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Abstract. In this paper, we discuss the existence and nonexistence of solutions for the problem 

- z x u = A u + . , , + ~ + ~ , f ( ~ ) ,  u > 0  in n ~ 1 o . = 0 ,  . > 2 .  ((,).) 

where fl is a bounded smoothness domain in R N, A E R I , p _> O, j'(z) is a given non-negative 

function. Some interesting results have been obtained. 

w I n t r o d u c t i o n  

In this paper, we consider the existence of multiple solutions of semilinear elliptic bound- 

ary value problem 

- A u  = Au + u p + l~f(z),  z E f l ,  N > 2 ,  
~1o~, = o ~ > 0 in a, ((1.1),) 

where gl is a bounded smoothness domain in R jr, A E R 1, ~ >_ 0 are some given constants, 

p = ~ is the critical Sobolev exponent and f(x)  is some given function in co(a)ncl+~(~) 
such that ICx) > O, /(x) ~ 0 in n. 

We are interested in the existence of solutions of (1.1), because it exibits many inter- 

esting existence and non-existence phenomena related to some lack of compactness of the 

corresponding energy functional 

I(u) = ~l f n  IVul~-Au2ax _ p +--~1/~ [u lV+ldx_ l  ~ fo f ( z ) u d x ,  u E  Hd( f l  ). 

* This work was completed in Institute of Math. Academia Sinica as a visiting scholar. 
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In the case # = 0 ,  it is well-known that (1.1)o has no solution for ~ = 0. In fact, Brezis 

and Nirenberg[ 21 have proved that (1.1)o has no solution for all ~ < 0 if fl is a star-shaped 

domain and (1.1)0 possesses at least one solution for ~ �9 (0, ~1), ~vr --~-4. Where hl  is the 

first eigenvalue of the eigenvalue problem - A u  = )~u in fl, ulon = 0. A interesting 

problem is Whether the existence and non-existence phenomena still remain true if we give 

(1.1)o a small perturbations 9(z, u)? If 9(z, u) is a lower order homogeneous function in the 

s e n s e  

am 9(=,u)= o and g(=,O)=-O, 
u - * c ~  U p 

an elegent existence result have been obtained in [2]. For the inhomogeneous case (g(z, 0) 

0),  they discussed the following special problem 

{ - & u  = ~C 1 + u) p, 
(1.2) 

ulot~ = 0 

and obtained some existence and non-existence results. The main aim of this paper is to 

discuss the existence and non-existence of multiple solutions of (1.1)~. The following results 

have been obtained. 

T h e o r e m  1. For ~ �9 ( - o o , ) q )  there exists a positive constant i~* < +oo such that (1.1)~ 

has a minimM solutioh for all p �9 (0, g*] and (1.1)~ has nO solutions for p > p*. 

T h e o r e m  2. For ~ �9 [0,11), /~ �9 (O,p*) problem (1.1)~ possesses at least two solutions. 

T h e o r e m  3. For a �9 ( -oo ,0) ,  p �9 ( 0 , 1 ~ * )  w e  have 

i ) / s  < N < 5, then (1.1)t, possesses at least two solutions. 

ii) / f  N > 6, fl = BR(0) = {z �9 R N [ I=1 < R} and/C=)  is rad i~  with / ' ( r )  < O, 

then there exists a positive constant p** < #* such that {1.1)t, has only one solution for MI 

. 

We "prove . Theorem 1 by means of a standard barrier method and Theorem 2 by varia- 

tional methods. Finally we obtain Theorem 3 by using an improved Pohozaev's identity. 

w The  E x i s t e n c e  of  M i n i m a l  S o l u t i o n  

Let A1 be the first eigenvalue of the operator - ~  and @(z) be the first eigenfunction 
P 

which is larger than zero in fl and / ~o dz = 1. Then we have the following lemmas: 2 

�9 ,(fi  
LAmrna 2.1. For any A E ( - co ,  A1) there exists a constant C > 0 such that (1.1)~, has no 

solutions for p > C. 

Proof. From p > 1 we can choose C1 > 0 such that u p _> ()q - ~)u - C1 for all u > 0. If u 

is a solution of (1.1)t, , then 

Where ~o(z) is the first eigenfunction of -LX. Taking C = /Ca~(=)d= J l(=),{=)d='We obtain p < C. 

LernrnA 2.2. For ~ < At, {1.1}t= possesses at least one solution which is a min imum of all 

solutions i f  1= smMl enough. 



Deng Yinbing Existence of Multiple Positive Solution~ 313 

Proof. For any 6 > 0, let f i - -  6~o, it is easy to varify that there exists a 6o > 0 such 

that  ~ -- 6o~O(z) is a supersolution of (1.1)~ if # small enough, and ~ = 0 is a subsolution 

of (1.1)~ for all # > O. Using. the methods of monotone interation and strong maximum 

principle it follows that  there exists a solution u~ of (1.1)~ such that  ~ < u~ _< ~ and u~ is 

a minimal solution of {1,1)~. 

L e m m a  2.3. For A E ( -co ,  At) there exists a positive constant #* < +co such that (i.I)~, 

has a minimal solution for all # E (O, #*), and (1.1)~, has no solutions i f #  > #*. 

Proof. For A E (-co, Ax), set 

#* = sup{# E R +, I (1.1)~, has at least one solution}. 

From Lemma 2.1 and Lemma 2.2 we have 0 < #* < +oo. For any # E (0,#*) there exists 

a ~ E (#, #*) such that (1.1)~ has a minimal solution u~-. We can easily varify that u~ is a 

supersolution and 0 is a subsolution of (1.1)~,. Using the method of monotine iteration and 

strong maximum principle it follows that there exists a solution u~ of (1.1)~ such that 

0 < u ~ , < u ~ -  for z E D ,  # _ < ~  (2.1) 

and uuis a minimal solution. 

R e m a r k  2.1. For A E {-co, 0), from the proof of Lemma 2.2 we can easily conclude that  

there exists a positive constant #** < +co such that  the minimal solution u~, satisfies 

A+pu  -1 < 0  for 

Indeed, we only need to choose the supersolution ~ = 6o~O(z) satisfies p(6o~O(z)) p-1 < -A.  

R e m a r k  2.2. There are no solutions of (1.1)~, for all A _> A1, # _> 0. 

Indeed, if u is the solution" of (1.1)~,, then 

and thus A < Ax. 

The proof of follow Lemma ks similar to that  of [6]. So we omit it. 

L e m m a  2.41. Let u,, in ~he minimal solution or (1.1)u , for given A E ( -0% At), # E (0, #*), 

~he corresponding eigenvalue problem is 

{ - A8 - = 
(2.2) 

6[a . 

Then the 6rs~ eigenvalue of (2.2) a I > 0. 

From Lemma 2.3, for any A E ( -co ,  At) we can definite a set of minimal solution as 

follows: 

A = { u ~  I #e (0 ,#* ) ,u~ ,  is the minimalsolution of (1.1)~,). (2.3) 

Then we have: 

L e m m a  2.5. There exists a positive constant C independent os # such that ]Iu]l~(n) _< C 

for all u~ ~ A. 
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Proof. For any u~, E A, from Lemma 2.4 we have 

/o /o /o, IVu/=l=d=- (A +vu/= )u/=d= _> ~, =.d= _> o, (2,s) 

fo lvu/=l=a= >_ fo u:a= (2.6) 
Using (2.4)-(2.6) we conclude that 

Prom p E (0, ~*) and Holder inequality and Young inequality we deduce 

1 

for any 6 > 0. Taking 5 small enough such that (p- l)(Az -A) - nvl"c~ > 0 we can obtain 
2 

that there exists a positive constant C'2 independent of p such that 

f~, u~d~ < C~. (2.8) 

Using (2.8) and (2.7) we deduce that f~l [Vu~'[ 2dx. <- C for some positive constant C inde- 

pendent of p. 

The Proof of Theorem 1. Suppose {~i}/>z is a increasing sequence in (0, p*) satisfying 

lira py = p*. The corresponding sequence of solutions is {uj}j_>l c A. From Lemma 2.5 
3"-*oo 
we can choose a subsequence still denoted by {uj}y>z, such that  

us-~ ~ weakly ~ H~(n) 

for some non-negative function ~ E H~ (fl). It is easy to prove that  ~ is a solution of (1.1)/=o. 

We can find a minimal solutidn because 0 is a subsolution for all/~ > 0. 

w Exis tence  o f  t he  Se c o n d  S o l u t i o n  

Let u/= be the minimal positive solution of (1.1)~, for/~ E (0,/~*). In order to find a 

second solution of (1.1)~ we introduce the following problem: 

{ - A u  = Av + (u + u/a) p - uP, 
vla~ = O, v > 0 in fl. ((3.1)~) 

Clearly, we can get another solution u~ -- u/= -I- ~ if (3.1)/= possesses a positive solution ~. 

To solve (3.1)/= we set g(z ,  v) = Au "t- (u -F u . )  p - u p - u p, and a(z)  .-- A -t- pu~ - 1 .  We define 

the corresponding variational function of (3.1)~ by 

1 1 
J(v) = ~ i n  ('Vv'2)dz p ~c l in 'v'p+ l dz - f~ G(z, u)dz, (3.2) 
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11 g I I  
where G(x,v}  = fo g(z,s)ds and v �9 Hd(s For convenience, we use "11.11", 1.1,, to denote 

the norms in H~(fl), Lq(fl) respectively. Applying Theorem 2.1 In [2] we obtain 

L e m m a  8.1. Let A �9 ( - o o , ~ , ) ,  # �9 (0,~*), ff there exists some Vo �9 Hol(fl), vo _> 

O, vo ~ 0 m n such that 
1 ~_ 

sup S(t,o) < (3.3) t>o ~ S  �9 

then problem (3.1)~ possesses a solution. 

In the following, we shall verify that  the crucial condition (3.3) naturally holds for dif- 

ferent A �9 (-oo,~1),  p �9 (0, p*). To this end, we set 

N-~ 

"-'(4-)' = - 2 ) d - T  (3.4) Xl 2 

and 

r  = r  (s.5) 

where r  �9 C ~ ' ( a )  ~ a cut -o~  function. For `0 > 0, let r  - 1 ~ I=1 < `0; r  - 0 i~ 

I=l > 2,0. 
F o r a > 0 ,  a < m a x % , ( x ) , s e t  

:cEil 

= {= �9 n,  I - , , (= )  > a > 0} ~ ~. (3.6) 

Without loss of generality we may suppose 0 E w. Choosing p > 0 small enough such that  

B2p Cw.  

From [3] we have the following estimations 

IVr = s §  + o ( , ~ ; - ~ ) ,  (3.7) 

P'+ I : s -~ -~ O ( ~. 2 -~"  ) (3 .8 )  p+l 

Ir  = K ,  e l t ,  el + O e 2 zL~~ , N = 4, (3.9) 

o(~�89 ~ = 3, 

where S is the best Sobolev constant and K1 is a positive constant independent of e. 

L e m m a  8.2.  Let r be given by (3.5). Then there exists a constant t ,  > 0 such that 

sup J(tr = J ( t , r  (3.10) 
t>o 

and 

J ( t , r  < N s : ~  - 
2p 

g(=,t~r { ~ K l , + O ( , ~ "  ) ,  N > s ,  
~K, , l ln ,J  + O ( d ,  N = 4, 
AKte]  + O(e�89 N = 3, 

_ p __ sP. where -d(=, ,)  = fo g(=, s)~s and ~(=, ~) = (s + ,,,)~ - . .  

(3.11) 
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Proof. Prom the definition of J and Lemma 2.4 we can easily conclude that there exists a 

t~ > 0 such that (3.10) holds, like [41 we can prove tl~at 

0 < C~___ t~_< C2 < +oo (3 .12)  

as e is small enough. Where C1, C2 are some constants independent of e. Using (3.7)-(3.9) 

and (3.12) like [41 we may d.educe (3.11). 

L p m m a  $.$. The condition (3.3) naturally holds ff one of the following assumption is 

satis6ed: 

I) For I > 0 there exists some s ~(u) such that ~(z, u) > ~(u) > 0 for u > O, z e fl 

and 

U s'~'-lds = +co (3.13) 
c--.o+ J0 

for N > 3. 

II) For A < O, there exists some function ~C v) such that ~C z, u) >_ ~(v) ~ 0 for u >_ 0, 
z e r o  and 

Jo-' [(.-'.1"1 ]L'n e a'~-z U 8N-lds = §  for N > 5, (5.14) 
e-*0 + ~ 

,~lin,~l-" " U . l _ l_s2 .  S3ds---i-~ for N--4,  (3.15) 
e--,'0+ 

lira e} G .2ds = +oo for N = 3, (3.16) 
e-*0 + 

where ~ ~ some nonemp~y open set ~, n ~ ~(u) = E ~(t)at. 
Proos The p,oof of case I) is the same u 121. So we omit it. As for the case 11) we can refer 

the article [4]. 

L e m m a  $ . 4 .  IF p > 2 t.hen 

( u + % , ) P - u  p - u ~ > p u ~  - I  for all u > 0 ,  z E n .  (5.17) 

Proos For any z E i~ set 

h(~) = ( . .  + s) ,  - ~p - . ~  - ~ . ~ p - ~ ,  �9 e R+. 

Then 2h ' ( s )  = (p - 1)(p - 2 ) u ~  p-s  > 0, where ~ E (s ,s  + u~). Hence h(s) > 0 for all 

s E R + because h(0) = 0. 

Lemma 3.5. / f  p > 1, then there exists a small constant 6 > 0 and a large B > 0 

independent of z such that 

(u+u. )  p - u  P-uP~_u 6 l'orall u~_B, zecoc f l ,  (5.18) 

where ~ is given by (3.6). 
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Proos Taking0<6<p-1,1et  rn=inf{u.(x), l i xEco}, 

t hen  

~m ( u + . . ) v - ~ - u ~  >_p l~m 
v--.+o~ U 6 -- ~ v--*+co I) 6-I 

where  ~ e (0, rn). From L e m m a  3.4 we m a y  suppose  p < 2, hence 

lira ( v + % . ) v - v  p - . ~  > p Iim (P-1)v l -6m 
~-.+oo u~ - -~ ~-.+oo ( ~  + ~)~-~ = +co" 

Thus  the re  exists  a cons tan t  ]3 > 0 such t h a t  

(v + u~) p - v p - u~ > 1 for all v > B,  z ~ fl 
U 6 - -  _ 

which gives (3.18). 

L e m m a  3 .6 .  The condition (3.3) holds ff A >_ O, N >_ 3. 

Proos F o r m  L e m m a  3.5 there  exists  some cons t an t  6 > 0 and B > 0 such t h a t  

{ u + . . ) . - u . . - ~ > ~  ~ for = E n ,  u > B .  

It  is easy  to  verify t ha t  

( v + . . ) P - . ~ - v  P_>0 for ~Ef}, v>0.  

Taking ~(v) = B6X,(v) then 

~(z, v) = (u + u.) v - v p - u~ >_> BeX~{v) = ~(v) _> 0, (3.19) 

where Xl(v)  denote the characteristic function Of I = (B,  + c o ) .  Thus 

~(~) = ~(~)~= >__ t~ > 0, 

for some constant ~ > 0, and V > BI > B. So we have 

-~ ~ >__8, 

= ~ ~} > 0, u = sup{ . . ( : ) ,  

(p - 1)(~ + ~).-2m 
] 

> Hi  and m p a r t i c u l a r  for all s < U~- �88  where  U is for all  8 such tha t  1 + s - - 

some cons t an t  and  ~ is small .  Thus  we have, f0r smal l  

( ) /;' 
The right hand side tends to +co as e --~ 0 + if N _> 5. 

For N = 4, from Lemma 3.4 we have 

( v + . . ) v - u ~ - e > _ _ C v  2 for x E n ,  v>__0. 
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Taking ~(v) = Cv 2 we can similarly deduce 

llm ~ G s3ds = +oo. 
c-~O + 

For N = 3 we have p = 5 . From Lemma 3.4 we have 

( v + u ~ ) P - u ~ - ~ > C v  4 for x e f l ,  v > 0 .  

Taking ~(v) = Cv 4 we have 

li~+e e ~ l + s 2  / s 2 d s = + ~ 1 7 6  

Using Lemma 3.3 we can immediately obtain that the condition (3.3) holds with vo = ~', 

and ~ .~mall .  

L e m m a  3.7. The condition (3.3) holds i f  ~ < O, 3 <_ N < 5. 

Proof. By Lemma 3.4 we can "choose 5 > 0 such that  

(v+u~,)  p - u ~ - v  p_>Cv z+s for z E f l ,  v > O .  

I f N  = 4, 5 we can take ~(v) = Cu (z+6), then we may verify that ~(v) satisfies the conditions 

( 3 . 1 4 ) ,  ( 3 . 1 5 ) .  

If N = 3, taking ~(v) = Co 4, by Lemma 3.4 we may verify that  ~(z, v) = (v + u~) p - 

~p - ~ _ c ~ '  = ~(~). and (1.16) holds. 

Applying Lemma 3.3 we can immediately get our hmma.  

In the following we discuss the non-existence results about (3.1)~, for ~ < 0, 'N >_ 6. To 

this end, we suppose that  fl -- BR(0) and f (z)  is a radial function with f ( r )  < 0 for all 

r E (0, R). We first prove a Pohozave identity. Let 

9(~. ,  ~) = (~ + ~ ) P  - ~ + ~ ,  

f G(~,,, ~) = g(,~,, ,) ds. 

Le,, ,- .~,  3.S. ~',, �9 ~ ( a )  is a solution of (a.1),, then.  

;_N' / 2 fn. 0G R fa  0 v 2  = - - ( V u ~ , -  z )dz  ds. 

Proof. The Proof is the same as the proof of well-known Pohozaev's identity (see [1] for 

example). So we omit it. 

Lernrna 3.9. Let N >__ 6. then for ~ < 0 there exists a constant p**(0 < p** < p*) such 

that (3.1)~, has no solution if  p E (O,p**). 
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Proof. H (3.1)t, possesses a solution v, by Lemma 3.8 and using (3.1)t, we deduce 

f v + Av)dz ,~((v + , , . ) .  - , , .  
] 

< ~ (('~ + ,,,.), '+~ _ ,~ , ,  + :~,~ 

+ 2 z) dz 

Thus 

0 <  f n  [ u ~ , ( ( v + t t . ) V - u ~  -pu[,-lv)+ ( N - 2  

+ 2 z)dz fo ao  (vu.. 

a a ( w  :dd~, 

where ( E (0, v). Because  N _> 6 and hence p - 2 N 0, we have 

f ,  _ 2  ~2 L aG 0 <  ~ _ 2 ( v . ~  - I+~)~2d=+ ~-~ ( v . .  =)~. 

It follows from Remark 2.1 that  

f~ OG ~-~u (X7tt.. z)dx > O. (3.20) 

On the other hand, by ](z) = f(r) and if(r) < 0 we know tha t  u t, is a radial function 

and ~,(r) < 0 (r = I=1) in (0, R) (see [51). Thus 

( v , ~ . .  ~) = ,,~.(~),- < o for ~ ~ (0, n ) .  

OG > 0 for all ut, > O, v > 0. Hence It is easy to verify that  ~ _ _ _ 

g~-2~ (w. .  ~)~ _< o. 

This is contradictory to (3.20). 

Proof of Theorem 2. From Lemma 3.1 and Lemma 3.6 we can conclude that (3.1)t, has a 

solution V for A E [0, AI) and/~ E (0, g*). We can obtain the second solution v~, of (1.1)t, by 

taking v t, = u t, + ~. Combining Lemma 2.3 we can complete our proof. 

Proof of Theorem 3. The first part of Theorem 3 come from Lemma 3.1, Lemma 3.7 and 

Lemma 2.3 . The second part of Theorem 3 come from Lemma 3.9 and Lemma 2.3 . 
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