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Let T(N) be the least integer such that one can assign _.l's to any N points in the unit 
square so that the sum of these values in any rectangle with sides parallel to those of the square 
have absolute value at most T(N). G. Tusn~di asked what could be said about the order of mag- 
nitude of T(N). We prove 

log N <-: T(N) << (log N) 4. 

In contrast, if T*(N) denotes the corresponding quantity where rectangles of any possible 
orientation are considered, we have 

N x/4-'~ << T*(N) <': N wz+~ 
for any e>0. 

1. Introduction 

We shall say that  a rectangle is aligned if its sides are parallel to those of 
the uni t  square. 

Let us be given a finite subset X of the uni t  square and  a two-colorat ion 
f :  X ~ { + I , - 1 }  of  it. Fo r  a rectangle B, we define the deviation d(B) to be 
]~:,~Br~xf(x)l. As a measure of  imbalance  of  the two-colorat ion f ,  we introduce 
the combinatorial discrepancy 

t ( f )  = max d(B), 
B 

where the maximum is taken over all aligned rectangles. Finally, let 

T(N) = max rain t(f). 
x f 

Ixi=~v 

G. Tusn~.di, investigating the iuvariance principle for the mul t i -d imensional  
empirical d is t r ibut ion funct ion  (cf. Major  [5]), raised the question of finding the 
true order of  magni tude  of T(N). Tusnfidi observed that  the "probabilist ic method" 
(cf. E rd6s - -Spence r  [3]) easily gives 

T(N) << (N log N) l/z. 

AMS subject classification (1980): 10 K 30; 10 H 20, 05 C 55 
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We use Vinogradov's notation g (N) <<h (N) to mean g (N) = 0 (h (N)), i.e. [g (N)/h (N) I 
is bounded. 

Tusn~idi conjectured that the above upper bound is far from being best 
possible. Actually, he conjectured that T(N)<<(log N) c with a suitable absolute 
constant c. In the other direction, Tusn~.di suspected that T(N)~oo as N ~ c o  
Our main objective is to prove these conjectures. 

Theorem 1.1. log N<<T(N)<<(log N) 4. 

In contrast, we shall prove that for any two-coloring of  a suitable N-set 
in the unit square there exists a tilted (not aligned) rectangle with large deviation. 

Let T* (N) be the least integer so that given any N-set X in the unit square 
there exists a two-coloration f of the points so that any (ti l ted)rectangle B has 
deviation t(B)=l~x~xoBf(x)[ at most T*(N). 

Theorem 1.2. N (1/4~-~<< T* (N) <<N °/z)+~. 

Here the upper bound is an immediate application of  the "probabilistic 
method" (cf. ErdSs--Spencer [3]). 

The problems above belong to the pattern of  combinatorial discrepancy 
theory. The basic problem of this theory is how to two-color a set so that the color- 
ing be nearly balanced in each of the subsets considered. Though the problems 
above have purely discrete character, in order to prove the lower bounds in Theo- 
rems 1.1 and 1.2, we need "continuous" arguments, namely the measure theoretic 
(or classical) discrepancy theory (of. W. M. Schmidt [t0]). 

Let X={pl ,- . . ,Ps} be a set of  N points in the r-dimensional unit cube 
[0, 1]'. If A is a measurable set with Lebesgue measure #(A), set Z(A) to be the 
number of those i, l<-i~N, for which pi-CA, and set D(A)=]Z(A)--N#(A)]. 

Let ~ be a non-empty class of  measurable sets in [0, 1]" (e.g. the class of  
boxes (Cartesian products of intervals) with sides parallel to the coordinate axes). 
As a measure of  non-uniformity of  distribution of the set X, we introduce 

A (X, ~/) = sup D (A) 

where the supremum is taken over all A E ~¢. We call A (X, d )  the measure theoretic 
discrepancy with respect to d of  the set X. 

In Section 3 we establish a link between the combinatorial and the classical 
discrepancy theories. We shall be able to employ results of the classical theory to 
prove our lower bounds. 

We note that in order to obtain lower bounds for combinatorial discrepancy 
problems, we require both lower and upper bounds (occasionally new ones, cf. 
Theorem 4.1) for classical discrepancy problems. 

The proofs of the lower bounds will be non-constructive. The problem of 
constructing finite point-sets with large combinatorial discrepancy will be treated 
in Part I[ of this paper. 

In Section 2 we prove the upper bound in Theorem 1.1. In Section 3 we prove 
the lower bound in Theorem 1.1 by applying some results of the classical discrepancy 

• i ~  

theory. In Sectmn 4 we show that a theorem of W. M. Schmidt concerning irregular- 
ities of distribution with respect to rectangles in arbitrary position is nearly best 
possible and deduce Theorem 1.2. Finally, in Section 5 we mention an r-dimensional 
generalization of Theorem 1.1 and outline the proof. 
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2. Proof of the upper bound in Theorem 1.1 

We shall apply the following general result due to Fiala and Beck (see Theo- 
rem 1 in [2]). 

Theorem 2.1. Let us be given an arbitrary number o f  sets Si of  arbitrary size such 
that each element belongs" to at most k sets (in gtandard terminology: the hypergraph 
{Si}i has maximum degree <=k). Then it is possible to assign +1 and - 1  to 
the elements so that all sets Sg have sum with absolute value at most 2 @ -  1). 

The following result is clearly equivalent to Theorem 1.1. 

Theorem 2.2. Let A =[au] be a O -  1 matrix of  size N by N. Then there exist "'signs" 
e~j = +_ 1 so that 

= l j = l ~ g i j a i j  ~ c( logN) '  

for all 1 <=s, t<=N, where c is a universal constant. 

Proof. We may assume N = 2  ~. Let M be the set of ( i , j )  for which a u =l .  For 
O<=p, q<=l we partition M into 2 p+q "submatrices", splitting the horizontal side 
of the matrix into 2 p equal pieces and the vertical side of the matrix into 2 q equal 
pieces. There are ( /+ 1 ) ~ ( l o g  N) z such partitions. Let us call a submatrix special 
if it occurs in one of these partitions. Theorem 2.1 implies the existence of an assign- 
ment of -+_ l 's so that the absolute value of the sum of the entries in each of the 
special submatrices is at most 2( l+1)  2. But any submatrix containing the lower 
left corner is the union of  at most t 2 special submatrices. More formally 

[1, s]X[l,t]= U U [1+ Z 2~', ~'2"]× 
l~_i~w l~j~_: r~=i--1 r~_i 

× [ i +  X 2~", Z2~"], 
r~_j--1 r~=j 

where s = 2 " ' + 2 " 2 +  "'~ ... . . . +2  , ul>uz>...>uw-_>0 and t=2~'q-2v~+ +2VLv1>v.,> 
>...>v~=>0. This completes the proof. I 

3. Applications of the classical discrepancy theory 

Given a set X of N points and a class d of measurable sets in the d-dimen- 
sional unit cube, let T(X, d )  be the least integer so that there exists a function 
f :  X ~ { + I ,  - 1 }  such that 

sup[ U(P)I T(X, 
p ~ X A A  

where the supremmn is taken over all A C a¢. 
Finally, set (for the definition of A (X, d )  see Section 1) 

A (N, d )  = in fa  (X, d ) ,  T(N,  d )  = sup T(X, d )  

2* 
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where the infimum and the supremum are taken over all N-element sets Xc[0 ,  1] d, 
respectively. It is easy to see that T(M, d)<=T(N, d )  if M<=N. 

The following result provides the link between the combinatorial and the 
classical discrepancy theories mentioned in the Introduction. 

Theorem 3.1. 

max {A (l__N2-k_], eg) --A (N, ag)2 -k} _<-- 2T(N, ag )+  1 

(Lz_I stands for the greatest integer <=z). 

The combinatorial core of the proof is the following simple lemma. 

Lemma 3.2. Let X be a finite set and let us be given a system ~ of  subsets of  X with 
XEN. Let T be the least integer such that given any subset Y ~ X ,  one can find a 
fimetion f :  Y-~ {+ 1, -- 1} so that 

maxl  27 .f(x)I'<T'=- 
B E ~  xEYfqB  

Then for every k>=O, there exists a subset Yk of X such that [Yk[ = I_ IXl2-k-J and 

[IYkAB[ -- [BI2-k[ =< 2T  

for all B ~  (]H 1 denotes, as usual, the number of  elements of the set H). 

Proof. We are going to prove the following statement: 

(1) For every k>=O, it is possible to partition X into 2 k parts Yk,:, 1 <--j<=2 k, 
such that IIYk, jNBl- -1812-k l~(x- -2-k)Z  for all BE.'~. 

We prove (1) by induction on k. For k = 0  the statement is trivial: let Yo, a=X. 
Assume now that the statement is true for some k=>0. By the hypothesis of the 
lemma there is a function fk,j: Yk, j ~  {+ 1, --1} such that 

fk,j(x)] =< T for all BE:8. (2) ]~EY~,,nB 
Set 

r~+a,,_~_, = {xcr~,j: A, Ax) = + 1}, 

Yk+~,~j = {xEYk,~: A,~(x) = - 1} 

for j =  1 . . . .  ,2  k. From (2) it follows that 

[IYk+~.~j A B [ -  IYk, j \Yk  +x,~;) N BI[ ----< T, 
that is, 
(3) [2]Yk+x,2jfqBI--[Yk, iABII _~ T for all BE~.  

We obtain similarly 

(4) 12}Y~+I,2j-~NBI-IYk,aNBII <= T for all BC~.  

By the induction hypothesis, 

IIYk, jN  BI -- [Bl 2-k I <= (I--2-k)T.  
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Tl-.us by (3), 

[tY~+x,~jNBI-IB12-~-~ I <--IIY~+~.zjNB1-1Yk.if)nl/21+ 

1 
-I--~-]lY,,jf-)BI--IBlR-k t =< T/2+ ( I - - 2 - k ) T =  (1--2-k-~)T. 

Using (4) we get similarly 

llYk+~.Zj-~NB]- Inl 2-k-~] ~ (I -- 2-k-a)T, 

completing the induction step, and thereby the proof  of  (1). 
Now we finish the proof  of the lemma as follows. Clearly there must exist 

an index jo, l<-jo-<2 k, such that lyk,jol=>l~l 2-k. Let Yk be a subset of  Yk, io of 
cardinality l_lXI2-k_J. Since XE~,  by (1) 

0 <= IYk, joI--IXI2 -k <= T. 
Therefore 
(5) 
By (5) and (1) 

o ~ IYk, j o l -  Irkl ~ T. 

[IYkNBI-IBI2 -k] ~ ]lYk~B[ - IYk,10Nnl[+ 

+ [IYk,0 A BI - Igl 2 -k] ~ T +  Z = 2T, 

for all BE~.  The lemma follows. II 

Proof of Theorem 3.1. Let us be given an N-element set X and a class ~¢ of  meas- 
urable sets in [0, 1] e and let 

By definition, for any subset Yc=X, one can find a function f :  Y-*{+I ,  - 1 }  
so that 

max I ~ f(P)I = sup ] ~ f(p)[ = T(Y, d )  <- T([YI, ,.¢4) <= T(N, d ) .  B ~  p~Ynn a ~  p~ a 

Thus Lemma 3.2 yields the existence of  a subset Y k C X  such that ]Yk] = L_ IX] 2 - k l  = 
=L N 2 - k j  and 
(6) ]Irk N A I -  IX('/AI 2-k[ ~ 2T(N, d )  
for all ACd. 

On the other hand, by the definition of  A(Yk, d )  

(7) sup IIYk A AI -IYkl p(A)[ = A (Yk, ~)"  
A E d  

By (7) 
(8) A (LNZ-k_J, zff) = A ([Yk[, ~¢) <- A (Y~, ~ )  = 

= sup llYk fq AI -- IYkl ~(A) I <---- sup ]lYk A A I - IX~ AI z-k[ + 

+ sup [[XA AI 2 -k - Igl 2-k/z(A)[ + 

+ sup [ IXl2-k l t (A) -  [Yk[l~(A)[, 

where the supremum is extended over all AE~¢. 
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Since, by definition 

IIXf3 A I -  IXI#(A)[ <- D(A) <- A ( X , d )  

and ]Ygl=LIX[2-ks, then by (8) and (6) we obtain 

A(LN2-k  ], d )  <-_ 2 T ( N , d ) + A ( X ,  s t )Z-k+ 1, 
or equivalently 

A (LNZ-g_I, d )  - A (X, d ) 2  -k -< 2T(N, d )  + 1. 

Choosing X so that A(X', d)<-A(N, s~)+~, 

A (LNZ-k l ,  d ) - A ( N , d ) 2  -k <- 2T(N, s ¢ ) +  1+5,  

which was to be proved. | 

Proof of the lower bound in Theorem 1.1. Let d be the class of  two-dimensional 
boxes with sides parallel to the coordinate axes. A fundamental result of  the classical 
discrepancy theory states that 

(9) log N >> A (N, d )  >> log N. 

Here the upper bound is due to van der Corput [11] (cf. [10]) and the lower bound 
is due to W. M. Schmidt [9]. 

Choosing k so that 2k=log N < 2  k+l, by Theorem 3.1 we obtain 

2 T ( N ) +  1 = 2 T ( N , d ) +  1 -> A(LN2-k_J, s t ) - A ( N , s ¢ ) 2  -k >> 

>> log (N/log N) - A (N, d ) / l o g  N >> log N. 

The theorem follows. | 

4. Proof of Theorem 1.2 

In this section let d denote the class of  those plane regions obtained by 
intersecting the unit square with rectangles in arbitrary position. A surprising result 
of  W. M. Schmidt [8] says that 

(10) A (N, .~)  >> N 1/4-". 

First we prove that this estimate is nearly sharp. In fact, we shall prove a 
bit more. Let #J denote the class of  (not necessarily rectangular) convex quadri- 
laterals. 

Theorem 4.1. A (N, ~)<<N1/4(log N) x/~. 

Proof. Assume that N=16,  and divide the unit square into N congruent, pair- 
wise disjoint "small squares" by ( n - l )  vertical and ( n - 1 )  horizontal lines. Let 
us associate with the "small squares" independent "random points" so that each 
of  them has uniform distribution in its "small square", i.e. 

u ( A )  
P r o b  (¢CA) - # ( Q )  - N#(A), 
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where Q is a "small square", ~=~(Q) is the "random point" associated with Q, 
A is an arbitrary measurable subset of Q and t~(') denotes the Lebesgue measure. 

In what follows, we shall prove that the "random point-system" defined 
above has discrepancy <<N1/4(log N) ~/2 with respect to ~ (i.e. the class of con- 
vex quadrilaterals) with probability => 1/2. 

Now consider a convex quadrilateral B. It is easy to see that the sides of  B 
intersect <<N 1/2 "small squares". Therefore, B is representable as the disjoint 
union of "small squares" entirely covered by B and the union of  <<N 1/~ "pieces" 
wkich are the intersection of  some small squares and B, i.e. 

B = U Q~U U (Qj.NB), 
iEl jEJ  

where the index-set J has cardinality <<N ~/~. Since every small square has Lebes- 
gue measure 1/N and contains exactly one element of  the "random point-system" 
above, the discrepancy of  U Qi is zero. Thus, it remains to investigate the dis- 

i E l  

crepancy of I._) (Qj N B). 
J~d 

For notational convenience let 

R =  U (Qi (~B) and ~ i = ¢ ( Q J ) ,  J~- J- 
JEJ 

Define the random variables Zj, J~J as follows: Let Z~=I if ~jEQjf-qB; 
otherwise let X j---0. Then 

( l l )  D(R) = I.f.~ z j - N ( j ~  tt(Q.iNB))l. 

Since 4j is uniformly distributed in Qi, 

Prob (Zj = 1) = I~(QjNB)/t~(Qj) = N ~ ( Q j N B ) .  
Thus 
(12) EZj = Nff(Qj fq B), 

where EZi denotes, as usual, the expected value of  the random variable Z j- By (12) 
and (11) the discrepancy D (R) can be written in the form 

(13) D (R) = ]~s (Zi - EZj)J. 

Since the random variables Z j, J~J are independent, in order to estimate the order 
of magnitude of  the sum D(R) we are able to apply the classical Bernstein--Cher- 
noff inequality of  large deviation type. 

L e m m a  4.2 (Bernstein--Chernoff). Let q~ . . . .  , q,,, be independent random variables 
< 2 the variance of  rli, i.e. a ~ = E O h - E q i )  2. Put with [qil=l, l<=i<=m. Denote by ai 

m [ m ~1/2 

i = 1  ", i=1 / 

Prob(JS,,I > 2) < ~ 2e-~/a / f  2 => flz 
= [2e-~-~/4P ~ / f  2 _-< fl~. 

For  a proof  see e.g. Petrov [6]. 
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Now let us return to (13). Let a~ denote E(zj-Ezj)2, jEJ, and set r =  
= (j~ss ~)1/,~. Choosing 2=cN1/4(log N) 1/2 with a large enough constant c, by the 

application of  Lemma 4.2 we obtain, after some easy calculation, that 

(14) Prob (D(R) > 2) _-< ~ 2e-~/4 << N-9  if 2 => f12 
[2e -~'14~ << N-9 if 2<=fl~'. 

since flZ<= ly[<<Nll2 and t2/4ff">-_t2/41Jl>>t2/N1/2>>log N. 
Although the class ~ of  convex quadrilaterals is uncountable, in fact it 

suffices to consider a subclass of  cardinality <<N 8. Actually, we shall restrict our- 
selves to the class MN of convex quadrilaterals such that each of  their four corner- 
points can be written in the form p=(i/N,j/N), where i and j, O<=i,j<-N, are 
integers. Simple calculation shows that the cardinality of N' N is <<N s. 

Consider a convex quadrilateral B. It is easy to see that there exist BI, B2C~N 
such that B1C=BC=B2 and N(tt(B~)-p(BO)<<I. From this follows that 

(15) D(B) << max {D(B0, D(B~), 1}, 

that is, the class Nu is sufficiently "rich". 
Now we are able to complete the proof  of  Theorem 4.1. The random "point- 

system" defined above has the property that fixing any convex quadrilateral B, 
we have (see (14)): 

Prob (D (B) >> N 1/'~ (log N)  112) << N -  9. 

Since I~NI<<N 8, we obtain 

Prob (D(B) >> N~/4(log N) 1/~ for some BCMN) << [MN1N -9 << N -x, 

that is, there must exist an N-element point-set having discrepancy <<N1/4(log N) 1/~ 
with respect to ~ u ,  and hence with respect to ~ (see (15)). II 

Proof of Theorem 1.2. We recall that in this section a /  denotes the class of  those 
plane regions obtained by intersecting the unit square with arbitrary position. By 
(10) and Theorem 4.1 

N (lm+~ >> A (N, a¢) >> N Om-~. 

Choosing k so that 2k<=N4~<2 k+l, by Theorem 3.1 we obtain 

2T* ( N ) +  1 = 2T(N, ~el)÷1 >= d (L N2-kA, d ) - - A  (N, d ) 2  -k >> 

>> ( N  1 - ~ ) ( 1 / 4 )  - ~ _ N o ~ 4 )  + ~ / N ~  > >  NO~4)  - ~ _ N~1/4) - s ~  > >  N(1/4 )  - ",~, 

which was to be proved. II 
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5. The case of  dimension :> 3 

Let T~(N) be the least integer so that  given any N points in the r-dimensional 
unit cube [0, I] '  there exists an  assignment o f  _+ 1 to the points so that  all r-dimen- 
sional boxes (Cartesian products  o f  intervals) with sides parallel to the coordinate 
axes have sums with absolute values at  mos t  T,(N) .  That  is, T o ( N ) = T ( N ) .  

Repeating the argument  in Section 2 without  any essential modification one 
can easily obtain T,(N)<<(log N)  2~. The following theorem is an improvement  on 
it for r=~4. 

Theorem 5.1. (log N ) ( ' -  a)/z << T, (N) <<(log N ) ' -  1. 
The p r o o f  o f  the upper bound  goes along the lines o f  the p roo f  in Section 2, 

but  instead o f  Theorem 2.1 we need the following general result (see Theorem 2.1 
in [1]). 

Theorem 5.2. Let us be given an s-element set S and m subsets $1, ..., S,,, o f  S 
such that each element is in at most k sets. Then it is possible to assign + 1 and - 1 
to the elements o f  S so that all sets S~ have sums with absolute values at most 
ckl/2(log m) 1/~" log s, where c is a universal constant. 

Finally, consider the lower bound  in Theorem 5.1. Its p roo f  is the same 
as the p r o o f  for  the case r = 2  (see the end o f  Section 3), but instead o f  (9) we have 
to apply the current estimates for  the measure theoretic discrepancy o f  N-element 
sets with respect to the class cg o f  d-dimensional boxes with sides parallel to the 
coordinate  axes. The best estimates (for r=>3) at present are 

(log N) ('-1)/~ << A (N, ~ )  << (log N)  "-1. 

The upper  bound  is due to J. H. Hal ton  [4], cf. [10], the lower bound  to K. F. Roth  
[7]. Details are left to the reader. 
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