows:  

F O R J = 0 t o R -  1: m = DL(J ,O)  

qm (n)  = Oxx(J) 

qJ+l ( n ) q l  (n )  = Oxx(J)  

N E X T  J 

F O R  J1  = 0 T O R -  1: m l  = D L ( J I , O )  

F O R  J 2  = J 1  T O R -  1 : m 2  = D L ( J 2 , 0 ) :  m 3  = D L ( J 2 , J 1 )  

qml (rt)qJ2+l (n )  = 0 ~ x ( J 2 ,  J 1) 

q m 2 ( n ) q j l + l  (n )  = dPxxx(J2,J1) 

q m 3 ( n ) q l ( n )  = O~x~(J2 ,J1)  

N E X T  J 2 :  N E X T  J1  

F O R  J l  = 0 TO R - 1: m l  = D L ( J I , O )  

F O R  J 2  = J 1  TO R - 1 : m 2  = D L ( J 2 , 0 ) : m 2 1  = D L ( J 2 , J 1 )  

F O R  J 3  = J 2  TO R - 1 : m 3 = D L ( J 3 , 0 )  : m 31 = D L ( J 3 ,  J 1) : m 32 = D L  ( J 3 ,  J 2 )  

qm32(n)qml (n )  = dPxxxx(J3,J2,J1 ) 

qm31 (n)qm2(r / )  = daxxxx(J3,J2, J 1 )  

qm3(n)qm21(n)  = q~xxxx(J3,J2, J 1 )  

N E X T  J 3 :  N E X T  J 2 :  N E X T  J1  . 

Depend ing  on the p r o g r a m  setup,  it m a y  be i m p o r t a n t  to  note  tha t  m 3  can  be less 
t han ,  equal  to,  or  grea ter  t han  m21.  
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The remaining t ime-averages required in Eqs. 37 and 38 can be calculated f rom the 
au toco r r e l a t i ons  4~xx, Oxx~, q~xxxx by cor rec t ing  for  the  f ini te  record  length.  Cons ide r  
the  t ime-averages  der ived  f rom 'bxx. These t ime-averages  can  be ca lcu la ted  recur-  
sively using the re la t ion:  

1 
x ( n - J l ) x ( n - J 2 ) = x ( n - J l + l ) x ( n - J 2 + l ) +  T - R + I  

• [ x ( R - J 1 ) x ( R - J 2 ) - x ( T - J 1  + 1 ) x ( T - J 2 +  1)]/ 
) 

(49) 

The  fol lowing pseudocode  carries out  this recursive ca lcula t ion  and assigns the result  
to  each o f  the t ime-averages  having  the same value:  

F O R  J =  0 TO R - 1: A I ( J )  = ~ x x ( J ) :  N E X T  J 

F O R  J1  = 1 T O R -  I : F O R J 2 = J 1  T O R -  I : m = D L ( J 2 , J 1 )  

A I ( J 2  - J 1 )  = A l ( J 2  - J l )  + ( x ( R  - J l ) x ( R  - J 2 )  

- x ( T -  J 1  + 1 ) x ( T -  J2 + 1 ) ) / ( T -  R + 1) 
q m ( n )  = A I ( J 2 -  J 1 )  

q g 2 + l ( n ) q g l + l ( n )  = A l ( J 2  - J 1 )  

N E X T  J 2 :  N E X T  J1  . 

T ime-averages  der ived  f rom ~xxx can be ca lcu la ted  recurs ively  using a r e l a t ion  
ana logous  to Eq. 49. This can be expressed in the fol lowing pseudocode ,  which again  
assigns the  resul t  to every t ime-ave rage  having  the same value.  

F O R  J1  = 0 T O R -  I : F O R J 2 = J 1  T O R -  1 

A 2 ( J 2 , J 1 )  = r  N E X T  J 2 :  N E X T  J 1  

F O R  J l  = 1 TO R - 1: F O R  J 2  = J 1  TO R - 1 : m 2 1  = D L ( J 2 , J 1 )  

F O R  J 3  = J 2  TO R - l :  m31 = D L ( J 3 , J 1 ) :  m32 = D L ( J 3 , J 2 )  

A 2 ( J 3  - J 1 , J 2  - J 1 )  = A 2 ( J 3  - J 1 , J 2  - J l )  

+ x ( R  - J 1 ) x ( R  - J 2 ) x ( R  - J 3 ) / ( T -  R + 1) 

A 2 ( J 3  - J 1 , J 2  - J 1 )  = A 2 ( J 3  - J 1 , J 2  - J 1 )  - [ x ( T -  J 1  + 1) 

• x ( T - J 2  + l ) x ( T - J 3  + 1 ) ] / ( T - R  + 1) 

qm21 ( n ) q j 3 + l  (n )  = A 2 ( J 3  - J 1 , J 2  - J 1 )  

qm31 (n)qj2+x (n )  = A 2 ( J 3  - J 1 , J 2  - J 1 )  

qm32(n)qJ l+l  (n )  = A 2 ( J 3  - J 1 , J 2  - J 1 )  

N E X T  J 3 :  N E X T  J 2 :  N E X T  J 1  . 

F ina l ly ,  t ime-averages  der ived  f rom q~x~x~ can  be ca lcu la ted  recurs ively  v ia  a for-  
m u l a  ana logous  to  Eq.  49, which can  be expressed in the  fo l lowing  p s e u d o c o d e :  
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F O R  J1  = 0 T O R -  1 : F O R J 2 = J 1  T O R -  1: F O R  J 3  - - J 2 T O R -  1 

A 3 ( J 3 , J 2 , J 1 )  = Ox~xx(J3,J2,J1):  N E X T  J 3 :  N E X T  J 2 :  N E X T  J1  

F O R  J1 = 1 TO R -  1: FOR J 2  = J1  TO R -  1 : m 2 1  = D L ( J 2 , J 1 )  

F O R  J 3  = J 2  TO R - 1 :m31  --- D L ( J 3 , J 1 ) :  m32 --- D L ( J 3 , J 2 )  

F O R J 4 = J 3  T O R -  1 :m41  = D L ( J 4 , J 1 ) :  m 4 2 = D L ( J 4 , J 2 )  

m43 = D L ( J 4 , J 3 )  

A 3 ( J 4 - J I , J 3 - J 1 , J 2 - J 1 ) = A 3 ( J 4 - J 1 , J 3 - J 1 , J 2 - J 1 ) +  [ x ( R - J 1 )  

x x ( R  - J 2 ) x ( R  - J 3 ) x ( R  - J 4 ) ] / ( T  =- R + 1) 

A 3 ( J 4 -  J 1 , J 3  - J 1 , J 2 -  J1 )  = A 3 ( J 4  - J 1 , J 3  - J 1 , J 2 -  J1 )  

- [ x ( T - J l + l ) x ( T - J 2 + l ) x ( T - J 3 + l )  

x x ( T - J 4 +  1 ) ] ~ ( T - R +  1) 

qm43 (n)qm21 ( n )  = A 3 ( J 4  - J 1, J3  - J 1, J 2  - J 1) 

qm42 (n)qm31 (n) = A 3 ( J 4  - J 1, J 3  - J 1, J 2  - J 1) 

qm41 (r/)qm32(r/) = A 3 ( J 4  - J 1 , J 3  - J 1 , J 2  - J1 )  

N E X T  J4:  N E X T  J3:  N E X T  J2:  N E X T  J1 . 

Again,  depending on the setup of  the program,  it may  be impor tan t  to note that  
m41 may  be less than,  equal to, or greater than m32. 

The time-averages in Eqs. 37 and 38 can also be obta ined nonrecusively,  but still 
efficiently. For  example, t ime-averages derived f rom (~xxx can be calculated via the 
fo rmula  (where 1 _< J 1 _ J 2  _< J3 ) :  

x ( n  - J l ) x ( n  - J 2 ) x ( n  - J 3 )  

= Oxxx(J3 - J 1 , J 2  - J1 )  

[ 1 ~ [ x ( R - 1 ) x ( R - l + J 1  - J 2 ) x ( R - l + J 1  - J 3 )  
+ T - R +  1 t=~ 

( x ( T  + 1 -  l ) x ( T  + 1 - 1 +  J 1 -  J 2 ) x ( T  + 1 - l  + J1 - J 3 ) ) ] ]  I 

Analogous  formulas  exist for  calculating t ime-averages derived f rom 0xx and 4~x ..... 
and the foregoing pseudocode  can readily be modif ied  to utilize these nonrecursive 
formulas .  It is emphasized that the pseudocode  presented here is merely illustrative, 
and it is trivial to set down more  efficient code. Note  tha t  the terms qm(n)  need not 
be created or  stored. Rather,  only t ime-averages involving these terms are required, 
and can be obtained efficiently and accurately as illustrated above. 

C O N C L U S I O N  

There are many  variations possible in parallel cascade identification (8,9,13). The 
essential feature (8) is to approximate  the nonlinear  system by a first cascade, then 
approximate  the residue using a second cascade, and so on. This enables the cascade 
paths in the parallel array to be identified one at a time. As we have seen, under broad 
conditions the nonlinear system can be approximated to an arbitrary accuracy, in the 
mean-square sense, by a sum of  the individually obtained cascades. Note that in place 
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of  some or all o f  the cascade paths, one could substitute a parallel array of  simple 
nonlinear difference equations (8), which are successively fit to the (updated) residue 
one at a time. 
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