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The instantaneous left intraventricular pressure-volume ratio, e(t) = 
p (t)/[v(t) -- va], in which p(t),  v(t) and va are intraventricular pressure, volume 
and a correction factor, respectively, was shown by our experimental studies to be 
independent of mechanical loading conditions and yet vary markedly with changes 
in contractile state of the ventricle. The stndies also indicated that the e(t) curve 
under a given contractile state could be described as e (t) = aeo ([3t), in which e0 (t) 
represents e (t) under arbitrarily defined control contractile state and heart rate, and 
a and/3 are magnitude and duration parameters of the given e(t) with respect to 
e0 (t). The present mathematical analysis of mechanical relationship between ven- 
tricular performance represented by e (t) and myocardial contraction shows that the 
a and/3 parameters related to myocardial force, F, and shortening velocity of con- 
tractile element, Vce, respectively. U sing a two-element model of myocardium and a 
thick-wall sphere or cylinder model of the ventricle we found that F (t) -- aHeo (fit) 
and Vce(t) = flK~[deo(C3t)/d(flt)]leo(flt). Both H and K s are functions of ven- 
tricular volume and are specific to the geometric model used, whereas the mode of 
afterload affects Kj only. The mathematically derived F-Vce curves and their shifts 
owing to variations of a,/3, H and Ks under isotonic, isobaric and isovolumetric con- 
tractions simulated the experimentally established F-Vce curves from papillary 
muscle and their characteristic shifts reported by other investigators. On these bases 
we conclude that e(t) explicitly expresses the dynamic characteristics of myocardial 
contractions, which further supports our experimental contention that e(t) can be 
used as a useful index of contractile state of the ventricular chamber. 
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G L O S S A R Y  OF SYMBOLS 

instantaneous left intraventricular pressure-volume ratio. 
e (t) in an arbitrarily defined control contractile state and heart  rate. 
peak magnitude of e(t). 
time to emax from the onset of  systole. 
magnitude parameter  of e ( t) .  
time-duration parameter  of e (t) .  
left intraventricular pressure. 
left intraventricular absolute volume. 

1 Abstract of this paper was presented in the fall meeting of the American Physiological Society 
(1971) [Suga, H. and Sagawa, K. The Physiologist, 1971, 14, 239]. 

.2 Preliminary analysis was made by Hiroyuki Suga in Institute for Medical and Dental Engineer- 
ing, Tokyo Medical and Dental University, Tokyo. Further analysis was supported in part of PHS 
Grant HE 14529. 

160 
Copyright �9 1972 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



HEART MECHANICS BASED ON p - V  RATIO 161 

Vm 

Vd 

Vio 

Vic 

fl(v~) 

A(v,) 

left ventricular wall volume (incompressible). 
volume correction factor. 
intraventricular unstressed volume when the left ventricle is not excited. 
initial volume of the left ventricle given as preload. 
function only of vi (t) in a given ventricle, and parameter relating 
e(t) to myocardial force. 
function only of v~(t) in a given ventricle, and length of a unit 
myocardial mass. 

k elastic modulus of series elastic component in the unit myocardial 
mass. 

F(t )  myocardial force generated by the unit myocardial mass. 
Vce (t) shortening velocity of contractile element in the unit myocardial 

mass. 
function of v~c, and parameter relating e(t) to myocardial force. 
function of Vic, and parameter relating [ de (t) ~dr]/e (t) to shortening 
velocity of contractile element. 

I. INTRODUCTION 

The mechanical properties of the left ventricle as a pump are important for un- 
derstanding overall circulatory dynamics. Ventricular contraction has been char- 
acterized at three arbitrary levels. The first is to regard the ventricle as a hydraulic 
element and define it in terms of its input-output relationships. Examples of such 
a characterization are Starling's law of the heart which relates cardiac output to 
mean atrial pressure (Patterson et al., 1914) or the ventricular function curve 
which relates external mechanical work to enddiastolic pressure of the ventricle 
(Sarnoff et al., 1962) and a cardiac output surface relating cardiac flow to arterial 
and venous pressures (Sagawa, 1967). The second level is to characterize it as an 
active chamber and describe ventricular contraction in terms of intraventricular 
pressure and volume variables. The examples are the pressure-volume diagram 
(Frank, 1895) and our pressure-volume ratio (Suga, 1969a, 1969b, 1970 and 
197 la). The third level is to regard the ventricle as an assemblage of myocardial 
fibers and to describe their shortening characteristics in terms of the so-called 
force-velocity relation (Sonnenblick, 1962; Braunwald et al., 1967). 

Suga has shown experimentally that instantaneous left intraventricular pres- 
sure-volume ratio during systole uniquely characterizes the ventricular contrac- 
tile state. A mathematical model of the heart based on the above findings 
simulated cardiac responses to various hemodynamic conditions (Suga, 1971b). 
This successful simulation suggests that the pressure-volume ratio serves as a 
bridge between the first and the second level of characterization of ventricular 
contraction discussed above. 

The present purpose is to show that the time-varying pressure-volume ratio 
also relates the second level with the third level of characterization of ventricular 
contraction; we mathematically derive the known myocardial force-velocity rela- 
tions from the left ventricular pressure-volume ratio curve. We use a series elastic 
and contractile element model of myocardium and either sphere or cylinder model 
of ventricular geometry for the derivation. 

14(vic) 
K~(vic) 
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II. PHYSIOLOGICAL F I N D I N G S  

Recently, Suga showed in the canine left ventricle that the course and magni- 
tude of the time-varying ratio of instantaneous intraventricular pressure over 
absolute intraventricular volume was practically independent of preload and after- 
load imposed on the ventricle. As yet, the time course and magnitude of the ratio 
was found to vary sensitively to changes in the contractile state. We have reinves- 
tigated these findings using a plethysmographic measurement of instantaneous left 
ventricular volume (see Appendix I for the method). The results of this experi- 
ment reconfirmed the earlier findings? However, the study also indicated the 
necessity of redefining the ratio to insure its independency of mechanical loading 
conditions. Thus we defined the left ventricular pressure-volume ratio e (t),  using 
an experimentally obtained correction factor for ventricular volume: 

e(t)  =- p ( t ) / [ v i ( t )  - -  va], (1) 

in which p( t )  is left intraventricular pressure and v~(t) is left intraventricular 
absolute volume, va is the volume axis intercept of a straight line drawn 
throughout the left uppermost corners of a family of pressure-volume loops under 
a given contractile state at different pre- and afterloads as shown in Fig. 1. va was 
invariant with changes in contractile state or loading conditions (see Appendix |I 
for further explanation of va). 

:~ SUGA, SAGAWA AND SHOUKAS, Load-independency of instantaneous pressure-volume ratio of the 
canine left ventricle and effects of epinephrine and heart rate on the ratio, submitted for publication, 

w 
n" 

co 
c J) 
ill 
0E 
13_ 

CE 
<[ 
i 

u 

CE 
l-- 
Z 
LLI 

I 

o. 

0 
o- 

3~. , _  z2 

g -  i i  
I 

I 
I 

I 
I 

( 
o fb 2b 3'o 

VENTRICULAR VOLUME 

FIG. 1. Graphical explanation of correction volume va. va is the volume axis intercept of the broken 
straight line which is drawn to connect the left uppermost corners of a family of pressure-volume loops 
traced under a control contractile state and different ventricular loading conditions above and below 
normal preload and afterload, v,1 was 4 - 6 ml for  20-kg dogs and remained constant even when the 
contractile state was altered by epinephrine infusion. The arrows show the direction of movement of a 
pressure-volume data point on the pressure-volume loop. Isovolumetric contraction phase (1-2) ,  

systolic ejection phase (2-3), isovolumetric relaxation phase (3-4) and diastolic filling phase (4-1) .  
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FIG. 2. Graphical explanation ofe( t ) .  The left panel shows a pressure-volume loop in a contr~/ction 
and the correction volume va. e(t)  is the slope of a line connecting a fixed point (va,O) and another 
point [v~ (t),p (t)].  e(t) is expressed by the height of the projection of this line on the appropriately 
scaled vertical line (eaxis) in the center of the graph. As time goes on, the point [v~ (t) ,p (t)] travels A, 
B and C on the pressure-volume loop changing the slope of the line and therefore the height of the 
projected point on the e axis. The right panel shows the time course of the slope of the line in the left 
panel, points A, B and C in the right panel corresponding to those in the left panel, 

Figure 2 is a schematic illustration of our new definition of e(t) on a pressure- 
volume plane. Given a time point (tl) during systole, the pressure-volume ratio 
e (tl) is represented by the slope of a line which connects a fixed point (va,o) and 
another point [v~(tl), p(q) ] on the pressure-volume loop indicating a cardiac 
cycle. This latter point moves with time from A to B and C, changing the slope of 
the line which represents e(t). The time-varying slope of the line is plotted as an 
explicit function of time in the right side of Fig. 2. 

Shown in Fig. 3A is the experimental recording of e(t) curve (channel 3) 
calculated by an electronic divider from the intraventricular pressure and volume 
tracings in channels 1 and 2. When cardiac output was altered by changing pre- 
load, intraventricular pressure changed as is shown in the first channel. However, 
the peak value of e (t), emax, and time to ema~ from the onset of systole, tm~x, were 
not affected (P > 0.5) by these changes in preload and afterload. 

Shown in Fig. 3B is the recording obtained when cardiac output increased while 
peak intraventricular pressure was maintained constant. The third channel shows 
that emax and tmax were not affected by the change in preload. The load-indepen- 
dency of emax and tmax was also observed when arterial pressure was varied while 
maintaining cardiac output constant. 

Figure 3C shows that emax was markedly increased (P < 0.001) and t . . . .  was 
shortened (P < 0.001) with increases of epinephrine infusion from 0 to 1 and 
2/zg/kg/min. We also noted similar load-independency of ema~ and tmax values 
under the enchanced contractile state. Figure 3D shows the effect of heart rate on 
em~ and /max. tm~x shortened with graded increases in heart rate, controlled by 
ventricular pacing, whereas em~x did not change. From nine experimental prepara- 
tions the mean emax value was 6.6 _+ 1.2 (SD) mmHg]ml and the mean/max value 
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FIG. 3. The  ins tantaneous  p r e s su re -vo l ume  ratio curves  of  a canine left ventricle. The  e(t) curves  
in the third channel  are computed  from the intraventricular p ressure  (first channel) and volume (second 
channel).  Panels  A and B show the data when cardiac ou tpu t  was varied with and without secondary  
changes  in mean  arterial pressure ,  respectively.  Panel C shows  the relationship o f  e(t) curves  with dif- 
ferent  rates of  epinephrine infusion. Panel D are the data  while heart  rate was varied by electrical 
pacing of  the ventricle. In channels  4 and 5 of  all the panels  are the t ime-derivatives of  e(t) and 
(de/dt)/e, respectively, de/dt was computed  by a C R  ne twork  with a t ime cons tan t  of  0.5 msec  and 
(de/dt)/e was computed  by an analog computer .  
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F1G. 3. Continued. 

was 191 + 29 msec before epinephrine infusion and 12.2 -+- 4.5 m m H g / m l  and 
157 +_ 26 msec during 2/xg/kg/min epinephrine infusion, respectively.  

The  similitude of the shape of e(t) curves was checked statistically after 
normalizing all the experimental  e (t) curves  by making both emax and tmax values 
unity. F rom this result we conclude that all e(t) curves have a unique shape 
regardless of  different emax and tmax values. Therefore ,  emax and tmax are consid- 
ered as the characterist ic parameters  of  e(t) curves.  
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Based on the above findings, we introduced two parameters o~ and/3, a is the 
ratio of emax under a given contractile state over that under an arbitrarily defined 
control contractile state./3 is the ratio of  tmax under the control contractile state 
over that under the given contractile state. Both a and/3 parameters are unity 
under a control contractile state, and greater than unity when emax is increased and 
tmax is shortened in the case of  enhanced contractile state, a was found to be 
1.8 -+ 0.6 (SD) and/3 was 1.3 _+ 0.1 during 2/zg/kg/min epinephrine infusion. As 
mentioned before, a did not change during increases in heart rate whereas /3 
increased at the rate of 45% per change in 100 beats/min, a and/3,  which are 
parameters of ernax and tmax, c a n  be used as empirical measures of  a change in con- 
tractile state from a control contractile state. 

Because of the similitude of all the observed e( t )  curves, we can mathemati- 
cally express e( t )  under any contractile state as 

e( t )  = c~eo(fit), (2) 

in which e0 (t) is a particular e (t) determined under arbitrarily defined control 
contractile state and heart rate. In the present mathematical analysis, we assume 
that Eq. (2) is also valid for special cases such as afterloaded isotonic, isobaric and 
isovolumetric contractions. 

I l I .  M A T H E M A T I C A L  A N A L Y S I S  

A. Two-Element  Model  o f  the Myocardial  Fiber 

The mechanical properties of the myocardial fiber are represented by a three- 
element model in which a contractile element (CE) is arranged in series with a pas- 
sive elastic component  (SE) and in parallel with another passive elastic element 
(PE). In the analysis of contractile process, PE is usually neglected for simplicity 
considering that it contributes minimally to force development (Braunwald et al., 
1967; Donders and Beneken, 1971). 

The property of  SE has been studied by the so-called quick release method and 
is described in terms of  the relationship between a passive change in its length 
(Als) and the change in applied force (AF).  We will be considering in this analysis 
a unit mass of myocardium which has unit length (l cm) and unit cross sectional 
area (1 cm ~) when the muscle mass is not excited and completely unstressed 
( F =  0). 4 Parmley and Sonnenblick (1966) reported the following empirical 
description of SE based on their findings on cat papillary muscle: 

d l J d F  = (k �9 F + C)-~,  

in which l~ is the length of SE in the unit mass, F the applied force and C a con- 
stant, k represents the elastic modulus o f  SE and is believed to be unaffected by 

4 In the present study the definition of a unit mass of myocardium is the myocardium mass of unit 
volume (1 cm 3) whose length and cross sectional area are unity (1 cm and 1 cm 2) when the muscle is 
not excited and no preload is applied to it. This definition is convenient when we compare the mathe- 
matical data with experimental data. In papillary muscle experiments elastic modulus of SE, myocar- 
dial Ibrce and shortening velocity of CE are conventionally normalized for the dimensions of the 
muscle mass at a particular condition and not for the instantaneous dimensions. 
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contractile process nor by a change in contractile state of myocardium. The value 
of the constant C is small compared with the value ofk �9 F over the physiological 
range of F. Therefore, the above equation can be approximated by 

dl~./dF = ( k .  F)  -1. (3/ 

On the basis of experimental findings on papillary muscle (Sonnenblick, 1962) 
the shortening property of CE has been described in terms of the relationship 
between the force actively developed by CE and its shortening velocity. Given an 
appropriate model of ventricular geometry and the relationship between the ven- 
tricular wall stress and lumen pressure, one should be able to derive a similar 
force-velocity relation from ventricular pressure-volume relation. This has been 
done in various manners (Sandler and Dodge, 1963; Fry et al., 1964; Levine and 
Britman, 1964; Ross et al., 1966, and McDonald et al., 1966). We use here a new 
way to translate ventricular pressure and volume variables into force and shorten- 
ing velocity of muscle, in which the time course of ventricular pressure-volume 
ratio, e (t), is fully utilized. 

B. Geometric Models o f  the Left Ventricle 

Relationships between myocardial force and left intraventricular pressure and 
between myocardial length and left intraventricular volume would be precisely de- 
termined if we have detailed knowledge of morphology of the left ventricle. This 
work is still under an extensive investigation by other investigators (Mirsky, 
1969; Armour and Randall, 1970). 

To simplify the analysis we use either a thick-wall sphere or a thick-wall cylin- 
der model with the following assumptions: (1) Left ventricle has an identical shape 
throughout a cardiac cycle, (2) Distribution of myocardial fibers in the ventricular 
wall is isotropic and homogeneous in the sphere model while it is circular in the 
cylinder model, (3) All the fibers contract simultaneously, and (4) Left intraven- 
tricular pressure is in instantaneous equilibrium with myocardial force. Both these 
geometric models and assumptions have been used in the above-mentioned earlier 
analysis of left ventricular mechanics. 

1. Thick-wall sphere model. We assume that the left ventricle be a thick-wall 
hollow sphere with the inside radius R~, outside radius Ro, intraventricular vol- 
ume v~, and wall volume vm which is incompressible through the cardiac cycle. If 
we consider that the average circumferential force F is generated in the unit mass 
at the equator, then the force thus normalized is related to the radii and the trans- 
mural pressure as 

F ( t )  = p ( t ) R ~  ( t )2 / (R~o - -  R~o), (4) 

in which Roo and R~o are the Ro and R~ when the ventricle is not excited and the 
transmural pressure is zero, namely p = 0 and F = 0 (see Footnote 5). Moreover, 

The total circumferential force is given by 7rRi(t)2p(t). When the total force is normalized for the 
cross sectional area of the above defined unit mass, we obtain Eq. 4. I f  the total force is normalized for 
instantaneous unit cross sectional area it gives "s t ress"  and is equal to 

p(t)Ri(t)2/[Ro(t) 2 -- R~(t)2]. 
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v i ( t )  = (4/3)7rR, (t) 3, 
v , ,  = ( 4 / 3 ) ~ [ R o  ( t )  3 - R, (t) 3], 

and the unstressed intraventricular volume rio when the ventricle is not excited 
and p = 0 is 

Vio = (4/3)7rR~o. 

Using e ( t )  defined by Eq. (1), Eq. (4) can be rewritten as 

2/3 F ( t )  = e ( t )  �9 v~(t)2/ '~[vi( t)  -- vd] / [  (v~o + v, , )  2/:~ -- Vzo ]. (5) 

We consider that the length of the above-mentioned unit myocardium mass at 
the average radius, 0.5 (R~ § R0), is the representative fiber length supporting the 
average force F. This fiber length is then the sum of length Ic of CE and length ls of 
SE. Therefore, 

l c ( t )  ={Ivy(t)  + v , , , ] i / 3 + v ~ ( t ) l / 3 } / [ ( V ~ o + V , , ) i / 3 + V ~ / o  3] - - I s ( t ) .  (6) 

2. T h i c k - w a l l  c y l i n d e r  m o d e l .  Alternatively, we will assume the left ventricle to 
be a thick-wall cylinder with constant height and constant wall volume v,,, 
neglecting muscle volumes of the top and bottom walls. The average circumfer- 
ential force F generated by the unit myocardium mass and the length of CE in the 
same unit mass are given by 

F ( t )  = e ( t )  " v i ( t ) i / 2 [ v i ( t )  -- v~l]/[ (v~o + vm) 1/2 -- V~o 2 ] (7) 

and 

l e ( t )  = {[vi(t) + Vm] 1/2 § l~i(t)l/2}/[(Vio § Vm)l/2 -4- 1~1o/2 ] - -  I s ( t ) .  (8) 

C. G e n e r a l  F o r m u l a t i o n s  o f  M y o c a r d i a l  F o r c e  a n d  L e n g t h  o f  C E  

Equations (5)-(8) lead to the two general equations for the normalized myocar- 
dial force and length of CE with respect to the unit myocardium mass: 

F ( t )  = f~[v~( t )  ] e ( t ) ,  (9) 

le ( t )  =- f 2 [v~ ( t )  ] --  Is(t). (I0) 

f~ and f2 are mathematical functions only of v~ (t), with parametric constants vm, v~o 
and vu. These three parameters can be specified for a given ventricle; therefore, fi 
and f2 values are determined only through the resultant intraventricular volume. 
The forms of thef~ and f2 functions are shown in Eqs. (5)-(8) and are specific to 
the type of the geometric model used. 

Equation (9) shows that the normalized force F is related to the intraventricular 
volume by e ( t ) .  Since our experiments indicate that e ( t )  remains the same 
regardless of mode of afterload, the relationship between F and v~ is independent 
of the mode of afterload. A similar independence in the force-length relationship 
from afterload was shown to exist in cat papillary muscle by Downing and Son- 
nenblick (1964). These investigators contracted the muscle from various initial 
fiber lengths under different modes of afterload, including isotonic, isometric and 
afterload istonic contractions. In Fig. 4A, which was reproduced from their paper, 
the endsystolic points determined from these different contractions were plotted 



H E A R T  M E C H A N I C S  BASED ON p-v RATIO 169 

't A I-,o.o 
s~ / " "  '~ 

/ / "  o . i  , , . z ~  
/ / o 0 .2  I~.oo / 

7 I- i o 0 . 4  12 .40  / 
/ / <, 0.~ ,~.65/ _~ ' 
/ /" o., ,~.8Ol/o 

:f / 5 

z b 

L/o 
o , o . o  , , . o  , 2 . ~  , s o  

MUSCLE LENGTH (mrni 

r = Vio/Vm 
"~.= I 2/3 2/5 SPHERE 
~ o /  s  - f  / . 
~.~ , / 2  ~/2 

] ~c=('+') - r  / i  I / /  

<<>/ S' 
/ 

o / . . j  V~o= o lvm 
0 4 -  , . < " : ' ,  , - , 

0.9 I I. I 1.2 
FI BER LENGTH/UNSTRESSED 

Fro.  4. Compar i son  of experimental  and mathemat ical  force- length  relationship curves.  
(A) Force - leng th  relationship curve o f  a cat papillary muscle  [Reproduced  from Fig. 1B of  

Downing  and Sonnenblick (1964) with the permiss ion of  the  author  and publisher] .  Muscle  length with 
0.2-g preload is 1.2 cm, cross  sectional area 0.011 cm 2, s t imulation frequency = 12/min, temperature = 
22 ~ Po = total force developed from an initial length a when  the afterload was of  such  a magni tude 
that  musc le  shor tening did not  occur;  Po similar to po but  f rom different initial length x. No te  that  the 
muscle  shor tened to the same point  on the active length force curve  (z) independent  of  its initial length 
as far as the  afterload was constant .  T hus  the  plot indicates that isometric and isotonic force- length 
curves  are virtually identical. W hen  force value is normalized with respect  to 1-cm 2 cross  sectional 
area o f  myocardium,  lg/0.011 cm 2 = 90 g/cm 2. 

(B) Mathemat ica l  relation be tween m a x i m u m  total force and length of the  uni t  myocardial  mass  
which has unit length and cross  sectional area when  it is not  excited and uns t ressed .  Two sets of  data 
were calculated for both the thick-wall sphere and cylinder models  of  ventr icular  geometry.  The  ordi- 
nate  is myocardial  force normalized with respect  to g-av,~emax, in which g (gs for the  sphere,  gc for the 
cyl inder  model) s tands  for the equat ion in this panel. The  abscissa  is fiber length normalized with 
respect  to its uns t ressed  length. For  example,  myocardial  force value 0.1 is equal to 95 g/cm 2 for the 
sphere model  and 110 g/cm 2 for the cylinder model when  vm = 100 ml, u~o = 0.1 ~m, vd = 5 ml and 
em ax = 6 mmHg/ ml  as representat ive values  in a 20-kg dog. 

on a force-length plane and these points gathered around a single curve regardless 
of the afterload conditions. We compared this experimental curve in Fig. 4A with 
the mathematically derived curve from Eqs. (9) and (10) which is shown in Fig. 
4B. The similarity of these two curves suggests that the load-independency of e (t) 
is a valid concept of ventricular contractile process. 

D. General Formulations of Shortening Velocity of CE 

Shortening velocity Vce of CE is given by the negative time-derivative of length 
of CE: Vee(t) =-dlc /dt .  The time-derivative of Eq. (10) yields 

-dl~/dt : -d{ f2  [vi (t) ] }/dt + dl~ (t)/dt. 
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Fro. 5. Graphical  presentat ion of./';, 3'2 and their derivatives as a funct ion of vi in the thick-wall ( - - )  
and cylinder ( - - - )  models.  J;/g-~ v,,, means  that f~ is normalized with respect  to g ~v,,, and the same 
holds for,I), dj;/dv~, dj~/dvi. Subscripts  s and c denote the sphere and cylinder models,  respectively.  
Mathematical  funct ions g 's  and h ' s  represent  denominators  normalized with respect  to v,,, in the math- 
ematical formulas ofJ~, j~ and their derivatives,  va, v,~, and V~o have the same values as in the explana- 
tion to Fig. 4B. 

SinceJ; is a function only of v~ (t) in a given ventricle the first term of the above 
equation can be rewritten as --(dfJdvi) �9 [dvi( t ) /d t] .  The second term can also 
be rewritten as (dls/dF) �9 (dF/d t ) .  Accordingly, 

Vce=--[dfz(v~)/dvi] �9 [dvi( t ) /dt]  + [dls/dF] �9 [ d F ( t ) / d t ] .  (11) 

Substitution of Eqs. (3) and (9) and df~/dt = (dry~dye) (dvJdt)  into Eq. (11) gives 

Vce(t) = - [ d v ~ ( t ) / d t ] [ d f 2 / d v i -  (dfl/dVz)/(kJ;)] + [de ( t ) /d t ] / [ke ( t ) ] .  (12) 

k is the elastic modulus of SE used in Eq. (3). fl ,  f2 and their derivatives with 
respect to v~ are specific to each of the two geometric models (see Appendix III). 
The graphical relationships off ,  and f2 versus v~ values are shown for the sphere 
and cylinder models in Fig. 5. It indicates that they bear similar relationships to v~ 
both qualitatively and quantitatively. 

E. Force-Veloci ty  Curve Derived from e(t) 

Elimination of the time variable from Eqs. (9) and (12) results in force ( F ) -  
velocity (Vee) relation of CE. The parameters of force-velocity relation, v, (t) and 
dvi( t ) /dt ,  depend on the mode of ventricular afterload. Three representative 
modes of afterload will be used for the analysis. 

1. Afterloaded isotonic contraction. Afterloaded isotonic contraction is de- 
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fined when F (t) is kept at a specified constant level throughout the ejection phase. 
Therefore ,  dF  (t) = 0 during the ejection phase. From the time-derivative of Eq. 
(9), 

d F  ( t ) / d t  = [df~ (v~)/dv~] [dv~ ( t ) / d t ] e ( t )  + f l  [v~ ( t)  ] [de ( t ) / d t ]  = O. 

Rearranging, 

- - d v ~ ( t ) / d t =  {L[v i ( t ) ] / [d~](v~) /dv~]}  �9 [ d e ( t ) / d t ] / e ( t ) .  (13) 

Substituting Eq. (13) into Eq. (12) yields 

Vce (t) = {fl [v~ ( t)]  �9 [dJ~ (vi)/dvi]/[dJ~ (vi)/dv~] } " [ d e ( t ) / d t ] / e ( t ) .  

Denoting the quantity within the braces by K1, 

Vce(t) = KI �9 [ d e ( t ) / d t ] e ( t ) .  (14) 

Note  that K~ is a function only of  the instantaneous left ventricular volume, v~ (t),  
in a given ventricle. 

2. A f t e r loaded  isobaric contract ion.  Afterloaded isobaric contraction is defined 
as a contraction when p (t) is kept constant through the ejection phase. Therefore,  
d p ( t ) / d t  = 0 during the ejection phase. Accordingly, from Eq. (1), 

d p ( t ) / d t  = [v~(t) -- va]de ( t ) / d t  + e(t)dv~ ( t ) / d t  = O. 

Rearranging, 

- d v i ( t ) / d t  = [v i(t)  - v,l] �9 [ d e ( t ) / d t ] / e ( t ) .  (15) 

Substituting Eq. (15) into Eq. (12), we obtain 

V~e (t)  = { [vi (t)  -- va]d]) (vO/dv~ 
+ [1 -- (v~(t) -- va) �9 (dJx/dv~)/J~(v~)]/k} • [ d e ( t ) / d t ] / e ( t ) .  

Substituting K2 for the content of  the braces in the above equation, we obtain 

V ~ ( t )  = K2 �9 [ d e ( t ) / d t ] / e ( t ) .  (16) 

K2 is a function only of  the instantaneous left ventricular volume v~ (t) in a given 
ventricle. 

3. l sovolumetr ic  contraction.  Isovolumetric contraction means that v~(t) 
remains constant throughout a cardiac cycle or dv~ ( t ) /d t  = 0 at any time in sys- 
tole. Substituting this into Eq. (12), we obtain 

V~e(t) = (l /k) [ d e ( t ) / d t ] / e ( t ) .  

Substituting K3 for k -1, we obtain 

V ~ ( t )  = K3 �9 [ d e ( t ) / d t ] / e ( t ) .  (17) 

4. General i zed  formulat ion .  From Eqs. (14), (16), and (17) which describe Vc~ 
as a function of [de ( t ) / d t ] / e  (t)  for the three modes of ventricular afterload in this 
analysis we can obtain a generalized equation for V~e on e ( t ) :  

V ~ ( t )  = Kj  " [ d e ( t ) / d t ] / e ( t ) .  (18) 
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This equation means that Vee at any instant of time during systole is obtained from 
the product of [ d e ( t ) / d t ] / e ( t )  and Kj which represents the mode of contraction 
and type of model used. 

Conventionally the relation between afterload force and shortening velocity of 
CE of myocardium is defined by multiple sets of force and initial velocity values of 
isotonic contractions at specified initial fiber lengths (Sonnenblick, 1962; Braun- 
wald et al., 1967). Similarly we can assign a fixed value v~e to the initial volume of 
our left ventricular model which specifies the initial length of the unit myocardial 
mass. We can then compute the shortening velocities of CE at the onset of ejec- 
tions against a variety of afterload to be developed and maintained throughout the 
ejection period in case of afterloaded isotonic or isobaric contraction. In case of 
isovolumetric contraction, the initial fiber length is maintained throughout cardiac 
cycle while the fiber develops force. Under these circumstances, K j, which repre- 
sents the mode of afterload, is a function of the given initial ventricular volume, 
Vie. 

From Eq. (9), a generalized form of F can be written as 

F ( t )  = H �9 e(t),  (19) 

where H is equal to f l ( v i e ) .  H is independent of the mode of ventricular afterload, 
but is specific to a particular ventricular model. 

It should be remembered here that both Kj and H are functions of the initial 
ventricular volume vie or preload in a given ventricular model. The relation of Kj 
and H versus vie are shown in Fig. 6 for both the sphere and cylinder models. 

The force-velocity curve can be determined by plotting F ( t ) =  H .  e ( t )  
against Vee(t)  = K j [ d e ( t ) / d t ] / e ( t ) ,  where H and K~ are constant if vie is speci- 

S: SPHEJ~E 
C" CYLINDER 

: r io/vm 
hs = (l +~,)v,+ ~,/~ Hs 

~- - -  I~=(I +~)V2+ ~/2 ///Hc 
~s=('I+ ~')~ -'~.~ / 

.~ gc=(l + ' )'/L "/: / "  

/ I I " ~  

0 0:~:::": , K3s, c 
I 

Vir / Vm 
FIG. 6. Graphical  presenta t ion of K1, K2, K3 and H as a function of  initial ventricular  volume v~c in 

the thick-wall sphere ( ) and cylinder (-  - - )  models.  K1/h 1 means  that  K t is normalized with h -L  
The  same holds for K2, K~, H and v~. K3 is the reciprocal o f  the series elastic modulus  k and common  
to both sphere  and cylinder models.  
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FIG. 7. Experimentally obtained e(t) curves (A), de(t)/dt curves (B) and [de(t)/dt]/e(t) curves (C) 
plotted against time and [de(t)/dt]/e(t) versus e (t) curves (D) under control contractile state ( - - ) ,  
during increased heart rate (- - -) and under an enhanced contractile state by epinephrine infusion of 
2/xg/kg/min (, �9 ,) in a 20-kg dog. 

fled. The  fundamental  characteristic shape of the force-ve loc i ty  curve is solely 
determined by e(t) on the abscissa versus [de(t)/dt]/e(t) on the ordinate. 
Stretching this curve H times along the abscissa and Kj times along the ordinate 
gives the force-ve loc i ty  curve. Shown in bot tom channel of  Figs. 3A, B, C and D 
are the [de(t)/dt]/e(t) curves computed  f rom e(t) and de(t)/dt curves in the 
third and fourth channels. [de (t)/dt]/e (t) was not affected by changes in loading 
conditions (Panels A and B). However ,  increasing the rate of epinephrine infusion 
or increasing heart  rate augmented the peak  values of  [de (t)/dtl-/e (t) as shown in 
Panels C and D. Figure 7 shows the experimental ly obtained e(t) versus 
[de(t)/dt]/e(t) curves in Panel D, calculated f rom the data in Panels A, B and C 
under  a control contractile state and heart  rate (solid line). Super imposed are the 
e (t) versus [ de (t)/dt ]/e (t) curves under  increased heart  rate by pacing (dashed 
line) and enhanced contractile state by epinephrine infusion (dotted line). These  
three e(t) versus [de (t)/dt]/e (t) curves  are similar in shape to each other. A fam- 
ily of  myocardial  fo rce-ve loc i ty  curves are calculated for the sphere model by 
multiplying the ordinate and abscissa of  the experimental ly obtained e (t) versus 
[de(t)/dt]/e(t) curve by K~ (Vic) and H(vic), respectively,  as shown in Fig. 8. 
The  force-ve loc i ty  curve calculated for the sphere model  is similar to that  for the 
cylinder model. 

As given by Eq. (2), any e(t) curve could be normalized with respect  to a con- 
trol e(t), eo (t), in terms of two parameters  ~ and B. We  can analyze how the ~ and 
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FIG. 8. Mathematical force-velocity curves derived from experimentally obtained e(t) and 
[de (t)/dt ]/e (t) under changes in contractile state (A), heart rate (B) and preload (C and D). Force and 
velocity values are normalized with respect to the unit myocardial mass. The thick-wall sphere model 
is used; vm = 100 ml, V~o = 10 ml, va = 5 ml, emax for e(t) under control contractile state is 6 mmHg/ml, 
and the peak value for [de(t)/dt]e(t) under the control contractile state is 20]sec. These values are 
representative for a 20-kg dog. The force-velocity curves in Panels A, B and C are computed for iso- 
tonic contractions at a control initial volume of 30 ml. The curves for isobaric contraction and those 
computed with the thick-wall cylinder model do not greatly differ from these curves illustrated here. In 
case of isovolumetric contraction (D) the force value is completely independent of the preload, and de- 
termined only by the series elastic modulus, c~ = 2.5 and fi = 1.5 in an enhanced contractile state by 
2/xg/min/kg epinephrine infusion whereas a = 1 and # = 1.2 during increased heart rate from 128 to 
178/min. An increase of preload volume from 30 ml to 40 ml almost doubles H, whereas it increases 
K1 and K2 only to 1.2 times. Ks does not change with the increase in preload volume. 

/3 pa ramete r s  affect the myocard ia l  f o r ce -ve loc i t y  relat ion.  Different ia t ing Eq. (2), 

d e ( t )  / d t  = o~ �9 �9 deo( /3t )  / d ( / 3 t ) .  (20) 

Subs t i tu t ing  Eqs. (2) and  (20) into (18) and  (19), we obta in  

Vce( t )  = / 3  �9 K5 �9 [ d e o ( / 3 t ) / d ( / 3 t )  ] /eo( /3 t )  (21) 

and  

F ( t )  = ~ .  H .  eo ( /3 t ) .  (22) 

The  impl ica t ions  of Eqs.  (2 l)  and  (22) are that  w h e n  the o~ pa rame te r  is changed  

by some a m o u n t  the fo r ce -ve loc i t y  re la t ion is on ly  a l tered by  an equal a m o u n t  
along the force axis. Similar ly  changes  in the/3 p a r a m e t e r  alters the fo rce -ve loc i t y  
re la t ion  on ly  a long the veloci ty  axis. T h e s e  changes  in the o~ and/3  pa ramete r s  are 
also i l lus t ra ted graphical ly  in Fig. 8. O n  these bases ,  we can  conc lude  that  a is 
direct ly re la ted to the relat ive magn i tude  of the m a x i m u m  isometr ic  force param-  
eter  (cus tomar i ly  deno ted  by  Po) and /3  represen ts  the relat ive magn i tude  of  the 

ac tua l ly  measu red  m a x i m u m  shor ten ing  veloci ty  (often called " m e a s u r e d "  Vmax). 
T h e ~  and/3  pa ramete r s  are measu res  of  the changes  of  the f o r c e - v e l o c i t y  re la t ion  
and  therefore  the cont rac t i le  state of  the left ventr ic le .  
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IV. COMPARISON WITH P H Y S I O L O G I C A L  DATA 

A. Form of  The Force-Velocity Curve Derived From e(t) 

As seen in Fig. 8, the basic form of the force-velocity curve derived from e (t) 
indicates an inverse curvilinear relation between e(t) on the force axis and 
[de(t) /dt]/e( t)  on the velocity axis, independent of the type of geometric model 
and mode of contraction. The shape of the mathematically obtained curve 
resembles those obtained on mammalian papillary muscle contracting isotonically 
(Sonnenblick, 1962; Braunwald et al., 1967). The calculated curve near the force 
axis intercept sharply curves downward. This is also true with the experimental 
curves from papillary muscle (Brutsaert and Sonnenblick, 1969). This had been 
considered to be due to the lack of sustained active state near the peak of force 
development. But Brutsaert and Sonnenblick (1969) showed the possibility that it 
depends rather on the presence of series elastic component that reduces the length 
of contractile element at higher loads. The early systolic portion of the calculated 
force-velocity curve is different from a hyperbolic curve. This deviation exists in 
experimentally obtained force-velocity curves and is considered to result from 
the delay for active state to reach its maximum (Sonnenblick, 1965). 

B. Effects o f  Contractile State 

Our experimental studies showed that both ~ and/3 were markedly increased 
under enhanced contractile state by stellate ganglion stimulation or epinephrine 
infusion and both decreased when contractile state was depressed by pentobar- 
bital or acetylcholine infusion (Suga, 1969a, 1969b, 1970 and 1971a; Suga et al., 
1971). Figure 8A shows that the mathematically derived force-velocity curves 
shifted with changes in contractile state. The force value is increased ~ times and 
the velocity value increased/3 times. It is known that the force-velocity curve 

CONTRACTILE HEART RATE PRELOAD oR 
STATE INITIAL LENGTH 

CONTROL CONTROL (45/MIN) CONTROL( I CM) 
ENHANCED I NC P-EASED (60) I NCREASED ( I. I) 

,~. }.\\ A 

_ _  \ \ \  _ _  I 

o 50 IOO/cM2 o 
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50 IO0 150 
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\k \ \ tx'3 \ ~ f  xxx \\\\ 

0 50 I00 
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F~G. 9. Typical force-velocity curves experimentally determined on cat papillary muscle contracting 
isotonically and their characteristic shifts associated with an increase in contractile state by epin- 
ephrine (A), stimulation rate (B) and preload or initial length (C) [Reproduced from Figs. 6A, 10A 1 
and 10A2 of Sonnenblick (1962) with the permission of the author and publisher]. Force and velocity 
values are normalized with respect to unit myocardial mass with unit dimensions (1 • 1 cm ~) when it 
is not excited and stretched by small preload. 
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obtained from mammalian papillary muscle shifts to the right and upward under 
enhanced contractile state as shown in Fig. 9A, and under a depressed contrac- 
tile state left and downward (Sonnenblick, 1962). The effects of changes in con- 
tractile state on the force-velocity curve derived from e (t) curves are consistent 
with those found on the directly measured physiological curve. These consis- 
tencies support our contention that e (t) can be used as a comprehensive expres- 
sion of the contractile state of the ventricle on the ventricular chamber level. 

C. Effects o f  Heart Rate 

Our experimental data indicated that the value of ~ remained constant over a 
wide range of heart rate (50 - 220/min) while fi was significantly increased by 
increases in heart rate. The effects of alterations in heart rate on the force- 
velocity relations is to multiply the velocity value fi times, leaving the force value 
unchanged as shown in Fig. 8B. Experimentally determined force-velocity curves 
of mammalian papillary muscle are shown in Fig. 9B which exhibits similar shifts 
[Sonnenblick (1962), Braunwald et al. (1967) and Kavaler et al. (1971)]. 

D. Effects of  Preload Ventricular Volume 

The c~ and fl parameters are independent of changes in left ventricular end- 
diastolic volume as long as a contractile state remains constant. However, 
changes in preload intraventricular volume alter H and K~ parameters. H is 
approximately proportional to vS~/3 in the sphere model and v~/2 in the cylinder 
model. Kj in the isotonic and isobaric contractions is approximately proportional 
to v~,! :~ in the sphere model and -,c"~'/2 in the cylinder model. Therefore a change in H 
caused by a change in V~c is about three times for the cylinder model and five times 
for the sphere model larger than that of Kj in the isotonic and isobaric contrac- 
tions. K3, for isovolumetric contraction, is unaffected by changes in v~c and is con- 
stant since the series elastic modulus k is constant. Figures 8C and D show the 
mathematically obtained shifts of the force-velocity curve by changes in preload 
ventricular volume V~c in an isotonic contraction and an isovolumetric contraction, 
respectively. The experimentally obtained force-velocity curves indicated a 
remarkable change in force associated with alteration in preload, with a minimal 
difference in the extrapolated Vmax value as is shown in Fig. 9C (Sonnenblick, 
1962). However, Parmley et al. (1972) reevaluated the relationship of Vmax and 
preload in higher ranges of initial muscle length. They showed that the ex- 
trapolated Vmax using the two-element myocardial model slightly increased with 
increases in preload in isotonic contractions. In isometric contractions Vmax was 
independent of preload. These findings are in agreement with our mathematical 
calculations. However, they noticed that, when preload approached a level at 
which the muscle developed maximum force, Vmax tended to decrease with 
increases in preload. This finding is not consistent with our mathematical analysis. 

E. Effects o f  Mode o f  Contraction 

The mathematical analysis indicates that lice will be different for given F and 
V~c in different modes of contraction. As shown in Fig. 6, K3 for isovolumetric con- 
traction is smaller than K1 for the isotonic contraction and Ks for the isobaric con- 



H E A R T  M E C H A N I C S  B A S E D  O N  p-l;  R A T I O  177 

traction in the sphere and cylinder models. Figure 8D is the force-velocity curve 
in isovolumetric contraction, in which Vce was significantly smaller for given F 
and v~. than in isotonic contraction (Panel C). Parmley et al. (1970) noticed that 
Ve~ was smaller in isometric contraction as compared to isotonic contraction for 
the same force. This is consistent without analysis. 

V. DISCUSSION 

There are two ways of mathematically analyzing the correspondence between 
ventricular pressure-volume relationship and myocardial force-velocity relation. 
The first way is to reduce pressure-volume relationship to force-velocity relation 
as presented here. The second way is to synthesize the pressure-volume rela- 
tionship from the force-velocity relationship as attempted by Beneken and DeWit 
(l 967). Beneken's synthesis was based on physiological data on the instantaneous 
force-velocity relation which were determined by Sonnenblick (1965) by quick 
release afterloaded isotonic contractions of mammalian papillary muscle. The 
synthesized pressure-volume relationship compared favorably with physiological 
data. The concept of time-varying "ventricular elastance" similar to e (t) was in- 
troduced as an approximation of computed pressure-volume relationships. How- 
ever, it is not clearly described in Beneken's analysis how the instantaneous elas- 
tance changes by alterations in preload, afterload, contractile state and heart rate. 

The present analytical approach starts from the experimentally observed curves 
which represent instantaneous pressure-volume ratio of the canine left ventricle. 
The force-velocity relations reduced via mathematical analysis are quite consis- 
tent with those directly determined on papillary muscles. 

The analytical results clearly indicate that the pressure-volume ratio and the 
force-velocity relation are mutually transformable by employing the geometry of 
the ventricle. We can then estimate the force-velocity curve of myocardial con- 
tractile element by knowing the time course and magnitude of the pressure- 
volume ratio e (t). The advantage of using e (t) rather than analyzing pressure and 
volume variables individually is fully demonstrated by this present analysis. The 
effects of various interventions on the force-velocity relationship can be directly 
estimated by comparing the peak value and duration of a given e (t) with those of a 
control e(t) ,  eo (t),  in the same ventricle. On the other hand, the effects of preload 
ventricular volume and afterload arterial pressure on ventricular pressure and vol- 
ume variables conveniently cancel out when one looks at the ratio of these two 
variables. On these basis, we conclude that e(t)  can be used as a useful index of 
ventricular contractility on the ventricular chamber level quite consistent with 
known myocardial fiber mechanics. We can also conclude that e(t)  serves as a 
bridge between the two levels of characterization of the heart as a pump, one on 
the ventricular chamber level and the other on the myocardial level. 

A P P E N D I X  I 

Nine mongrel dogs (19 - 21 kg) were anesthetized with chloralose (60 mg/kg) 
and urethane (600 mg/kg) given intravenously. A midsternal thoracotomy was 
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performed under positive pressure ventilation. After bilateral vagotomy the 
stellate ganglia were removed. Total right heart bypass was initiated by draining 
venous return via the caval veins into a blood reservoir, from which a pump per- 
fused the blood into the pulmonary artery. Coronary venous return to the right 
heart was drained into the same reservoir by negative hydrostatic pressure. By 
this method the right ventricle was sufficiently collapsed for our present purpose. 
The left intraventricular volume was measured using a plethysmographic tech- 
nique. The principle of this method is to assess the volume change from the air 
pressure change in the air-tight chamber in which the ventricle is enclosed. We 
modified the classic cardiometer system (Wiggers, 1952) in order to eliminate 
any air leak and temperature drift. The observed pressure drift of the present car- 
diometer system was equivalent to less than ___ 0.5 ml in 3 h. Its dynamic response 
was flat from 0 to 15 Hz. The sensitivity of the cardiometer system was precali- 
brated by changing a known volume of air within the cardiometer system. Zero in- 
traventricular volume was calibrated at the end of experiment by withdrawing all 
the blood in the left ventricular lumen. 

The load-independency of the instantaneous pressure-volume ratio of the left 
ventricle was studied while changing cardiac output (+50% around 80 ml]kg]min) 
with and without secondary changes in mean arterial pressure. Alternately mean 
arterial pressure was changed (+50% around 100 mmHg) without any secondary 
change in cardiac output. These changes in preload and afterload were performed 
by connecting an auxiliary pump between any pair of the blood reservoir, the left 
atrium and the femoral artery. 

A P P E N D I X  II 

Previously Suga defined e (t) as the ratio of left intraventricular pressure p (t) to 
intraventricular absolute volume vi (t) which was estimated by indicator dilution 
method and aortic flow measurement (Suga, 1969a, 1969b, 1970 and 1971a). 
Recently left intraventricular absolute volume vi ( t )  was measured in canine 
hearts with a sensitive cardiometer in combination with a total right heart bypass. 
It was found that the peak e (t) became more independent of ventricular loading 
conditions when the volume v~(t) was corrected by a small constant volume v~ 
2 - 4ml in a 13-kg dog (Suga et al., 1971) and 4 - 6 ml in a 20-kg dog (Suga et al., 
submitted for publication). Therefore we redefined e( t )  in this paper as e ( t )  =- 
p ( t ) / [ v i  ( t )  - vd]. 

It becomes necessary to use this correction factor, va, when we attempt to find a 
linear correlation between the endsystolic ventricular pressure and ventricular 
volume. This correction factor is also evident from Monroe and French's (1961) 
experimental data on pressure-volume loops of an excised left ventricular prep- 
aration (Fig. 10). The pressure-volume loops in Fig. I0 were determined from a 
ventricle contracting auxotonically against an air-filled compression chamber. 
Despite the alterations in preload and afterload, the endsystolic pressure-volume 
data points of these contractions are scattered around a single rectilinear line 
which was drawn by us. This line intercepts with the volume axis at a small vol- 
ume (about 5 ml from these data) which corresponds to the va used in the calcula- 
tion of e ( t )  in our analysis. From other data in Monroe and French's paper it is 
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FIG. 10. Left intraventricular pressure-volume loops contracting from different end-diastolic vol- 
umes against an air-filled compression chamber with varied volume compliance [Reproduced from 
Fig. 12 of Monroe and French (1961) with the permission of the author and publisher]. The broken 
line is drawn by us so that all of the maximum pressure points will be located on or near it. va is the vol- 
ume axis intercept of this line. 

ev iden t  that  if we subt rac t  a small  vo lume  from the endsys to l ic  vo l ume s  and then  
divide these  cor rec ted  vo lumes  into the c o n c o m i t a n t  endsys to l ic  p ressure ,  we ob- 

ta in  a lmos t  ident ical  p r e s s u r e - v o l u m e  ratio va lues  regardless  of widely  different 

p re load  and  af ter load condi t ions  imposed  on  the ventr icle .  

A P P E N D I X  I I I  

Lis ted  be low are the ma themat i ca l  forms of  f l ,  f i  and  their  der iva t ives  with 
respec t  to v~, which  are used  in the ca lcu la t ion  of F ( t )  and  Vce(t).  These  differ 

with the type of  geometr ic  model  to be  used.  

1. Sphere  M o d e l  

f l (v , )  = v~3(12~- vd)/[ (V~o + 12,,,)2j3 _ v~0/3], 
f2  (12') = [(12' Jr- 121~'t) 1/3 -~ 12~/3 ] / [  (12'0 ~- 12~'~t) 1/3 Ul- V~0/3], 

dfi ( vi) /dv, = [5/3 �9 -,"2/3 _ 2/3 �9 vavT1/3 ]/[ (rio + v~, ) ̀ 2/3 - Vio'2/31j , 
dJ~ (vi)/d12i = [1/3 �9 (vi + Vm) -`2/3 + 1/3 " V?`2/3]/[(Vio + Vm) 1/3 + 12~/o 3 ]. 

2. Cylinder Mode l  

f l  (12,) = 12U`2(Vi - 12~)/[(12,o + 12111) 1/2 - -  12}0/2]' 

A(12,) [(v~ + 12..)1/~ + vP]l[(v,o + v.,,) "~ + ,,:J~l ~zo d 9 
df i (v , ) ldv i  = [3/2"  v~ /2 -  1/2" 12d1271/`2]l[(ViO-]-Vrn) 1 / `2 -  12~0/2], 

vl/`2 ] df2(v,) /dvi  = [1/2 �9 (vi + Vm) -am + 1/2 �9 VT1/2]/[(Vio + Vm) u`2 + -Co ~. 
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