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MECHANICS OF THE OTOLITH O R G A N -  
DYNAMIC RESPONSE 
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& State University, Blacksburg, Virginia 

The otolith organs are the linear motion sensors o f  t~e mammalian system. As  
part o f  the vestibular system, these small organs are located in the inner ear. Math- 
ematically modeled, they consist o f  an overdamped second-order system with elas- 
tic, viscous damping and mass elements. The governing equations o f  motion which 
describe the relative velocity o f  the mass with respect to the skull consist o f  a set o f  
three coupled partial integral-differential equations. When these equations are non- 
dimensionalized, they yieM two nondimensional parameters which characterize the 
dynamic response o f  the system. These nondimensional equations are solved numer- 
ically for  the relative displacement o f  the otolith mass for  various values o f  the two 
nondimensional parameters. The solutions generated are for  a step change in skull 
velocity. These solutions indicate that the end organ upper breakpoint frequency is 
at least one order o f  magnitude higher than previously measured experimental val- 
ues determined by first-order neuron recordings. 

Keywords-Otoli th model, Numeric solution, Frequency response. 

INTRODUCTION 

The mammalian inner ear consists of  two distinct sections, the auditory portion 
responsible for the sense of hearing and the nonauditory or vestibular section whose 
primary function is to sense skull motion and gravity. The motion and gravity infor- 
mation is used by the central nervous system for control of posture and visual image 
fixation. Visual image fixation is accomplished by compensatory eye movement in 
a direction opposite to that of  the skull. One's sensation of motion is also derived 
from these end organ sensors, and they are used in coordination of muscular activ- 
ity during periods of  body motion. The vestibular organs can be further subdivided 
into the semicircular canals which response to changes in angular acceleration and 
the otolith organs which sense changes in linear velocity as well as responding to 
gravity. 
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The four otolith organs, two in each ear, are contained in fluid-filled chambers 
that are situated in the bony labyrinth, a hollowed-out section of the temporal bone 
of  the skull. The otoliths are flat plane structures, and the two planes of  each organ 
in a single ear are mutually perpendicular to each other. These organs are also direc- 
tionally sensitive in the plane of  the organ and do not have the capability of  sens- 
ing motion normal to their plane. The perpendicularity of  the two organ planes 
combined with their directional sensitivity allows the otolith system to effectively 
sense motion and gravity in each of  three mutually perpendicular planes. 

The composition of each otolith consists of  three discrete parts: the otoconial 
membrane, the cupular membrane and the sensory hair cell base. This composition 
is shown schematically in Fig. 1. The otoconial membrane is an aggregation of stone- 
shaped calcium carbonate crystals (otoconia) embedded in a gelatinous membrane. 
This gelatinous membrane is composed of a mucopolysaccharide material which has 
a density of 1.0 gm/cm 3 (12). The otoconial crystals are less than 10/~m in diame- 
ter (1) and have a density of 2.71 gm/cm 3 (2). To date, there has been no measure- 
ment of  what percentage of  these crystals is contained in the total otoconial 
membrane volume: thus the density of the membrane is undetermined. In our model 
this is a parameter necessary for the accurate determination of  the dynamic response 
of  the otolith system. In addition to the density, the thickness of  this membrane has 
not yet been determined for humans. However, this thickness has been measured and 
is reported to be 15 /zm for the squirrel monkey (3). 

The otoconial membrane's top surface is in contact with a fluid that partially fills 
the inner ear called endolymph [density p = 1.0 gm/cm 3, and viscosity/~ = 0.85 cen- 
tipoise (4)]. The otoconial membrane's lower surface is attached to a highly defor- 
mable elastic gelatinous material, the cupular membrane, which is a continuation of 
the gelatinous material of the otoconial membrane. This cupular membrane mate- 
rial is attached to sensory tissue which is in turn rigidly attached to the temporal bone 
of  the skull. 

The sensory tissue consists of hair cells which are embedded in connective tissue. 
Protruding from the hair cells at the cupular membrane interface and extending into 
the cupular membrane are discrete bundles of sensory hairs. When the skull is 
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FIGURE 1. Schematic composition of the otolith organs showing the discrete parts: Endolymph, 
Otoconial Membrane, Cupular Membrane and Sensory Base [after Igarashi (3)]. 
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accelerated the otoconial membrane tends to lag behind the sensory base due to its 
inertia. This relative motion of  the otoconial membrane with respect to the sensory 
cell base causes a shearing deformation of  the cupular membrane. The resultant 
deformation of  the cupular membrane is sensed by the hair cells, transduced into 
trains of nervous action potentials, and sent to the central nervous system via the ves- 
tibular nerve. Gravity can also cause a similar shearing deformation of  the cupular 
membrane which also changes the nervous firing rate. 

The otolith organs are a second-order mechanical system with mass, viscous damp- 
ing and an elastic element. The mass element consists of  the otoconial membrane: 
the viscous damping element arises from the viscous shear between the otoconial 
membrane and the fluid endolymph, and the elastic element comes from shear defor- 
mation of  the cupular membrane. This system is highly overdamped, and evidence 
of this behavior was first offered by DeVries (5), who used x-ray methods to mea- 
sure the movements of  the otoconial membrane in fish. This over critically damped 
behavior has also been demonstrated using human subjects (6). 

An overdamped second-order seismic system of this type is a velocity sensor and 
the mass displacement (in the otolith system this is the otoconial membrane displace- 
ment measured with respect to the skull) is proportional  to the velocity o f  the base 
or frame to which the second-order system is attached. This relationship remains 
valid over a certain dynamic range or "bandwidth" of  system input frequencies. Thus 
the system dynamics can be described by the system gain and two breakpoint fre- 
quencies which determine the system bandwidth. Experimental efforts to evaluate the 
system dynamics have centered around measurement of  the system breakpoint fre- 
quencies (6,9,13). These measurements were made utilizing subjective sensation, 
ocular torsion and first order neuron recordings. All of these experimental deter- 
minations included biologic system elements other than just the end organ sensor 
itself, the otolith. These other system elements include hair cell transduction, neu- 
ral transmission, neural computation, muscle contractions and eye dynamics, to name 
a few. These other system elements tend to modify the actual otolith dynamic 
response such that the experimental results represent the entire system and not the 
end organ by itself. One method of  evaluating the dynamics of  the otolith sensor 
without the other system elements involved is to use a theoretical dynamic analysis 
of the end organ. 

The only previous theoretical effort to quantitatively describe the system dynamics 
of  the otolith organs is that of  the author 's  (7). The objectives of  the present work 
were to extend this effort and draw some conclusions about the dynamics of the sys- 
tem. Specifically, the governing equations of  motion have been written from a con- 
tinuum mechanics or distributed parameter approach instead of  a lumped parameter 
system. These equations are solved using numeric methods, and conclusions about 
the system dynamics are extracted from the results. A value for the upper breakpoint 
frequency of  the human otolith is determined from these results, and this value is 
compared with the experimentally measured values. There is an order of magnitude 
difference in the experimental and theoretical values. This discrepancy is discussed 
at the conclusion of this paper. 

GOVERNING EQUATIONS OF MOTION 

The governing equations of motion for the otolith organs have been derived by 
Grant et aL (7) and are repeated here for continuity and clarity. In the derivation 
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of  these equations the otoliths were treated as flat planes with infinite extent. This 
infinite extent assumption is justified on the basis that the end effects can be shown 
to be negligible due to the small thickness of the organ compared to its surface area. 
The end area, where normal pressure forces may act, is approximately 100 times 
smaller than the flat plane surface area. In addition, the pressure forces which act 
on the end area are an order of magnitude smaller than the viscous shear forces act- 
ing on the upper plane surface. The pressure-induced forces acting on the end  area 
are thus three orders of  magnitude smaller than the viscous surface forces. 

Figure 2 illustrates a two-dimensional, cross-sectional view of  the human otolith 
geometry used in this study. For this analysis it has been partitioned into three sep- 
arate, distinct parts: (1) the fluid (endolymph), (2) the rigid plate (otoconial mem- 
brane) and (3) the elastic deformable base (cupular membrane). Figure 3 illustrates 
the free-body diagram of  each element with associated forces. It is important to note 
that the fluid element is coupled to the plate element by rf  (fluid shear stress) and 
the plate element is coupled to the elastic element by re (elastic shear stress). 

The governing equations of motion for the otolith system determined from these 
free-body diagrams are 

For the Fluid Endo lymph:  

pl ~ = . \ a y 2  , (1) 
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FIGURE 2. Two-dimensional cross-section of the otolith organ illustrating geometry used in this study. 
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FIGURE 3. Three elemental parts of the otolith showing free-body diagrams of each element. 

with the following boundary conditions: 

u(O, t) = v(t) and u(oo, t) = 0 , (la) 

where u(y, t) is the velocity of the endolymph fluid in the x-direction measured with 
respect to the skull, pf is the density of  the endolymph fluid,/z is the endolymph vis- 
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cosity, and v(t) is the velocity of the otoconial membrane (plate) in the x-direction 
measured with respect to the skull. 

For the Otoconial Membrane." 

1 ( ~ + p ) f o t  ( ~  ~ ) d t +  ( -~  o ) = p o b ( ~ - ~ ) + ( p o - p / ) b [ ~ t S - g ~  ] (2) 
2 /z , 

where w is the velocity of the cupular membrane in the x direction measured with 
respect to the skull, V~ is the velocity of the skull in the x-direction measured with 
respect to an inertial reference frame, E is Young's modulus of the cupular mem- 
brane material, ~ is Poisson's ratio of the cupular membrane material, Po is the den- 
sity of  the otoconial membrane, gx is the component of the gravity vector acting in 
the x-direction, b is the thickness of the otoconial membrane and c is the thickness 
of the cupular membrane. 

For the Elastic Cupular Membrane." 

= \ l d t  , (3) 

with boundary conditions 

w(c, t) = v(t) and w(0, t) = 0 . (3a) 

The two thicknesses b and c are approximately equal to one another, and we will 
assume that b = c in the analysis. 

These equations may now be nondimensionalized by substitution of the follow- 
ing nondimensionalized variables indicated by bars: 

y tz u u v V~ 
~ = ~  , [ = - - t  t2= ~ =  g =  ~ = - -  (4) 

o o b ' - 9  ' ' ' V ' 

where V is some characteristic velocity in the problem, e.g. magnitude of a step 
change of  skull velocity. This substitution leads to three nondimensional governing 
equations for the dynamic behavior of the otolith organs: 

Oft 32ft 
R O t  - Oy 2 ' (5) 

a(0, [) = ~(i) and t~(oo, [) = 0 , 

3 t + ( 1 - R ) [  o ~ -g~  = - ~  - e  fffy d i ,  

R - ~  =e \Oy2 I d [ ,  

(5a) 

(6) 

(7) 

~(I , [ )  = 0([) and ~(0,i) = 0  , (7a) 
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in which the following naturally occurring nondimensional parameters were utilized: 

R = P l  and e =  (8) 
Po 2 PO , 

and the nondimensional gravity gx is defined in the nomenclature section at the end 
of  this article. This set of  coupled equations is parabolic and can display under- 
damped oscillatory behavior: however, we are interested only in the overdamped 
solutions. This concludes the review of  the previously derived governing equations 
(7), and the work from this point on represents new material. 

The main objective of  this work was to determine solutions to this set of  non- 
dimensional governing equations for the condition of  a step change in skull veloc- 
ity [V~ = V~(t), where 6(t) is the unit step function] and with gx = 0, for various 
values of  the dimensionless parameters R and e. The numeric value of  e is small, 
when calculated from available data it lies in the range of  e _< 0.02. Consequently, 
an analytic solution for e = 0 will aid the understanding of the system dynamics and 
is easily obtained by Laplace transform methods. This solution for the velocity of  
the otoconial membrane plate is 

0(i) -- (1 - R)e Ri Erfc(4-RT) , (9) 

where Erfc  is the complementary error function. The nondimensional displacement 
of the otoconial membrane plate can be found by integration of  Eq. 9, and the con- 
version to real spatial units of  displacement is given in the nomenclature section. 

In order to obtain solutions for cases other than when e = 0, numeric integration 
of the governing equations is necessary. These numeric approximations were carried 
out using two different techniques. The first solution utilized a finite fluid bound- 
ary at a sufficient distance to introduce negligible error, instead of  the boundary con- 
dition at infinity. The second method involved a transformation of  the governing 
equations whereby the infinite fluid half-space was transformed into a strip of finite 
width. 

In both cases finite difference techniques were utilized for the numeric solution. 
This method was chosen in order to accommodate the integral term in the govern- 
ing equations. The use of Runge-Kutta integration subroutines as a method of  solu- 
tion was considered, but they do not easily lend themselves to equations which 
contain integral terms and were eliminated from further consideration. 

Solution I: Infinite Boundary Condition 

The finite difference solution to any differential equation requires that the spa- 
tial coordinate be divided into discrete points. The boundary condition where the 
fluid velocity at infinity equals zero introduces the first difficulty in the numeric solu- 
tion, since the infinite spatial domain cannot be divided into a finite number of  dis- 
crete points. This can be handled by replacing the boundary condition, u(oo, t) = 0 
by u(xf, t) = 0, where xf was chosen at a sufficient finite distance so as not to con- 
taminate the long time solution. 

The validity and accuracy of  this method was confirmed by comparison of  the 
numeric solution with the analytic solution for e = 0. For this comparison, the error 
between the numeric and analytic solutions for fluid velocities, and otoconial  mere- 
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brane displacements was significantly less than 1% for all times considered in this 
work. 

The Crank-Nicolson finite difference scheme was used in the formulation of dif- 
ference equations and a stability analysis showed these difference equations to be sta- 
ble for all values of A t / ( A y )  2 >_ O, where At is the time step increment, and Ay is 
the spatial increment. 

The interface between the fluid and otoconial membrane introduces a Neumann 
boundary condition where the fluids equation (Eq. 5) and the otoconial membrane 
plate equation (Eq. 6) must hold at y = 0. This situation was handled by the stan- 
dard method of introducing a fictitious point in both equations and algebraic sub- 
stitution to eliminate this fictitious point. Thus the difference equation at y = 0 
incorporates both the fluid and plate equations. Since the otoconial membrane plate 
equation also incorporates the elastic integral term, the entire problem is contained 
in the difference equation at 37 = 0 and the fluid equation for all points beyond this 
boundary. 

The integral term must now be represented in the discrete notation for finite 
differencing. Assuming that the cupular membrane is deformed in simple shear, the 
velocity slope at the boundary (37 = 1) may be represented as 

0~ ~=, [~(1,f)-  ~(0,~)1 (10) 
-~  = [1  - 0 l  ' 

where the velocity ~(0, 7) = 0. The integral can be replaced by a discrete sum utiliz- 
ing the trapezoidal rule of numerical integration. 

Representing the discrete time steps by n, where n denotes the present time, and 
n + 1 denotes the new time equal to t + At, and summing over the total number of 
time steps an approximate expression for the integral term becomes 

/.i 0ff~ A t ) +  At] , 

where wl,n is the velocity ~(1, t) and ~l,n+~ is the velocity ~(1,  t + At). 
The value of w~,,+l can be grouped with the unknown velocities at the n + 1 time 

step. This grouping retains the linear nature of the governing equations. 
The expression for the integral term was incorporated into the set of finite dif- 

ference equations previously discussed. This set of equations forms a tridiagonal coef- 
ficient matrix which can subsequently be solved by application of the Thomas 
algorithm (15). The deflection of the otoconial membrane can then be calculated by 
numeric integration of the resulting velocity ~. 

Solution II: Transformation 

The previous solution assumed a finite spatial point x s where the velocity was 
arbitrarily set to zero [ u ( ~ , t )  = 0 = u(xs , t ) ] .  In order to eliminate the boundary 
condition at infinity, the following transformation was imposed on the original set 
of governing equations (8). If we let 

Y = l - e  -~ , (12) 
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it is clear that  the boundaries are changed as follows: 

p =  0 - - ,  Y = 0  , 

y = oo --, F = 1 , (13) 

thus t ransforming the original infinite half-space domain f rom 0 ~ oo to a new 
domain, a strip, f rom 0 ~ 1. This t ransformat ion changes the original governing 
equations as follows for the fluid and plate equations: 

R-~ = ( 1 -  r) g-~ -(1 - ? ) - -  a ~ '  (14) 

~176 ~176 :o' a--~ + (I - R) = (I - ~') ~-~- E (I - F) ~-~d~, (is) 

where the cupular membrane equation is no longer needed due to the representation 
of the integral elastic term by Eq. 10. 

Because of  the inherent numeric instabilities in the transformed equations, the use 
of  an implicit finite difference scheme was necessary in order to solve this set of  equa- 
tions. As discussed earlier, the fluids equation is coupled to the plate equation 
introducing the Neumann boundary  condition which is again handled by the ficti- 
tious point method.  The integral term is also handled exactly as before. 

Comparison of these results with the analytic solution for velocities and displace- 
ments with ~ = 0 indicate an error significantly less than 1% for all times considered 
in this work. Further comparisons of  these results with the previous solution (infi- 
nite boundary) show an exact match of  velocities and displacements out to and usu- 
ally beyond the fourth significant figure. However,  the previous infinite half-space 
model required significantly less computer  t ime than did the present t ransformed 
model. 

RESULTS AND C O N C L U S I O N S  

The overall behavior of  the governing equations for various values of  c and con- 
stant R is represented in Fig. 4. The nondimensional parameter  e is a measure of  the 
elastic response of the cupular membrane ,  and it is clear f rom these curves that  as 

increases the maximum otoconial membrane  displacement decreases, as does the 
time necessary to reach this maximum displacement. As c continues to increase, the 
dynamic response of the system becomes less overdamped until the point of  criti- 
cal damping is passed and oscillation occurs. Oscillatory response was not consid- 
ered as a viable solution, since the otolith system is over critically damped. For other 
values of  R,  overall behavior is similar to that shown in Fig. 4. 

Figure 5 depicts a family of  curves for various values of  R and constant ~. The 
time to reach maximum displacement is approximately the same for any physiologic 
value of  R. Similar behavior can be seen for any value of  c utilized in this study. As 
R increases (decreasing Po), the maximum displacement of  the otoconial membrane 
decreases. 
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Figure 6 illustrates dimensionless velocity profiles at various dimensionless times. 
The velocities become negative after a finite period of time due to the presence of 
the elastic element (cupular membrane) which drives the otoconi~al membrane back 
to its equilibrium position. As can be seen, as long as the velocities are everywhere 
positive the velocity profiles propagate outward with increasing time. 
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less depth of the endolymph fluid) for various dimensionless times (~ = 0 . 0 0 5 ,  Po = 1.1). 

In order to establish a range of  values of  R and e for the human otolith system, 
it was necessary to consider the histologic composit ion of  the otoconial membrane  
and its maximum displacement. From a composition viewpoint, the otoconial mem- 
brane is composed of crystals embedded in cupular material.  Since the membrane  
is not comprised of  100~ crystals, the density of  the otoconial membrane  can con- 
ceivably vary between 1.0 g m / c m  3, the density of  the cupular material  (12), and 
2.71 g m / c m  3, the density of  the crystals (1). A photomicrograph (3) shows the 
membrane  to be less than half crystals, so that a value of po ranging between 1.8 
and 1.0 seems reasonable for the otoconial membrane  density. 

By considering the maximum displacement of  the otoconial membrane this range 
of densities can be narrowed further. A value of e _< 0.000 05 was selected to best rep- 
resent the otolith system, since that value produces no overshoot and results in long 
return times to equilibrium. With E = 0.000 05, two maximum nondimensional dis- 
placements for P0 = 1.35 and 1.10 were selected and converted to dimensional dis- 
placements. For this conversion the otoconiat membrane thickness was chosen to be 
10/~m, the endolymph viscosity was/~ = 0.85 centipoise, and the step change in skull 
velocity was 10 cm/s.  This produced values of  the otoconial membrane displacement 
6 = 42/~m for Po = 1.35 and ~ = 11 /zm for P0 = 1.10. In order for this displacement 
to be in the same range as the cupular membrane  thickness the density must be in 
the range P0 = 1.10. 

Experimental results in this field have all assumed lumped parameter  models for 
analysis of  collected data. In order to compare the results of  this distributed param- 
eter model with experimental results we must  first establish common  grounds for 
comparison.  This comparison will be carried out utilizing a linear lumped parame-  
ter model which can be used to describe the overdamped displacement dynamics of  
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the otoconial membrane measured with respect to the skull (11). With such a lumped 
parameter  model, the solution for a step change in skull velocity indicates that the 
initial displacement of  the otoconial membrane can be described by an exponential. 
This exponential displacement predicted by the lumped parameter model can be com- 
pared to the distributed parameter  model considered here. A value for a time con- 
stant can be determined which approximates the numeric solutions of  this work. With 
this time constant determined, comparison with other experimentally determined time 
constants can be made. It  should be noted that the reciprocal of  this t ime constant 
represents the upper breakpoint frequency of the system. The evaluation of  this time 
constant is carried out in the next paragraph with comparisons and discussions in the 
following paragraphs.  

The initial displacement phase of  the otoconial membrane described by a lumped 
parameter  model is given by 

b(t) = 6m~(1 - e -t/T) , (16) 

where 6(t )  is the displacement of  the otoconial membrane measured with respect to 
the skull at time t, 6ma x is the maximum displacement, and r is the t ime constant. 
Referring to Fig. 5, it can be determined that for O0 = 1.10, the maximum displace- 
ment of  the otoconial membrane is 0.88 which occurs at a dimensionless time of 174 
(0.0113 real-time seconds). With t / r  = 5, since at 5 time constants the solution has 
reached 99.4% of its maximum, r = 174/5 = 34.8 dimensionless time units. This con- 
verts to a real time of  0.002 25 sec which yields an upper breakpoint frequency of  
440 rad/sec.  Figure 7 compares Eq. 16 for a lumped parameter  model to that of  our 
distributed parameter  model. The close agreement of  the two curves, for  the initial 
displacement phase, indicates that a lumped parameter  model does approximate the 
distributed parameter  model well. 
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FIGURE 7. Comparison of exponential curves fit to numeric model. 
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The above approximation of  the breakpoint frequency is our best estimate of this 
value based upon available evidence and current data. It should be noted that if one 
determines the lower limit of this frequency using current anatomical and physical 
data it would be approximately 200 rad/sec. The theoretical analysis of the work indi- 
cates that the breakpoint frequency must lie above 200 rad/sec. It should also be 
noted that lumped parameter analysis has been unable to predict this upper break- 
point frequency due to the inability to theoretically evaluate the lumped parameter 
coefficients (11). The distributed parameter model considered here is the first theo- 
retical attempt to evaluate this upper breakpoint frequency. 

If one compares the upper breakpoint frequency of 440 rad/sec determined from 
the present model to that obtained from ocular and perceptual data of 1.5 rad/sec 
(6,9), and first-order neuron recordings of 62.5 rad/sec (13), it is obvious that the 
analytical model differs quite substantially. This is not to say that either the model, 
or the experimental evidence is incorrect, but rather we believe that they represent 
upper breakpoint frequencies measured and predicted at different locations in the 
overall system. 

The experimentally determined values derived from perceptual and occular data 
use methods which involve monitoring occular torsional displacement response or 
subjective sensation to specific motion stimuli (6,9). Since these experimental mea- 
surements included other human system elements, the most dominant being the 
dynamics of the eye muscles and eye, the measured time constant reflects the 
dynamics of  these slower system elements. The end organ transducer, the otolith, 
should be the fastest overall system component for good dynamic system response. 
In addition, if one examines the dynamics of  eye motion as well as muscle dynamics, 
it is not hard to conceive that these two elements have a response in the range of the 
experimentally determined values. Again, good system design would require this ele- 
ment to be the slowest in the system. 

The first-order neuron data was measured from vestibular nerves leading directly 
from the otoliths (13). The skull was then given a prescribed motion and the resul- 
tant nerve signal recorded. These recordings still contained other system elements 
including nervous signal transmission delays, sensory hair cell transduction and hair 
cell adaptation. Their signals are an order of  magnitude faster than the perceptual 
and reflex data indicating an increased system dynamic response. The end organ 
transducer, the otolith, should again be the fastest system element, and indeed the 
theoretical analysis of  this work indicates that there is an additional order of mag- 
nitude increase in the frequency response of  this mechanical end organ transducer. 
It is interesting to note that the system dynamic response increases by an order of 
magnitude at succeeding levels as one approaches the transducer. This system design 
probably reflects the evolutionary requirements to match the system to the dynamic 
needs of the animal. 

DISCUSSION 

The preceding analysis is the first attempt to quantify the dynamic response of the 
otoliths f rom a theoretical analysis and draw specific conclusions regarding their 
response. However, in order to accomplish this, several assumptions have been made 
that will need refinement in future research. The supposition concerning simple shear 
deformation of  the cupular membrane may be incorrect. This tissue may show non- 
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linear soft tissue behavior; however, this is not likely, since it does not contain any 
collagen or collagenous structure. Although no definitive evidence has yet been deter- 
mined, the cupular material may have viscoelastic properties and not the hypothe- 
sized pure elastic behavior used in this analysis. If  this were true, more damping 
would be introduced into the system, and the analysis here would be changed sig- 
nificantly. All available evidence indicates that the model considered here needs more 
viscous damping. This can be confirmed by considering maximal otoconial membrane 
displacement and comparing the experimentally measured lower breakpoint fre- 
quency with the long-time results of  this work. A viscoelastic cupular material has 
been considered by DeVries (5) where he placed all the system damping in this ele- 
ment and ignored the contribution of the endolymph. 

All anatomical dimensions and material properties used in the model, (p0, E, u, 
thickness of  otoconial membrane and cupular membrane, smoothness of the 
otoconial membrane surface, etc.) were either extrapolated from animal studies or 
surmised. In order to arrive at a more precise and accurate model, experimental stud- 
ies are necessary to determine exact values for these physical constants and 
dimensions. 

Even with these flaws we feel that this model does depict the behavior of  the 
otolith system better than any experimentally measured dynamic response. The inclu- 
sion of  other slower natural system elements in these experimentally measured val- 
ues reflects the slower element dynamics and not the otoliths. If the breakpoint 
frequency analysis carried out here was performed using the entire range of the phys- 
iologic parameters outlined earlier, our model still predicts a breakpoint frequency 
that is two orders of magnitude greater than occular and perceptual experimental 
data and one order of  magnitude greater than first-order neuron data. This analysis 
indicates that these experimental methods are not measuring true otolith function but 
rather reflect the slower system elements dynamics. From this theoretical analysis it 
is apparent that the otolith response is much faster than the experimentally deter- 
mined values. 

It should be noted that a similar discrepancy between experimentally measured and 
theoretically determined upper breakpoint frequency occurred with the semicircular 
canals (10,1 l, 14). The experimentally determined values were two orders of  magni- 
tude less than the theoretical upper breakpoint frequency. The generally accepted val- 
ues in use today are those determined by theoretical analysis. In this situation it is 
generally agreed that the experimental values measure slower system element response 
instead of  the canals themselves. 

It should be emphasized that there is significantly more information available 
about the semicircular canal system relative to that available from the otolith sen- 
sory apparatus. This information is available at all levels of  semicircular canal func- 
tion, from end organ biomechanics to central nervous system utilization of  canal 
signals. The biomechanics modeling effort in this work is the first with any quan- 
titative content and can be added to the total otolith system information as a step 
in accumulating a similar amount of  understanding equivalent to that of  the canals. 

While it is obvious that further refinements to this model are necessary in order 
to accurately quantify the function of  the otoliths, this research is necessary not only 
for the effective overall understanding of motion sensing and motion sickness mech- 
anisms, but also for the basic comprehension of  human reflex pathways, and poten- 
tial diagnostic and prosthetic applications. 
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X 

y = 

t = 

u ( y , t )  = 

v ( t )  = 

w ( y , t )  = 

v~ = 

6 ( y , t )  = 

6~( t )  = 

P0 
= 

# = 
g~ = 
E = 

R = 

NOMENCLATURE 

coordinate direction in the plane of  the otoconial membrane 
coordinate direction perpendicular to the otoconial membrane 
time 
velocity of  the endolymph fluid in the x-direction with respect to the skull 
velocity of the otoconial membrane in the x-direction with respect to the 
skull 
velocity of the of the cupular membrane in the x-direction with respect to 
the skull 
velocity of the skull in the x-direction with respect to an inertial reference 
frame 
displacement of  the cupular membrane in the x-direction with respect to 
the skull 
displacement of  the otoconial membrane in the x-direction with respect to 
the skull 
density of the otoconial membrane 
density of the endolymph fluid 
viscosity of  the endolymph fluid 
component of  gravity in the x-direction 
Young's modulus of  the cupular membrane material 
Poisson's Ratio of  the cupular membrane material 

pl/p0 
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g~ 

V 

b 
C 

At 
~y 

1( )b2 
= 

[ _ 7  ] nondimensional gravity 

= [ ~  ] ~i = nondimensional displacement 

= some characteristic velocity in the problem 
= V ~ / V  = nondimensional skull velocity 
= u~ V = nondimensional fluid velocity 
= v~ V = nondimensional fluid membrane velocity 
= w / V  = nondimensional cupular membrane velocity 
= y / b  = nondimensional depth coordinate 

= [o-~b2 ] t = nondimensional time 

= thickness of the otoconial membrane 
= thickness of the cupular membrane 
= discrete time step increment 
= discrete spatial step increment 


