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A SIMPLE MODEL FOR SIMULATION OF 
OXYGEN TRANSPORT IN THE 

MICROCIRCULATION* 

P. T. Baxley and J. D. Hellums 

Biomedical Engineering Laboratory 
Rice University 
Houston, Texas 

A mathematical model ofdeoxygenation o f  blood & the m&rocirculation is used to 
estimate the mass transfer resistance in the blood and to examine certain assumptions 
used in prior work on simulation o f  the microcirculation: the treatment o f  blood as a 
continuum and the use o f  a single-step reaction kinetics model. The erythrocytes are 
treated as cylindrical slugs which alternate with plasma gaps such that oxygen transport 
is by radial diffusion in the cell. The system o f  equations including reaction kinetics and 
oxyhemoglobin diffusion is solved numerically. The results are o f  direct applicability in 
estimation o f  oxygen concentration profiles in tissue. The results also indicate that the 
resistance to oxygen transport in the capillary (relative to that in the surrounding tissue) 
is much higher than predicted by the continuum approach used by most prior workers. 
The resistance in the capillary is a significant fraction o f  the overall resistance. Other 
results give quantitative estimates o f  the error incurred from use o f  a single-step kinetic 
model. 

Keywords - -  Microcirculation, Oxygenation, Diffusion. 

INTRODUCTION 

There has been considerable activity in recent years on the mathematical 
simulation of oxygen transport in the microcirculation. This paper is the third in 
a sequence (8,16) in which the bases for treatment of the processes in the capillary 
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are examined. In the present work attention is focused on the diffusion and 
chemical reaction in the blood (specifically in the erythrocyte) under conditions 
of oxygen fluxes, geometrical configuration, space and time scales pertaining to 
deoxygenation in the capillaries. The studies are carried out in a simplified model 
in which the erythrocytes are idealized as cylindrical "slugs" which completely 
fill the lumen of the capillary. Experimental evidence has been interpreted 
to indicate that this simplified geometry is useful as a first approximation in 
the capillaries (8,9) because in the small capillaries the deformed erythrocyte 
approximates a cylindrical shape (9). 

The primary purpose of the present work is to obtain numerical values of the 
mass transfer Nusselt number for conditions of the microcirculation. These 
values can be coupled with a model for tissue diffusion to yield a simulation of the 
oxygen distribution in the tissue. In addition to this primary purpose, the 
approach has been used to address two specific questions. The first pertains to the 
kinetic model used in much of the prior work on oxygen transport in hemoglobin 
solutions. As blood traverses the systemic microcirculation there is a relatively 
large reduction in oxygen saturation. The single-step, constant coefficient 
kinetic model which is often used will be evaluated in comparison to a more 
accurate variable rate coefficient model. 

The second question pertains to the resistance to oxygen transport in the 
blood relative to that in the surrounding tissue. Many previous treatments of the 
diffusion problem have neglected the resistance in the blood under the tacit 
assumption that the resistance in the tissue is of dominant importance. Previous 
workers who have considered the resistance in the blood have often treated it as a 
continuum (a homogeneous hemoglobin solution). It will be shown that the 
resistance in the blood is a significant fraction (about 40 %) of the total resistance, 
and that the continuum approach significantly underestimates this resistance. 
This finding on the resistance in the blood was previously reported (8) based on a 
highly simplified model which could be solved analytically. The present work 
confirmed that finding by use of a more elaborate model in which finite chemical 
reaction rates an6 oxyhemoglobin diffusion are taken into account. 

FORMULATION AND NUMERICAL METHODS 

Basis for the Calculations 

Consider an idealized solid, cylindrical erythrocyte which fills the capillary 
radially. The erythrocytes alternate with cylindrical plasma gaps of the same 
dimensions (Fig. 1, the discrete cell model). Axial transport and transport in the 
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FIGURE 1. Comparison of discrete and continuum models. 

plasma are neglected. The resulting diffusion problem reduces to two indepen- 
dent variables: radial position and time (considered to be time of flight of 
the erythrocyte at a constant velocity along the capillary). For purposes of com- 
parison we considered an analogous model without erythrocytes (Fig. 1, the 
continuum model) in which the hemoglobin is distributed uniformly through- 
out the capillary. Values of the parameters used in the calculations are given in 
Table 1. In most cases they are the same as those used by Moll (15) and in a 
previous paper (16). 

Equations and Conditions 

The differential equations and conditions are the same for the discrete cell and 
continuum models: 

O C ~ - D ~  1 0 ( ~ r ~  ) Ot ~ & r + R ,  (1) 
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(2) 

R = k] C2 - k2C] (Ct-C2), (3) 

where C~ and C2 denote concentrations of oxygen and oxyhemoglobin, respec- 
tively. D~ and D2 are the diffusion coefficients and k] and k2 the reaction velocity 
coefficients. Ct, the total heme concentration, can be shown to be constant in this 
system under the assumption of equal diffusivity of oxyhemoglobin and 
deoxyhemoglobin. 

It can be seen that these equations treat the system as a one-step reversible 
reaction: 

kl 
HbO2 ~ Hb + 02. 

k2 

If k] and k2 are constants, the one-step reaction scheme is not compatible with the 
experimentally observed shape of the equilibrium curve. Thus, the one-step 

TABLE 1. Values of Parameters 

discrete cell cont inuum 
model model 

0 .022  0.011 heme group concentrat ion,  Ct, molari ty 
(four t imes the hemoglobin concentrat ion) 

hematocr i t ,  H 

di f fuaiv i ty  of oxygen,  D~, cm2/sec, 

d i f fus iv i ty  of  oxyhemoglobin,  D 2, cm2/sec 

react ion veloci ty  coef f ic ient ,  k~, sec~ 1 

react ion veloci ty  coef f ic ient ,  k 2, M - 1 sec-  1 

Hill equat ion constant ,  K (equation 7) 

Hill equat ion constant ,  N (equation 7) 

t issue oxygen consumpt ion,  G, M/sec 

initial oxygen concentrat ion,  M 

initial hemoglobin oxygen saturat ion 

oxygen f lux in ery throcyte at 
the capil lary wal l ,  q, M-cm/sec 

4 pm capil lary diameter 

6 I /m capil lary diameter 

0 .50  

8 x 10 -6 16 x 10 -6 

6.5 x 10 -8 6.5 x 10 -8 

variable variable 

3.5 x 106 3.5 x 106 

1.179 x 10 ~2 1 .179 x 1012 

2.75 2 .75  

5 x 10 -6 5 x 10 -6 

1.45 x 10 -4 1.45 x 10 -4 

0 .974  0 . 9 7 4  

1.0 x 10 -6 0 .5  x 10 -6 

1.5 x 10 -6 0 .75  • 10 -6 
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scheme was modified in some cases by varying kl as a function of oxygen tension 
such that the desired compatibility was obtained. 

The equations were solved subject to a constant flux boundary condition at 
r = rc, the radius of the capillary: 

0C1 -D1 ~ = q, (4) 

0C2 _ O, (5) 
Or 

where q denotes the (specified) constant interfacial oxygen flux. The constant 
flux condition corresponds to a constant tissue metabolic rate neglecting axial 
diffusion. In the microcirculation the oxygen flux at the tissue wall is not 
constant but must fluctuate in response to the delivery of oxygen from passing 
erythrocytes. An observer riding along on the erythrocyte would see a constant 
radial oxygen flux at the cell boundary. An observer fixed in space on the 
capillary wall would see high fluxes during the period when an erythrocyte is 
passing-alternating with periods of zero flux when the plasma gap between cells 
is passing. For example, if the hematocrit were 50%, the peak tissue flux (equal 
to the cell flux) would be approximately twice the average tissue flux. However, 
it has been shown that the response time of the tissue is an order of magni- 
tude smaller than the cycle time of the erythrocyte-induced transients (8). Thus 
the assumption of a steady flux through the tissue is suitable in a first-order 
approximation to the tissue wall average oxygen concentration. 

Numerical Methods 

The system of equations was solved numerically for ranges of the parameters 
pertinent to oxygen transport in the microcirculation. Two independent meth- 
ods were used. The first was an adaptation due to Douglas (5,16) of the 
Crank-Nicholson finite difference method. The second was a basis spline 
collocation method of Madsen and Sincovec (13,14). Extensive comparative 
convergence and efficiency tests were carried out on the two methods, and 
results were compared to the analytical solution which is valid for small times. 
The collocation method was found to be the more efficient of the two methods by 
at least an order of magnitude (computer time for comparable accuracy). All 
results reported here are by the collocation method, and the error in the numeri- 
cal procedure is estimated to be less than 0.1% in terms of either the Nusselt 
number or the oxygen concentration. A detailed report on the numerical work 
including the convergence tests is given by Baxley (2). 
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RESULTS 

Results were obtained for several capillary diameters and over a range of 
parameters and are reported in detail by Baxley (2). Here attention will be 
focused on typical results for 4 and 6 txm capillaries. The interphase oxygen flux 
(Table 1) was selected for the two capillary diameters as required to give the same 
overall change in average oxygen saturation with time - from an inlet saturation 
of 0.97 to an average saturation of about 0.65 at t = 0.70 sec. 

Equilibrium and Kinetic Expressions 

Most prior work on mathematics of oxygen transport in hemoglobin solutions 
has been based on mass action kinetics for the single-step reaction scheme of Eq. 
3 with kl and k2 treated as constants. This constant coefficient approach has the 
advantage of simplicity. The reaction scheme is compatible with a hyperbolic 
equilibrium curve: 

C2 - (kJkl)C1 

Ct 1 + (kJkl)C1 
(6) 

The Hill equation, Eq. 7, is a more accurate expression of the equilibrium 
relationship: 

C--2 = 1 + KC1N . (7) 
Ct 1 + KC1N 

These equilibrium relationships actually shift as the erythrocyte traverses the 
capillary in response to carbon dioxide and other fluxes. However, for purposes 
of comparing models for oxygen transport, the Hill equation with constant K 
and N (Table 1) is adequate. Figure 2 (ignore the points for the moment) gives a 
comparison of the hyperbolic and Hill equilibrium expressions. They can be 
forced to agree at only one point, and there are very significant deviations in the 
range of practical interest. 

A variable rate coefficient (VRC) Kinetic model was constructed following 
Moll (15) to attain compatibility with the Hill equation. In the VRC model k2 was 
constant, but k 1 w a s  varied as a function of oxygen concentration to attain 
compatibility with the Hill equation. This requirement yields k~ = kJ(KC~Y- ~). 
As shown in Fig. 3, k~ varied over a five-fold range in the VRC model. The 
constant value of kl used in the constant coefficient model is near the middle of 
the range of values of k 1 used in the VRC model. There are several other kinetic 
models which could be employed. However, comparison of the single-step model 
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FIGURE 2. Reaction path diagram for mass action kinetics model of a 6 micron capillary. 

with the Moll VRC model is sufficient to illustrate the importance of compatibil- 
ity with the equilibrium relationship under the fluxes, and space and time scales 
of the microcirculation. 

A comparison in results from the two models is given in Fig. 4 in terms of the 
Nusselt number and the oxygen concentration at the capillary wall. The results 
for the oxygen concentration are markedly different. Figure 2 shows a path of 
space-averaged concentrations from the numerical solutions displayed in com- 
parison to the equilibrium curve for the constant coefficient model. The calcu- 
lated points (solid black circles) fall almost on the hyperbolic equilibrium curve. 
Similar calculations (not shown) with the VRC model showed results falling 
almost on the Hill equilibrium curve. More detail on the VRC results are given in 
Fig. 5 where the deviation from equilibrium in oxygen concentration is 
presented as a function of radial position at three axial positions (three different 
times spent by the erythrocyte in the capillary). The equilibrium concentrations 
are determined by allowing the calculated concentrations at each point to "equi- 
librate" (solving the differential equations locally with no diffusion term). The 
deviation from equilibrium is small, and is confined in large part to a thin 
"boundary layer" near the capillary wall. The two dotted lines on each part of 



408 

1 3  
O .  

a~ 

(D 

Z 
El: 
I--- 
O3 

w 
z 
o 

o 

o 

%'.oo 
O X Y D E N  

P.T. Baxley and J.D. Hellums 

K~ 
l ~  

~ 

f 
f 

J 
/ 

/ 
/ 

/ 7 
/ 

/ c o i -  
l kl . ,  

i o o :  
o::: 

I 
I Er. 

/ ki-- - 4 4  sec  -I o ~  

/ - g z  
/ m 

[ o o  
~  

I "1- 
/ E Q U I L I B R I U M  CURVE >- 

/ x 

/ 
= J  

3'.oo 6'.oo s'.oo 1 .oo 1 .oo 
C O N C E N T R R T I O N  ( M  X 1 E + 5 ]  

FIGURE 3. Numerical value of dissociation constant k~ in the VRC kinetic model as a function of 
oxygen concentration. 

Fig. 5 are from calculations in which the rate constants were increased (or 
decreased) by an order of magnitude. The relatively small change in results from 
increasing the rate constants is due to the fact that the system is very close to 
equilibrium except in the thin boundary layer. 

The Continuum Model versus the Discrete Cell Model 

The continuum model used in much prior work treats blood as a homogene- 
ous hemoglobin solution (no red cells) as illustrated in Fig. 1 in contrast to the 
discrete cell model. In the discrete cell model the erythrocytes are approximated 
by cylindrical slugs of hemoglobin solution which alternate with plasma slugs of 
equal size containing no hemoglobin. Axial diffusion is neglected in both models. 
Thus in both cases we are dealing with radial diffusion in a cylindrical hemoglo- 
bin solution as described by Eqs. 1-5. The parameters for the two cases are 
significantly different as shown in Table 1. The same amount of hemoglobin is 
transported in the two cases. As a result the concentration in the discrete cells is 
twice that of the continuum case. The diffusion coefficient of oxygen is much 
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FIGURE 4. Comparison of mass action and VRC kinetic model solutions for a 6 micron capillary. 

lower at the higher concentration. The oxygen flux averaged over the capillary 
wall is the same in the two cases. Therefore, in the discrete cell case the flux in the 
hemoglobin is twice that of the continuum case. 

The results are presented in terms of the Nusselt number, Nu, (Figs. 6 and 7), a 
dimensionless flux parameter defined below: 

q(rc) 
Nu - D~(C - Cw) ' (8) 

where C is the mixed-mean oxygen concentration and Cw is the oxygen concen- 
tration at the capillary wall. The Nusselt Numbers are unbounded at the 
entrance (zero time), but diminish and approach a value of approximately 4 so 
rapidly that the high values near the entrance cannot be displayed on the scale of 
Figs. 6 and 7. A Nusselt number of 4 is the long tube asymptote of the well- 
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FIGURE 5. Percent deviation from local chemical equilibrium across a 4 micron capillary at several 
locations along the capillary. 

known Graetz solution [see (3) for example]. It is also the long time (or long tube) 
asymptote for the analytical solution of Eqs. 1-5 for the case of zero k2 (the case 
of irreversible deoxygenation) (2). The Nusselt number for the two models are 
both approximately 4 near the entrance, but near the venous end of the capillary 
(times of the order of 1 sec.) they differ by a factor of almost two. Expression of 
results as a Nusselt number is advantageous because the Nusselt number varies 
much less with the parameters than other dependent variables (such as capillary 
wall concentration). 
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FIGURE 6. Comparison of continuum and discrete capillary models for a 6 micron capillary. 

The results in terms of Cw, the oxygen concentration at the capillary wall, 
displayed in Figs. 6 and 7, differ for the two models. However, the difference is 
much less marked than in the case of the Nusselt number. It is pertinent to 
consider differences in oxygen concentration as a fraction of the overall radial 
drop in oxygen concentration through the blood and the tissue. The oxygen 
concentration profile in the tissue can be estimated under the assumption of a 
uniform, constant oxygen consumption rate and neglect of axial diffusion by the 
Krogh-Erlang equation (10) given below in terms of the oxygen concentration at 
the outer boundary of the Krogh tissue cylinder, Ca-: 

rcG 
CT = Cw 4Dr (62 ln3'2 - 3'2 + 1) , (9) 
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FIGURE 7. Comparison of continuum and discrete capillary models for a 4 micron capillary. 

where G is the rate of oxygen consumption per unit volume of tissue, 
~, is the ratio of the Krogh tissue cylinder radius to the capillary radius, 
and 
Dt is the diffusivity of oxygen in the tissue. 

The fraction concentration drop or fractional resistance, X, is defined by 

C W  - -  C o  

~k - -  C T  _ C o  , (10 )  

where Co is the oxygen concentration at the capillary centerline. The values of X 
vary only slightly with axial position. Values at t = 0.30 are given in Table 2 in 
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Capillary 
Diameter 

Fraction of Resistance to Oxygen 
Transport in the Capillaries 

discrete model continuum model 

4 lain 0.40 0.20 
6 tam 0.43 0.21 

Previous estimate (8) 0.53 0.22 

comparison to a previous estimate made using a highly simplified model (8). It 
can be seen that the fraction of the resistance to oxygen transport in the blood is 
indicated to be much higher (about 40% of the total) by the discrete cell model 
than by the continuum model. This finding is consistant with the earlier estimate 
(of about 50% versus 25%) using a highly simplified model. 

DISCUSSION 

Much of the prior work on mathematical analysis of oxygen transport in 
hemoglobin solutions has used the single-step kinetic model of Eq. 3 with k~ and 
k2 treated as constants (the constant coefficient model). The principal weakness 
of the constant coefficient model has been recognized for a long time, and Moll 
(15) devised the variable-rate-coefficient (VRC) model. The results of Figs. 1 
through 4 give a direct comparison of results by the two models. This comparison 
shows that for the conditions of the microcirculation the constant coefficient 
model is seriously deficient. The problem is related to the fact that there is a 
relatively wide range of oxygen saturation. The hemoglobin and oxygen are at 
near equilibrium concentrations except in a relatively thin boundary layer, and 
the constant coefficient model is compatible with an inaccurate equilibrium 
curve. Presumably significant error exists in much of the prior work by the 
constant coefficient model involving a wide range of concentrations. On the 
other hand the error could be insignificant in problems involving only a small 
range of oxygen concentrations if the rate coefficients were selected to be com- 
patible to the equilibrium relationship at the mean conditions. Some workers 
have avoided the problem by use of the more accurate four-step Adair Kinetic 
model (see (7) for example). The equations of the four-step model are more 
difficult to integrate. Hence, the single-step model apparently has been used in all 
prior transient solutions. 

The results of Figs. 6 and 7 are of inherent interest for estimation of the mass 
transfer Nusselt number under the conditions of the microcirculation. The 
Nusselt number is of practical interest in that it relates oxygen concentrations to 
the oxygen flux through the capillary wall. Values of the Nusselt number can be 
"matched" through the capillary wall flux with a model for oxygen transport and 
consumption in the tissue to yield the oxygen concentration distribution. As 
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shown by comparison of the figures, the Nusselt number depends only slightly 
on capillary radius under the conditions of the microcirculation. The results also 
show that the continuum model used in almost all prior work seriously underesti- 
mates both the Nussselt number and the fraction of resistance to oxygen trans- 
port in the blood. On the other hand the continuum and discrete models are in 
much less disagreement on predictions of capillary wall oxygen concentration. 
This result is due to the fact that the radial gradient in the oxygen concentration 
is not great. Hence, small differences may correspond to a significant fraction of 
the overall radial concentration drop as shown by the results of Table 2. A 
significant fraction (about 40 %) of the overall resistance to oxygen transport is in 
the capillary. 

It is important to note that the Nusselt numbers reported here are defined 
(Eq. 8) in terms of the erythrocyte oxygen flux at the capillary wall. The time- 
averaged tissue oxygen flux at the capillary wall is different. The erythrocyte 
wall flux is twice the tissue wall flux for a 50% hematocrit. In application of the 
results for other hematocrits, the erythrocyte flux should be taken to differ from 
the tissue flux by a factor of (I/H), where H is the hematocrit expressed 
as a fraction. There is experimental evidence (11,12) that at least in some 
circumstances the hematocrit in the capillaries is as low as 10-20%. 

The cylindrical slug configuration used in this work is obviously not a precise 
representation of the shape of the erythrocyte in the capillaries. The deformed 
shape of the cells is known to be not axisymmetrical. The cells deform from an 
edge-on-oriented biconcave disc shape into a "slipper"-like shape. However, 
analysis of measurements on cell dimensions indicates that in the small capilla- 
ries (4 ~m diameter) the slipper is compressed into an almost cylindrical shape (9). 
Wiedeman (17,18) has pointed out that only a few careful measurements of 
capillary dimensions have been made, and they indicate a range of 3 to 5 t~m. It is 
her feeling that the larger diameters (6 to 8 #m) often used in calculations are 
based on observations of vessels that are not true capillaries. Therefore, the 
cylindrical "slug" shape would appear to be a suitable first approximation to the 
actual shape in the capillaries. 

Other assumptions of the work presented here are that the erythrocyte com- 
pletely fills the lumen of the capillary and that the diffusion is entirely radial. This 
neglects the plasma layer which is known to be present between the erythrocyte 
and the capillary wall. Baxley (2) has taken this layer into account in some of his 
calculations and has estimated that is contributes less than 10% of the overall 
resistance to oxygen transport. Mass transfer through the ends of the capillaries 
is also neglected. In the space between the cells it is known from prior work that 
diffusion is of dominate importance (convection can be neglected) (1,4,6). Fur- 
thermore for 4 ~m capillaries, from the measurements of Hochmuth et al. and 
others (9), it can be estimated that the surface area ratio (cylinder "ends" to 
cylinder "sides") is about 0.2, and that the diffusion path length ratio (cylinder 
"ends" to cylinder "sides") is of the order of 2 to 3. Thus the flux from the "ends" 
is estimated to be of the order of 10% of that through the plasma layer between 
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the cell and the capillary wall. Therefore, the two errors from neglect of the 
diffusion through the plasma are both of the order of 10% and have opposite 
effects on the distribution of resistances. 
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NOMENCLATURE 

C l  

C2 

Co 
Ct 

Oxygen concentration 
Oxyhemoglobin concentration (heine units which is four times the 
hemoglobin) 
Oxygen concentration at the capillary centerline in the erythrocyte 
Total heine concentration 
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CT 

. C w  

C 
D1 
D2 
Dt 
G 
H 
kl 
k2 
K 
N 
Nu 
q 
r 
re 
R 
t 
VRC 
3/ 
), 

Oxygen concentration at the outer boundary of the Krogh tissue 
cylinder 
The oxygen concentration at the capillary wall 
The mixed-mean oxygen concentration in an erythrocyte 
Diffusion coefficient for oxygen in the erythrocyte 
Diffusion coefficient for hemoglobin in the erythroctye 
Diffusion coefficient for oxygen in tissue 
Oxygen consumption rate per unit volume of tissue 
Fractional hematocrit (volume fraction erythrocytes in blood) 
Reaction velocity coefficient for deoxygenation of hemoglobin 
Reaction velocity coefficient for oxygenation of hemoglobin 
Constant from Hill equation, Eq. 7 
Constant from Hill equation, Eq. 7 
Nusselt number, defined by Eq. 8 
Flux of oxygen through the erythrocyte boundary 
Radial coordinate 
Radius of the capillary 
Rate of net appearance of oxygen per unit volume 
Time 
The variable-rate-coefficient kinetic model introduced after Eq. 7 
Ratio of the Krogh tissue cylinder radius to the capillary radius 
Fraction of resistance to oxygen transport in the tissue, Eq. 10 


