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Abstract. In this paper, we discuss the existence and nonexistence of solutions for the problem
N=3
—Au=Au+u¥F3 +pf(z), u>0in O u|sgg=0 n>2 ((*)u)

where 1 is a bounded smoothness domain in RY, A€ R} , u > 0, f(z) is a given non-negative
function. Some interesting results have been obtained.

§1. Introduction

In this paper, we consider the existence of multiple solutions of semilinear elliptic bound-

ary value problem

{—Au=/\u+u"+#f(x), z€f, N>2 ((1.1),)

ulpa =0 u>0 in 0,

where (1 is a bounded smoothness domain in R¥, A € R, u > 0 are some given constants,
p = {22 is the critical Sobolev exponent and f(z) is some given function in Co(Q)NC1+(12)
such that f(z) 20, f(z) £01in Q. :

We are interested in the existence of solutions of (1.1), because it exibits many inter-
esting existence and non-existence phenomena related to some lack of compactness of the

corresponding energy functional

I(u) = l/ |Vu|? - Au?de - L/ lul”“d:c—p/ f(z)udz, ue€ Hj(Q).
2Ja p+lla 0

* This work was completed in Institute of Math. Academia Sinica as a visiting scholar.
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In the case u = 0, it is well-known that (1.1)o has no solution for A = 0. In fact, Brezis
and Nirenberg!? have proved that (1.1) has no solution for all A < 0 if {1 is a star-shaped
domain and (1.1)p possesses at least one solution for X € (0,1,), N > 4. Where ), is the
first eigenvalue of the eigenvalue problem —Au = Au in {1, ulsg = 0. A interesting
problem is whether the existence and non-existence phenomena still remain true if we give
(1.1)o a small perturbations g(z,u)? If g(z, u) is a lower order homogeneous function in the

sense gz
lim gz,u =0 and g(z,0) =0,

U—+00
an elegent existence result have been obtained in |2]. For the inhomogeneous case (g(z,0) #
0), they discussed the following special problem

{ —Au = A1+ u)?,
ulog =0

(1.2)

and obtained some existence and non-existence results. The main aim of this paper is to
discuss the existence and non-existence of multiple solutions of (1.1),. The following results
have been obtained.

Theorem 1. For A € (—o0, A1) there exists a positive constant u* < +oo such that (1.1),
has a minimal solution for all s € (0, u*] and (1.1), has no solutions for p > B
Theorem 2. For A € [0, 1), p € (0,4*) problem (1.1), possesses at least two solutions.
Theorem 3. For A € (—00,0}, u € (0,u*) we have

i) If 3 < N < 5, then (1.1),, possesses at least two solutions.

ii) fN >6, 0= Bg(0) = {z € RN | |z| < R} and f(z) is radial with f'(r) < O,
then there exists a positive constant p** < p* such that (1.1), has only one solution for all
B E'(O, .l““) .

We prove Theorem 1 by means of a standard barrier method and Theorem 2 by varia-
tional methods. Finally we obtain Theorem 3 by using an improved Pohozaev’s identity.

§2. The Existence of Minimal Solution

Let A; be the first eigenvalue of the operator ~A and ¢(z) be the first eigenfunction -
which is larger than zero in {1 and / ©%dz = 1. Then we have the following lemmas:

Lamma 2.1. For any A € (—oo,/\l)ntheré exists a constant C > 0 such that (1.1),, has no
solutions for u > C.

Proof. From p > 1 we can choose C; > 0 such that u? > (A; —A)u—C; foralu> 0. If u
is a solution of (1.1), , then

" /n felplalds < 0 /n plz)dz.

Where ©(z) is the first eigenfunction of —A. Taking C = ;(’:;::;t;-we obtain 4 < C.
Lemma 2.2. For A < Ay, (1.1), possesses at least one solution which is a minimum of all
solutions if u small enough.
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Proof. For any § > 0, let & = 8¢, it is easy to varify that there exists a §; > 0 such
that & = Sop(z) is a supersolution of (1.1), if » small enough, and ¥ = 0 is a subsolution
of (1.1), for all 4 > 0. Using the methods of monotone interation and strong maximum
principle it follows that there exists a solution u, of (1.1), such that * <u, < dandu,is
a minimal solution of (1.1),.

Lemma 2.3. For A € (—o0, ;) there exists a positive constant u* < +oo such that.(1.1),
has a minimal solution for all yp € (0, 5*), and (1.1), has no solutions if u > u*.

Proof. For A € (—o0, ), set

p* =sup{u € R*, | (1.1), has at least one solution}.

From Lemma 2.1 and Lemma 2.2 we have 0 < u* < +oco. For any u € (0, 4*) there exists
a & € (u, #*) such that (1.1)z has a minimal solution uz. We can easily varify that uj is a
supersolution and 0 is a subsolution of (1.1),. Using the method of monotine iteration and

strong maximum principle it follows that there exists a solution u, of (1.1), such that
O<u,<ug for z€fl, u<@ (2.1)

and wu,is a minimal solution.
Remark 2.1. For A € (—o0,0), from the proof of Lemma 2.2 we can easily conclude that
there exists a positive constant u** < +oo such that the minimal solution u, satisfies

A -j—puﬁ‘l <0 for g€ (0,u").

Indeed, we only need to choose the supersolution & = §y(z) satisfies p(fop(z))?~1 < —A.
Remark 2.2. There are no solutions of (1.1), for all A > );, u>0.
Indeed, if u is the solution of (1.1),, then

A1/ updz = —/ Aupd:z:'.—:/(u"go+z\u<p+pf(x)go)d::> A/ updz
a n a 0

and thus A < A;.
The proof of follow Lemma is similar to that of [6]. So we omit it.
Lemma 2.4. Let u, is the minimal solution of (1.1),, for given A € (—o0, A1), p € (0,p*),

the corresponding eigenvalue problem is

—A§— X6 — puP~16 = ab
{ JaY) pul, ab, (2.2)

6!30.
Then the first eigenvalue of (2.2) a; > 0.
From Lemma 2.3, for any A € {—00,A;) we can definite a set of minimal solution as

follows:
A={u, | p€(0,4"),u, is the minimal solution of (1.1),}. (2.3)

Then we have:
Lemma 2.5. There exists a positive constant C independent of p such that ][u]lﬂs(n) <cC
for all u, € A.
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Proof. For any u, € A, from Lemma 2.4 we have

/|Vu“|2dz=,\/ 2d.’t+/ u”+1dz+p/ f(z)u,,d:::, (2.4)
Q
/ |Vu,,|2dz—/(/\ + pull” l)u,zd:z:>oq[ uldz > 0, (2.5)
)
/quulzdzZAl/ uldz. (2.6)
a Q

Using (2.4)—(2.6) we conclude that

(=00 =) [ wdds <o) [(Vuul -2tz < pu [ funde (2)

From p € (0, u*) and Holder inequality and Young inequality we deduce

(P"l)(/\x—)\)/nuidzs;)p'cl (g/ 2d:1:+—/ fzda:)

for any § > 0. Taking § small enough such that (p—1)(A; ~ A) — ﬁﬂ%‘- > 0 we can obtain
that there exists a positive constant C; independent of u such that

/n w2dz < C,. (2.8)

Using (2.8) and (2.7) we deduce that [ |Vu,[?dz < C for some positive constant C inde-
pendent of pu.

The Proof of Theorem 1. Suppose {u;};>1 is a increasing sequence in (0, 4*) satisfying
Jl_l‘m p#; = p*. The corresponding sequence of solutions is {u; },>1 C A. From Lemma 2.5

we can choose a subsequence still denoted by {u;};>1, such that
u; — ¥ weakly in H}(0)

for some non-negative function @ € HJ (). It is easy to prove that @ is a solution of (1.1},s.

We can find a minimal solution because 0 is a subsolution for all u > 0.

§3. Existence of the Second Solution

Let u, be the minimal positive solution of (1.1), for 4 € (0,4*). In order to find a
second solution of (1.1), we introduce the following problem:

—Ov=Av+ (v+u,)? —ub,
vlpgn =0, v>0 in Q.

((3-1),)

Clearly, we can get another solution v, = u, + ¥ if (3.1), possesses a positive solution .
To solve (3.1),, we set g(z,v) = Av+ (v+ u,)" — ub — v?, and a(z) = A + puf~!. We define
the corresponding variational function of (3.1), by

I) =3 /n (IVo[?)dz - ;% /n |oP*dz — /n Gz, v)dz, (3.2)
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where G(z,v) = [ g(z,5)ds and v € H}(Q). For convenience, we use ||.|", “|.|¥ to denote
the norms in H3(Ql), L?(Q) respectively. Applying Theorem 2.1 In [2] we obtain
Lemma 8.1. Let A € (—o0,};), p € (0,u*), if there exists some vo € H}((1), wvo >

0, vo # 0 in Q such that
1

N

|z

sup J(tw) < =57, (3.3)
120

then problem (3.1), possesses a solution.
In the following, we shall verify that the crucial condition (3.3) naturally holds for dif-
ferent A € (—oo,A;), p € (0,p*). To this end, we set

wle) = V(¥ -29"7 () T (5.9
and
Ye(z) = P(z)we(z), (3.5)

where (z) € C§°(Q1) is a cut-off function. For p > 0, let ¢(z) = 1 if |z| < p; ¢¥(z) = 0 if
|=| 2 2p.
Fora>0, a< r;lea.‘%cu“(x), set

w={ze, | uu(z)>a>0} 0 (3.6)

Without loss of generality we may suppose 0 € w. Choosing p > 0 small enough such that
ng Cw.
From (3] we have the following estimations

Vo i =5 +0(M7), (57)

Pt =5% +0 (n"—rz e ) : (3.8)
Kle+0(eu7'1), N >5,

¥l = mmﬂ+o@%ﬁ,N=% (3-9)
O(E%), N= 3,

where S is the best Sobolev constant and K is a positive constant independent of e.
Lemma 8.2. Let ¢ be given by (3.5). Then there exists a constant t. > 0 such that

sup J(type) = J(tepe) (3.10)
>0
and
- B AmﬂoG%ﬁ,Nza
J(tepe) < 57 —fB G(z,tc¥)dz — { AKyellne|+ O(e), N =4, (3.11)
* AKie¥ + O(e3), N =3,

where G(z,v) = f; g(z,s)ds and g(z,s) = (s + u,)P — ul, — sP.
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Proof. From the definition of J and Lemma 2.4 we can easily conclude that there exists a
te > 0 such that (3.10) holds, like {4] we can prove that

0<C1 <t £Cy < 400 (3.12)

as ¢ is small enough. Where C;, C; are some constants independent of e. Using (3.7)-(3.9)
and (3.12) like [4] we may deduce (3.11).
Lemma 8.8. The condition (3.3) natural]y'bo!dé if one of the following assumption is
satisfied:

I) For A > 0 there exists some function §(v) such that §(z,v) > g(v) > 0 forv >0,z € 0

and .
c'} . P * 3
lim e/ G ( 2) s¥=1ds = +oo (3.13)
e—0+ 0 1 +_3
for N > 3.

) For A < 0, there exists some function g(v) such that §(z,v) > g{v) > 0 for v > 0,
z €w and

- <3 — e-i ]
lim €3 G 3 sNlds=+o00 for N5, (3.14)
e—0+ 0 1+ s“
et . E%
lim e|lne|"1/ e 7 |s®ds=+400 for N =4, (3.15)
e—0+ 0 1+s
e_§ _ 6_* '}
Lim e*/ G ( 2) 1s®ds=+4c0 for N=3, (3.16)
e—0t ) 1+s

where w is some nonempty open set in Q@ and G(v) = [} g(t)dt.

Proof. The proof of case I) is the same as [2]. So we omit it. As for the case II) we can refer
the article [4].

Lemma 3.4. Ifp > 2 then

(v+u,)? —vP —uf > pu, v ! forall v>0, ze€. (3.17)
Proof. For any z € {1 set
h(s) = (u, +8)” — s” — b, — pu,s?~?, s€ R*.

Then 2h'(s) = (p — 1)(p — 2)ulé?P~2 > 0, where £ € (s,s + u,). Hence h(s) > 0 for all
s € Rt because h(0) = 0.

Lemma 3.5. If p > 1, then there exists a small constant § > 0 and a large B > 0
independent of = such that

(v+u,)?~vP—ul >0 forall v>B, z€wc, (3.18)

where w is given by (3.6).



Deng Yinbing Existence of Multiple Pogitive Solutions 317

Proof. Taking 0 < § < p—1,let m =inf{u,(z), | z€w} >0, M =sup{u,(z), | z €w},
then

. (v+u,)P — P — u, _p .. (p—1)(+ u)"‘zm
>E lim
"_]“XTW u's ) v—l'+oo 06—1 )

where £ € (0, m). From Lemma 3.4 we may suppose p < 2, hence

iy )= p (p—2)u''m

v—+00 o° = 5 uoteo "—————(m+0)2_p = +o00.

Thus there exists a constant B > 0 such that

+ P_vl’.__ I4 i
(0 + ) 5 u“Zl forall v> B, z€ 1
v

which gives (3.18).
Lemma 3.6. The condition (3.3) holds if A >0, N > 3.
Proof. Form Lemma 3.5 there exists some constant § > 0 and B > 0 such that

(v+uy)P—ul—v? > 0% for z€N, v2B.
It is easy to verify that
(vt+u,)’ —ul,—ovP2>0 for z€0, v2>0.
Taking §(v) = B® X;(v) the.n
9(z,v) = (v +u,)? — P — ul > B*X;(v) = 5(v) > 0, (3-19)

where X(v) denote the characteristic function of I = (B, +00). Thus
Y
G) = / j(s)dz > >0,
0

for some constant § > 0, and V > B; > B. So we have

°((655) )+

,)Mfl

-3

for all s such that (i€—+—8—2— > B, and in particular for all s < Ce"%, where C is

some constant and ¢ is small. Thus we have, for small €

e_} . 6_% a2 Cc_*
e/ G (-——-—2) sN-1ds > ﬁe/ sN-1ds = C'el~ %,
0 1+3 0

The right hand side tends to +co as ¢ — 0% if N > 5.
For N = 4, from Lemma 3.4 we have

(v+uu)?—ub—v? > Cv? for z€Q, v20.
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Taking §(v) = Cv? we can similarly deduce

et _ 6_%
lim e/ [e] 3 s3ds = +o0.
e—0t Jq 1+s

For N = 3 we have p =5 . From Lemma 3.4 we have

(v+uu)P—ub — P> Cv* for z€0, v2>0.

Taking g(v) = Cv? we have

% 1\ }
— €3
lim e/ G ( - 2) s2ds = +oo.
e—0t J, 143

Using Lemma 3.3 we can immediately obtain that the condition (3.3) holds with vy = ¥,

and € small.
Lemma 3.7. The condition (3.3) holds if A <0, 3< N <5.
Proof. By Lemma 3.4 we can choose § > 0 such that

(v+u,,)"—uﬁ—u"ZCvl+6 for z€], v>0.

If N = 4, 5 we can take g(v) = Cv(}+9) then we may verify that §(v) satisfies the conditions
(3.14), (3.15). _

If N = 3, taking g(v) = Cv?, by Lemma 3.4 we may verify that g(z,v) = (v + u,)? —
v? — uf, > Cv* = g(v) and (1.16) holds. .

Applying Lemma 3.3 we can immediately get our lemma.

In the following we discuss the non-existence results about (3.1), for A <0, N > 6. To
this end, we suppose that {1 = Br(0) and f(z) is a radial function with f'(r) < 0O for all
r € (0, R). We first prove a Pohozave identity. Let

9(uuv) = (v + uu)® -l + dv,

Guy,v) =/ 9(uy, ) ds.
Jo
Lemma 3.8. If v € H}(Q) is a solution of (3.1), then .

2

2 R ds.

2N aG
VolPdz = ——_ 9C Gy o)dz -
/nl v|%dz N_Z/HG’(u.“,u)dz+N_zfnau“(Vu,‘ z)dz N2/,

Proof. The Proof is the same as the proof of well-known Pohozaev’s identity (see [1] for

a_v
dn

‘example). So we omit it.
Lemma 3.9. Let N > 6. then for A < 0 there exists a constant p**(0 < p** < u*) such
that (3.1), has no solution if u € (0, u**).
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Proof. If (3.1),, possesses a solution v, by Lemma 3.8 and using (3.1),, we deduce
/ v((v+u,)” —uf, + Av)dz
0
2N 1 +1 +1 1, 2
< N3 <p+1((u+u“)’ - up; )—uﬂv+§/\v dz

+yis / 5u (Ve 2)ds

Thus

- / lP(p— 1)(p—2)(6+u,,)"“3v3dx+

6 N -2

/ (pur™! + A)v?dz
Q

+7V_/ (Vu,, z)dz,
where € € (0,v). Because N > 6 and hence p — 2 < 0, we have

2 aG

2
< p—1 2 v
0—/nN—2(pu" +/\)v- dz+N— B, (V¥ 2)dz.

q Juy

It follows from Remark 2.1 that
Vu, - z)dz > 0. 3.20
/;) au ( i ) ( )

On the other hand, by f(z) = f(r) and f'(r) < 0 we know that u, is a radial function
and u},(r) < 0 (r = |z]) in (0, R) (see [5]). Thus

(Vu, - z) = u,(r)r <0 for re(0,R).

It is easy to verify that -g;‘% > 0 for all u, >0, v > 0. Hence

/ :f (Vu, - z)dz < 0.
0 OUu

This is contradictory to (3.20).

Proof of Theorem 2. From Lemma 3.1 and Lemma 3.6 we can conclude that (3.1), has a
-solution ¥ for A € [0, A1) and g € (0, 4*). We can obtain the second solution v, of (1.1), by
taking v, = uy + 9. Combining Lemma 2.3 we can complete our proof.

Proof of Theorem 3. The first part of Theorem 3 come from Lemma 3.1, Lemma 3.7 and

Lemma 2.3 . The second part of Theorem 3 come from Lemma 3.9 and Lemma 2.3 .
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