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SORTING IN clogn PARALLEL STEPS
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We give a sorting network with c¢ulog # comparisons. The algorithm can be performed in
clog nn parallel steps as well, where in a parallel step we compare #/2 disjoint pairs. In the i-th
step of the algorithm we compare the contents of registers Ry, and R, where j(i), k(/)
are absolute constants then change their contents or not according to the result of the comparison.

1. Introduction

Let L be a linearly ordered set with n elements. The elements of L are
originally stored in n registers (R, R,, ..., R,). The set of registers will be denoted
by 2. We want to give an algorithm which rearranges the elements of L in the
registers such that the least element of L be in R, the next one in R, etc. the
greatest in R,. An elementary step of this algorithm consists of the comparison
of two elements a, a’ located at two given registers R, R’. We have either a=d’
or a=da’. In both cases we can exchange the locations of 2 and &’ or leave them
unchanged. Thus, we can have four different rules. Now the algorithm consists
of a sequence of pairs (R, R") of registers and a sequence of associated rules (of the
above kind). In other words we obtain a network. The constructed network will
contain only O(nlogn) of the above steps ((R, R’) and a rule), and we will show
that the first n/2 steps can be performed simultaneously (i.e. the pairs (R, R)
involved are disjoint) and so can the second n/2 steps, etc. Thus we get a sorting
algorithm working in O(log n) parallel steps. In the following by a parallel step
we mean a set of at most #/2 disjoint elementary steps.

Parallel sorting algorithms has been intensively studied. The best known
parallel sorting algorithm with maximum parallelity (and disjoint comparisons)
reduce sorting to merging. There are algorithms which use only logn steps for
merging (Batcher, Pratt and others see Knuth [2]. These lead to sorting algorithms
using O((log n)?) steps.

The sorting algorithm presented here were originally a random algorithin, but

AMS subject classification (1980): 68 E 05



2 M. AJTAIL J. KOMLOS, E. SZEMEREDI

(using explicitly given expander graphs see [1] and [3]) we transformed it into a detei-
ministic one. We give the algorithm in that form.

Following the suggestion of D. Knuth we modified our original algorithm in
an other way so that it became ‘‘oblivious’ in that it is a sorting network with
O(n log ) modules, see also Knuth [2].

The structure of the algorithm can be visualized the easiest way as a tree like
file organization. We usc a binary tree with n leaves (if » is a power of 2) in which
the nodes on the same level are ordered. The registers are assigned to some nodes,
originally each registers is assigned to the root (the upmost node). The algorithm
i1s organized into cycles, one cycle consist of the application of subroutines and
each subroutin rewrites the tree, i.e. reaasignes the registers to nodes. After one
cycle each register have moved some level down or some levels up on the tree. The
point is that the majority moved down and only few registers moved up. We will show
that after O(log n) such cycles all registers will have moved down to the leaves,
different registers to different leaves, and that stage the leaves define the ordering.

At each stage, there is a lowest nonempty level of nodes, and most elements
will stay on this level, the number of element on higher and higher levels will form
a geometric series. In each cycle we perform some parallel steps. The sequence of
the parallel steps in the a-th cycle will be denoted by P The length of P* will be
less then some constant c¢,. After the a-th cycle the set of registers assigned to the
element ¢ of the tree will be denoted by S*(r). S%r) is £ if ¢ is the root of the
tree, otherwise it is the empty set. The restriction of the function S§* to a fixed
fevel of height / will be denoted by S

We will define $* and P* by recursion on a.

2. The description of the algorithm

We will define our algorithm using the constants cl,cz,ql,qo,sl,dl,g.
We do not give the actual values of these constants only assume certain inequalities
between them.
We choose the constants in the following order: ¢y, ¢, &, 42, &, C2, d;
so that q,, g, ¢z, £.€(0, 1); ¢y, ¢, dy>1;
*

1
g <l—gx q1<<c—<<1 and
1

1 1
1 < Ca, 'q<<c2, d1>>a
where a<cb means that a is sufficiently small compared to & (or b is sufficiently
large compared to a).
We will not use the constant ¢, In the actual definition of the algorithm,
only in the proofs.

Definitions. Let T be the set of all finite 0,1 sequences (including the empty
sequence 0). (Actually we will use only sequences of length less than »#.) We con-
sider T as a tree whose levels (the set of sequences of the same length) are ordered
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by the lexicographic ordering, that is {a,, ..., a,)<(by, ..., by iff they are dif-
ferent and a;<b; where i is the smallest index where the two sequences differ.

(@15 ..., a;y<(by, ..., b;) means that i=j and for all k=j, a,=b,.

If t=(a&,...,a;) then {z,b,,...,b;) will denote the sequence (g, ..., q;,
by, .., b)),

Dom (f) will denote the domain of the function f, /() will be the length

of the sequence .

A omne-to-one map of # onto L will be called a position. If XC# and
F is a position then we will use the following notations:

Contp(X) = {ac L|3RE€X a = F(R)}.
regp(a) = F~1(a) if a€L.

We will omit the subscript F, if it is uniqually determined by the context.

C is a chain ff C is a function defined on some level of T and for all
x, yeDom (C) we have C(x)SX, C(x)NC()=0 and |C(x)|=|C(»)|

The chains C; and C, are disjoint iff C;(x)NCy(3)=0 for all xeDom (C;,)
y€Dom (Cy).

We want to define the function S§* so that S$*! be a chain for all i.

If C is a chain we will use the following notations:

I(C) = log, [Dom (C}|,
N(C) = |C(x)| for some (all) xcDom (C),

|IC[ = [Dom (C)],
uc= U <@,
te¢ Dom(C)
Contz(C)= |J ContgC(t) where F is a position.
teDom(C)

If C;, C, are disjoint chains with [(C))=/(C,) C;UC, will be the chain
defined by (CLUC)()=Ci(1)UCy(¢) for all tc¢Dom (C)).

Now we will define operations on chains. In order to make this operations
uniqually defined we will suppose that the set # is ordered in an arbitrary but
fixed way.

Suppose that C is a chain and 0<g<1. Then CHI (C, g) will be a chain
with the following properties:

(1) Dom (CHI1 (C, g))=Dom (C)

(2) (CHI1(C, ¢))(r) consists of the first 4 [%q|C(t)J] elements of C(¢), where

[x] denotes the integral part of the number x.
CH2 (C, q) is a chain with the same domain defined by

(CH2(C, 9))(1) = C()~(CHL(C, 9)(1).
The following lemmas are necessary for the definition of 52

Lemma 1. Let C be a chain, I(C)=i, 0=j<i and suppose that N(C)z=2. Let
us define a chain V(C, k) for all k,0=k<i.
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If I(Hy=j let (V(C, j)Xt) be the set consisting of the first element of C(ty)
and the first element of C (11) where 1y and I, are sequences of length i defined by
ty=(1,0,...,0) 1,=t,1,0,..,0).

If j<k<l and l(t) k let (V(C,k))t) be the set whose only element is
the first element of C(ty) where ty={t,1,0,...,0), I(t;)=1.

If (=i let (V(C, i))(t):C(t)—U{UV(C, k) j=sk=<i}. If O0sk<j
and 1(tY=k let V(C, k))=0. Then V(C, k) is a chain for all 0=k=i and the
Sfollowing conditions are satisfied:

(1.1) KV(C, k))=k.
(1.2) (UV(C, k)NUV(C, k)=0 if ks=k
(1.3) N(V(C, k)=1 if j<k=i, NV(C,)))=2,
NV(C, k)=0 if O0=k<j.
(1.4) For allt’eT, j=I(t")=i we have
U €@ 2 V(C ().

Hy=i, e <t

(1.5) Forall 1¢Dom (C)
[C(r) N U (UK(C, k))| =1
0=k <i
Since (1.1), ...,(1.5) are all immediate consequences of the definition of
V' we omit the proof of this Lemma.

Lemma 2. Suppose thar C is a chain [(CY=i and {a,), 0=k <i is a sequence of
nonnegative integers with the following properties:

(2a) 2(3 a) = N(C)
k<i
and
(2.b) 3" <sa,.=0implies that 2 ay<a, for all s<i. Then for all k,0=k<i
k<s

there exists a chain W(C, k) such that properties (1.1), (1.2) and (1.4) hold with
j=0 and V=W and:

(2.3) for all 0=k<i a,—1=N(W(C, k))=aq,
and
(2.5) the function W on Dom (C) defined by
W) =C()— | (UW(C, k)
is a chain and e

N(C)—kz a, =NW) = N().

Proof. For all O=k<i we define a sequence of chains Y,, s=0,1,2, ... with
I(Y,, )=k and we will put
(2.6) W(C, k)= U Y,



SORTING IN PARALLEL STEPS 5

We define the sequence Y, s=0, 1, ... by induction on s. Let us suppose
that for s’<s Y, is defined for all 0=k<i with /(Y ,)=k.

Let j be the greatest integer with the following property: 0=j</i and
for all O0=k<j

Z N ) z=a;,—1.
If j does not exist we do not define Y, .. Suppose j=<i. For all # /(r)=i let
C'(n=C()—- U (VY 0.

s’ <s
k=i

For all O=k<i let Y, ,=V(C’, k) where V is the function defined in
Lemma 1, (with the j given above). It is easy to check that the W defined by
(2.6) meets the requirement of Lemma 2. |}

Now using Lemma 2 we will define S% S°%) has already been defined by

2 if t=0
0 otherwise.

S°(n = {

Suppose that 27*"p>¢, and S* is defined, then we define S**! as follows:
let

C{ = CHI(S*, )
C{ = CH2(S*/, g)
Definition. If C is a chain then the chains 7_,C, n;C, n,C are defined by
(_,O)t) = Cr, OHUC{r, 1)) forall I(t) =KC)—1.

(m, CY(t, 0)) is the first 1/2|C(¢)| element of C(r) if
1€Dom (C), n(CY({t, 1) =C (1) —(m,C)({t, 0)) (m,C is defined only if N(C) is even).
7,C =my(m,C), 7,C is defined only if 4|N(C). Clearly

I(m,C)=I(C)+1, I(m,C)=I(C)+2, I(n_,C)=I(C)—1.

Let D*=mCiUnrgCi~t (for a=0 let D*=n,Cf). Since 4|N(C?) for all
J, D* is always defined. Let us apply Lemma 2 with C =D% i=a+1 and @,=0 if
it 2T <y a,=[g5t' T*27* %] +2 otherwise. We will prove by induction
on o that the sequence (g;) satisfies the conditions of Lemma 2 (see Lemma 7).
Let W(D* k) be the chains guaranteed by Lemma 2 and k, the smallest integer with

Q.7 giT 2T =

Now for all ky<k=a put

(2.8) Serbk = W(D* kyUn_, C§s+ Un, CF2
and for k=k,
(2.9) S§*H R = W(D, k)Un_  Clott Y

Uny Gl Ul Umy (CR T Umy Clo™®)
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and for k<k, S®*r)=0 for all /(z)=k. We omit the last term in (2.8) if k=1
and in (2.9) if k,=0; we substitute the last term in (2.9) by =, C~1 if k,=1
and omit the term m,C%2 if k,=0,1. For k=« we omit n_;Ci~1. Finally
we define §*+1=+1 by

Setletl(f) = D“(z)—kg (UW(Daa k))

Since Cj is always divisible by 4 the operations n,C{, n,C{ can be performed
in the definition of S*+&k S*+tLk  Tater we will prove that the operations =,
in the last term of (2.9) can be performed as well.

To give the sequence P* we need further definitions.

Definition 2.2. Suppose that 4 and B are disjoint sets. We call the graph G
a (k, &) expander on (A, By if AUB is the set of vertices of G, no edge of G
isin 4 or B, and the degree of every point is at most k and if I'y denotes the
set of neighbours of the set X then for all XS 4 we have

[ .
3] = (1—&)— min {|X], &1 B}
and for all YS B, we have

Tyl = (1 —2) 1 min {17, 4D,

Lemma 3. For all O<e<1, ¢=1 there exists a positive integer k(e, c) such that
for all disjoint A, B with 1/c=|A]|/|B|=c there exists a {k, €) expander on (A4, B).

The assertion of the Lemma and an explicit construction for the graph easily
follows from Margulis results [3], but he proves only the existence of the function
k{e, ¢). Gabber and Galil [1] gave the function k(g, ¢) as well in an explicit form.
(The usual definition of an expander graph is somewhat different from the one given
here.) In the following we will suppose that ke, ¢) is a fixed function satisfying the
requirements of Lemma 3.

Definition 3.1. If A4, B are disjoint subsets of # and &>0, then let G,(4, B)
be a fixed (k(e, |4]/|Bl), &) expander on (4, B).

According to the remarks after Lemma 3 we may suppose that G, (4, B)
is given in some explicit way.

Definition 3.2, If A4, B are disjoint subsets of %, ¢=0 then let E,(4, B) be the
set of all elementary steps of the following type: R,, Ry, “if the content of R, is
greater than the content of R, then exchange the contents of these registers, other-
wise leave them unchanged”, where R,¢d, R,€B and (R;, R,) is an edge of
G,(4, B).

The role of the expander graphs in our algorithm is based on the following
Lemma to be proved later.

Definition 3.3. Let J be an ordered set SSJ. S is called a lower (resp. upper)
section of J if for all x, yeJ we have yeS, x=y (resp. x=y) implies x¢S.
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Lemma 4. Suppose A, B are disjoint subsets of & and e=0, then after the ele-
mentary steps of E.(A, B} had been performed in an arbitrary order, we have:

iff S is a lower section of Cont(AUB) and |S|=|4| then |S—Cont (4)|
=¢|S|, and the corresponding assertion holds for upper sections.

Definition 4.1. If 7 is a positive integer, then an i-parallel step will be a set of disjoint
elementary steps of at most i elements. Suppose Z is a sequence of i-parallel steps
for some i and F is a position, then Z(F) will denote the position that we get
after the elements of Z had been performed in the given order. Suppose that
H, ..., H; are sequences of - parallel steps, ..., i-parallel steps. The r-th element

of H will be denoted by H(r). U H will denote the sequence whose r-th term
18 U H{r). If the elementary steps of the different H(r)’s for any fixed r are
dlS_]Olnt (that is 10 register occurs in the elementaiy steps of both H(r) and H(r)

J J
if s,7s,) then |J H, is a sequence of [2’ z’s)-parallel steps.
s=1 s=1

Definition 4.2. Suppose C 1s a chain, ¢>0, then for i=0C, 1 we define imp;(C, &)
as imp; (C, &)= U{E,(C(s), C(t))]s, t are consecutive elements of Dom (C), s<t¢
and the last element of s is 7}. IMP;(C, ¢) will be a fixed sequence of parallel
steps so that every elementary step of imp;(C,¢) is contained in some parallel
step and no other elementary steps occur in any member of the sequence. We may
suppose that IMP;(C,¢) is given in an explicit form and its length is k(e 1).
Let IMP (C, &) be the concatenation of IMP,(C, &) and IMP,(C, ¢). IMP!(C, ¢)
will be a sequence of parallel steps consisting of i copies of IMP (C, ¢). If Cy, ...,C;

J
are disjoint chains then |JIMP!(C;, ¢} is a sequence of 2jik(e, 1y= Dik(e, 1)-2
T s=1
parallel steps. ’

Definition 4.3. Suppose that C is a chain and O<g<1. Then CH3(C,q) is
a chain with the following properties:

(4.1) Dom (CH3 (C, g))=Dom (C).

(42) (CH3(C, g))¢) consists of the first [I/ 2[(CH2(C q))(t)u elements of
(CH2(C, 9))1). ]
CH4 (C, g) 1s a chain defined by

(CH4 (C, 9))(t) = (CH2 (C, 9))(r)—(CH3 (C, 9)(1).
Definition 4.4, Suppose that C is a chain 0=g<1, ¢>0. For any t¢Dom (C) let
I}(C, g, &) = E,(CH3(C, g)(1), CHI(C, ¢)(9)
I}(C, g, &) = E,(CHI1(C, g)(r), CH4(C, q)(1)).

The clementary steps of I#(C, g, &) can be performed in k [a, _12;qq] parallel

steps if N(C)=4/q. In this let I/(C, g, ¢) be a sequence of parallel steps of length

1— .
at most k(s, Z 9 whose elements contain the elementary steps of 7/(C, g, )

2q
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and no other elementary stcps. Let I(C, g, &) be the concatenation of IXC, g, ¢)
and I¥C, g, ). Finally let

I(C,oq,e)= U [L(C g, 8.

t¢Dom(C)

The following Lemma which is an immediate consequence of Lemma 4
shows the effect of I(C, g, ¢).

Lemma 5. Suppose C is a chain, C<q<1, ¢=0, t¢Dom(C) and S is a lower
or upper section of C(t). If

[S] = (IC | —4lEqICOI),
then after I(C, q, e) had been performed we have
|SNCont(CHI(C, ¢)(D)| = &|S].

Now we define P* the sequence of parallel steps of the a-th cycle. We define
P* only for a’s with 27* " 1n>C,. (S* is defined for these o’s.) The sequence
P* will be the concatenation of the sequences P§, P3 and Pj.

Let P2= |J I(S*',g,&) We will prove later that N(S*)=0 or

I=i=a

g therefore we may suppose that the length of P# is at most

= IMP% (D", ¢;)

Pi= | IMP#H(S*+1i ).
0=i=a

The content of the register R after P* had been performed will be denoted
by F*tY(R). F°R) is the original content of the register R. F{(R) (resp. F(R))
will denote the content of the register R after P{ (resp. P3) had been performed.

Let P’ be the concatenation of P9, PY, ..., P¥ where o is the greatest
integer with 2% ~ip=c,.

We will prove later that after P’ had been performed the elements of L
are almost “ordered” in the following sense:

Lemma 6. There exist Cconstants uy, Uy, us Such that if o —w=i=o" then
N(S*Y=u, and otherwise N(S*)=0, moreover if for all teT s°(t) denotes the
number 27Ot <t |I(tYy=I@)}|, then for all t,t,€T s'(t)—s(ty)>u2™% and
xeContpa'(S¥ (1)), yeContpe'((S¥1,)) implies x>y, (here we allow [1(t,)#(ty)).

Lemma 6 implies that there exists a sequence of parallel steps P” with
constant length, so that after P’ and then P” had been performed the elements
of L are in a known order. As an exercise we leave the proof of this fact to the
reader. Thus we completed the definition of our algorithm.
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3. The use of the expander graph

In this section we prove Lemma 6 and other assertions having already been
accepted in the last section without their proofs.

Proof of Lemma 4. Suppose that our assertion is not true. Then |SMContg(B)|>
g|S| where G is the position after FE,(4, B) had been performed. Let X=
{ReB|G(R)eS} and YZ A the set of neighbours of the elements of X. The
definition of E,(4, B) implies that
(6.1) The contents of the registers in 4 are decreasing, the contants of the registers
in B are increasing (not necessarily strictly) in every elementary step of E/(4, B).
(6.2) For all ReX the content of the register R is an element of S throughout
the whole algorithm.
(6.3) Forall ReY the content of the register R is an element of S at the end of
the algorithm (i.e. G(R)€S).

(6.1) and (6.2) are immediate consequences of the definition. By (6.2), if
RcY the content of Y isin S after the elementary step corresponding to the edge
between R and an element of X had been performed. Therefore (6.1) implies (6.3).
Thus we have Cont;(X)UConts(Y)SS. On the other hand Contg{(X)N
NContg(¥)=0 and since G4, B) is a (k(s, |A|/|B|), &) expander graph

l
|Cont ()] +|Conty (V)] = alS|+(1—e) —&IS| = IS,
a contradiction.
4. Basic definitions
Definition 6.1. Suppose that C is a chain x¢L and F is a position. Then let
pé(x) = |UC|H{reContr (O)y = x}|.
For any teT let
s(f)y =271 < 1I(r)y = 1O} +271 01,
If C, D are chains, F is a position r¢Dom (C) and u is a real number
then let
G5(t, 1, C) = {x€ L|31'eDom(C)r = 1, x€Contg(C(1))
and  s(1)—ph(x) > u+3ICI 7).
HE(t, 1, C) = {x€L|3r'¢Dom(C)¢ = t, x€Conty(C(r))
and  pE(x)—s() > p+31C] 7).
Let us define the relation Qf(C, D, q, M); where C, D are chains F is
a position g, q, M are real numbers O<g<1. M=>0,a=0; as follows:

QXC, D, g, M) iff for all reDom(C) and Ji=a we have

G55, ICI712%, C) = M -g* and  |HE(t,|C| 724, C) = M- g*.
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If D is a chain with UD=¢% then we use the following notations: p(x)=pf(x)
for all xeL. (In this case pfi(x) clearly does not depend on F.)

GF(t, u, C) = Gy (¢, 1, C)
HE(t, u, C) = Hp(t, p, C)
05(C, g, m) = Q5 (C, D, q, M).

Lemma 7. Suppose that 2 *"n=>=c,. Then 5% is defined and for all xcL there
exists exactly one teT with xeCont (S%(t)). Moreover S%' is a chain for all
0=i=a and there exists a constant q, such that for all 0=i=wa the following con-
ditions are satisfied.
(1) S is a chain and N(S*)=qgi 2 %,
(i) if g*~ 12 'n<c, then N(S»)=0 otherwise N(S*»)=qi 12 % 1p,
(1") sz(Sa’ !, VED q;—lz—an)'

First we prove that Lemma 6 follows from Lemma 7. The definition of
o', (i) and (i) clearly implies the existence of u, and u, with the required properties.

Now suppose that teT with o —uy,=/(t)=a’. Let us apply (iii) with a=a’
and i=I(r); we get

(1.1) |GF= (1, 271022, S| = g =2~ ng}

for all A=1.
Let A;=1 with ¢¥—2~¥pgie<1. (7.1) implies that GF(r, 27124 S* )=, that
is for all z¢Contpa’(S¥(¢)) we have

s(@)—p(2) = 2-iDAe g —i-1,

Similarly if we use H instead of G we get —(s(r)—p(2))=2""2% 427171,
Thus if wy>2(2"12%14-24-1) then s'(+)—s'(t)=u2" implies that p(x)>p(y)
thatis x=>y. ||

5. The properties of N(S*%)

We prove Lemma 7 by induction on «. Suppose that the assertions of the
Lemma hold for some fixed o and 2-C+*Y~lp=¢,. Since S*? is a chain for all
O=i=0;Cf, C{ are defined and clearly they are pairwise disjoint chains. As we
mentioned after the definition of D* and S** the chaine =n,C{, n,C§ are always
defined and therefore S**+%* is also defined for ky<k=o+1 itis a chain and for
different k’s the corresponding chains are disjoint.

We have to show that 7,(C¥~'Un,Ck~2) is defined if k,=2. (The case
ky=0 Is trivial, for k,=1 we can prove by the same method that =n,Ck-?! is
defined.) Obviously it is sufficient to show that

(7.1) 2|N(C)*—%) and
(7.2) 2|N(Ck=1Un,Cko—2),
If /<ky—2 thatis g¢ti—0+22-2"2p ¢ then

grTi27% i = 2gy - gf P02 < g0, < ¢



SORTING IN PARALLEL STEPS 1l

and therefore according to the inductive hypothesis

(1.3) N(S®¥) = g.
By the inductive assumption #= () (US*) and hence by (7.3)
0=si=a

2= U (USHUUK)YU(UCEHUUCH)
kg<ima+1
where K is the union of the first four terms of (2.9) and it is a chain. Since the chains
of this formula are pairwise disjoint we have
n=|® = 2> 2IN(S*TH+20N(K)+

ko<i=a+1
2k LN (Cho1) - 200 -2 N (Cho ).

n is a power of 2,n=4, k,=2, therefore 2|N(C¥-2) and 2|N(Ch~1)+
1/2N(C¥~?) which implies (7.1) and (7.2).

Now we prove that (i) and (ii) hold for all 0=i=a by induction on .

For a=0, i=0, N(5%%=nr implies (i) and (ii). Suppose that our assertion
is true for o and we prove it for «+1.

By the definition of CH

(7.4 N(C)) = 4[(H)g- N(S*)]
(7.5 N(CH = N (S —4{(PgN(s*)]
therefore

N(D“) = 2[%gN(Sa,z)]+[%gN(Sa,a—l)]

(for ==0 the second term is omitted).
The definition of W(D*, k) and Lemma 2 imply together that for all ky=k <o

(7.6) giti-k2=m "2y = N(W(D* k)) = gi+1-52-*"2n 42,

We may estimate the other terms of (2.8) and (2.9) using (7.4) and (7.5) and the
inductive hypothezis, the definition of 7; and 1—g<gq;, l<¢;.

N(n_,(CE*Y) = 2(N(S®*+1)—4(3 gN(SE+) —1)) =
=2(1—g)N(S**+1) 48 = 2(1—g) g+ 12-% +8 =
= 2% ql“l"‘Z“““ln—}—% ¢ = Tt' giti-kQ-e"tp g
e qETITR2TO Ty = gtk a ety
N(m,CE?) = 34[FgN(S**9)] = N(S%4-) =
= §gi* 200 = dgf i 2l
Therefore for ky<k =« we have

N(Sa+1.k) = qf+1—k2—1—1n_
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For k=k, the remaining two terms can be estimated as follows:
N(C§) = (1—g)N(§**) = (1—g)gf 2 7"n =
= —11; gEtl-ke2—""1p
N(my (ChHUn Cho2) = (1 —g)N(S¥ko~ )+

+ % (1—g)N(S*k~?) = Tlo' gitl-ked—e—1y
that 1s
N(Sz+1,ko) = qf+1—k02—a—1n_'
Since S*¥(1)=0 for all k<k,, {(t)=k we proved (i) for 0=k =a.

(ii) is an immediate consequence of (7.6) and the definition of S** for
O=k=a |US**"** = and |S**H**+}=2"*! implies (i) for i=a+1, and
in this case (ii) is a consequence of

| U (UJS*LH=n and

0=i=a+l

| U (UsH) = 3 gEtitiz=2in = da

O=fi<g+l 0=xi=a

6. The relation Q and the operation IMP

The assertions contained in the following Lemmas are consequences of the
inductive hypothesis.

Lemma 8. For all 0=i=0 we have

(8.1) 0T (CY, g4, 93q7~727"n)
(8.2) Q1 (CY, gar gi7127% )
(8.3) Q5 (mCf, gz g3 q7~27"n)
(8.9) O (1, Ci, G2, G297772770)
(8.5) Q7 (m 1Y, 42y g2q1™7277N).

Proof 8.1. We may suppose that N(S*)#0. Let Ai=1. We have to prove that
|G (¢, 27122, CD| = q3qF 12 % ngs

for all /(¢£)=i. (JH™...|=... can be proved analogously).

(8.6) G (r,2712%, Cf) = | {xeCont(C{(1)

‘5(7)—]?(.\’) p 2_"2'1_{_2—!'—1}‘
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According to the inductive hypothesis Qf*(S*', ¢;,95""27*n), hence for all
teT, A=1,1(8)=I1(t")=i we have
(.7 > [{x€Contra(S™1(1))fs(N—p(x) > 27124 + 272} =
=t

= gf~2—*ngt.

Let us denote by My(¢') the set in (8.6) corresponding to ¢” and by M,(t')
the set defined in the corresponding term of (8.7). Clearly M,(¢") is a lower section in
S=Y. (8.7, [N(S®)|=qF 2%, gyl —g and Lemma 5 implies that

My ()] = !Mz(")m ContF;(Cli(r’)) = &|M(7)|.

Thus by &<q, (8.6) follows from (8.7). (8.2) is a trivial consequence of
O (8%, 45, g3~ 27%1). (8.3) and (8.4) easily follow from (8.1) and (8.5) from (8.2). i

Lemma 8. Suppose C is a chain, F is a position and Q%(C, g, M) for some
J, 4 M, e=0 and F'=IMP (C, &)(F), then Q5(C,q, M) holds as well.

Proof. Let t<Dom (C), p a real number, then according to the definition of
IMP (C, &) we have |GF(z, u, O)|=|G"(t, p, )| and |HF(z, u, O)|=|H'(t, u, C)l,
which implies our assertion. ||

Definition 8.1. Suppose that AS L and A={a,, ..., a,} where i/,<i, implies a; <a;,
and let B be a positive real number. Then let

A~ = {ay, apri1s s Am-gp1)

If G is a position C is a chain #, t,¢ Dom (C), t;<¢, then let us denote

by RE(t1, 1) the following statement: for all x¢Contg(C(1,)), yeContg(C(ty))?
we have x<}.

Lemma 9. For all ¢=0, j=1 there exists a by=0 such that if C is a chain, F is
a position O0<g<%}, M<2N(C), b>b,, O<d<e, F =(IMP*(C,0))(F) and
OF(C, g, M) then for all t,, t,6¢Dom (C), t;<ty implies R¥FC)(t, t,).

The following definitions and lemmas are necessary for the proof of Lemma 9.

Definition 9.1. Suppose that G is a position ASL and PSDom (C)xDom (C).
Then let
XS p={(x1, xo)|x1, X264 and 3y, ro)€P, 1y <7,

and x,£Contg(C(r)) i=1,2 and x; > x;}
If P=Dom (C)xXDom (C) then we will write X§ instead of X§ ,.

Lemma 10. Suppose G is a position, E is an elementary step included in
IMP (C, 8), G'=E(G), ACL. Then |X§|=|X§ ).

Proof, If G'=G our assertion is trivial. Suppose G’=G. Since E is included in
IMP (C, ), there are consecutive

1, ,6Dom(C), § <ty, REC(t), R,eC(1y)
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such that G'(R)=G(R,), G'(Ry)=G(R), G'(R)<G'(Ry) and G'(R)=G(R) for all
R#=R;, R#R,. If we count the pairs in X§, X§ containing G(R,) or G'(Ry)
we get the required assertion. J

Lemma 11. Suppose t,,t, are consecutive elements of Dom (C), G is a position,
G'=IMP (C, 5)(G), ASL, P={t;, ;). Then

\X§|—|Xg] = [X§ p| - *(N(C)P 26N (O).

Proof. First we prove the following assertion. If the last element ¢ is i, G"=
IMP(C, 6)(G), G”=IMP,_,(C, 6)(G) and P={t,, t,} then we have

(1.1 XS b= XS] = (X5 5| — (N (C)P—26N(C)
(11.2) [X§% = |Xgpl and
(11.3) \X§1— X" = |X5 ol — 1 XE e

To prove (11.1) we have to show that |X§'p|=6%N(C))2+256N(C). This
inequality easily follows from Lemma 4.

(11.2) is a consequence of the fact that for any a<C(r), bcC(ty): G”(@)=G(@)
and G”(b)=G(b).

In order to prove (11.3) let us write Dom (C)XDom (C) in the form
PUQUYUZ where Y=F X {t;, LPU{t;, t:}XV). Here V ={treDom (C)|t<t,},
Z=(Wx{t;, LhU{n, )X W) where W ={reDom (C)|t=1t,}, Q=(Dom (C)—
—{t, L})X(Dom (C)— {1, 1,}).

By the definition of IMP;, (X§ ,|=|X$y| and [X§ |=|X§ w| and therefore

|G 1= \XE[ = 1XE ol = 1XZ el + | X5 ol = 1X{-

We can prove the inequality [X§ o|—|X$ /=0 using the same argument as in
the proof of Lemma 10 so we have (11.3).

Now we prove the Lemma. If the last element of ¢, is 0 then G'=IMP, X
(C, )(G") where G”"=IMP,(C, §)(G) so (11.1), (11.3) and Lemma 10 implies
the required inequality.

If the last element of #; is 1 then G'=IMPy(C, §)(G”) where G”=IMP,X
(C, 9)(G) hence Lemma 10, (11.3), (11.1) and (11.2) implies our assertion. |

Lemma 12. (@) Suppose C is g chain G is a position B=0, t, t,¢Dom (C),
ti<ty and TIRE(ty,1,). Then there are comsecutive ti,1;6Dom (C) with t,=t]<
t:=t, and RE(11, 13).

(b) Suppose 1, t,¢Dom (C), t<t, and IXE,((11,12>}I>'{(N(C))2 Jor
some A=>0,ASL. Then there exist consecutive t;,1;¢Dom (C),t;<t; with
|Xf4;,(<r;,z;))|>%12(N(C))2-

Proof. (a) Let 7{ be a maximal element of Dom (C) with the following properties:
RE(t,, 1)), ,=t{<t,. If t; is the element of Dom (C) which covers 7/ then
IRE(t;, 13).

() 1XS, (. an| =A(N(C))?  implies that RYNO(y,1,). Applying (a)
we have TIRYNON(¢], 1)) for some consecutive ty,t;, t,=t;<t;=t,, and hence
ng, Ky ZAHAN(CE. 1
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Proof of Lemma 9. Suppose that there exist ¢, t,¢Dom (C), t,<t, with
TRAO(2y, 1,). According to Lemma 12 (a) we may suppose that t;,t, are con-
secutive elements of Dom (C). #(e,j), s=1,2,... will denote sufficiently large
positive constants depending only on ¢ and j. Let

A = (xELIs(t) ~2n@DHD = p(x) = 5(t) + 2t D-16).

Lemma 10 implies that if F*=(IMP* (C, 6))(F)(F°=F), then |X%*| is a monotone
decreasing function in k. QF(C,gq, M) and Lemma 8" implies that “Xff‘,[ —

2
—I)(j:‘p]]é%(N(C))2 where P={{t), t,)}. |X¥p|=|XY| so it is sufficient to

prove that there exists a b, (depending only on ¢ and j) with the following property:
k>=b, implies |X5‘|<e/y(N(C))
We will prove the following stronger assertion: for all k&

. Fx 2 5 k _ Fk+1 - 1 2
(12.1) if |Xy | =e(N(C))® then |Xi|—|X5 | o) (N (),

(12.2) IXZ'| < hs(e, H(N(C))-
(12.2) is a consequence of QF(C, g, M) and the definition of 4. Indeed,
(X5 = |42 = ( Z(C {xix€Contp(C(?)) and xcA}|)?
t ¢ Dom(C)

12.3) = @D N(C)+ 3 |[{x€ 4| xeContp(CH}),
teH

where H={t|]s(t)—s(t1)l =2mEN2-10). QF(C, g, M), M =2N(C),q<% and the
definitions of 4 and H imply that the second term of (12.3) is less than
2Mg’<N(C) that is

|XE°| = 25D (N(C))2.

Now suppose that |X%] >&%/,(N(C))>. Lemma 8 implies that ka(C, q, M).
According to the definition of A there is a /,(¢, j) so that if y>h,(e,j) and

W) = {fls@—s(t)| =271, (1) = 1(t)}
then | UJ ANContp(C(1))|<N(C), and so |A|<hyle, ))N(C). Therefore

WG i
there is a #5,(e, /) so that if y>hy(e, j) then

2
| U )A NContgx(C(n))| < IleI % N(C):.

tew(y
Hence if |X§|>¢2/,(N(C))* then
% 82
[Xowoscw il > - Ny,

and therefore there exist ry, ro€¢ W(y) with

y 1
Xitewranl = oy NP
| Ay l>}l h7(8:]) ( )
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According to Lemma 12 (b) there exist consecutive ry, r; with

A e J)( ©F,

and therefore Lemma 11 implies the conclusion of (12.1). |

Corollary 9. For all j=1,0<g=<% 3by, 6,=>0 such that, for all b=by, 0<d<J,
if C is a chain, F is a position, + N(C)=M<2N(C), 0¥(C,q, M), F'=
=(IMP? (C, O))(F) and |p(x)—pE(x)|<%|C|™ for all xeContF(C), then we have
01 (C, g, M)

Proof. First we prove the following assertion: For any y=0 if b is sufficiently
Jarge and =0 1s sufficiently small and r¢Dom (C) then

(C.1) [{x€ Cont. (C())|Ip(x)—s(9)| = 2|C]~1}| < yN(C)

Let 1=n=>0. We claim that there exists a f,=>0 (depending on #,/, g)
such that for all 0<B<p, we have: xcContp (C(2))f implies that

(C.2) {» = x|3¢ < 1, yeContp (N}| < nN(C)
Indeed, Q%'(C, g, M) implies that
{y = x|3¢': s() < 5()—,|C|7Y, y€Contp (C@)}| < % N(C),

where /1;,>0 may depend on #,/, 9. Applying Lemma 9 with a sufficiently small
& we get

{y = x[27: s()=m|C|7* = 5(2)) < (), y€Contp(C)} < % N(C),

which implies (C.2).
Now we prove (C.1). According to (C.2) if x¢Conty(C(1)?, then

pe (x) = 27H(N(C) (=1 N(O)+ 2 N(O) =s()—|C|]

Similarly, we get pE(xX)=s(t)+|C|7% so [pE(X)—p(x)|<1|C|* implies (C.1).
Suppose now that 1=1=j, and F’ satisfies (C.1) with y<¢/. G¥(+,|C|72%, M)=
=1J M("), where

=t

M (1) = {x€Contg (C(r

s(N—p(x) > |C[71 (2" +1)}
Q0%(C, g, M) implies that > IM(tY|=1q¢'M, where h, is sufficiently

s(17)>s(1)+hy|C| -1
large compared to j, and according to (C.1)

(M) = 3¢'N(C) = }¢'M,

s()=s(2)=s(t)+hg|Cl -1

so we have |GF' (7, |C|72%, M)|=¢'M =g’ M. |}
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7. The proof of Lemma 7 (iii)

Lemma 13.%For all xcL, |p(x)—pfi(x)|<4527%7%
Proof. Clearly,
1 x &
p(x) = —,;(lUD"]Pf;‘i(x)Jr U C;lp?;(x)
HUCE PR 0+ Z [US™pE (%))

=1
G O0=i<a—1

pE () =|US%{| "1 M(x), where M(x)={yeContr(S*%)|p(y)=p(x)}. Here M(x)=
My(x)U My(x), where

M, (x) = {y€ M(x)|3t€ Dom(S§=%): 5(£) = p(x)+3-27, peContr(S=* (1))},
M,y (x) = {y€ M(x)|3t€ Dom(§*7): s(f) > p(x)+3 -2, y€ Contru (S (1))}
O (8%, 45, 457'27°n), g;<%, and Lemma 7 (i) implies that |M,(x)|=N(S*Y),
that is
pswi(%) = [US™|7H(M;(x)+ N(5*9)
= (2N(S*)) 1 (N(S*)+ Z{N(S*)|s() = p(x)+3-27))
= p(x)+5-274
Similarly, using that
1= p§es(x) = US| {z€ Conte=(S*H1p(2) > P},
we get piE () =pL ()=p(x)+5-277, so we have pfE (x)=p(x)+Ri(x), where
|R;(x)|<10.27%, pgi:(x):p?; and fo‘f(cg, gz, g2/ 127%n). Therefore, by the

same argument as above we get that p‘Z}:(x) =p(x)+ R}(x), where |Rj(x)|=10-272+/,

Hence
1 ,. .
p(x) =—(UDpri(x)+ 2 NUCGI(pO0)+R; ()
J=90,
oS (P()+R; ()| US>,
that is, B

IUDp(x) = - [UD pE ()

+ (1 — )(Rg(x) + R{(x)) + gf = 'R;(x)

=i<g—1

and so p(x)=pti(x)+R(x), where

I
IR = (1+q1) ((l—g)IO‘ 277 qlz—") - mz—l-l' i

2*
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Lemma 14. Q¥ (D% q,,27%"'n) and QF**'(S**1e+l, g, 27%"1Ip),

Proof. The first assertion implies the second since S**L2*Yf)CSD*t) for all
teDom (D%). The definition of D% (8.3) and (8.4) imply QF(D?, ¢,, 29,27%n),
and so Qf1(D? gy, 27% 'n).

d, >>qi, §,<<(,, therefore Corollary 9 and Lemma 13 imply
2

Qf;(Du q27 2—1_1'1)‘ l
Lemma 15, For all 0=i=«

(15.1) Qf““(saﬂ,i, go qi¢+1—£2—m—1n)‘

Proof. If i<k,, then N(S**%9)=0, hence (15.1) trivially holds in this case.
Suppose ky<i=a. By (2.8)

(15.2) S#HLi = W(D*, YUn_, Cit1Un, Ci 2
W (D% i) is a chain, and for all ¢ with /(t)=i we have
W@, DO < B, D*(r)
I(t)=a+1

Therefore, for all A=1, I(f)=i,
GE( Wl 2Aw) S U GR@, W] 243w | 1+27*71, DY),

vt
(ty=a+1
where 1£,=(,0,...,0), I{(tyy=0+1, and hence s(t)=s(t)+1/2 |W|"1—272"1,
Therefore, for 1=2,

1
GFi(r, W{124 W) S GF (1, W |22" T, D7)
crais L
= GFE(1,, 7|12, Do),
By Lemma 14 and ¢,«<q,, we have

A i+
+a—l+2

|GT= (1, W |~124, W) = 272" ng,

=27""'ngi~'qf [%} =27""'ngi* qf,

1

and similar inequality holds with H. So we have

(15.3) Oy (W(D%, 1), 4z, 27" ngi** o).
According to (8.5) and the definition of P?
(15.9) Qf;(n—l Ci™Y, gz, q291~7127%n)

holds. By (8.4),
(1s.5) QF (1, Ci%, ga. g2457'722770).
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(15.3), (15.4) and (15.5) imply that
(15.6) Q;"z“(sd+1.i, Ga» qEFI-E2-%n).

To prove Qf““(...) we may use the same argument as in the proof of Lemma 14.
Let x be an arbitrary element of L

Ip(x) —ngﬁ,z(x)l =

1
(15.7) p(X)_W' Piyripm, i YU Ppmicira (YU P ci-2(x),
where Pc(x)={yeContr:(C)|y=x},
Py pe,i(x) = m)gﬂ {y€Cont (D*()NW (D", D))}

and D(1)N[U(W(D", i))] is a chain (as a function of 7), therefore Lemma 13, 14
and g;<1 imply

[Py, ()| = p()|UW(D?, i)+ My (x)

where M,(x)=1/102"*"1n. (15.4) and (15.5) imply
1P, csnr (9] = p(AIUn_, G|+ My (%)
1P, ci-2 ()] = p(O|Umy G371 + M(x),

where My(x)<1/10 N(n_,C§*Y), My(x)=1/10 N(n,Ci~Y). Thus we have

() — Pl ()] =
(NS0 (M, () + Mo (x)+ My(x)) = $27°,

Hence Corollary 9 implies that QF '(S*+1i g,, g2+1=12-2). |

References

[1] O. GaeBer and Z. GariL, Explicit constructions of linear size superconcentrators, Proc. 20st
Annual Symposium on Foundations of Computer Science (1979).

[2] D. E. KnuTH, The art of computer programming Volume 3, Sorting and Searching, Addison—
Wesley (1973).

131 G. A. Marcuuis, Effective construction of expander graphs (in Russian), Probl. Pered. Inf.
9 (4), 71—80.

M. Ajtai, J. Komlos, E. Szemerédi

Mathematical Institute of the
Hungarian Academy of Sciences
Budapest, Hungary, H-1053



