COMBINATORICA 5 (1) (1985) 57—63

LINEAR VERIFICATION FOR SPANNING TREES

J. KOMLOS

Received 30 May 1984

Given a rooted trec with values associated with the » vertices and a set A of directed paths
(queries), we describe an algorithm which finds the maximum value of every one of the given paths,
and which uses only

Al +#

n

Sn--nlog

comparisons.

This leads to a spanning trec verification algorithm using O(n +e) comparisons in a graph
with »n vertices and ¢ edges.

No implementation is offered.

0. Introduction

1. Finding the minimal spanning tree in an undirected network is a well-
researchied area of coimmputer science. The classical algorithms of Kruskal and Prim
have been modified and improved several times. For a study of several spanning tree
algorithms, see [1].

The best known result has been the O(E| loglog |V|) algorithm of Yao [6]
until recently.

A few weeks ago. Fredman and Tarjan [2] developed a method which applies
to both the shortest path and the spanning tree problems. leading to an
O(IE|B(IE], |V])) algorithm for the latter one: where f(m, n)=min {i[log®n=m/n}
On the other hand, the only verification result we know of is the O(|E|x(|E], [V']))
algorithm of Tarjan [5]; (here « is the inverse Ackermann function).

Here we describe an algorithm which finds maxima over various paths of u
tree, which leads to a minimal spanning tree verification algorithm with a finear
number of comparisous.

We want to emphasize. however, that the only cost we deal with is the total
number of comparisons made, for we could not find an effective implementation with
a linear overhead cost. In other words. our result is of an information theoretical
nature.

-

AMS subject classification (1980): 6% E 10

hH] 1 KOMLOS

We remark that the problem is a particular instance of the following gene-
ral question that is discussed in [3].

(Q) Givenan n element set E=(e,. ..., c,), and alist of m subsets of {1,2, ...

waY L=(S\.....S,). Find the maxima
M;=maxe;, =12 .., m
JiS
(If Eis the set of edges of the spanning tree and the elements of S; are the circuit edges
created by the i-th outside edge, we get the tree verification problem.)

Of course, sorting the whole list £ provides all the necessary information for
finding all M, (overhead is not counted!), but one would hope for an algorithm using
only Q(m+n) comparisons.

Fredman proved (see [3]) that the number of possible outcomes is not more

| —
than m,—]r_nl l}<2m+", thus the above hope is realistic.

A family of paths on trees provides enough structure to make the problem
casier to attack.

The general question (Q) is still unanswered.

2. Given an undirected network G (a graph with » vertices, ¢ edges and real
values associated with the edges) and a spanning tree T of G, we want to test whether
7T is minimal among all spanning trees of G.

Any edge x of G not in T creates a unique circuit C, with edges of T and it is
well-known that T is minimal if and only if, for any outside edge x, the value of x is
not smaller than any value in C,.

Thus, we only need to know, for all outside x, the maximum value on the
path C.—x, so that we can compare this maximum with the value of x. Note that
C.—x consists entirely of edges of 7.

Let us root 7 by a leafl of 7. and consider it a directed tree with edges directed
away from the root. Any path of T is the union of at most two directed paths, and so
it is sufficient to find the maxima on the directed ““half-paths’ corresponding to the
outside edges.

By reassigning the values of the edges to their lower endpoints (and deleting
the root), we get a more attractive model. in which the values are associated with the
vertices.

Whatever cost we obtain for this directed path problem, we only need
2(e—n-+1) extra comparisons for the spanning tree verification problem.

Notation

T is 4 rooted tree with edges directed away from the root.

V(T) = set of vertices of T

T--U for a vertex set U F(T) is the graph T restricted to V(T)--U
xz=yv for x, ve V(T) means x is a predecessor of von 7

x=1 means vy oand x=v

deg(x) is the number of outgoing edges from v

path means directed path of T

px. vystands for the directed path (ulxz:uzzy)

log x iy binary logarithm

VERIFICATION FOR SPANNING TREES 59

Formulation of the problem

Given a rooted tree T with real values associated with the vertices f: V(T)—~R
and a set 4 of directed paths of T (queries)

ACQ = {p(x, ¥x. yeV(T), x = y}.

Find the maximum
max f(u)
xEZN=y

for alt p(x, ;)€ 4.
We will present a solution using less than

C = 5n+nlog H'}%’I

comparisons.

Note that C<c|A4! for |4|=n, thus the linear term O(¢) for the tree verifica-
tion problem (JA|=e¢—n-+1) comes from the comparisons made between the maxima
in A and the outside edges.

The paper is structured as follows. First we will describe two completely dif-
ferent algorithms for two particular cases: when 7 is a string (Section 1, this is even
implementable) and when 7 is a full branching tree (Section 2), and then we will
show how a general tree can be interpreted as a mixture of these two extremes.

1. When 7 is a string
In other words, we have an array, [f(7); 1 £i=n], and want to find maxima

v n--1 . .
=¢]. Although there are (j)) such intervals, we give an

over intervals [f(i); s

[

algorithm that uses less than 2uz comparisons, and still can find the answers for all
cn® queries (with a bounded overhead per query).

This easy part of our algorithm may be folklore, but we could not trace it in
the literature.

Symmetric order heaps

Given an array [,(¢); 1=izn], we construct a binary tree SH on n nodes
with the following properties:

1. (i) is assigned to node v; of SH,

2. SH is a heap; i.e. v;=>v; implies f())=f(j),

3. v; are in symmetric order; i.e., if v; belongs to the left (right) subtree of v;
then j<i (j=i).

Clearly, these properties uniquely determine SH, namely the root of SH
must be f(m):lr;l?l(,,f(i)’ and the elements (i), 1=i<m (f(i), m<i=n) should

form the left subtree (right subtree) of v,,; proceed recursively inside these subtrees.

Once the tree SH has been constructed, finding the maximum over a subarray
[f(); s=i=¢] reduces to determining the lowest common ancestor of v, and v,.
Harel {4] has an ingenious algorithm which, after an O(n) cost preprocessing, will
process any number of lowest common ancestor queries for a constant cost each.

60 J. KOMLOS

Construction of the tree SH

The binary tree SH will be respresented by the standard LEFTCHILD (LC)
and RIGHTCHILD (RC) arrays.

Definition. The right shoulder of a binary tree is the (maximal) array S=[S(0),
S(1), ... S(k)] of nodes of the tree in which S(0) is the root of the tree. and S(7)
is the right child of S(@E—1).

For an easier formal description, we will use an auxiliary node v, with value
J(Q)=+ <=, and SH will be the right subtree of v,. Starting with this z,, we insert
the elements of f(i) into the tree one-by-one, by keeping track of not only the tree
structure (LC, RC) but also the right shoulder array S. Note that S forms a monotone
stack (S(k)=Sk—1)=...=S0) and f(SKk))=...=f(5(0))).

We compare the new value f(i) with the stack values f(S())), j=k, k—1, ...,
until we find an f(S(/))=/(/). Then we remove the subtree T with roots S(j+1)
from S(j), add a new node v; (with value f(i)) to the tree as the new right child of
S'(j), and attach the above T back as the left subtree of r;. It is clear that both the
symmetric order and the heap property are preserved.

The formal description uses the arrays

fG@): 0=1i=n], S0) =+
[LC(D, RC(); 0=i=mn], LCO)=4
{SGE); 0 =i=n], S(0) = 0.
Procedure SYMHEAP (», f, RC, LC)
S =0
RC(0) = A
k=20
for i=1 to n do
J+k
while f(i) = f(S(j)) do
ji-t
repeat
k~j+1
LC(i) ~ RC(S(j))
RC(iy « A
RC(S(j)) ~ i
S(+1) ~ i
end for
end SYMHEAP

VERIFICATION FOR SPANNING TREES 6l

2. When 7 is a full branching trec

A rooted tree is a full branching tree, if all leaves are on the same level and
non-leaves have at least 2 children. For a full binary tree, processing all path-queries
has a cost @ (nloglogn), so here we have to restrict our attention to the set 4 of
actual queries.

Let A(y) be the set of actual queries which go through y:

A() = {p(x.2)edlx = y = z}

and A*(p) the set of restrictions of these paths to the interval [root (T), y].

Starting with the root, we go down level by level and successively find the
maxima over all paths in the sets 4% ().

Assume that we know these maxima down to the i-th level, and let us find the
maxima on paths in 4*(y) for a 3 on level i+ 1. If y is the parent of y, then we know
the maxima on the restrictions to [root, y] of all paths in A(y). It remains to compare
f(») with these maxima. Since the maxima are known as an ordered list (maximum on
p(x, y) is at least as large as maximum on p(x’,) if x=x"), we can simultaneously
compare f()) with them using binary insertion. Cost=[log (4(»)+1)].

Write L, for the set of nodes on level i, and /;=|L;|. For a full branching tree,
2 !i=<I; and thus for the entropy

- S (Im)log(wfl) = 3 i27 =2,

Since L; 1s an antichain, the sets 4()), y€ L; are pairwise disjoint, thus Jensen’s
imequality leads to

2 [og(4(»)+1)] = 3 (1+log(A(»)+1) = li+1 log 1A11:+1z.

yel,

Thus, we get for the total cost:

Cost = 3 (li«l— l; log IAII-}- l"]
= n--nlog |A]—|—n~1 2 1 log l

|A|+n
no

= 3n-Ltnlog

3. General T

Scalping a rooted tree
The scalp of a tree T is defined as
S(T) = {veV(T)idegw) =1 for all u = v}.

The subgraph of T spanned by S(7T) splits into vertex-disjoint paths (of length =0)
called hairs or fringes.

I

62 1. KOMLOS

We set 7,=7 and inductively define the trees T; ,=T7,—5(T,), i=0,1, ...
and write k for the index of the last non-emipty 7; (hence S(7)=7). Note that
every vertex r£7; (i=1) has a child n 7,_,.

For a given 7, I=ik, and a vertex ¢4 T;. we define the root of v in T; as
the clement

Ri(v) = min {ue Tju > v}.

For v&£S(T,_,). the “natural” root R;(¢v) will be denoted by R*(r). We will write R
for the set of all roots:

R = {ulR(v) = u for some i, o}

Clearly, R={uldeg (i)=2}. (Note that the root of the whole tree in the traditional
sense need not be in R.j

The restriction of A4 (actual queries) to T 1s defined in the natural way (by
restricting the paths in A to T3), and is denoted by 4;. We also define 4*(»)=4,()
for yeS(T,), and A+(y) as the set of all queries in A, whose restriction to 7; ends
at v€ S(T). (Le., for 3¢ S(T;), the restrictions to 7; of queries in 47 (y) form the
set A*(y).) (The rest of the section is not needed for the description of the algorithm,
only for the cost analysis.) In other words, a query p(x, 2)€A™(3) (where y€ S(Ty))
il R;(z)=v. But then R(v)=y forall v, y=v==z. Hence, if € S(T}), 1€ S(T),
i=j, and a query p(x, z) belongs to both A*(),) and A¥(,). then Ri(y))=y,.

Thus, we obtained the following lemma.

Lemma 1. If Y is a set of vertices such that no element in Y is a root of another, then
the sets AT (), ¥yY, are pairwise disjoint. |

For an element u< S(T), the set C(u)={v|R;(t)=u} is called the court of u.
Now we are going to partition R by coloring its elements with & colors. The elements
of S(T))MR get color 1. Having colored the elements of

i U S(T) M R]
=i

we color the elements of S(TONR as follows: u gets the smallest color (smallest
positive integer) that does not appear in its court C(x). Clearly, in the obtained color-
ing an element in S(7T)MN R gets a color not exceeding i. We will write R; for the set
of u€R with color i, R, for the set of leaves of Ty, r; for |R;|, and r for [R].

The following crucial lemma will be proved at the end of the paper.

Lemma 2. A) For any fixed i1, the sets A7 (y). YER,;, are disjoint.
B) For i=0, we have the exponential decay
Z. rp<
St
whence r<=nf2, and
D2t =12
J=i
consequently, for the entropy
S (rd)log(rjr) = S i27i =2,
izl i=l
In other words, the coloring defined above provides a finite-entropy decom-
position of R into antichains in the partial order w>v if u=R;(t} for some i.

VERIFICATION FOR SPANNING TREES 63

The Algorithm

We start with the decomposition

k
V(T)= 2 S(T) (disjoint union).
i=0

Since every scalp S(T;) represents a disjoint union of paths, ¥(T) is decomposed into
disjoint sets, each of which spans a (directed) path of T.

Perform SYMHEAP on each of these sets. Total cost is less than 2n. Next,
starting with A,. we will inductively find the answers for all queries in 4;, i=k,
k—1,...,0 (4,=A is the original set of queries).

For i=k, the tree T} is but a string, and SYMHEAP provided us with the
maximum on all possible paths of Tj.

Having answered all queries in 4; .., we proceed to get the answers for queries
in A;—A;.,. For a given vertex y¢S(7T,) there are |4,(y)| queries in A; that end
at y. For a particular query p(x, y)€4; we already know an index m,, such that

f(my,) = max S

xz=uz R*(y)

(for x<=R*(y) we may interpret f(m,,)=0), and from SYMHEAP, we know an
index m, such that
Sim) = prlax, f(u).

It remains to compare f(mn,) with f(in,.,). For ﬁxed ¥, we know the order of the values
J@ny,), since x;=>x, 1mplles /(mm,) = f(m - Thus, we can make the comparisons
of f(m,) with the various values f(im,,) 91mu1taneously by merging the value f(m,)
into the ordered sequence f(m,,,) = f1 (mm)_ . Cost is at most [log (|4;(»)|+1)]=
=[log (|4*(»)!+1)] for every yeS(T).

Cost Analvsis
Theorem. 7he obtained total cost
C=2u+ 3 llog (14 (»)]+]
y

is less than

Sn+nlog——— 4 1+"

Proof. We will separately handle terms with y§ R and those with y€R.
By Lemma 1. the sets AT()), v§ R, are pairwise disjoint, thus applying the
Jensen inequality
| X
t

;= i log

UG

1
2t
we get

PACH RO EPAL +log (|4* I+ 1)] = m+m IOgEL;qrﬂ

where m=n—r 1is the number of non-roots.

64 1. KOMLOS

It remains to estimate the sum

C'= \ 2 flog (|4~ () +1)].

1—1 yeR
Here we may deal with different restrxctlons of the same path, so multiplicities may
occur. By part 4 of Lemma 2, however, we can use the above estimation for the inner

sums:
& oy
Cle [) i+ r; log ‘AL‘ "].

P
i=1

The exponential decay of the sizes r; does the rest (part B of Lemma 2):

_ . [p
Cl=rdrlog—— |A| - > T log% < 3r+rlog ‘AI,.T".
izl i

Now m+-r=n, thus,(using r=n/2 and the log-sum mequality
a b , a+b
xlog—+rlog— = (x+y)log ——, x, » > 0]
X ¥ X+y
we get for the total cost

C=2n+m+3r+m 1001_—

‘—A—l’ﬁ = Sn+nlog

+rlog A]j—n

as stated. ||

Proof of Lemma 2. The sets R are clearly antichains of T in the partial order >,
so part A follows from Lemma 1. To establish the exponential decay of r;=|Ry|,
we need two more lemmas:

Lemma 3, Leaves of T; (iz=1) have color i. Furthermore, for =2 and u€R;, the
court C(u) contains exactly the colors {1....,i—1}.

Lemma 4. Every node u€) R; must have ar least two children in T;.
i<t
To get the exponential decay, it remains to apply the following sumple fact:
In any rooted tree, the number of vertices of degree =2 is less than the number of
leaves. B

Proof of Lemma 3. For i=1 the statement is trivial. Assuming its validity for all
values less than a certain i, let us prove it for 7.

We know that a leaf » of T; (actually any vertex of T,) has a child in T;_,,
thus there is a leaf v of T,_, such that R,(v)=w. Since (by induction) the color of
visi—1, and C(v) (a subset of C(u)) contains all colors {1, 2,7—2}, u must
have color =i. But u€S(T}), so its color cannot exceed /7, thus it is i.

Furthermore, any vertex uCR; has (by definition) a vertex r<R,_, in its
court C(u). By induction, C(v) contains all colors {1, ..., i—2}, thus the relation
C(v)c C(u) implies the second statement of the lemma. |

Proof of Lemma 4. I «c{J R;. then u has a vertex ¢ R; in its court C(u).
e

R, T, wmplies v€T,. Restricting oursclves to the tree T;, we found a vertex v

to which « is a root. Thus, the degree of « within T; must be at least 2. |}

VERIFICATION FOR SPANNING TREES 65

References

[1} D. Cueriton and R. E. Tarsan, Finding Minimum Spanning Trees,.SIAM J. on Computing, 5
(1976), 724742,

[2]1 M. FrepMaN and R. E. TARIAN, private communication, December 1983,

[3]1 R. L. Grauam, A, C. Yao, and F. F. Yao, Information Bounds are Weak in the Shortest Dis-
tance Problem, JACM, 27 (1980), 428- 444,

{41 D. HAREL, A Linear Time Algorithm for the Lowest Common Ancestors Problem, Proc. 21st
Annual Symp. on Foundations of Computer Science, (1980), 308—319.

[5] R. E. TarIAN, Application of Path Compression on Balanced Trees, JACM, 26 (1979), 690—715.

[6] A. C. Yao, An O(|E| log log [7)) Algorithm for Finding Minimum Spanning Trees, Information
Processing Letters, 34 (1973), 21—23.

J. Komlds

Mothematical Institute of the
Hungariun Acadenty of Sciences
Budapest, P.O.B. 127

1364, Hungary

and

University of California, San Diego
La Jolla, CA 92093, U.S.A.

hid

