
Co~mrNArORICA 6 (1) (1986) 1--13 

O N  L O V A S Z '  L A T T I C E  R E D U C T I O N  A N D  T H E  

N E A R E S T  L A T T I C E  P O I N T  P R O B L E M  

L. B A B A I  

Received 11 June 1984 
Revised 20 At(gust 1985 

Answering a question of Vera S6s, we show how Lovfisz' lattice reduction can be used to find 
a point of a given lattice, nearest within a factor of c n (c = const.) to a given point in R a. We prove that 
each of two straightforward fast heuristic procedures achieves this goal when applied to a lattice 
given by a LovAsz-reduced basis. The verification of one of them requires proving a geometric feature 
of Lovgtsz-reduced bases: a c, a lower bound on the angle between any member of the basis and the 
hyperplane generated by the other members, where el = 1/2"[3. 

As an application, we obtain a solution to the nonhomogeneous simultaneous diophantine 
approximation problem, optimal within a factor of C n. 

In another application, we improve the Gr6tschel--Lovtisz--Schrijver version of H. W. Lens- 
tra's integer linear programming algorithm. 

The algorithms, when applied to rational input vectors, run in polynomial time. 

1. Introduction 

A lattice in R d, defined by the basis B =  {bl, ..., be} of  R e, is the set L =  
d 

Zb~ of  all integral linear combinat ions  o f  B. Finding the shortest non-zero vec- 
i=1 
tor in L is a fundamental  algorithmic problem, and lies at the heart  o f  the solution o f  
many diophantine problems in arithmetics, including integer p rogramming  (H. W. 
Lenstra, Jr. [12]), finding irreducible factors o f  polynomials (A. K. Lenstra [10]), 
minimal polynomials o f  algebraic numbers  (Kannan,  Lenstra, Lovfisz [8]) and si- 
multaneous diophantine approximation in the first place (Lovfisz, see [11]). 

Al though the shortest vector problem may be NP-hard  for integral input vec- 
tors (it is known to be NP-hard  with respect to maximum norm,  P. van Erode Boas 
[3]), a vector at most  C a times the shortest one suffices for most  applications. These 
applications include those mentioned above as well as applications to the ellipsoid 
method in linear p rogramming (Lov~sz [13]; cf. [5]), recent attacks on knapsack-  
based crypto-systems (Adleman [1], Shamir [15], Lagarias and Odlyzko [9]), and the 
disproof  o f  Mertens '  century-old conjecture in number  theory (Odlyzko and te Riele, 

AMS subject classification (1980): 68 C 25, 10 F 10, 10 F 15, 90 C ]0 



2 L BABAI 

[14]). All these applications were made possible by Lovdsz" lattice reduction algo- 
rithm (see [11]), originally designed to give nearly optimal simultaneous diophantine 
approximation which, in turn, arose, as far as Lov~isz was concerned, from the need 
to eliminate the annoying full-dimensionality condition from the ellipsoid method 
in linear programming ([13], see Grdtschel, Lov~isz, Schrijver [5]). Odlyzko reports 
that Lov~isz' algorithm performs substantially better in practice than predicted by 
the C a theoretical worst-case bound. This observation was crucial for the number 
theoretic application [ 14]. 

Diophantine problems usually come in homogeneous and nonhomogeneous 
versions, and usually both have similar answers but the nonhomogeneous cases are 
more difficult to handle (cf. Cassels [2]). 

In the case of the short lattice vector problem (a homogeneous approximation 
problem: we approximate zero), the corresponding nonhomogeneous problem is to 
find the nearest lattice point to a given po&t in R a. This problem is known to be NP- 
hard even in the Euclidean case (P. van Erode Boas [3]). However, as we shall see, 
a lattice point within C a times the distance from the nearest one can be found effici- 
ently (in polynomial time if the basis vectors have rational coordinates). Here, 
C is an absolute constant, and d is the dimension. We prove that each of two trivial 
heuristic procedures (Section 3) achieve this goal if we start from a Lov~sz-reduced 
basis. 

The most important and immediate application of Lov~isz' lattice reduction 
algorithm was his (homogeneous) diophantine approximation algorithm, previously 
solved only in dimension one by the classical method of continued fractions. Vera 
Sds [17] gave a method, based on continued fractions, to solve the one-dimensional 
nonhomogeneous case optimally. We shall show how the approximate nearest lattice 
point procedure leads to nearly optimal nonhomogeneous simultaneous diophantine 
approximation (Section 7). 

In Section 8, we improve the Grdtschel--Lovhsz--Schrijver version of H. W. 
Lenstra's integer linear programming algorithm. 

We note that R. Kannan [7] considered some of the problems discussed here 
(cf. Sect. 8 of this paper). He solved the nearest lattice point problem in d ~a arithmetic 
operations. He also showed that a shortest vector oracle can be used to find, in poly- 
nomial time, a lattice point nearest within a factor d to a given point in d-space. 

Let me remark that I don't see any a priori reason why the nonhomogeneous 
approximation problem could not actually be easier than the homogeneous one. 

Problem. Suppose we are given an oracle which solves the nearest lattice point prob- 
lem within a constant factor, i.e., on an input (L, x) (xER a, L a lattice in R a) the oracle 
outputs wEL such that Iw-x]<=C]u-xl for any uEL. Can suchan oracle beused 
to solve, in polinomial time, the shortest vector problem within a factor of exp (dl-O 
for some fixed e>O? (That is, on an input L ,  a lattice in R a, output a nonzero vector 
wEL such that lwl = lul exp (d 1-~) for any uEL, u#O.) 

Acknowledgements. I am indebted to Vera Sds for drawing my attention to the im- 
portance of nonhomogeneous diophantine approximation and the approximately ne- 
arest lattice point problems. I would like to thank L~iszl6 Lov~sz lbr telling me 
about his lattice reduction algorithm and its numerous consequences, immediately af- 
ter he had made the discovery at the end of 1981. Excellent seminar lectures by Eva 
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Tardos in Budapest helped me understand the subject, and I am indeed thankful 
to her. 

Last but not least, I should like to thank P~ter Frankl for suggesting an im- 
provement of the error estimate in Theorem 3.1 and Gy6rgy Tur~in for pointing out 
an error in Section 7. 

2. Lov~isz' lattice reduction 
d 

Let b, . . . . .  be~R e be linearly independent vectors and L =  ~ '  Zb, the lattice 
i = 1  

generated by B = {b~ . . . .  , be }. Let b~' . . . . .  b]' denote the orthogonalized sequence 
corresponding to b~, ..., be. We thus have 

e 

(2.1) b, = Z lt,jb~. = b~ + Z ~i~b* 
j : l  l~=j<i 

where 
(2.2) / q i = O  for I <_ - i< j<=d ,  
and 
(2.3) ¢tu= 1 ( i =  1 . . . .  ,d). 

B is a Lovdsz-reduced basis of L if the following two conditions* hold : 

(2.4) l/~jl<=l/2 for l < = j < i < = d .  

(2.5) Ib~l => __]b*l[ for i = 2, ..,, d. ¢3 
(Ixl denotes the Euclidean norm of x6Re). For any lattice L, Lovfisz' algorithm [11] 
reaches a reduced basis in a finite number of steps. If the initial basis vectors have 
rational coordinates, then the reduced basis is reached in polynomial time. ~ 

Our algorilhms will use a Lovfisz-reduced basis as input. In place of (2.4) and 
(2.5), it would be sufficient for our purposes to have any constant bound on the quan- 
tities I/l~jl and Ib~*-~ [/Ib*]. 

3. A nearby lattice point: two algorithms 

Let L be a lattice in R d, given by a basis B =  {bl . . . . .  bd} and let xCR e. Let 
u be the nearest neighbor of x in L. 

NEARBY LATTICE POINT PROBLEM. Given B and x, find wC L such that 
Ix-w] <=Cd Ix--u f, where Cd, the measure o f  approximation, is a fimction o f  d. 

* Actually, in place of (2.5) Lov/tsz requires the insignificantly stronger inequality 

Ib* +pl,,-lb*-l[ ~ Ib*- 11. 
-~ "-5- 
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We give two straightforward heuristic procedures. 

First procedure: ROUNDING OFF. 
d 

to/~i. Set w = ~ ~ibi- 
i = 1  

Second procedure: NEAREST PLANE. Let 

d--1 

d 

Let x = ~ fl~b~ and let e~ be the integer nearest 
i = l  

d - - 1  

U= ~ Rbi be the linear subspace 
i = 1  

generated by b~ . . . . .  ba-~ and let L ' =  ~ Zb~ be the corresponding sublattice of L. 
i = 1  

Find v~L such that the distance between x and the affine subspace U+v be 
minimal. Let x'  denote the orthogonal projection of x on U+v. Recursively, find 
yEL" near x ' - v .  Let w=y+v .  

Comment. In order to find v and x', we proceed as follows. Write x as a linear combi- 
d 

nation of the orthogonalized basis" x =  z~, yib[. Let fi be the integer nearest to ?a. 
i = 1  

d - - 1  

Then x ' =  z~, y~b*+6b~, and v=(Sba. 
i = 1  

Theorem 3.1. I f  the basis B is Lovdsz-reduced, then the N E A R E S T  PLANE procedure 
finds a lattice point w, nearest to x within a factor of  Ca=2a/E Moreover, I x - w ] <  
<2  a/~-I Ib~ l- 

For comparison, note that Lovfisz' algorithm [11] produces a nonzero lattice 
vector, shortest within a factor of 2 (a-x)/~. 

Perhaps more surprisingly, already the ROUNDING OFF procedure succeeds 
within a factor of C a. This may be one more indication of the power of Lovfisz' lat- 
tice reduction. At the same time, this result answers Lovfisz' question [13], whelher 
an approximating lattice point can be found among the vertices of  the parallelopiped 
cell contahdng x. The answer is affirmative for approximations within a factor Ca. 

Theorem 3.2. I f  the basis B is Lovdsz-reduced, then the ROUNDING OFF procedure 
finds a lattice point w, nearest to x within a factor o f  C~ :- 1 + 2d(9/2) a/~. 

The proof of Theorem 3.1 is easy (Section 4). The proof of Theorem 3.2 (Sec- 
tion 6) requires a geometric result on the shape of Lovfisz-reduced parallelopipeds 
(Theorem 5.1). 

On rational input vectors, both procedures clearly run in polynomial time. 
We remark that C. P. Schnorr [16] has modified Lovfisz' algorithm to provide 

a better approximation for the shortest vector. His version finds, in polynomial time, 
a vector at most (1 +e)a times as long as the shortest one for any fixed e. (The expo- 
nent in the running time depends on e.) It is natural to ask if a similar improvement of 
the nearest lattice point algorithms is possible. 
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(4.1) 

and 

~ . ~  

4. Nearest plane: error estimate 

In this section, we prove Theorem 3.1. 
For d =  1 we find the nearest lattice point. 
For d=>2 observe that 

I x - x ' l  <- Ib~l/2 

I~-x'l ~- Ix-ul,  

because the translates U+z(z~L) are spaced at distance lb~l and 
distance of x from the nearest such subplane. 

From (4.1) we obtain by induction that 

(4.3) I x -  wl ~ ~ (Ib~l ~ + . . .  + Ib31~)/4. 

By (2.5), the right hand side is not greater than 

16212 (2 a-~ + 2  d -z  + . . .  -I- I ) / 4 : [ b~ ' 12 (2  a - I ) /4 ,  

]x-x' l  is the 

hence 

(4.4) Ix - w l < 2 (din- ~lb31 

proving the second statement in Theorem 3.1. 

We have to consider two cases. 

Case (a). If uEU+v then dearly u - v  is the nearest lattice point to x ' - v  in L" 
and therefore 

(4.5) [x'-w[ = I x ' - v -  yl <= Cd_llX'-U[ <= ca- l lx-ul .  

Consequently, by (4.2) and (4.5), 

I x -w l  = (Ix-x '12+lx ' -wl=Y '2 <- l x - u l ( 1  +CA1) ~/~ < C~lx-ul.  

Case (b). If u(~ U+v, then 
1 

(4.6) ]x-u l  ~= - f  Ib~l. 

Comparing this inequality with (4.4) we obtain Ix -wl  < 2 e/~ Ix-ul .  | 

5. On the shape of Lov~isz-redueed parallelopipeds 

The following result, needed for the proof of Theorem 3.2, may be of indepen- 
dent interest. 

Theorem 5.1. Let B= {bl . . . . .  b~} be a Lov6sz-reduced basis. Let Ok denote the angle 
between bk and the linear subspace Ug= ~ Rbj. Then, for every k (1 <=k~d), 

j ~ k  

(5.1) sin Ok -> (t/2-/3)! 
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Note, that, while the condition of being Lovfisz-reduced depends on the order 
of  b~ . . . . .  bd, the conclusion is independent of this ordering. 

Proof. We have to prove that, for any m~ UR, 

(5.2) 
where 
(5.3) 

Ibkl ~ c (d) lm-bd ,  

c(d) = (9/2) a/2. 

This is equivalent to (5.1), since 

sin Ok : rain [m--bk[ 
mCUk [bk[ 

Let m =  ~ ~bi~ Uk. Then m can be written as 
i ~ k  

d 

(5.4) m = ~ '  flj b~, 
j = l  

where, by (2.1), 

(5.5) 
Now 

(5.6) 

where (again by (2.1)) 
(5.7) 

fl  j : , ~  o:t ktt.i . 
t ~:k 

d 

m--bk = ~ 7jb~, 
j = l  

7j : flj--['Jkj" 
So far the symbol cq has not been defined for i=k;  let us set 

(5.8) ~k = - 1. 

With this convention, from (5.5) we obtain 

d d 

(5.9) ~j = ~ ~,l-tu = ~j+ ~ ~d~j. 
t = l  t = j + l  

Now our claim (5.2) reads as follows: 

k d 
(5.10) Z 2 *2 < v~jlbjl = c(a7 Z r~rbT?. 

j = 1  J = l  

Claim. Let ax, ..., Otd be arbitrary reals, ctg=-1.  Assume that the real numbers Po 
satisfy (2.2) through (2.4). Let 7j be defined by (5.9). Then 

d 
(5.11) • 7~ >= (2/3) z(a-k). 

j = k  

Proof. Assuming the contrary, we deduce 

(5.12) lej[ < ~ for k _~j _~ d, 

where e=(2/3) d-k. 
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By (5.9) and (2.2)--(2.4), we have 

'~d = gd 

~a-~ = ~a-z- t -c~a- l l ta-a .a-z  +%Ita ,  a -2  

Yk = ek+ek+~#k+l,k+..-+ea/Zd, k 

We claim that 

(5.13) lejl < (3/2)d-Je (k <-j <: d). 

This is true for j = d  by (5.12) because I~dl=l~,dl<e. 
induction on.L 

We proceed by reverse 

d d 

t = j + l  t = j + l  

Using the induction hypothesis, we obtain 

d 

I=jl < ~+ Z (3/2)d-'e/2 = (213) a-je" 
/ = j + l  

This proves (5.13). 
Let us now set j = k  in (5.13). In view of (5.8) (c~k=-l) ,  we obtain 

= I~1< (3/2) a-~e, a contradiction, proving (5.11). II 
= 

(5.14) 

and 

(5.15) 

Now the proof of (5.10) is immediate. By (2.5), we have 

Ib~t ' _-> 2J-klb;I ' for 1 ~ j  ~ k 

Ib~[ 2 =< 2J-t[b~[ ~ for k <=j =-< d. 

Thus the left hand side of (5.10) can be bounded as 

k k 
(5.16) ~ ,  2 * 2 /4jlbil ~- Z ~j2k-~[b~'l 2 < 2klb~[ =- 

j = a  j = l  

On the other hand, concerning the right hand side of (5.10) we obtain 

(5.17) 
d d d d 

2 * 2 2 * 2 ~t2")k--jl l . ,*12 Z ~jIbj[ > Z -~ vjlbjl --~ Z > Ib~'l =2k-d 2 vff > 1b~1~(2/9) a-k. i ' j  ~ IC'k I = 
j = l  j = k  j = k  j = k  

(We used (5.11) in the last step.) 
A comparison of  (5.17) and (5.16) yields (5.10), and thus completes the proof  

of  the Theorem. II 
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6. Rounding off: error estimate 

We apply Theorem 5.1 to prove Theorem 3.2. 

Let B =  {bl . . . . .  ba} be a Lovfisz-reduced basis and 1 <-k<-d. Let U, denote 
the linear subspace generated by B -  {bk}. We shall use (5.2) which asserts that for 
any rn~ Uk, 

(6,1) tbd ~- c ( d ) l m - b k l ,  

where 

(6.2) c(d) = (9/2)d/L 

Let now x be the point to be approximated, and w the lattice point assigned to 
x by the R O U N D I N G O F F p r o c e d u r e .  Then 

d 

(6.3) w - x =  Y'__,6ibi, 
i = 1  

where 

(6.4) 16,[ =< 1/2 (i = l , . . . , d ) .  

Let u be the nearest lattice point to x, and let 

d 

(6.5) u - w  = ~ ~oib ~ (~oiEZ). 
i = 1  

Claim. The following inequality holds: 

(6.6) lu-wl <- 2dc(cOlu-xI. 

Proof. We may assume u ~ w .  Let Icp~bkl=m.ax I%bj l>O.  Then 
J 

d 

(6.7) lu -wl  <- Z Iq'jbjl <= dlq'~bkl. 
j = l  

On the other hand, 
d 

u -  x = ( u -  w) + ( w - x )  = • (q~ + 61)b~ = (~ok + 60 (b~-  m), 
i = 1  

where 

(6.8) 

proving Theorem 3.2. 

1 
m - Z (q~i+ 5~)bj~Uk. 

(Pk +bk j~k 

Consequently, by (6.1) and (6.4), 

l u - x l  = ]CPk +bk[lbk--m[ >= k°~l ' 2c(d) Ok. 

Comparing (6.7) and (6.8) we obtain lu--w]<=dkok[Ibkl<--2dc(d)Iu--xl. II 

The conclusion is now immediate. I x - w  I <_-Ix-ul + lu-wl--< Ix-u[(1 +2dc(d)) ,  
I 
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7. Nonhomogeneous simultaneous diophantine approximation 

A nearly optimal nonhomogeneous diophantine approximation algorithm 
follows from any nearby lattice point procedure. 

Let cq . . . .  , an, fix . . . .  , fld be real numbers. Given ~>0, let q(s) denote the 
smallest positive integer such that the following system of d +  1 inequalities is sol- 
vable in integers fix . . . . .  fin and ~. 

(7.1) I~/a,-F,-fl ,  I <= ~ for i = 1 . . . .  , d, 

and 

(7.2) [ql -<- q(e). 

If no such q(~) exists we set q(s)= o~. 

Theorem 7"1. Let al . . . . .  aa, fix . . . .  , [3a and ~>0 be given rational numbers. Then one 
can find in polynomial time 
(a) either a proof that q(e) = o% 
(b) or integers Pl . . . . .  Pd, q such that 

(7.3) 
and 

(7.4) 

where 

(7.5) 

lqai--pi-fli] ~= Cne 

Iql ~ Caq(~) 

Cd = 4 I/-d2 ~/2. 

Here, the length of the input is measured by 

(7.6) I = ~ '  length (at) + . ~  length (fli) + ]log el, 

where the length of a fraction a/b is the numbers of bits of a and b together. (log de- 
notes base 2 logarithm.) 

In particular, the size of q(~), even if it is finite, is not part of the input length 
and no apriori information on q(e) is required. 

First of all, we replace s by 6 such that 5>=e>6/2 and 6 is a power of 2. This 
way, length (5)< Ilog el +2 and the possibly large quantity length(e) will play no 
role in the algorithm. Clearly, q(6)~_q(s). 

Next, we establish an upper bound on q(s). Let 

d 

(7.7) Q = i / d e n o m  (ai) 
i = l  

where denom(r) denotes the denominator of the fraction r. 

Proposition 7.2. For any ~>0, i f  q(s) is finite then q(s)_<-Q. 

Proof. In (7.1), ~/can be replaced by its residue rood Q. II 
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In the procedure, we shall have to guess lhe value of q(3) within a factor of I/2. 
Let s denote the guessed value. We shall perform the procedure for s = 1, 2, 4 . . . . .  ~/= 
=2  ~z°gQl. Unless q(6)= ~, one of the values s will satisfy 

(7.8) q(3)/]/2 < s < ]/~q(~). 

Given s, the procedure runs as follows. 

PROCEDUREAPPR(s).  Let e~ . . . .  , ea+x be the standard orthonormal basis of 
Ra+L Let 

b~ = - e  i (i = 1, ..., d) 
and 

d 6 
ba+l = ~ oqei+sed+l. 

i = 1  
d 

Theset B={bl . . . . .  ha+l} is a basis of a lattice L. Let x =  ~ fliei- 
i = 1  

Apply Lovfisz' lattice reduction algorithm to B and subsequently the NEA- 
d 

REST PLANE procedure to (x, L) to find a lattice point w= Y~pibi+qba+~ near s. 
i = 1  

The list (p~ . . . .  ,Pa, q) is the output of APPR(s).  

PROCEDURE APPROX.  
For s= 1, 2, 4, ..., Q do APPR(s).  
Let S denote the set 

S = {sT the output of APPR(s)  satisfies (7.3)}. 

I f  S=0,  print "q(E)= ~". 
Else, let s0C S produce the smallest value of ]q] in the output of APPR(so). 

Print this output. 

Claim 7.3. The output of  PROCEDURE APPROX satisfies Theorem 7.1. 

Proof. The polynomial running time is justified by the definition of Q. 
Assume q(e) is finite. Then so is q(6). Let sl be a power of 2 satisfying (7.8). 

d 

Let u =  ~ pibi+Yjbd+~ where (pj . . . . .  Pa, ?/) satisfy (7.1) and (7.2) with 6 in 
l = l  

place of 5. Hence 

[u--x]max = maxi {[gtoq--pi-~il, [q~]s 61} 

where ]...]m~ refers to maximum norm. Consequently, by (7.8), 

]u-xl~,,~ <-- 6 max 1, s~ j 

Therefore lu-xl<-~(2--d. By Theorem 3.1 we infer Iw-xl<-cd+~lu-xl<=21/d2 ae& 
On the other hand, 

[w-x] >-Iw-xlm~,, = maxi{[q~,-pi-fl ,[,  [q]__~61. 
81 J 
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This implies 

and 
Iqoq-p, - f l ,  I =~ 2 I/d- 2at26 < 4 ]/-d2d/2e 

Iql ~- 2 ( -g  2d/Zs~ < ~ 2(d+Z)lZq(6) -< ]/~ 2(d+S)l~q(e). 

Since s0 is "at  least as good" as ,71, the proof of Claim 7.3 and Theorem 7.1 is com- 
plete. | 

8. Integer programming 

The basic problem of integer programming is to find an integral solution to a 
system of linear inequalities if one exists. H. W. Lenstra [12] invented an algorithm to 
solve integer programming with a bounded number of variables in polynomial time. 
Gr6tschel, Lovgsz and Schrijver put Lenstra's result in the more general framework 
of finding integral points in convex bodies. By a convex body (K, d, rl, r2) we mean 
a closed convex set K in R d, contained in the ball of radius r~ around the origin and 
containing some ball of radius rz>0. In [5] (p. 175), Lenstra's result is rephrased as 
follows. 

Theorem 8.1. Given a convex body (K, d, rt, r2) by a separation oracle, we can decide i f  
K contains an integral pohff, andfind such a point ( f i t  e.vists. Forfixed d the procedure 
is polynomial time. 

Gr6tschel, Lov~sz and Schrijver [5] use a combination of the Ellipsoid Method 
and Lovfisz' lattice reduction to derive 8.1. They actually prove: 

Theorem 8.2. Given a convex body, (K, d, r~, r2) by a separation oracle, one can achieve 
in polynomial time one o f  the /ollowing: 
(a) find an integral po&t in K; 
(b) find an anne transformation A o f  R d which maps Z d onto itself such that the first 
coordinate o f  any point in A K  is less than f (d)=d7/22 d(d-1)/a in absolute value. ] 

Note that this algorithm runs in polynomial time even for variable d and re- 
sults in an integer programming algorithm (generalized in the above sense to convex 
bodies) where one problem in d variables is reduced to [2J (d)] problems in (d -1 )  
variables. 

One can use the NEAREST PLANE procedure to improve the value off (d) .  

Theorem 8.3. Theorem 8.2 remains valid i f  we replace f (d) by g(d)=d3/22 d/~. 

We remark that R. Kannan [7] found an algorithm that reduces the integer 
programming problem in d variables to a polynomial number of problems in ( d -  1) 
variables. The cost of such a reduction step is proportional to d cd (c a constant). 
While this time bound is not polynomial, the limited branching in Kannan's pro- 
cedure assures a d c'a overall running time for the integer programming problem, 
substantially better than the exp (cd 2) bound that follows from 8.3. It would be in- 
teresting to know whether Kannan's bound remains valid for convex bodies given by 
separation oracles. 
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Proof. Let B(x, R) denote the ball of radius R with center x in R d. The first phase 
of the algorithm described in [5] employs the "Shallow Cut Ellipsoid Method" to 
find a (rational) linear transformation T of R d and a point x such that B (x, d-  3/2 R) 

TKC=B(x, R) for some R. We take this as our starting point. 
The second phase is to find a Lovfisz-reduced basis bl, ..., bn of the lattice 

TZ d . 
In the third phase, we use the NEAREST PLANE procedure and Theorem 

3.1 to find wE TZ a such that 
(8.1) Ix-wl  < 2a/2-1lb~dl. 

Clearly, T - l w  is an integral point and the separation oracle will tell us whether T-aw 
belongs to K or not. If it does, we are done (the alternative (a) holds). 

I f  it does not, then we TK and therefore weB(x ,  d~/2R). In other words, 
Ix-wl>d-~/2R.  

A comparison with (8.1) shows that 

R < d3/22a12_l _ g(d) 
(8.2) I b~'---[ - 2 

The rest of the proof is routine. Let 

d 

(8.3) z = Z ~i(z)b~ 
i = 1  

be the representation of any z~ R d a s  a linear combination of the bi. Let 7r denote the 
orthogonal projection of  R a on the line Rb~'. Then 

(8.4) n(z) = Ota(z)b ~ (zERa). 

I f z belongs to TK% B (x, R), we have I x -  z[ =< R, whence 

(8.5) l ~ ( z ) - ~ ( x ) l  ~ R. 

Applying (8.4) to both z and x we deduce lo~a(z)-eea(x)l]b~d]~-R. Consequent- 
ly, by (8.2) we obtain 
(8.6) [O:d(Z)--aa(X)[ < g(d) for z~TK. 

Let now C be the linear transformation of R d which maps T-lbi  to ea+a-i 
where e2=(0, ..., 0, 1, 0 . . . .  ,0)  t ( the j  th entry is 1). Z n is clearly invariant under C. 
Setting z = Ty and applying C T -  ~ to both sides of (8.3) we obtain 

d 

(8.7) Cy = .~ o~i(Ty)ea+a_i. 
i = a  

(8.6) then tells us that for any yCK, the first coordinate of Cy is ua(z) (where 
z= Ty) satisfying (8.6). 

Let fl be the integer nearest to eta(x), and let us define the alfine transformation 
A by 
(8.8) A(y)  = Cy--flea 0'ERa). 

Then by (8.6) and (8.7), for any y~K, the first coordinate of  Ay is less than 
(g(d) +l)/2<g(d) in absolute value. | 
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