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Given a rooted tree with values associated with the n vertices and a set A of directed paths 
(queries), we describe an algorithm which finds the maxinmm value of every one of the given paths. 
and which use~ only 

I AI -i- n 
5n --F n log - -  

II 

comparisons. 
This leads to a spanning tree verification algorithm using O(n f-e) comparisons in a graph 

with n vertices and e edges. 
No implementation is otl~ered. 

O. Introduction 

I, F ind ing  the mhl imal  spanning  tree in an undirected ne twork  is a well- 
researched area  o f  c o m p u t e r  science. The  classical a lgor i thms  o f  Kruska l  and Pr im 
have been modif ied and improved  several t imes. F o r  a s tudy o f  several spanning  tree 
a lgor i thms ,  see [1]. 

The  best  known resul t  has been the O(JE[ Ioglog IV l) a lgo r i thm of  Yap  [6] 
unti l  recently.  

A few weeks ago,  F r e d m a n  and Tar jan  [2] deve loped  a me thod  which appl ies  
to bo th  the  shor tes t  pa th  and the spanning  tree p rob lems ,  leading to an 
o (IE !/~(IEI, 1 Vl)) a lgor i thm for the  la t ter  one :  where  fi(m, n) = mhl {iJlog(i)n ~ 7n/n} 
On the  o ther  hand,  the  only verification result  we know o f  is the  O(IE!~(IEI ,  1VI)) 
a lgor i thm o f  Trojan [5]; (here ~ is the inverse Acke rmann  function). '  

Here  we descr ibe  an a lgor i thm which finds max ima  over  wlr ious  pa ths  o f  a 
tree, which leads to a minimal  spann ing  tree verification a lgor i thm with a linear 
number  o f  comparisons. 

We want  to emphas ize ,  however,  tha t  the only cost  we deal  with is the total  
number  o f  compar i sons  made,  for  we could  not  find an effective implementa t ion  with 
a l inear  overhead cost.  In o the r  words,  our  result  is o f  an informat ion  theoret ical  
nature .  

AMS subject classification (1980): 68 E I0 



5 8  J. K O M L O S  

We remark that the problem is a particular instance of  the following gene- 
ral question that is discussed in [3]. 

(Q) Givetz an n element set E=(e~ . . . . .  e,,), and a list o f  m subsets o f  {1, 2, ... 
.... n}, L =(S ,  . . . . .  S,,,). Find the maxima 

:11 i = | l t a X  e . i ,  i l ,  2 . . . .  , t71. 
j < S~ 

(If  E is the set o f  edges of  the spanning tree and the elements of  5',. are the circuit edges 
created by the i-th outside edge, we get the tree verification problem.) 

Of  course, sorting the whole list E provides all the necessary information for 
finding all M) (overhead is not counted !), but one would hope for an algorithm using 
only O (m + n) comparisons.  

Fredman proved (see [3]) that the number of  possible outcomes is not more 
(m + n -  1] 

than ~ n - I  j < 2  "+ ' ,  thus the above hope is realistic. 

A family of  paths on trees provides enough structure to make the problem 
easier to attack. 

The general question (Q) is still unanswered. 

2. Givml an undirected network G (a graph with n vertices, e edges and real 
values associated with the edges) and a spanning tree T of  G, we want to test whether 
T is minimal among all spanning trees of  G. 

Any edge x of  G not in Tcreates  a unique circuit C.~ with edges of  T; and it is 
well-known that  T is minimal if and only if, for any outside edge x, the value of  x is 
not smaller than any value in Cx. 

Thus, we only need to know, for all outside x, the maximum value on the 
path C.~- x, so that  we can compare this maximum with the value of x. Note that  
C~- .x  consists entirely of  edges of  T. 

Let us root T by a leaf of T. and consider it a directed tree with edges directed 
away from the root. Any path of  T is the union of at most two directed paths, and so 
it is sufficient to find the maxima on the directed "half-paths" correspondhlg to the 
outside edges. 

By reassiDaing the values of  the edges to their lower endpoJnts (and deleting 
the root), we get a more attractive model, in which the values are associated with the 
vertices. 

Whatever cost we obtain for this directed path problem, we only need 
2 ( e - ~ , +  I) extra comparisons for the spanning tree verification problem. 

Notation 

T is a rooted tree with edges directed awa~y from the root. 
V(T) :- set of  vertices of  T 
T -  U lbr a vertex set U c  V(T)  is the graph T restricted to V(T)-  (; 
x '~ t '  tbr x, .v~ V(T)  means x is a predecessor o f ) '  on T 
.v:.>v means x ~ y  and x # y  
deg (x) is the n u tuber of  outgoing edges from .v 
path means directed path of  T 
p(.v. y) stands l'or the directed path (u].v :: u z--.v) 
Iog.v is binary logarithm 
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Formulation o f  the probh,m 

Given a rooted tree Twith real values associated with the vertices f :  V(T)-~ R 
and a set A of  directed paths of  T (queries) 

A ~ Q  = {p(x, ):)Ix, yCV(T),  x ;-_- )'}. 
Find the maximum 

max j ( u )  

for all p(.v, )')CA. 

We wilt present a solution using less than 

C = 5n + n log t.41+. 
n 

comparisons. 
Note  that C<<IA[ for [A[~-~n, thus the linear term O(e) for the tree verifica- 

tion problem ([AI =e-t2-~- 1) comes from the comparisons made between the maxima 
in A and the outside edges. 

The paper  is structured as follows. First we will describe two completely dif- 
ferent algorithms for two particular cases: when T is a string (Section 1, this is even 
implementable) and when T is a full branching tree (Section 2), and then we will 
show how a general tree can be interpreted as a mixture of  these two extremes. 

1. When T is a string 

In other words, we have an array, [ f ( i ) ;  1 -<i~n], and want to find maxima 

over intervals [f( i) ;  s ~ i - t ] .  Although there are _ such intervals, we give an 

algorithm that uses less than 2n comparisons, and still can tind the answers Jot" all 
cn ~ queries (with a bounded overhead per quely). 

This easy part  of  our algorithm may be folklore, but we could not trace it in 
the literature. 

Symmetric order heaps 

Given an array [ j ( i ) ;  1 ~i=---n], we construct a binary tree SH on n nodes 
with the following properties: 

1. f ( i )  is assigned to node v i of  SH, 
2. S H  is a heap; i.e. vi>v j implies f ( i )>:f( j ) ,  
3. vl are in symmetric order; i.e., i f  v~. belongs to the left (right) subtree of  v~ 

then j < i  (j:>i).  

Clearly, these properties uniquely determine SH, namely the root of  S H  
lnust be f ( m ) =  max f ( / ) ,  and the e lementsf ( i ) ,  l<=i<m (f(i) ,  m<i<=n) should 

1 _ i =  < 

form the left subtree (right subtree) of  v,,, ; proceed recursively inside these subtrees. 
Once the tree SH has been constructed, finding the maximum over • subalway 

I f ( i ) ;  s~i<-t] reduces to determining the lowest common ancestor of  v~ and yr. 
Haret  [4] has an ingenious algorithm which, after an O(n) cost preprocessing, will 
process any number  of  lowest common ancestor queries for a constant cost each. 
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Construction of  the tree SH 

The binary tree SH will be respresented by the standard L E F T C H I L D  (LC) 
and R I G H T C H I L D  (RC) arrays. 

Definition. The right shoulder of  a binary tree is the (maximal) array S=[S(0) ,  
S(1) . . . . .  S(k)] of  nodes of  the tree in which S(0) is the root of  the tree. and S(i) 
is the right child of  S( i -1) .  

For an easier formal description, we will use an auxiliary node vo with value 
f ( 0 ) =  + ~,, and SH will be the right subtree of  v0. Starthlg with this v0, we insert 
the elements o f f ( i )  into the tree one-by-one, by keeping track of  not  only the tree 
structure (LC, RC) but also the right shoulder array S. Note that S forms a monotone 
stack (S(k) ~ S ( k -  l) ~-... ~ S(0) and .f(S(k)) ~. . .  -~f(S(O))). 

We compare the new' va lue f ( i )  with the stack valuesf(S(j)),  j=k ,  k - - l ,  ..., 
until we find an f(S(j))>=f(i). Then we remove the subtree T with roots S(]+ 1) 
from S(j ) ,  add a new node vi (with va lue f ( i ) )  to the tree as the new right child of  
S(j), and attach the above T back as the left subtree of  ~;. It  is clear that both the 
symmetric order and the heap property are preserved. 

The formal description uses the arrays 

[f( i) ;  0 > i ~ n], f(O) = + 

[LC(i),RC(i); O-~ i ~n],  LC(O)= A 

IS(i);  0 -~ i ~ n], S(O) = O. 

Procedure S Y M H E A P  07, f ,  RC, LC) 

s ( o )  = 0 

RC(O) = A 

k = O  

for i = l  to n do 

j ~  Ic 

while f ( i)  > f ( s ( j ) )  ¢1o 
j . - j - i  

repeat 

k ~ j + l  

z.co) ~ nc ( s ( j ) )  

RC(i) ~ A 

RC(SO))  ~ 

S( j  + 1) ~ i 

end for 

end S Y M H E A P  
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2. When T is a full branching tree 

A rooted tree is a full branching tree, if all leaves are on the same level and 
non-leaves have at least 2 children. For  a full binary tree, processing all path-queries 
has a cost O (n log log n), so here we have to restrict our attention to the set A of  
actual queries. 

Let A (y) be the set of  actual queries which go through y: 

A(y)  = {p(x, z)~ AIx ~ v ~- z} 

and A*(.v) the set of  restrictions of  these paths to the interwd [root (T), y]. 
Starting with the root, we go down level by level and successively find the 

maxima over all paths in the sets A*(y). 
Assume that we know these maxima down to the i-th level, and let us find the 

maxima on paths in A*(y) for a y on level i+  1. I f~  is the parent of  y, then we know 
the maxima on the restrictions to [root, 2¢] of all paths in A (y). It remains to compare 
f (y)  with these maxima. Since the maxima are known as an ordered list (maximum on 
p(x, y) is at least as large as maximum on p(x', ~) if  x>x') ,  we can simultaneously 
compare f ( y )  with them using binary insertion. Cost ~ [log (A (y) + 1 )_]. 

Write L~ for the set of  nodes on level i, and l~= ]L~[. For a full branching tree, 
~ . l i < l  i and thus for the entropy 

.~" (ljn) log (hill) < ~ i2 -i = 2. 
i i 

Since L~ is an antichain, the sets A (y), y(L~ are pairwise disjoint, thus Jensen's 
inequality leads to 

z~ [log (A (y) + l)] < ~ '  (l + log (A (v)+  l)) N / ,+/ i log IA]+l-------2 
. v ~ L  i y g z L  i " ~i 

Thus, we get for the total cost: 

-=- n + n log ]A]+n +_~ lz log ]~-~ 
n 1; 

3 n + n  lo~ IAl+n 
n 

3. General T 

Scalping a rooted tree 

The scalp of  a tree T is defined as 

S(T) = {v~V(T)tdeg(u) ~ I for all u ~< v}. 

The subgraph of  T spanned by S(T) splits into vertex-disjoint paths (of length ~0)  
called hairs or fringes. 
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We set To= T and inductively define the trees Ti ~ == T i -  S(fi) ,  i=0 ,  I . . . .  
and write 1¢ for the index of the last non-empty Ti (hence S(Tk)=Tk). Note that 
every vertex 1'(~Ti (i-~1) has a child in T ; . , .  

For  a given i. I =i-~k, and a vertex c.:i T~, we define the root o f  v in T i as 
tl~e clement 

Ri(C) - min-{u~ Y,.]H > v}. 

For vE S(Ti__O, the "natural"  root Ri(v) Mll be denoted bv /U0 ' ) .  We will write R 
for the set of all roots: 

R =  {u!Ri(v)= u for some i,v}. 

Clearly, R =  {uldeg (u)~2}. (Note that the root of  the whole tree in the traditional 
sense need not be in R.) 

q-he restriction of A (actual queries) to T; is defined in the natural way (by 
restricting the paths in A to Ts), and is denoted by A~. We also define A*(y)=A~(y) 
for 3'E S(Ti), and A + 0')  as the set of  all queries in A, whose restriction to 7",. ends 
at yE S(T~). (I.e., for yE S(Ti), the restrictions to T~ of  queries in A + 0 )  form the 
set A * (y).) (The rest of  the section is not needed for the description of  the algorithm, 
only for ti~e cost analysis.) In other words, a quer3' p(x, z)EA + 0') (where) 'E S(T~)) 
iff Ri(z)=y.  But then R(v)=y  for all v, ),~v>=z. Hence, if  y lQS(T i )  , ) '2ES(Tj),  
i> j ,  and a query p(x, z) belongs to both A+O'O and A+(y,,), then Ri(y~)=.vt. 

Thus, we obtained the following lemma. 

Lemma 1. I f  Y is a set o f  vertices such that no element in Y is a root o f  another, then 
the sets A + 0"), Y~ Y, are pairwise disjoint. | 

For an element u,q S(Ti), the set C(u)= {vlRi(v)=u} is called the court of  u. 
Now we are going to partition R by colorhag its elements with k colors. The elements 
of S(T~)2IR get color 1. Having colored the elements of  

U [S(rj)rn RI 
] ~ j <  i 

we color the elements of  S(T~)I-IR as folloxx~: u gets the smallest color (smallest 
positive integer) that does not appear in its court C(u). Clearly, in the obtained color- 
ing an element in S(TI)ff)R ge~s a color not exceeding i. We will write R~ for the set 
of  uER with color i. Ro for the set of leaves of  To, r~ for [G[, and r for JR[. 

The following crucial lemma will be proved at the end of the paper. 

Lemma 2. A) For anyfixed i-=1, the sets A+(y), )'~ Ri, are disjoint. 
B) For i~O, we have the exponential decay 

_ . t . l ' i  < t" i 

. I  . ~  ! 

whence r<n/2o and 
y~r i - : r2 -~ ,  i =  1,2 . . . .  

j > i  

consequently, for the entrolo, 

(ri/r) log (r/ri) < ~ i2 -i  = 2. 

In other words, the coloring defined above provides a finite-entropy decom- 
position of R into antichains in the partial order u>>v if u=Ri(v) for some i. 



VERIFICATION FOR S P A N N I N G  TREES 6~  

The Algorithm 

We start with the decomposition 

k 

V(T) = ~ '  S(Ti) (disjoint union). 
i = 0  

Shlee every scalp S(T~) represents a disjoint union of  paths, V(T) is decomposed into 
disjoint sets, each of  which spans a (directed) path of  T. 

Perform SYMHEAP on each of  these sets. Total cost is less than 2n. Next, 
starting with Ak, we will inductively find the answers for all queries in A~, i=k,  
k - l ,  ..., 0 (A0=A is the original set of queries). 

For i=k, the tree Tk is but a string, and SYMHEAP provided us with the 
maximum on all possible paths of T k. 

Having answered all queries in A~+a, we proceed to get the answers for queries 
hi Ai-Ai+a. For a given vertex yES(T~) there are IAi(y)[ queries in Ai that end 
at y. For a particular query p(x,),)CA~ we already know an index m~y such that 

f(m~s.) = max f (u)  
x ~ u ~ R  (y)  

(for x<R~O ,) we may itlterpret./(n%.)=0), and from SYMHEAP, we know an 
index my such that 

f ( m y ) =  max f(u). 
R * ( y j > u ~ y  ~ 

It remains to compare f(my) withf(m~y). For fixed y, we know the order of the values 
f(m~y), since xl>x2 implies f(m~,~)>-f(m:,..y). Thus, we can make the comparisons 
off(my) with the various values f(mxy) simultaneously, by merging the value f(my) 
into the ordered sequence f(m~ s) >=f(m~oy)~ .... Cost is at most Flog ([Ai(y)] + 1 )] = 
:[ log(lA*(y)l- t-1)]  for every 3:ES(T~). 

Theorem. 

Cost Analysis 

The obtained total cost 

C = 2n + .~ [log (IA* (y)! + 1)1 
y 

is less than 

5n+n log ]Al+n 
11 

Proof. We will separately handle terms with yt[ R and those with )'{R. 
By Lemma 1. the sets A + (.!'), .r~ R, are pairwise disjoint, thus applying the 

Jell sen inequality 
t 

,~  log x, ~- t log ~ '  xi 
i = 1  t 

we get 

where 

Z I-_log (IA~O')I + i)] ~--- Z It +log (IA*O,)I-+ 1)] ~ ,,, + , ,  log 
y~R 

m--#t--r is the number of non-roots. 

I AI+ m 
m 
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It remains to estimate the sum 

Ca = ~,'~ Z [ l o g ( i A : ' ( v ) + l ) l . .  
i - - 1  yCz R i 

Here we may deal with different restrictions o f  the same path, so multiplicities may 
occur.  By part  A of  Lemma 2, however, we can use the above estimation for the inner 
sums : 

< ~ I"i-F ri log 
i = l  ~ r l  

The exponential  decay o f  the sizes r~ does the rest (part B of  kemma 2) : 

C ~ < r + r  log  IA[÷r r IAl+r + ~ r ~ [ o g - -  < 3 r + r l o g  - -  

Now m + r = n ,  thus  (using r<n/2 and the log-sum inequality 

x l o g x +  vlo~ ~ ( x + y )  loz a+b . ~ ..' ~x+)---- Z ,  x , y > O  

we get for  the total cost 

C < 2 n + m + 3 r + m  log 1"41+ m -Fr lo,, IA l+ r  iAl+n .~ < 5n + n log 
5fl 5" I1 

as stated. II 

P r o o f  of Lemma 2. The sets R are clearly antichains o f  Y in the partial order >>, 
so part  A follows f rom Lemma 1. To establish the exponential decay o f  r~= IR;[, 
we need two more  lemmas:  

Lemma 3. Leaves of  T 5 (i~ 1) have color i. Furthermore, for i~2  and uCRi, the 
court C(u) contains exactly the colors {1 . . . .  , i - l } .  

Lemma 4. Every node uE U Rj mu~'t have at least two chilclresl in ~ .  
j < i  

To get the exponential decay, it remains to apply the following simple fact :  
In any rooted tree, the number  o f  vertices o f  degree ~ 2  is Jess than the number  o f  
leaves. | 

Proof  of  Lemma 3. For  i =  l the statement is trivial. Assuming its validity for all 
values less than a certain i, let us prove it for i. 

We know that  a leaf u o f  T; (actually any vertex o f  2",) has a child in T,._~, 
thus there is a leaf v o f  Ti_ a such that R~(v)=u. Since (by induction) the color  o f  
v i s  i - I ,  and C(v) (a subset o f  C(u))  contains all colors {1, 2, .... i - 2 } ,  u must 
have color  ~-i. But uc, S(T~), so its color  cannot  exceed i, thus it is i. 

Fur thermore,  any vertex u~R~ has (by definition) a vertex c£R~_~ ha its 
court  C(u). By induction, C(v) contains all colors {1 . . . .  , i -2} .  thus the relation 
C(v)cC(u) implies the second statement o f  the lemma. | 

P r o o f  o f  L e m m a  4.  I f  u:  U R i. then 5t has a vertex t,(R: in its court  C(u). 
j > i  

RicT~ implies v(T~. Restricting ourselves to the tree T,., we found a vertex v 
to which u is a root. Thus, the degree o f  u within T~ must he at least 2. | 
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