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SORTING IN c log n PARALLEL STEPS 

M. AJTAI, J. KOMLOS and E. SZEMERI~DI 

Received 6 June 1982 

We give a sorting network with cn log n comparisons. The algorithm can be performed in 
c log n parallel steps as well, where in a parallel step we compare n/2 disjoint pairs. In the i-th 
step of the algorithm we compare the contents of  registers Rj< o, and Rku), where j ( i ) ,  k ( i )  
are absolute constants then change their contents or not according to the result of the comparison. 

1. Introduction 

Let L be a linearly ordered set with n elements. The elements of L are 
originally stored in n registers (R1, Rz . . . . .  R,). The set of registers will be denoted 
by ~ .  We want to give an algorithm which rearranges the elements of L in the 
registers such that the least element of L be in R1 the next one in R2 etc. the 
greatest in R,. An elementary step of this algorithm consists of  the comparison 
of two elements a, a' located at two given registers R, R'. We have either a<-a ' 
or a>a'. In both cases we can exchange the locations of a and a" or leave them 
unchanged. Thus, we can have four different rules. Now the algorithm consists 
of a sequence of pairs (R, R') of registers and a sequence of associated rules (of the 
above kind). In other words we obtain a network. The constructed network will 
contain only O(n log n) of the above steps ((R, R') and a rule), and we will show 
that the first n/2 steps can be performed simultaneously (i.e. the pairs (R, R') 
involved are disjoint) and so can the second n/2 steps, etc. Thus we get a sorting 
algorithm working in O(log n) parallel steps. In the following by a parallel step 
we mean a set of at most n/2 disjoint elementary steps. 

Parallel sorting algorithms has been intensively studied. The best known 
parallel sorting algorittun with maximum parallelity (and disjoint comparisons) 
reduce sorting to merging. There are algorithms which use only log n steps for 
merging (Batcher, Pratt and others see Knuth [2]. These lead to sorting algorithms 
using O((log n) e) steps. 

The sorting algorithm presented here were originally a random algorithm, but 

AMS subject classification (1980): 68 E 05 

!* 



2 M. AJTAI, J. KOML6S, E. SZEMERI~DI 

(using explicitly given expander ~ a p h s  see [1] and [3]) we transformed it into a detm- 
ministic one. We give the algorithm in that form. 

Following the suggestion of  D. Knuth we modified our original algorithm in 
an other way so that it became "oblivious" in that it is a sorting network with 
O(n log n) modules, see also Knuth [2]. 

The structure of  the algorithm can be visualized the easiest way as a tree like 
file organization. We use a binary tree with n leaves (if n is a power of  2) in which 
the nodes on the same level are ordered. The registers are assigned to some nodes, 
originally each registers is assigned to the root (the upmost  node). The algorithm 
is organized into cycles, one cycle consist of  the application of subroutines and 
each subroutin rewrites the tree, i.e. reaasignes the registers to nodes. After one 
cycle each register have moved some level down or some levels up on the tree. The 
point is that the majority moved down and only few registers moved up. We will show 
that after O(log n) such cycles all registers will have moved down to the leaves, 
different registers to different leaves, and that stage the leaves define the ordering. 

At each stage, there is a lowest nonempty level of  nodes, and most elements 
will stay on this level, the number of  element on higher and higher levels will form 
a geometric series. In each cycle we perform some parallel steps. The sequence of 
the parallel steps in the c~-th cycle will be denoted by P~. The length of P~ will be 
less then some constant co. After the c~-th cycle the set of  registers assigned to the 
element t of  the tree will be denoted by S~(t). S°(t) is ~, i f  t is the root o f  the 
tree, otherwise it is the empty set. The restriction of  the function S ~ to a fixed 
level of  height i will be denoted by S ~,~. 

We will define S" and P" by recursion on c~. 

2. The description of the algorithm 

We will define our algorithm using the constants ct, c2, qt, q2, e~, da,g. 
We do not give the actual values of  these constants only assume certain inequalities 
between them. 

We choose the constants in the following order: ca, qa, g, q2, e,, e~, cl~ 
so that qa, g, qz, ~a~(O, 1); cl, c2, d l > l ;  

1 
e a < < q ~ < < l - g < < q l < < - - < < l  and 

Ca 

1 1 
1 <<c~, - - < < c z ,  d l > > - -  

1 - g  q2 

where a<<b means that a is sufficiently small compared to b (or b is sufficiently 
large compared to a). 

We will not use the constant q~ in the actual definition of  the algorithm, 
only in the proofs. 

Definitions. Let T be the set of  all finite 0, 1 sequences (including the empty 
sequence 0). (Actually we will use only sequences of  length less than n.) We con- 
sider T as a tree whose levels (the set of  sequences of  the same length) are ordered 
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by the lexicographic ordering, that is (al . . . .  , ak}<(bl . . . .  , bk} iff they are dif- 
ferent and a~<:b~ where i is the smallest index where the two sequences differ. 

(al . . . .  , ai}-< (ba .. . .  , bj} means that i>=j and for all k<=j, ak=bk. 
f f  t = (al . . . .  , a~} then Q, ba . . . .  , b j} will denote the sequence (a~ . . . .  , a~, 

bl . . . .  , b j} .  
Dora ( f )  will denote the domain of  the function f ,  l(t) will be the length 

of the sequence t. 
A one-to-one map of  ~ onto L will be called a position. I f  X~=~ and 

F is a position then we will use the following notations: 

Con t , (X)  = {aELI~REX a = F(R)}. 

regv(a) = F-l(a) if aEL. 

We will omit the subscript F, if it is uniqually determined by the context. 
C is a chain iff C is a function defined on some level o f  T and for all 

x, y E D o m ( C )  we have C(x)C=N, C(x)r3CO,)=O and IC(x)[=]C(y)[. 
The chains Ca and C2 are disjoint iff Ca(x) r3 Cz(y)=0 for all x E D o m  (C~,) 

y E Dora (C2). 
We want to define the function S ~ so that S ",i be a chain for all i. 
I f  C is a chain we will use the following notations: 

l(C) = logs ]Dora (C)l, 

N(C) = IC(x)] for some (all) x E D o m  (C), 

IC[ = IDom (C)[, 

UC = U C(t), 
t E Dora (C) 

Contv(C) = U ContvC(t )  where F is a position. 
t E Dora (C) 

I f  C~, C2 are disjoint chains with l(CO=l(C2) CaUC2 will be the chain 
defined by (C~UC2)(t)=C~(t)DC2(t) for all tEDom(Ca).  

Now we will define operations on chains. In order to make this operations 
uniqually defined we will suppose that the set ~ is ordered in an arbitrary but 
fixed way. 

Suppose that C is a chain and 0 < : q < l .  Then CH1 (C,q) will be a chain 
with the following properties: 
(1) Dora (CH1 (C, q ) ) = D o m  (C) 

Ix] denotes the integral part  of  the number x. 
CH2 (C, q) is a chain with the same domain defined by 

(CH2(C, q))(0 = C(t)-(CHI(C, q)(t)). 
The following lemmas are necessary for the definition of  S' .  

Lemma 1. Let C be a chain, l(C)=i, O<=j<i and suppose that N ( C ) ~ 2 .  Let 
us define a chain V (C, k) for all k, 0 = k  t. 
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I f  l ( t )=j  let (V(C, j))(t) be the set coluisting of  the first element of COo) 
and the first element of Citx) where to and q are sequences of length i defined by 
to = (t,  0 , . . . ,  0) ,  t ,  = (t ,  1, 0 . . . . .  0).  

I f  j < k < i  attd l ( t )=k let (V(C,k))(t) be tlre set whose only element is 
the first element of COo) where to=(t, 1, 0 . . . .  ,0), l(to)=i. 

I f  l(t)=i let (V(C, i ) ) ( t )=C( t ) -U{UV(C,k ) I j_~k<i} .  I f  O ~ k < j  
and l ( t )=k let V(C,k)(t)=O. Then V(C,k) is" a chain for all O<=k<=i and the 
following conditions are satisfied: 

(~.~) /(v(c,  k))=k. 
0.2) (UV(C,k)),~,Uv(c,k')=O if k#k ' .  

(1.3) N(V(C, k ) ) = l  /f j < k < i ,  N(V(C,./))=2, 

N(V(C, k))=O if o<-k <j 

(1.4) For allt'CT, j~l( t ' )_~i  we hare 

U c(t) ~_ v(c, k)(r). 
l ( t ) =  i, t ~ t" 

(1.5) For all t~Dom (C) 

IC( t)(~ U (UV(C ,k ) ) l= l .  
O ~ k < i  

Since (1.1) . . . . .  0 .5)  are all immediate consequences of  the definition of  
V we omit the proof of this Lemma. 

Lemma 2. Suppose that C is a chain l(C)=i and (ak) , O<=k <i is a sequence of 
nonnegative integers with the following properties: 

(2a) 2( ~ ak) < N(C) 
k < i  

and 

(2.b) 3s'<sa,,>Oimpliesthat ~ak<a~ for all s<i. Then for all k,O<=k<i 
k ~ S  

there exists a chain W(C, k) such that properties (l . l) ,  (I.2) attd (i.4) hoM with 
j = O  and V = W  and: 

for all O~k<i  ak-- I~N(W(C,  k))----ak (2.3) 

and 

(2.5) the fimction W on Dom (C) &fined by 

W(t) = c ( t ) -  ~j (@w(c, k)) 
fi < i  

is a chain and 
N ( C ) -  ~ ok <= N(W) <= N(C). 

k < i  

Proof. For all O~k<i  we define a sequence of chains 
l(]~,k)=k and we will put 
(2.6) W(C, k) = (J Y~,k 

5 

Y~.k s = 0 ,  l ,  2 . . . .  w i th  
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We define the sequence Y*,k S=0, 1, ... by induction on s. Let us suppose 
that for s'<s Y*,k is defined for all O<=k<i with l(Y,,k)=k. 

Let j be the greatest integer with the following property: O_~j<i and 
for all 0=<k<j  

N(Y,,k) >= ak--1. 

If  j does not exist we do not define Y~.k. Suppose j<i. For all t, l(t)=i let 

c ' ( t )  = c ( o -  U (UL.O. 
s '  <:s 
k < i  

For all O<=k<i let Y~.k=V(C',k) where V is the function defined in 
Lemma 1, (with the j given above). It is easy to check that the W defined by 
(2.6) meets the requirement of Lemma 2. | 

Now using Lemma 2 we will define S =. S°(t) has already been defined by 

Suppose that 2-~-~-n>c,, 
let 

S O ( t ) = { ~  if t = 0  
otherwise. 

and S ~ is defined, then we define S °+1 as follows: 

C~ = CHI(S °'', g) 

C~ = CH2(S ~'i, g) 

Definition. If C is a chain then the chains ~z_lC, rqC, rL.C are defined by 

(rc_,C)(t) = C((t, 0))UC((t, i)) for all l ( t )  = I ( C ) - I .  

(n~C)((t, 0)) is the first 1/2[C(t)l element of  C(t) if 
t~_Dom (C), rrt(C)((t, 1))=C(t)-(~hC)((t, 0)) (7riC is defined only if N(C) is even). 

7r2C =~l(rqC), maC is defined only if 4[N(C ). Clearly 

I ( ~ C ) = I ( C ) +  1, 10r2C)= l (C)+2  , 10t_lC) = / ( C ) -  1. 

Let D~=~IC~U~3C~ -1 (for ct=0 let D~=~C{) .  Since 4IN(C °) for all 
j ,  D ° is always defined. Let us apply Lemma 2 with C = D  °, i = a +  1 and ak=0 if 
q~+~--k2--~--2n<cl ak=[q~+l--k2--=--2n]+2 otherwise. We will prove by induction 
on c( that the sequence (ak} satisfies the conditions of Lemma 2 (see Lemma 7). 
Let W(D", k) be the chains guaranteed by Lemma 2 and k0 the smallest integer with 

(2.7) q~+l-k°2-°-2n ->_ C~ 

Now for all ko<k<_c~ put 

(2 .8 )  

and for k=/q, 
(2.9) 

s,+,. ,  = w ( p  ~, k)U,~_,c~+,U~Q -~ 

S ~+l'k° = W(D ~, k0)U rt-1 ~2~k°+I U 

[cko-I I t .~ko--2x U ~ C ~ ° - 2 U C ~ ° U ~  ~ u,-q% ) 
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and for k < k  o S' ,k( t )=0 for all l ( t )=k.  We omit the last term in (2.8) if k = l  
and in (2.9) if ko=0;  we substitute the last term in (2.9) by rqC~ °-~ if ko= l  
and omit the term rc2C~ o-" if ko=0, 1. For k=c~ we omit z_~C~ -x. Finally 
we define S "+1,'+~ by 

S~+~"+~(t) = D'(t) - ( J (UW(D ~, k)) 
Ig<tt  

Since C{ is always divisible by 4 the operations 7hC{, zr2C{ can be performed 
in the definition of S ~+~'k, S ~+~'~°. Later we will prove that the operations 7h 
in the last term of  (2.9) can be performed as well. 

To give the sequence P~ we need further definitions. 

Definition 2.2. Suppose that A and B are disjoint sets. We call the graph G 
a (k, ~) expander on ~A, B) if  A ~5 B is the set of  vertices of  G, no edge of  G 
is in A or B, and the degree of every point is at most k and if F x denotes the 
set ofneighbours  of  the set X then for all XC=A we have 

1 min {IX[, 81B]} Irxl > (l -~) -y  

and for all Y__ B, we have 
1 

Ir~l > (1-~)-~  rain {lYl, ~lAI}. 

Lemma 3. For all O < e < l ,  c_-->l there exists a positive integer k(s, c) such that 
Jorall  disjoint A , B  with 1/c<-IA1/IBl<=c thereex i s t sa (k ,e )  expander on (A,B) .  

The assertion of the Lemma and an explicit construction tbr the graph easily 
follows from Margulis results [3], but he proves only the existence of the function 
k(e, c). Gabber and Galil [1] gave the function k(e, e) as well in an explicit form. 
(The usual definition of an expander graph is somewhat different from the one given 
here.) In the following we will suppose that kte, c) is a fixed function satisfying the 
requirements of  Lemma 3. 

Definition 3.1. If A, B are disjoint subsets of  N and ~>-0, then let 
be a fixed (k(e, [A[/[BI), e) expander on (A, B). 

According to the remarks after Lemma 3 we may suppose that 
is given in some explicit way. 

6~(A, B) 

G.(A, B) 

Definition 3.3. Let J be an ordered set S ~ J .  S is called a lower (resp. upper) 
section of  J if for all x, yEJ we have yCS, x~_y (resp. x>=y) implies xES. 

Definition 3.2. I f  A, B are disjoint subsets of  N, e > 0  then let E~(A, B) be the 
set of all elementary steps of the following type: R1, R2, " i f  the content of  R1 is 
greater than the content of Rz then exchange the contents of  these registers, other- 
wise leave them unchanged", where RI~A, R.~B and (R1, R2) is an edge of  
G,(A, B). 

The role of  the expander graphs in our algorithm is based on the following 
/_,emma to be proved later. 
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Lemma 4. Suppose A, B are disjoint subsets of ~ and ~>0, then after the ele- 
mentary steps of E~(A, B) had been performed in an arbitrary order, we have: 

if S is a lower section of Cont (AUB)  and [S[=<[AI then [S--Cont(A)l 
_--<e]S[, and the corresponding assertion holds .for upper sections. 

Definition 4.1. If i is a positive integer, then an i-parallel step will be a set of disjoint 
elementary steps of at most i elements. Suppose Z is a sequence of/-parallel steps 
for some i and F is a position, then Z(F) will denote the position that we get 
after the elements of Z had been performed in the given order. Suppose that 
111 .. . .  , Hj are sequences of il-parallel steps . . . .  , /j-parallel steps. The r-th element 

J 
of H, will be denoted by H~(r). U H~ will denote the sequence whose r-th term 

j s : l  
is U H,(r). I f  the elementary steps of  the different H,(r)'s for any fixed r are 

2=1 

disjoint (that is no register occurs in the elementaly steps of both H,~(r) and H,2(r) 

if sl ¢s2) then H~ is a sequence of  i, -parallel steps. 

Definition 4.2. Suppose C is a chain, e>0,  then for i =0, 1 we define impi(C, e) 
as impi (C, e)= U {E,(Cts), C(t))]s, t are consecutive elements of Dora (C), s<t 
and the last element of s is i}. IMPI (C, e) will be a fixed sequence of parallel 
steps so that every elementary step of imp~ (C, e) is contained in some parallel 
step and no other elementary steps occur in any member of the sequence. We may 
suppose that IMPs(C, e) is given in an explicit form and its length is k(e, 1). 
Let IMP (C, ~) be the concatenation of IMP o (C, e) and IMPI(C, e). IMPi(C, e) 
will be a sequence of parallel steps consisting of i copies of IMP (C, ~). If  C~, ..., Cj 

J 
are disjoint chains then U IMpi(c j  -, e) is a sequence of 2jik(e, I )=  ~ik(e,  1). 2 

j s=l  
parallel steps. 

Definition 4.3. Suppose that C is a chain and 0 < q < l .  Then CH3 (C,q) is 
a chain with the following properties: 

(4.1) Dora (CH3 (C, q))=Dom (C). 
(4.2) (CH3 (C, q))(t) consists of  the first [1/ 21(CH2 (C, q))(t)[] elements of  

(CH2 (c, q))(t). 
CH4 (C, q) is a chain defined by 

(CH4 (C, q))(t) = (CH2 (C, q))(t)-(CH3 (C, q))(t). 

Definition 4.4. Suppose that C is a chain 0 < q <  I, e>0.  For any tCDom (C) let 

i~,(C, q, e) = E~(CH3(C, q)(t), CH1 (C, q)(t)) 

I2,(C, q, ~) = E~(CH1 (C, q)(t), CH4(C, q)(t)). 

The elementary steps of i~(C, q, ~) can be performed in k e, ~ parallel 

steps if N(C)>-4/q. In this let I/(C, q, e) be a sequence of parallel steps of length 

at most k e, - ~ q  whose elements contain the elementary steps of I/(C, q, 8) 
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and no other elementary st~ ps. Let IAC, q, ~) be the concatenation of I~(C, q, s) 
and I~(C, q, s). Finally let 

I(C, q, s) = [,3 I,(C, q, s). 
t E Dora (C) 

The following Lemma which is an immediate consequence of  Lemma 4 
shows the effect of  I(C, q, s). 

Lemma 5. Suppose C is a chain, 0 < q < l ,  ~>0, t~Dom(C) and S is a lower 
or upper section of  C(t). I f  

IS[ < ½(IC(t)l-4[¼qlC(t)[]), 

then after I(C, q, s) had been performed we have 

ISf"qCont(CHI (C, q)(t))] ~ cISI. 

Now we define P~ the sequence of parallel steps of  the c~-th cycle. We define 
P~ only for c~'s with 2-~-an>C2.  (S ~ is defined for these c~'s.) The sequence 
P~ will be the concatenation of  the sequences P~, P~,, and Pg. 

Let P~= U I (S" i ,g ,  eO. We will prove later that N(S',I)=O or 
0 ~ i ~  

4 
N(S~'~)>= , therefore we may suppose that the length of  P~ is at most 

1 - g  

P~ = IMP d~ (D ~, sl) 

P~ = U IMPd~(S ~+l';, ea)- 
O ~ i ~  

The content of  the register R after P~ had been performed will be denoted 
by F~+X(R). F°(R) is the original content of  the register R. Ff(R) (resp. F~(R)) 
will denote the content of the register R after P~ (resp. /~.2) had been performed. 

Let P '  be the concatenation of  p0, p ~  ..., p, '  where c( is the greatest 
integer with 2-~'-Xn>c.,. 

We will prove later that after P '  had been performed the elements of  L 
are almost "ordered" in the following sense: 

Lemma 6. There exist constants u~, u2, u3 such that i f  cg - -u l~ i -~"  then 
N(S"i)<=uz and otherwise N(S~'I)=O, moreover if for all tETs ' ( t )  denotes the 
number 2-lco]{t'<t[l(t ')=l(t)}[, then .for aft q, t2~T s ' ( tO-s ' ( t~>u32 -~" and 
xCContv~'(S~'(tO), ycContF~'((S"t.,)) implies x>y ,  (here we allow l(tO¢l(t~)). 

Lemma 6 implies that there exists a sequence of  parallel steps P "  with 
constant length, so that after P '  and then P "  had been performed the elements 
of  L are in a known order. As an exercise we leave the proof  of  this fact to the 
reader. Thus we completed the definition of our algorithm. 
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3. The use of  the expander graph 

In this section we prove Lemma 6 and other assertions having already been 
accepted in the last section without their proofs. 

Proof of Lemma 4. Suppose that our assertion is not true. Then [S('lCont~(B)[> 
e.[S] where G is the position after E~(A,B) had been performed. Let X =  
{R¢BIG(R)ES } and yc=A the set of  neighbours of  the elements of  X. The 
definition of  E,(A, B) implies that 
(6.1) The contents of the registers in A are decreasing, the contants of  the registers 
in B are increasing (not necessarily strictly) in every elementary step of  E,(A, B). 
(6.2) For  all RCX the content of  the register R is an element o f  S throughout 
the whole algorithm. 
(6.3) For  all RC Y the content of  the register R is an element of S at the end of  
the algorithm (i.e. G(R) E S). 

(6.1) and (6.2) are immediate consequences of  the definition. By (6.2), if 
R c Y the content of  Y is in S after the elementary step corresponding to the edge 
between R and an element of  X had been performed. Therefore (6.1) implies (6.3). 
Thus we have Cont~(X)UContG(Y)c=S. On the other hand Cont~(X)(]  
( ]Con t a (Y)= 0  and since G~(A, B) is a (k(a, IAI/[B]), e) expander graph 

lCont (x)/+ ICont (y)l >  lsl +(1  lsl = Isl, 

a contradiction. 

4. Basic definitions 

Definition 6.1. Suppose that C is a chain xcL and F is a position. Then let 

p~(x) -- IUCl-tI{yEContr(C)ly <= x}l. 
For any tET let 

s(t) = 2-'( ')l{t' < tll(t' ) = l(t)}l+ 2-'~')-l. 

If C, D are chains, F is a position t cDo m (C) and t2 is a real number 
then let 

G~(t, It, C) = {xE Ll~t'¢Dom(C)t" >= t, xECont~(C(t')) 

and s(t)-p~(x) > Ix+½lC 1-1}. 

Hg(t, Ft, C) = {xE rl3t'E Dom(C)t" <= t, xEContr(C(t')) 

and pg(x)-s(t)  > ll+½]C 1-1}. 

Let us define the relation Qv,(C, D, q, M); where C, D are chains F is 
a position a, q, M are real numbers 0 < q <  1. M > 0 ,  a > 0 ;  as follows: 

F Q,,(C, D,q, M) iff for all tEDom (C) and 2_->a we have 

IGg(t, ICI-~2 ~-, C)I ~ M.  qX and ]Hg(t, IC1-12;', C)I ~ M. qx. 
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If  D is a chain with U D = N  then we use the following notations: p(x)=pg(x) 
for all xCL. (In this case p~(x) clearly does not depend on F.) 

Ge(t, 1~, C) = ag(t, p, C) 

H~(t, ~, C) = H~(t, ~, C) 

Q~ (C, q, l~) = Q~: (C, D, q, M). 

Lemma 7. Suppose that 2 - ' - In>ce .  Then S ~ is defined and for all xEL there 
exists exactly one tET with xECont (S'(t)).  Moreover S ~,~ is a chain for all 
O<=i<=u and there exists a constant q2 such that for all O<=i<-c~ the following con- 
ditions are satisfied. 

(i) S ~,i is a chain amt N(S"~)<=q~-i2-~n, 
(ii) i f  q~-12~-~n<c~ then N(S~'i)=O otherwise N(S',i)>-_q~-~2-'-ln, 

(iii) Qf'(S  ~'', qz, q~-'2-~n) . 

First we prove that Lemma 6 follows from Lemma 7. The definition of  
~', (i) and (ii) clearly implies the existence of  u~ and u., with the required properties. 

Now suppose that tET with cd-u~l( t)<=c& Let us apply (iii) with c~=u" 
and i = l ( t ) ;  we get 

(7.1) Ia~='(t, 2-'(~)2 ), S~"')[ -< q~'-~2-~'nq~ 

for all 2=> 1. 
Let 2o_->1 with u~"~'-i9-~"- ,~ u-,"~'°< .~. (7.1) implies that G~'(t, 2-~2 ~, S~',~)=0, that 
is for all z~ContF~'(S"( t ) )  we have 

s(t)-- p(z) <= 2 - i 2 z 0 + 2 - i - L  

Similarly if we use H instead of  G we get -(s(t)--p(z))<=2-~2ao+2 -~-~. 
Thus if ua>2(2"~2~'x+2 ~,-~) then s'(fi)-s'(t~)>uz2 -~' implies that p(x)>p(y)  
that is x > y .  II 

5. The properties of N(S ~,i) 

We prove Lemma 7 by induction on c~. Suppose that the assertions of the 
Lemma hold for some fixed c~ and 2-(~+1~-1n>c2 . Since S ~,i is a chain for all 
O<-i~iC~,  C~ are defined and clearly they are pairwise disjoint chains. As we 
mentioned after the definition of D ~ and S ~,k the chaine ~1C~, rr2C~ are always 
defined and therefore S ~+l,k is also defined for k0<k<_-a+l it is a chain and for 
different k's the corresponding chains are disjoint. 

We have to show that k°-I ko--2 rq(C~ t2~C2 ) is defined if ko_~2. (The case 
k0=0 is trivial, for k0= l  we can prove by the same method that rqC~ 0-~ is 
defined.) Obviously it is sufficient to show that 

(7.1) 2tN(C~ "-2) and 

(7.2) 2 IN(C~ o - '  U ~C~ o-z). 

If /<k0- -2  that is q~+~-(i+~)2-=-Zn<e~ then 

q~-i2-~-b2 = 2ql- q~+l-(i+2}2-:-2n < 2qlel -< ca 
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and therefore according to the inductive hypothesis 

(7.3) N ( S  ~' ~) = 0. 

By the inductive assumption ~ =  U (US~'~) and hence by (7.3) 
O ~ i ~  

= U (US~+~'~)U(UK)U(Uq°-gU(UC~ °-~) 
ko <i~_a-l-1 

where K is the union of the first four terms of (2.9) and it is a chain. Since the chains 
of this formula are pairwise disjoint we have 

n = I~1  = 2 7  2 1 g ( s = + 1 " i ) + 2 k ° N ( g )  + 
k o < i ~ + l  

+ 2k°-IN(C~ °-1) + 2k°-~'N(C~ °-2). 

n is a power of 2, n=>4, k0=>2, therefore 2[N(C~ °-2) and 2tN(C~°-*)+ 
1/2N(C~ o-~') which implies (7.1) and (7.2). 

Now we prove that (i) and (ii) hold for all 0<=i_<-c~ by induction on a. 
For a=0 ,  i=0 ,  N(S° '°)=n implies (i) and (ii). Suppose that our assertion 

is true for a and we prove it for c~+ 1. 
By the definition of CH 

(7.4) N(CO = 4[(¼)g. N(S~,i)] 

N ( Q )  = N(S ' ,  ~) - 4 [(¼)g N(S  ~, ~)] (7.5) 

therefore 
N(D ~) = 2[+ gN(S  ~, ~)] + [1 gN(S  . . . .  1)] 

(for c~=0 the second term is omitted). 
The definition of  W(D ~, k) and kemma 2 imply together that for all ko<-k<a 

(7.6) q~+a-k2-~-~'n <= N(W(D ~, k)) <= q~+ l-k2-~-2n + 2. 

We may estimate the other terms of (2.8) and (2.9) using (7.4) and (7.5) and the 
inductive hypothezis, the definition of 7h and 1-g<<ql ,  1 <<el. 

U(rc_l(C]+l)) <= 2(N(S  ~'k+l)-4(kgN(S' 'k+l)  - 1)) _-< 

~_ 2(1--g)N(S~.k+~)+8 ~= 2(1--g)q~-k-~2-~n+8 =< 

1 f , a + l _ k O _ a : _  2 ~_ 1 1 
= 20 ul -'. nTTg~q~- igq~+l-k2-~ ' -~n+ 

1 1 q~+l_kg_~_Zn +To q~ +l-k2-~-2n ~ o-gg - • 

N(n2C~ -2) ~ ¼4[¼gU(S~'k-2)] <= ¼N(S', *-2) <_ 

= 4 t / l <  . i r t a - k + 2 " ) - a ~  n <= ¼q~+l-k2-~'-ln 

Therefore for ko<k <=~ we have 

N(S~+I. k) <_ q~+~-k2-~-ln. 
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that is 

Since 

For k=ko the remaining two terms can be estimated as follows: 

N(Ckz °) <= ( 1 - g ) N ( S  ''k°) ~ ( 1 -  g) q~- t °2- 'n  -< 

-<- @ q~'+l-ko2-'-an. 

U(rq (C~ 0- a) O 7r1C~ °- ' )  ~ ½((1 - g)U(S =' ko-1) + 

N(S~+I, ko) ~ q{+l-~o2- ' - ln .  

S' ,k(t)=O for all k<ko ,  l ( t )=k  we proved (i) for O~k -<co 
(ii) is an immediate consequence of (7.6) and the definition of 

0~k-<-~. [/.OS~+~'~+ll-<-n and 1S~+1,~+~[=2 ~+1 implies (i) for 
in this case (ii) is a consequence of 

I Q-J (~,JS:~+I'i)[ = n and 
O g i ~ z + l  

U (US=+I';)I_< ~ q{'+l-i2-=21n ~½n.  

S =,k f o r  
i = c t +  1, and 

6. The relation Q and the operation IMP 

The assertmns contained in the following Lemmas are consequences of the 
inductive hypothesis. 

Lemma 8. For all 0 ~ i ~ ct we have 

3 ~ - i  --o~ (8.1) QF~(c~, q2, q~ql 2 n) 

(8.2) Qft  (C~, q2, q f - ' 2 -~  n) 

(8.3) O ~  (rhC~, qa, q~. q~ - '2-~n)  

(8.4) Q~' (~z2 C~, q,., qa q~ -~ 2-~ n) 

(8.5) Qf~ (Tr-lC~, q2, q2q~-~2-%7) • 

Proof 8.1. We may suppose that N(S',~)~O. Let 2-~ 1. We have to prove that 

[GFi~(t, 2-~2 z, C~)[ <= qgqf- i2-~ nq~" 

for all l ( t )=i.  (IHFr...I ~ ... can be proved analogously). 

(8.6) GFeu, 2-'2",  C/) = [: {xEContFr(C~(t'))I 
t ' ~ t  

]s( t ) -p(x)  > 2- ;2"+2- ' -1} .  
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According to the inductive hypothesis Q['(S~'i, ql, q~-i2-'n), hence for all 
tET, 2_->1, l ( t)=l(t ' )=i we have 

(8.7) ~ [{xEfontr,(S~,i(t'))ts(t)-p(x ) > 2-i2a+2-~-1}] <= 

=< q~-~2-~nq~ 

Let us denote by Ma(t') the set in (8.6) corresponding to t" and by Mz(t') 
the set defined in the corresponding term of(8.7). Clearly Mz(t') is a lower section in 
s~,'(t'). (8.7), IN(S',')I>~-~-~-~,, =u~ - ,~, qz<< l -g  and Lemma 5 implies that 

[Mx(t')l = IM2(t')O ContF-(C~(t'))[ <= ea[Ml(t')l. 

Thus by el<<q2 (8.6) follows from (8.7). (8.2) is a trivial consequence of 
Qf'(S ~'~, q2, q~-'2-'n). (8.3) and (8.4) easily follow from (8.1) and (8.5) from (8.2). II 

/_,emma 8'. Suppose C is a chain, F is a position and QF(C, q, M) for some 
j, q, M, e>0  and F ' = I M P  (C, e)(F), then Q~'(C, q, M) holds as well. 

Proof. Let t~Dom(C) ,  /~ a real number, then according to the definition of  
IMP(C ,e )  we have IGP(t,/~, C)I>-IGV'(t,I~, C)l and Inr(t,l~, C)l>-_[H'(t,t~, C)J, 
which implies our assertion. I 

Definition 8.1. Suppose that A ~ L  and A =  {ao . . . .  , a,,} where i~<i2 implies ai,<a~, 
and let /~ be a positive real number. Then let 

A -~ = { a ~ ,  a~j+~ . . . . .  a,,_tB~}. 

If  G is a position C is a chain q,  t2EDom (C), q<t2 then let us denote 
B by RG(q, t2) the following statement: for all xEConta(C(fi))P, ycfonta(C(t2))  ~ 

we have x < y. 

Lemma 9. For all e>0,  j ~ l  there exists a bo>0 such that if  C is a chain, F is 
b a position 0 < q < ¼ ,  M<2N(C),  b>bo, 0<O<<e, F = ( IMP (C, 6))(F) a,M 

Q~(C, q, M) then for all fi, t~EDom (C), q <t2 implies R~Cc)(q, t2). 

The following definitions and lemmas are necessary for the proof of Lemma 9. 

Definition 9.1. Suppose that G is a position A C=L and P ~ D o m  ( C ) × D o m  (C). 
Then let 

X.~.e = {(x,,xe)lx~,xzCA and ~(r, ,  r ,)Ee, r t < rz 

and x,C. Conto(C(r , ) ) i=1 .2  and x . :>x .}  

If  P = D o m ( C ) × D o m ( C )  then we will write X~ instead of XaUe. 

Lemma 10. Suppose G is a position, E is an elementary .step included in 
IMP(C,  a), G'=E(G), AC=L. Then IX~l-_>lX~'l. 

Proof. If G'=G our assertion is trivial. Suppose G'~-G. Since E is included in 
IMP (C, 6), there are consecutive 

ta, t.,~Dom(C), t~ < re, R~C(q) ,  R~C(tz)  
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such that G'(RO = G(R2), G'(R2) = G(R1), G'(RO < G'(R2) and G'(R) = G(R) for all 
R ~ R1, R # R2. If  we count the pairs in X~, XA ~' containing G'(R1) or G'(Rz) 
we get the required assertion. II 

Lemma 11. Suppose tl, t2 are consecutive elements o f  Dom (C), G is a position, 
G ' = I M P ( C ,  6)(G), AC=L, P = { t l ,  t2}. Then 

]X~I- IXA G'] @ IXg, p1-32(N(C))2--26N(C). 

Proof. First we prove the following assertion. I f  the last element ti is i, G"=  
IMPI(C, 5)(G), G'=IMPI_~(C,  6)(G) and P={ t l ,  t2} then we have 

(11.1) !X2,el -  1X.~;P[ >= [X2,eI--c~'(N(C))2-- 25N(C) 

(11.2) ]X~f'[,[ >= [X~,pI and 

(11.3) IX~I - IX2"l >= IX2,p[-IXZ'pI- 
To prove (11.1) we have to show that ]X~a~'pI<=52(N(C))2+2~N(C). This 

inequality easily follows from Lemma 4. 
(11.2) is a consequence of the fact that for any a ~ C(q), b ¢ C(t2): G" (a)>= G(a) 

and G'(b) <= G(b). 
In order to prove (11.3) let us write D o m ( C ) × D o m ( C )  in the form 

PUQU YUZ where Y = ( V X  {t~, t2})U({tx, t~}×V). Here V = {tcDom (C)lt<q}, 
Z = ( W / { q ,  t2})U({fi, t2}× W) where W={t~Dom(C) l t> t~} ,  Q = ( D o m  ( C ) -  
- { t , ,  t~})×(Dom ( C ) - { f i ,  t,}). 

Bythe definition of IMPi, [X~,v[ = 1X~i'v[ and IX~,w[ = [X~i'w[ and therefore 

I X ~ l -  Ix~"l = IX2,~l - IxZ'~I + Ix2,Qf - IxZ'~I 

G G "  We can prove the inequality IXa,ol-lX~,o]=0 using the same argument as in 
the proof of Lemma 10 so we have (11.3). 

Now we prove the Lemma. If  the last element of t~ is 0 then G '=IMP~X 
(C, 5)(G3 where G"=IMPo(C, cS)(G ) so (11.1), (11.3) and Lemma 10 implies 
the required inequality. 

I f  the last element of t~ is I then G'=IMPI(C,  5)(G')  where G " = I M P o ×  
(C, 5)(G) hence Lemma 10, (11.3), ( I I . l )  and (11.2)implies our assertion. | 

Lemma 12. (a) Suppose C is a chain G is a position fl>0, t~, t2EDom(C), 
t . ~ p q<te  and ~R~(ta, to). Then there are consecutive t~, t~'CDom(C) with q = q <  

t~ <=t2 and 7Ra(t  ", t~). Gk i 
G 2 (b) Suppose tl, t~cDom(C),  t l<te and IX~,((,~,t~>}[>2(N!C)) for 

some 2>0,  AC=L. Then there exist consecutive t~, t~EDom(C), t~<t2 with 
G 

[X)~,<<,,.4>) l > k  ;tZ(U(C))".  

Proof. (a) Let tl be a maximal element of Dom (C) with the following properties: 
R ~ ( t ~ ,  t ; ) ,  < " " t l=tl-<t2. I f  tz is the element of  Dora (C) which covers t~ then 
qR~(tx, t~). 

(b) [X~,((t,t~)}[>2(N(C)) e implies that -qRX/~(c)(q,t~). Applying (a) 
t t f t_~: we have qR~/Zu(c)(t~, t'2) for some consecutive q,  tz, q<-t~<t2=tz,  and hence 

X6 ~. o0 o [ ~.(<,'x.t,~>}l=z'/4N(C)'. | 
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Proof of Lemma 9. Suppose that there exist tl, t~EDom(C), t l<t~ with 
qR~N,~c)(h, t~). According to Lemma 12 (a) we may suppose that tl, t2 are con- 
secutive elements of Dora (C). hs(e,j), s = l ,  2 . . . .  will denote sufficiently largo 
positive constants depending only on e and j.  Let 

A = {xEL]s(tl)--2hl(~,S)-I(',) ~= p(x) ~ s(t~)+2h~(8'J)--t(q)}. 

Lemma 10 implies that if Fk=( IMP k (C, 6))(F)(F°=F), then [xFk[ is a monotone 
decreasing function in k. QF(C,q,M) and Lemma 8' implies that IIXF~,p[ - 

6 2 

--IXrA~,PII<---~(N(C)) 2 where P={(q ,  t~)}. X rk <pvrk A,v =-~.4 so it is sufficient to 

prove that there exists a b0 (depending only on e and j )  with the following property: 
k>bo implies [X~[<e2/2(N(C))Z. 

We will prove the following stronger assertion: for all k 

(12.1) if IXa~l >e2(N(C))  2 then [XaFkI--lX~÷ll > 1 j) 

(12.2) IXar°l < h3(e, j)( N (C)) 2. 

(12.2) is a consequence of  Q~(C, q, M) and the definition of A. Indeed, 

IX~°I<=IAI~<=( Z [{x[xEf°ntr(f(t))  and xEA}]) 2 
tEDom(C) 

(12.3) <- 2n,(~,J) N(C)+ .~ [{xEA[xEContv(C(t)}[) z, 
tEH 

where H =  {t Is(t)-s(fi)] >2h~t~.j)2-~(q)}. Qj(F C, q, M), M<=2N(C), q<¼ and the 
definitions of  A and H imply that the second term of  (12.3) is less than 
2MqJ<N(C) that is 

IX °l -<_ 2h0~,J)(N(C)) 2. 

Now suppose that [XVa~I>-e2/~(N(C)f -. Lemma 8" implies that Q~ ( C, q, M). 
According to the definition of  A there is a hg(e,j) so that if  y>hg(e, j )  and 

W(T) = {t[ls(t)-s(q)l <= 2 ~-m~), l(t) = l(tO} 

then [ U AOContrk(C(t))l<N(C), and so IAl<hlo(e,j)N(C). Therefore 
t ¢ wf r )  

there is a hn(e, j )  so that if  7 >hll(e, j )  then 

1 e2 

Hence if IX~I>~V~(N(C)) ~ then 

and therefore there exist r~, r~E W(V) with 

F~ 1 N(C)~. 
IXA'{('"'~)}] > hT(e, j-"--~ 
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According to Lemma 12 (b) there exist consecutive r£, r~ with 

vu 1 
]XA, {(,;, ,;_})1 > h8 (5, j) (N(C))2' 

and therefore Lemma 11 implies the conclusion of (12.1). II 

Corollary 9. For all j>-_l, O<q-<¼ 3bo, 6o>0 such that, for all b>bo, 0 < 6 < 6 0  
tf C is a chain, F is a position, ½N(C)<-M<2N(C), Q~(C,q,M), F '= 
= ( I M W ( C ,  6))(F) and [p(x)--pFc'(x)l<½]C1-1 for all xCfontv(C),  then we have 
Qf'(C, q, M). 

Proof. First we prove the following assertion: For any 7 > 0  if b is sufficiently 
large and 6 > 0  is sufficiently small and tcDom (C) then 

(C.I) [{xE Contv, (c( t ) ) I lp(x)-  s (t)! > 21c l-a}[ < vN(C) 

Let l > q > 0 .  We claim that there exists a fl0>0 (depending on q , j ,q)  
such that for all 0<fi</30 we have: xEContp,(C(t)) ~ implies that 

~c.z) ]{y > ~]~ c < t. y~ Cont, .  (0}1 < ,N(C) 

Indeed, Q~'(C, q, M) implies that 

- '" " N ( C ) ,  [{y > xljt. s(t') < s ( t ) -h , ICl  -a, y<Contv, ( f ( t ) )}  I < 7 

where h~>0 may depend on q,j, q. Applying kemma 9 with a sufficiently small 
e we get 

U N(C), ]{y > x[~t': s(t)-h~[C[ -~ <= s(t') < s(t), yEContp,(C(t))}[ < W 

which implies (C.2). 
Now we prove (C.1). According to (C.2) if xEContF,(C(t)~, then 

p~'(x) ~ 2-i(N(C))-a(-~IN(C)+ Z N(C)) ~= s( t)-ICI-L 
"¢r .¢= t 

Similarly, we get p~'(x)-~s(t)+lC] -~, so lp~'(x)-p(x)[<½ ]Cl -~ implies (C.1). 
Suppose now that 1 ~ 2 ~ j ,  and F '  satisfies (C.I) with ~<<qJ. Ge'(t, ]C[-~2 a, M ) -  
= U M(t'), where 

M(t') -- {xE Contf, (C (t'))] s (t)-- p (x) > I C[-~ (2 ~ + ½)} 

Q~(C, q, M) implies that ~ '  !M(t')l~½qJM, where h~ is sufficiently 
S(t')>S(r)d_ ]121C ] -1 

large compared to j, and according to (C. 1) 

~ '  [M(t')l <-- ¼qJN(C) ~ ½qiM, 
s ( t ) < _ s ( t ' ) ~ _ s ( t ) +  h21C[ -  t 

so we have !Gr'(t, IC1-~2 ~, M)]<=qJM<-qaM. | 
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7. The proof of Lemma 7 (iii) 

Lemma 13.¢For. all xEL, Ip(x)--po,(x)J<~2F~ 1 -~t-1. 

Proof. Clearly, 
1 

p(x) --- n (l U O= lp~ (x) + l U C =z P F~ r I X )  

U C et'- 1 _F~ z \ - -  S°t' i DF~i (X ) ) .  +1 ~. ec~- , tx)+ X IU ,-~., 
O~i<a--1 

p~2,,(x)= I U S"' l- 'M(x) ,  where M ( x ) =  {yEContF.(S"i)jp(y)~p(x)}. Here M ( x ) =  
Ml(x) U M2(x), where 

M~(x) = {y(M(x)l~tEDom(S:.'): s(t) ~ p ( x ) + 3 . 2  -~, yEContv.(S"'(t))}, 

M.z(x) = {y( M(x)l~t(Dom(S~'i): s(t) > p ( x ) + 3 -  2 -~, y(Cont~.(S~,~(t))}. 

~ - i 2 - ~ r l ~  < 1 QVa'(S"~,q.,,qa ),qz ~, and Lemma 7 (ii) implies that IMz(x)I~N(S',% 
that  is 

F ~ Ps.,' (x) <= I U S ~" i1-1 (M1 (x) + N(S ~' i)) 

(21N(S :, ;)) -a (N(S  ~, i) + Z {N(S "' ')]s (t) _-< p (x) + 3 . 2  -'}) 

=< p ( x ) + 5 . 2 - (  

Similarly, using that  

F ~ 
1 -ps=,,(x) = IUS='*I-1[ {zEfontr,(S"")jp(z) > p(x)}], 

we get F; =p~, (x )~p(x )+5 2 -i, SO we have Fg pS,,,(X) • ps.,,(x)=p(x)+ Ri(x), where 

IR,(x)l < 10.2 -~, F"~ ~t - p~.(x)=-pc ~ and Q[~ ~ (C~, qz, q~- ; -a2- 'n ) -  Therefore, by the 

same argument  as above we get that pc¢(e¢ x)-p(x)  . . . .  T Rj(X), where [Rj(x)l =< 10 .2 -~+L 

Hence 

p(x) = l (JuD~jp~o~(x)+ Z )UC'~-JI(P(x)+ Rj(x)) 
j = 0 , 1  

+ w .~ (p(x)+R,(x))]US='*l, 
0 = < i < ~ - - 1  

that  is, 

1 Iun=]p(x ) 1 IUD=]pF~(x ) 
17 I1 

and so 

-k(l--g)(Ro(x)+ R~(x))+ ~ q~-iRi(x) 
O_--<i<a--1 

p(x) = p~-~ (x)+ R(x), where 

IR (x)l ~ (l+qa)((1-g)lO.2-~+q12 < ]~-~2-I ~ -1. 

2* 
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Lemma 14. F: QI" (D ,  q2, 2-~-1n) and Qf*+l(A~+l'~+l, qz, 2-=-1n). 

Proof. The first assertion implies the second since S~+X,~+~(t)~D~(t) for all 
t6Dom(D~). The definition of  D ~, (8.3) and (8.4) imply ~--3OF~(D~- , q~, 2q22-~n) , 

and so Q~;(D ~, q2, 2-~-Xn) • 

dl>>a- ~ ,  el<<qz, therefore Corollary 9 and Lemma 13 imply 

af t (O, ,  qz, 2- ' -1n )  • l 
Lemma 15. For all O<-i <-_o~ 

ct+l--i ~--~--i x (15.1) QV~'+~ (S'+~", q2, ql z: tl). 

Proof. If  i<ko, then N(S~+I'I)=O, hence (15.1) trivially holds in this case. 
Suppose ko<i<=ot. By (2.8) 

(15.2) S ~+1,i : W(D ~, i)Uz_~C~+IUn~Ci, -~. 

W(D ~, i) is a chain, and for all t with l ( t ) : i  we have 

IW(D ~, 0(0 c= u D'(t') 
r ' < t  

I ( t ' ) = ~ + l  

Therefore, for all ).:>1, l(t)=i, 

GYm(t, Iml-x2 ~-, W) == U GF~( t', [Wt-~Z~--½[ml-a+ 2-'-~, O~), 
V-<t 

/ ( t ' ) = ~ t + l  

where t o : Q ,  0 . . . . .  0>, l ( t o )=~+l ,  and hence s(t)=s(to)+l/2 1W[-1-2  . . . .  J. 
Therefore, for ).-_>2, 

1 
F ~, Gr~(t, Im[-12 ~', WI) ~ G ,  (to, IWl-X2 a-~, D') 

1 
F ~' 1 ~ +~- i+- -~-  = a = (to, IO=l- 2 , D~). 

By Lemma 14 and q.z<<ql, we have 
1 

IGF~(', IW1-12 ~, W)I --<-- 2-~-~nq~ +~-'÷T 
[ _ _ \  

<--2-~-lnq~-'qzZ[~] <: 2-~-lnq~+t-iq~ z, 

and similar inequality holds with H. So we have 

(15.3) QFz~ (W(D" , i), q2, 2-'-lnq~+ l-') • 

According to (8.5) and the definition of  P~ 

(15.4) Q~(rc-l C~z -t, q2, q2ql - ' -12- 'n)  
holds. By (8.4), 

(15.5) Q~ (n2C~ -~, q~, qzq~-'+~2-'n). 
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(15.3), (15.4) and (15.5) imply that 

(15.6) QF~( S~+l'i, q2, q ~ + l - i 2 - ~ n )  • 

FCt+l 
To prove Qx (...) we may use the same argument as in the proof of  Lemma 14. 

Let x be an arbitrary element of  L 

[p(x)--F~ ~x~f< 

1 p 
(15.7) ]p(x ) N(SZ+I.i ) ve(D~.i(x)UP _~c~+~(x)U P~q_~(x), 

where Pc(x)={y~Conte~(C)  ly<-x}, 

Pww%,(x) = U {yECont(D~(t)NW( D~, i))} 
l(t)=a~+l 

and D=(t)N [ U ( W ( D  =, i))] is a chain (as a function of  t), therefore Lemma 13, 14 
and ql<<l imply 

]P~w.,~(x)] = p(x)[ UW(DL i)1 +M~(x) 

where M~(x)<:l/lO2-~-In. (15.4) and (15.5) imply 

[P~_~¢,+~ (x)[ = p(x)[ U zr_~C~+~l + Ms(x) 

Ie~c~-~(x) I = p(x)lU~2Cg-~l+ Ma(x), 

where M~(x)< 1/10 N(/g_xCg/+I), M 3 ( x ) :  1/10 NOr2C~-~). Thus we have 

Ip( ) F¢ ( )1 X --Ps +~,~ X 

(N(S~+~"))-'(MI(x)+ M~.(x)+ Mz(x)) <- ½2-'. 

f)F'-l{s¢~+l,i q~+X-i2-~n)" Hence Corollary 9 implies that ~ ~ , qz, I 
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