
Graphs and Combinatorics 1,165-166 (1985) 

Graphs and 
Combinatorics 
�9 Springer-Verlag 1985 

Classification of 2-Transitive Symmetric Designs 

William M. Kantor* 

University of Oregon, Eugene, OR 97403, USA 

To Prof. Noboru Ito, to commemorate his 60th birthday 

Abstract. All symmetric designs are determined for which the automorphism group is 2-transitive 
on the set of points. 

This note contains a proof of the following result. 

Theorem. Let D be a symmetric design with v > 2k such that Aut D is 2-transitive on 
points. Then D is one o f  the following: 
(i) a projective space; 
(ii) the unique Hadamard design with v = I 1 and k = 5; 
(iii) a unique design with v = 176, k = 50 and 2 = 14; or 
(iv) a design with v = 2 2=, k = 2"-*(2 = -- 1) and 2 = 2"- t (2  =-1 - 1), of  which there 

is exactly one for  eacti m >_ 2. 

The designs in (iv) are discussed in detail in [3 3 . 
The theorem will be proved as a simple consequence of the classification of finite 

simple groups. The proof is easier that that of the analogous result [5] for designs 
with 2 = 1. These two papers clarify the extent to which I-4] is now obsolete. 

Proof. Let G be a subgroup of Aut D that is 2-transitive on points. Then G is also 2- 
transitive on blocks, and these two 2-transitive permutation representations are in- 
equivalent; in particular, the stabilizer Gx of a point x is not conjugate to the stabilizer 
GB of a block B. Note that we may replace G by any 2-transitive subgroup of G. 

A list of 2-transitive groups is contained in ES]; compare [1]. We only need to 
check whether a group on the list has two inequivalent 2-transitive permutation 
representations of the same degree (and having the same permutation character). 
When G has a nonabelian simple normal subgroup, this is, in effect, already 
contained in [1], and leads to (i)-(iii). 

Assume that G does not have a nonabelian simple normal subgroup. Then 
G <_ AGL(d,p) for some prime p, and G contain the translation group V. We can 
iden{ify V with the set of points of D, and then let x = 0. 

Now G = VG o = VG a, so that Go and Gn are nonconjugate complements to V in 
G. If Z(Go) # 1 then Go = N~(Z(Go)) is conjugate to G8 = N~(Z(Gs)) (since Z(Go) 
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and Z(GB) are conjugate in VZ(Go) = vz(as)). Thus, Z(Go) - 1. (Compare [6], p. 9, 
(ct).) This eliminates many of the cases in [5], and leaves us with the following 
possibilities (for some e). 
(i) Go < FL(1,pe). 
(ii) Go ~" SL(k, pC), d = ke, k > 2. 
(iii) Go ~ Sp(2k, 2"), d = 2ke, k > 2. 
(iv) G O ___ G2(2e) ', d = 6e. 
(V) a 0 = a 6 o r  h 7 inside GL(4, 2). 

Case (i)is eliminated exactly as above, using Go f1 GL(1,p ~) in place of Z(Go). In 
the remaining cases, note that Hi(Go, V) ~ 0 since Go and GB are nonconjugate 
complements to V. These cohomology groups are described in [6, (2.14)] for  (ii), (iii) 
and (v), and in [2] and the lemma at the end of the present note for (iv). The  only 
times HI(Go, V) ~ 0 are (iii), (iv), and (v) with G = A6; and in each case Hi(Go, V) 
has dimension 1 over GF(2 ~) (where 2~= 2 in (v)). This means that  Aut G 
= Aut(G 0 V) is 2-transitive on the set ofconjugacy classes of complements to  V in G. 
(The induced 2-transitive group is just AFL(1,2~).) Thus, G can only produce one 
design D up to isomorphism. 

On the other hand, the group V. Sp(d, 2) does produce a symmetric design, called 
5a+(d/2) in [3]. Since G < V. Sp(d, 2), G acts 2-transitively on the points of that 
design. Thus, D ~ 5~+(d/2). []  

In the above proof we needed the following technical result. I am grateful to G. 
Mason both for a helpful discussion concerning the following lemma and for 
providing a different proof of it. 

Lemma. Let V be the natural 6-dimensional module for K = G2(2)' over GF(2). Then 
dim H I(K, V) = 1. 

Proof. Let K V = K~ V with K~ = K and K~ not conjugate to K. By Sylow's theorem 
we may assume that K fl K~ >_ NK(T ) = TA, where T is a Sylow 3-subgroup of K 
and A is cyclic of order 8. Note that K 1 = <TA, NK,(A)>. 

Since A fixes only 2 points in the natural 2-transitive representation of K~, 
]NKI(A)I = 16. On the other hand, K has a unique conjugacy class of cyclic sub- 
groups of order 3, so that NKv(A)is Z-transitive on Cv(A). Thus, ICy(A)[ = 2 and 
NKv(A) = NK(A) • Cv(A). Now [NKv(A)/A [ = 4, and there are only two subgroups 
OfNKv(A ) isomorphic to NK(A ). Thus, NK,(A ) is uniquely determined, and there are 
at most two conjugacy classes of complements to V in KV. Since there are at least 
two such classes, this completes the proof. []  
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