
COMB1NATORICA 5 (I) (1985) 57--65

L I N E A R V E R I F I C A T I O N F O R S P A N N I N G T R E E S

J. K O M L O S

Received 30 !l~I~" 1984

Given a rooted tree with values associated with the n vertices and a set A of directed paths
(queries), we describe an algorithm which finds the maxinmm value of every one of the given paths.
and which use~ only

I AI -i- n
5n --F n log - -

II

comparisons.
This leads to a spanning tree verification algorithm using O(n f-e) comparisons in a graph

with n vertices and e edges.
No implementation is otl~ered.

O. Introduction

I, F ind ing the mhl imal spanning tree in an undirected ne twork is a well-
researched area o f c o m p u t e r science. The classical a lgor i thms o f Kruska l and Pr im
have been modif ied and improved several t imes. F o r a s tudy o f several spanning tree
a lgor i thms , see [1].

The best known resul t has been the O(JE[Ioglog IV l) a lgo r i thm of Yap [6]
unti l recently.

A few weeks ago, F r e d m a n and Tar jan [2] deve loped a me thod which appl ies
to bo th the shor tes t pa th and the spanning tree p rob lems , leading to an
o (IE !/~(IEI, 1 Vl)) a lgor i thm for the la t ter one : where fi(m, n) = mhl {iJlog(i)n ~ 7n/n}
On the o ther hand, the only verification result we know o f is the O(IE!~(IEI , 1VI))
a lgor i thm o f Trojan [5]; (here ~ is the inverse Acke rmann function). '

Here we descr ibe an a lgor i thm which finds max ima over wlr ious pa ths o f a
tree, which leads to a minimal spann ing tree verification a lgor i thm with a linear
number o f comparisons.

We want to emphas ize , however, tha t the only cost we deal with is the total
number o f compar i sons made, for we could not find an effective implementa t ion with
a l inear overhead cost. In o the r words, our result is o f an informat ion theoret ical
nature .

AMS subject classification (1980): 68 E I0

5 8 J. K O M L O S

We remark that the problem is a particular instance of the following gene-
ral question that is discussed in [3].

(Q) Givetz an n element set E=(e~ e,,), and a list o f m subsets o f {1, 2, ...
.... n}, L =(S , S,,,). Find the maxima

:11 i = | l t a X e . i , i l , 2 , t71.
j < S~

(If E is the set o f edges of the spanning tree and the elements of 5',. are the circuit edges
created by the i-th outside edge, we get the tree verification problem.)

Of course, sorting the whole list E provides all the necessary information for
finding all M) (overhead is not counted !), but one would hope for an algorithm using
only O (m + n) comparisons.

Fredman proved (see [3]) that the number of possible outcomes is not more
(m + n - 1]

than ~ n - I j < 2 "+ ' , thus the above hope is realistic.

A family of paths on trees provides enough structure to make the problem
easier to attack.

The general question (Q) is still unanswered.

2. Givml an undirected network G (a graph with n vertices, e edges and real
values associated with the edges) and a spanning tree T of G, we want to test whether
T is minimal among all spanning trees of G.

Any edge x of G not in Tcreates a unique circuit C.~ with edges of T; and it is
well-known that T is minimal if and only if, for any outside edge x, the value of x is
not smaller than any value in Cx.

Thus, we only need to know, for all outside x, the maximum value on the
path C.~- x, so that we can compare this maximum with the value of x. Note that
C~- .x consists entirely of edges of T.

Let us root T by a leaf of T. and consider it a directed tree with edges directed
away from the root. Any path of T is the union of at most two directed paths, and so
it is sufficient to find the maxima on the directed "half-paths" correspondhlg to the
outside edges.

By reassiDaing the values of the edges to their lower endpoJnts (and deleting
the root), we get a more attractive model, in which the values are associated with the
vertices.

Whatever cost we obtain for this directed path problem, we only need
2 (e - ~ , + I) extra comparisons for the spanning tree verification problem.

Notation

T is a rooted tree with edges directed awa~y from the root.
V(T) :- set of vertices of T
T - U lbr a vertex set U c V(T) is the graph T restricted to V(T)- (;
x '~ t ' tbr x, .v~ V(T) means x is a predecessor o f) ' on T
.v:.>v means x ~ y and x # y
deg (x) is the n u tuber of outgoing edges from .v
path means directed path of T
p(.v. y) stands l'or the directed path (u].v :: u z--.v)
Iog.v is binary logarithm

VI-R1FICATION FOR S P A N N I N G T R E E S 5 9

Formulation o f the probh,m

Given a rooted tree Twith real values associated with the vertices f : V(T)-~ R
and a set A of directed paths of T (queries)

A ~ Q = {p(x,):)Ix, yCV(T), x ;-_-)'}.
Find the maximum

max j (u)

for all p(.v,)')CA.

We wilt present a solution using less than

C = 5n + n log t.41+.
n

comparisons.
Note that C<<IA[for [A[~-~n, thus the linear term O(e) for the tree verifica-

tion problem ([AI =e-t2-~- 1) comes from the comparisons made between the maxima
in A and the outside edges.

The paper is structured as follows. First we will describe two completely dif-
ferent algorithms for two particular cases: when T is a string (Section 1, this is even
implementable) and when T is a full branching tree (Section 2), and then we will
show how a general tree can be interpreted as a mixture of these two extremes.

1. When T is a string

In other words, we have an array, [f (i) ; 1 -<i~n], and want to find maxima

over intervals [f(i) ; s ~ i - t] . Although there are _ such intervals, we give an

algorithm that uses less than 2n comparisons, and still can tind the answers Jot" all
cn ~ queries (with a bounded overhead per quely).

This easy part of our algorithm may be folklore, but we could not trace it in
the literature.

Symmetric order heaps

Given an array [j (i) ; 1 ~i=---n], we construct a binary tree SH on n nodes
with the following properties:

1. f (i) is assigned to node v i of SH,
2. S H is a heap; i.e. vi>v j implies f (i)>:f(j) ,
3. vl are in symmetric order; i.e., i f v~. belongs to the left (right) subtree of v~

then j < i (j:>i).

Clearly, these properties uniquely determine SH, namely the root of S H
lnust be f (m) = max f (/) , and the e lementsf (i) , l<=i<m (f(i) , m<i<=n) should

1 _ i = <

form the left subtree (right subtree) of v,,, ; proceed recursively inside these subtrees.
Once the tree SH has been constructed, finding the maximum over • subalway

I f (i) ; s~i<-t] reduces to determining the lowest common ancestor of v~ and yr.
Haret [4] has an ingenious algorithm which, after an O(n) cost preprocessing, will
process any number of lowest common ancestor queries for a constant cost each.

60 J. KOM LOS

Construction of the tree SH

The binary tree SH will be respresented by the standard L E F T C H I L D (LC)
and R I G H T C H I L D (RC) arrays.

Definition. The right shoulder of a binary tree is the (maximal) array S=[S(0) ,
S(1) S(k)] of nodes of the tree in which S(0) is the root of the tree. and S(i)
is the right child of S(i -1) .

For an easier formal description, we will use an auxiliary node vo with value
f (0) = + ~,, and SH will be the right subtree of v0. Starthlg with this v0, we insert
the elements o f f (i) into the tree one-by-one, by keeping track of not only the tree
structure (LC, RC) but also the right shoulder array S. Note that S forms a monotone
stack (S(k) ~ S (k - l) ~-... ~ S(0) and .f(S(k)) ~. . . -~f(S(O))).

We compare the new' va lue f (i) with the stack valuesf(S(j)), j=k , k - - l , ...,
until we find an f(S(j))>=f(i). Then we remove the subtree T with roots S(]+ 1)
from S(j) , add a new node vi (with va lue f (i)) to the tree as the new right child of
S(j), and attach the above T back as the left subtree of ~;. It is clear that both the
symmetric order and the heap property are preserved.

The formal description uses the arrays

[f(i) ; 0 > i ~ n], f(O) = +

[LC(i),RC(i); O-~ i ~n], LC(O)= A

IS(i); 0 -~ i ~ n], S(O) = O.

Procedure S Y M H E A P 07, f , RC, LC)

s (o) = 0

RC(O) = A

k = O

for i = l to n do

j ~ Ic

while f (i) > f (s (j)) ¢1o
j . - j - i

repeat

k ~ j + l

z.co) ~ nc (s (j))

RC(i) ~ A

RC(SO)) ~

S(j + 1) ~ i

end for

end S Y M H E A P

V E R I F I C A T I O N F O R S P A N N I N G T R E t S 01

2. When T is a full branching tree

A rooted tree is a full branching tree, if all leaves are on the same level and
non-leaves have at least 2 children. For a full binary tree, processing all path-queries
has a cost O (n log log n), so here we have to restrict our attention to the set A of
actual queries.

Let A (y) be the set of actual queries which go through y:

A(y) = {p(x, z)~ AIx ~ v ~- z}

and A*(.v) the set of restrictions of these paths to the interwd [root (T), y].
Starting with the root, we go down level by level and successively find the

maxima over all paths in the sets A*(y).
Assume that we know these maxima down to the i-th level, and let us find the

maxima on paths in A*(y) for a y on level i+ 1. I f~ is the parent of y, then we know
the maxima on the restrictions to [root, 2¢] of all paths in A (y). It remains to compare
f (y) with these maxima. Since the maxima are known as an ordered list (maximum on
p(x, y) is at least as large as maximum on p(x', ~) if x>x') , we can simultaneously
compare f (y) with them using binary insertion. Cost ~ [log (A (y) + 1)_].

Write L~ for the set of nodes on level i, and l~=]L~[. For a full branching tree,
~ . l i < l i and thus for the entropy

.~" (ljn) log (hill) < ~ i2 -i = 2.
i i

Since L~ is an antichain, the sets A (y), y(L~ are pairwise disjoint, thus Jensen's
inequality leads to

z~ [log (A (y) + l)] < ~ ' (l + log (A (v)+ l)) N / ,+/ i log IA]+l-------2
. v ~ L i y g z L i " ~i

Thus, we get for the total cost:

-=- n + n log]A]+n +_~ lz log]~-~
n 1;

3 n + n lo~ IAl+n
n

3. General T

Scalping a rooted tree

The scalp of a tree T is defined as

S(T) = {v~V(T)tdeg(u) ~ I for all u ~< v}.

The subgraph of T spanned by S(T) splits into vertex-disjoint paths (of length ~0)
called hairs or fringes.

62 J. t40M L(~S

We set To= T and inductively define the trees Ti ~ == T i - S(fi) , i=0 , I
and write 1¢ for the index of the last non-empty Ti (hence S(Tk)=Tk). Note that
every vertex 1'(~Ti (i-~1) has a child in T ; . , .

For a given i. I =i-~k, and a vertex c.:i T~, we define the root o f v in T i as
tl~e clement

Ri(C) - min-{u~ Y,.]H > v}.

For vE S(Ti__O, the "natural" root Ri(v) Mll be denoted bv /U0 ') . We will write R
for the set of all roots:

R = {u!Ri(v)= u for some i,v}.

Clearly, R = {uldeg (u)~2}. (Note that the root of the whole tree in the traditional
sense need not be in R.)

q-he restriction of A (actual queries) to T; is defined in the natural way (by
restricting the paths in A to Ts), and is denoted by A~. We also define A*(y)=A~(y)
for 3'E S(Ti), and A + 0') as the set of all queries in A, whose restriction to 7",. ends
at yE S(T~). (I.e., for yE S(Ti), the restrictions to T~ of queries in A + 0) form the
set A * (y).) (The rest of the section is not needed for the description of the algorithm,
only for ti~e cost analysis.) In other words, a quer3' p(x, z)EA + 0') (where) 'E S(T~))
iff Ri(z)=y. But then R(v)=y for all v,),~v>=z. Hence, if y lQS(T i) ,) '2ES(Tj),
i> j , and a query p(x, z) belongs to both A+O'O and A+(y,,), then Ri(y~)=.vt.

Thus, we obtained the following lemma.

Lemma 1. I f Y is a set o f vertices such that no element in Y is a root o f another, then
the sets A + 0"), Y~ Y, are pairwise disjoint. |

For an element u,q S(Ti), the set C(u)= {vlRi(v)=u} is called the court of u.
Now we are going to partition R by colorhag its elements with k colors. The elements
of S(T~)2IR get color 1. Having colored the elements of

U [S(rj)rn RI
] ~ j < i

we color the elements of S(T~)I-IR as folloxx~: u gets the smallest color (smallest
positive integer) that does not appear in its court C(u). Clearly, in the obtained color-
ing an element in S(TI)ff)R ge~s a color not exceeding i. We will write R~ for the set
of uER with color i. Ro for the set of leaves of To, r~ for [G[, and r for JR[.

The following crucial lemma will be proved at the end of the paper.

Lemma 2. A) For anyfixed i-=1, the sets A+(y),)'~ Ri, are disjoint.
B) For i~O, we have the exponential decay

_ . t . l ' i < t" i

. I . ~ !

whence r<n/2o and
y~r i - : r2 -~ , i = 1,2

j > i

consequently, for the entrolo,

(ri/r) log (r/ri) < ~ i2 -i = 2.

In other words, the coloring defined above provides a finite-entropy decom-
position of R into antichains in the partial order u>>v if u=Ri(v) for some i.

VERIFICATION FOR S P A N N I N G TREES 6~

The Algorithm

We start with the decomposition

k

V(T) = ~ ' S(Ti) (disjoint union).
i = 0

Shlee every scalp S(T~) represents a disjoint union of paths, V(T) is decomposed into
disjoint sets, each of which spans a (directed) path of T.

Perform SYMHEAP on each of these sets. Total cost is less than 2n. Next,
starting with Ak, we will inductively find the answers for all queries in A~, i=k,
k - l , ..., 0 (A0=A is the original set of queries).

For i=k, the tree Tk is but a string, and SYMHEAP provided us with the
maximum on all possible paths of T k.

Having answered all queries in A~+a, we proceed to get the answers for queries
hi Ai-Ai+a. For a given vertex yES(T~) there are IAi(y)[queries in Ai that end
at y. For a particular query p(x,),)CA~ we already know an index m~y such that

f(m~s.) = max f (u)
x ~ u ~ R (y)

(for x<R~O ,) we may itlterpret./(n%.)=0), and from SYMHEAP, we know an
index my such that

f (m y) = max f(u).
R * (y j > u ~ y ~

It remains to compare f(my) withf(m~y). For fixed y, we know the order of the values
f(m~y), since xl>x2 implies f(m~,~)>-f(m:,..y). Thus, we can make the comparisons
off(my) with the various values f(mxy) simultaneously, by merging the value f(my)
into the ordered sequence f(m~ s) >=f(m~oy)~ Cost is at most Flog ([Ai(y)] + 1)] =
:[log(lA*(y)l- t-1)] for every 3:ES(T~).

Theorem.

Cost Analysis

The obtained total cost

C = 2n + .~ [log (IA* (y)! + 1)1
y

is less than

5n+n log]Al+n
11

Proof. We will separately handle terms with yt[R and those with)'{R.
By Lemma 1. the sets A + (.!'), .r~ R, are pairwise disjoint, thus applying the

Jell sen inequality
t

,~ log x, ~- t log ~ ' xi
i = 1 t

we get

where

Z I-_log (IA~O')I + i)] ~--- Z It +log (IA*O,)I-+ 1)] ~ ,,, + , , log
y~R

m--#t--r is the number of non-roots.

I AI+ m
m

64 .~, KOMLOS

It remains to estimate the sum

Ca = ~,'~ Z [l o g (i A : ' (v) + l) l . .
i - - 1 yCz R i

Here we may deal with different restrictions o f the same path, so multiplicities may
occur. By part A of Lemma 2, however, we can use the above estimation for the inner
sums :

< ~ I"i-F ri log
i = l ~ r l

The exponential decay o f the sizes r~ does the rest (part B of kemma 2) :

C ~ < r + r log IA[÷r r IAl+r + ~ r ~ [o g - - < 3 r + r l o g - -

Now m + r = n , thus (using r<n/2 and the log-sum inequality

x l o g x + vlo~ ~ (x + y) loz a+b . ~ ..' ~x+)---- Z , x , y > O

we get for the total cost

C < 2 n + m + 3 r + m log 1"41+ m -Fr lo,, IA l+ r iAl+n .~ < 5n + n log
5fl 5" I1

as stated. II

P r o o f of Lemma 2. The sets R are clearly antichains o f Y in the partial order >>,
so part A follows f rom Lemma 1. To establish the exponential decay o f r~= IR;[,
we need two more lemmas:

Lemma 3. Leaves of T 5 (i~ 1) have color i. Furthermore, for i~2 and uCRi, the
court C(u) contains exactly the colors {1 , i - l } .

Lemma 4. Every node uE U Rj mu~'t have at least two chilclresl in ~ .
j < i

To get the exponential decay, it remains to apply the following simple fact :
In any rooted tree, the number o f vertices o f degree ~ 2 is Jess than the number o f
leaves. |

Proof of Lemma 3. For i = l the statement is trivial. Assuming its validity for all
values less than a certain i, let us prove it for i.

We know that a leaf u o f T; (actually any vertex o f 2",) has a child in T,._~,
thus there is a leaf v o f Ti_ a such that R~(v)=u. Since (by induction) the color o f
v i s i - I , and C(v) (a subset o f C(u)) contains all colors {1, 2, i - 2 } , u must
have color ~-i. But uc, S(T~), so its color cannot exceed i, thus it is i.

Fur thermore, any vertex u~R~ has (by definition) a vertex c£R~_~ ha its
court C(u). By induction, C(v) contains all colors {1 , i -2} . thus the relation
C(v)cC(u) implies the second statement o f the lemma. |

P r o o f o f L e m m a 4. I f u: U R i. then 5t has a vertex t,(R: in its court C(u).
j > i

RicT~ implies v(T~. Restricting ourselves to the tree T,., we found a vertex v
to which u is a root. Thus, the degree o f u within T~ must he at least 2. |

VERIFICATION FOR SPANNING "fREES 65

References

[I] D. CHERITON and R. E. TARJAN, Finding Minimum Spanning Trees,.SIAM J. on Computing, 5
(1976), 724--742.

[2] M. FRED~'L'~.N and R. E. TARJAN, private eommutdeation, December 1983.
[3] R. L. GRAHAM, A. C. YAo, and F. F. YAO, Information Bounds are Weak in the Shortest Dis-

tance Problem, JACM, 27 (1980), 428-. 444.
[4] D. HAR~r, A Linear Time Algorithm for the Lowest: Common Ancestors Problem, Proc. 21st

Annual Syrup. on Foundations o f Computer Science, (1980), 308--319.
[5] R. E. TARTAN, Application of Path Compression on Balanced Trees, JACM, 26 (1979), 690--715.
[6] A. C. YAo, An O(IE1 log log IV[) Algorithm for Finding Minimum Spanning Trees, Infi~rmation

Processing~ Letters, 4 (1975), 21--23.

J. Koml6s

Mathematical institute o f the
Hungarian Academy of Scie~wes
Budapest, P.O.B. 127
1364, Hltng¢119,
and
University of California, San Diego
La Jolla, CA 92093, U.S.A.

5*

