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Quasi-symmetric designs are block designs with two block intersection numbers x and y 
It is shown that with the exception of (x,y)=(0, 1), for a fixed value of the block size Ic, there are 
finitely many such designs. Some finiteness results on block graphs are derived. For a quasi-symmetric 
3-design with positive x and y, the intersection numbers are shown to be roots of a quadratic whose 
coefficients are polynomial functions of v, k and 2. Using this quadratic, various characterizations of 
the Witt--Ltineburg design on 23 pohats are obtained. It is shown that if x= 1, then a fixed value 
of 2 determines at most finitely many such designs. 

1. Introduction 

Block designs with two block intersection numbers have been objects of  
considerable interest in recent years (see the references). These designs are known as 
quasi-symmetric designs. I f  the definition is slightly generalized then the class of  
these designs can be made sufficiently broad to include all the symmetric designs. 

In the literature, 2-designs with two block intersection numbers x and y, 
x < y  have been studied but almost invariably these objects have been studied with 
additional constraints. For  example, under the assumption that the design has no 
three blocks that  mutually intersect in x points. Such designs were studied in [1, 11, 
14]. The case x = 0  is particularly important  since most o f  the kaaown examples 
seem to belong to this type (or its complement).  This was considered in [13] where it 
was shown that the number  of  such designs is finite if  the block size k or the occurrence 
of  a pair 2 ~ 2  is held fixed. 

The preliminary aim of  this paper  is to study quasi-symmetric designs with 
any intersection number  pair (x, y), where x is not necessarily assumed to be zero. 
The main aim, however, is to develop sufficient machinary toward classification of  
all the 3-designs with two block intersection numbers. This problem (and even a 
more difficult one concerning the classification of  quasi-symmetric 2-designs) has been 
posed as an open problem in the t-design survey of  Hedayat  and Kageyama [6, 9]. 

,~ The classification of  3-designs with x = 0  was given by Cameron [2]. Unfortu-  
natel-y, there is no obvious way of extending Cameron 's  p roof  to cover x # 0 ,  since 
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his proof heavily relies on the fact that any contraction of such an object is a sym- 
metric design, a structure which can be characterized by the design parameters alone. 
However, we show the existence of a quadratic polynomialf(c 0 with coefficients in 
v, k, and 2 whose roots are the block intersection numbers. We would like to point 
out that this is similar to the Delsarte polynomial for fight t-designs used by rese- 
archers in the area of t-designs [5, 12, 16]. As pointed out earlier, this quadratic is a 
step in the direction of the classification of quasi-symmetric 3-designs. 

Section 2 is concerned with quasi-symmetric 2-designs D. A useful tool in the 
study of such designs is its block graph F, where two vertices are joined if and only 
if the corresponding blocks intersect in y points. It is well known that the block graph 
is a strongly regular graph whose parameter set (n, a, e, d) is expressible in terms of 
the design parameters and the intersection numbers (see e.g. [15]). Many strongly 
regular graphs are, in fact, obtained in this manner. 

Some other preliminary results required in Sections 3 and 4 are also proved in 
Section 2. In Proposition 2.2, we show that if 2#1 ,  then the number of points v 
of D is bounded by k2/x, where x is the smaller intersection number. It then follows 
that barring the pair (x, y)=(0, 1) (which corresponds to Steiner systems), if the 
block size k is fixed, then the number of such designs is finite (Theorem 2.6 and Re- 
mark 2.7). It is easy to see that quasi-symmetric t-designs do not exist for t>4  
(e.g..[6]). For t=4,  N. Ito [8] has shown that, up to complementation such an ob- 
ject is umque. 

In Section 3 we study 3-designs with two block intersection numbers. We show 
that if the block intersection numbers are positive, then they are roots of a quadratic 
polynomial f(~)=ActZ+B~+C, where A, B and C are polynomial functions in 
v, k, and 2=23 (Theorem 3.2). To do this, we look at D and its point contraction as 
quasi-symmetric designs and obtain two simultaneous linear equations in x+y  and 
xy. It is shown that the Delsarte polynomial for 4-designs referred to in [12] can also 
be obtained from our quadratic (Corollary 3.5). 

Section 4 is mainly concerned with quasi-symmetric 3-designs in which the 
smaller intersection number x =  1. As mentioned earlier, the case x = 0  was consid- 
ered by Cameron [2]. The only known example of a 3-design with x =  1 is the 
Witt--Ltineburg 4-design on 23 points or its residual. We obtain various characteri- 
zations of these designs (Proposition 4.3, Theorem 4.5). We also conjecture (Con- 
jecture 4.6 and Conjecture 4.7) that if D is a quasi-symmetric 3-design with x ~ 0  
then D is the Witt--Liineburg design on 23 points or its residual or D is the comple- 
ment of one of these designs or complement of designs in Cameron's list. We believe 
that the quadratic in Theorem 3.2, (though quite complicated) and the use of sophis- 
ticated number theoretic techniques will help settle these conjectures. We end this 
paper by partially answering this question (Theorem 4.8) and show that for x =  1 
and for any fixed 2=23, there are finitely many such 3-designs. 

2. Quasi-symmetric 2-designs 

At the outset, we wish to point out that while the results of this section are 
needed in Sections 3 and 4, they are also of independent interest (for example, Theo- 
rem 2.6). 

Suppose D is a quasi-symmetric 2-design with standard parameter set (v, b, r, 
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k, 2; x ,y )  where x , y  are the two block intersection numbers with O<-x<y<k. 
We also assume that D is proper quasi-symmetric i.e., both the intersection numbers 
occur. Let F (respectively F) denote the block graph (the complement of F) of D 
where, as usual, two vertices are adjacent if and only if the corresponding blocks 
intersect in y points (x points). The following result is well-known (see, e.g. [15]). 

Lemma 2.1. Both F and F are strongly regular graphs. I f  F is connected then its 
parameter set (n, a, c, d) is given by: 

k ( r -  1 ) - x ( b -  1) 
n =  b , a =  

Z 

c=d-~ 
( r -  2)-  (k-  x) (k-  x) 

Z Z 

( r - 2 ) ( k - x )  ( k - x )  2 
d =  a-- + 

Z 2 Z 2 

where, z = y - x  divides k - x .  Let k - x = m z .  Also if F is connected then the para- 
meters a, c, ~, of F are obtained by interchanging x and y in the formulcLv of a, c, d 
respectively, i 

Proposition 2.2. With everything as above, let 2#1. Then the smaller intersection 
number x< k2/v-< 2. 

Proof. Since a>O in Lemma 2.1, x< kLr-1)'" 
kr k" 

< - -  - Since r_- > k + l  
(b - 1) b v 

(recall that D is not symmetric), 2(v-1)=r(k-1)>=k2-1.  So 2v-k2>-_2-1>O, 
because 2#1 .  Hence k2/v<2 proving the assertion, i 

Corollary 2.3. Let a be a positive real number and suppose D satisfies x>k/a. Then 
the number of points v of D is bounded above by ka. 

Corollary 2.4. Let v>-2k. Then the smaller intersection number x is at most k/2. 

Proofs. In Proposition 2.2, use v / k~k / x  to obtain Corollary 2.3; Corollary 2.4 
follows with c~=2. i 

Lemma 2.5 [I4, Lemma 2.3] The following relation holds: 

(1) k ( r -  1 ) ( y + x -  1 ) - x y ( b -  1) = k ( k -  1)(£-  1). 

Proof. Fix a block B 0 and count in two ways the nmnber of triples (s, t, B), where 
s, t6BNBo, B#Bo. This gives a y ( y - 1 ) + ( b - l - a )  x ( x - 1 ) = k ( k - 1 ) ( , ~ - l ) .  
Now, use lemma 2.1 and substitute the value of a. The desired conclusion follows 
upon simplification, i 

Theorem 2.6. For a fixed value of the block size k, there exist only finitely many quasi- 
symmetric designs with larger intersection number >=2. 

Proof. By [4], the inequality b<=v(v-1)/2 holds for any quasi-symmetric design. 
Hence it suffices to show that for a fixed k, v is bounded above. For  x ~ 0 ,  this is 
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a consequence of Proposition 2.2, while the case x=O is shown in [13, Corollary 
3.2]. | 

Remark 2.7. Since there are infinitely many designs for 2 = 1, the following inter- 
pretation of Theorem 2.6 is possible: for a fixed block size k, the population of 
quasi-symmetric designs is thicker at (x, y)=(0,  1). 

Proposition 2.8. Let S be the set of  all quasi-symmetric designs D hi which the block 
intersection numbers x, y are fixed with y>=2. Suppose any one of the following addi- 
tional properties (i) through (iv) hoMs. Then S is finite. 

(i) F is connected and a - c  is fixed. 
(ii) /~ is connected and a - d  is fixed. 

(iii) F is connected and ~ -  ~ is fixed. 
(iv) F is connected and ~ - ~  is fixed. 

ProoL (i): From lemma 2.1, ( c -a ) ( y - x )=O-2mz- -Om+m"-z ,  where O = r - 2  
and z and m are explained in lemma 2.1. Writing this equation modulo ( m - l ) ,  
gives z (c -a+l )=-O (rood m - l ) .  Observe that m # l  since we have no repeated 
blocks. Also if c = a -  1 then it is easy to see that F is either disconnected or complete. 
This is a contradiction since F is connected and D is proper quasi-symmetric. Since 
z = y - x  is fixed, m - 1  divides a fixed positive integer and consequently m has 
finitely many possibilities. This implies that k = m z + x  also has finitely many possi- 
bilities. Use of Theorem 2.6 completes the proof of (i). 

(ii) As in (i), m divides (a -d ) z2#O since r is connected. Now argue as in (i). 
(iii) and (iv) are proved similarly and are left to the reader. II 

Remarks 2.10. We would like to point out that Theorem 2.6 is a generalization of 
the results in [1, 13, and 14]. The special case (x, ~.)=(0, 0) was considered in [1, 
also 11]. This was generalized in one direction to allow arbitrary x in [14] while in 
[13], x was restricted to 0 but ~ was allowed to be an arbitrary fixed integer. With a 
fairly lengthy and tedious argument (which involves obtaining a quadratic equation 
in 2 with coefficients in k, x, y and g) it may be possible to show a very generalized 
form of the main resultsin [1, 13, t4]: Let x ~ 0 ,  y ~ 2  and ~->_0 befixed arbitrary 
integers. Then there are finitely many quasi-symmetric designs with given values 
o f x ,  y and g. 

We would also like to mention that if x = 0 ,  then it is easy to see that y < 2  
for a proper quasi-symmetric design. However, if x-#0, then Proposition 2.2 gives 
x<2 .  This shows the importance of studying the pair (x, y)=(x ,  2). This has been 
considered by Holliday in [7]. 

3. A polynomial associated with a quasi-symmetric 3-design 

Throughout this section and section 4, D will denote a quasi-symmetric 3- 
design with two block intersection numbers x and y, O<-x<y. For x = 0 ,  such 
designs were classified by P. J. Cameron [2, 4] in the following theorem. 

Theorem 3.1. D is a quasi-symmetric 3-design with an intersection nwnber 0 i f  and 
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only i f  D is the extension of a symmetric 2-design. In that case the parameters of D are 
one of the following four types: 

(i) D is Hadamard 3-design. 
(ii) v=(Z+2) (2z+42+2)+l ,  k=2Z+32+2,  and 2=1 ,2  . . . . .  

(iii) D is the extension of a projective plane of order 10. 
(iv) v=496, k=40 and Z=3. II 

We add that (iii) has recently been ruled out by Lain et. al [l 0]. A classifica- 
tion analogous to Theorem 3.1 for x # 0  is not known (see, e.g. [6, 9]). While this 
question seems to be fairly difficult, we show the existence of a Delsarte-type poly- 
nomial see [5, 12] for a 3-design with two positive block intersection numbers. Using 
this polynomial in Section 4, we make an attempt to classify 3-designs with x = l .  

Theorem 3.2. Let D be a quasi-symmetric 3-design with standard parameters v, k, 
).(=it3) and with two positive block intersection numbers. Then the block intersection 
numbers are roots of a quadratic f(cO=Act2 +Bc~+C, where A, B, and C are (poly- 
nomial) fimctions of v, k and Z as given by 

A = ( v -  2) [2 ( v -  1) ( v -  2) - I,: (k  - 1) (k  - 2)], 

- B = [ ( v -  2) + 2 (k - 1)2] ( v -  1) ( v -  2) Z -  [k ( v -  2) + ( /¢ -  1)-"] k (k - 1) (k - 2) 

and 
c = ( k -  1)~k~[;~(v-2)-(k- 1)(k-2)1. 

Proof. Let x and y be the two block intersection numbers with 1 ~ x < y .  Suppose 
a1---x+y and a.~=xy. Using equation (1) of the previous section (notice that the 2 
of equation (1) is actually 2 2 of D), we obtain: 

(2) k ( r -  1 ) e l - ( b -  1)a2 = k(k- 1)(22- 1)+k( , ' -  I). 

Let E be a point-contraction of D. Since x__->: 1, E is a proper quasi-symmetric 
design with parameters (in ternas of the original parameters of D)" U = k - 1 ,  /=22,  
b'=21=r,  2"=2a, x ' = x - 1  and y ' = y - 1  where the two last symbols are the 
block intersection numbers of E. Applying (l) again to E and suitably rearranging 
terms, we obtain: 

(3) [ ( k -  i ) 0 . 2 -  l ) + ( r -  l ) ]e  1 - ( r -  l)~x2 = 

= ( k -  1)(k-  2) (2a- 1)+ 3 (/¢- 1) (2z- 1)+ ( r -  1). 

Our proof involves solving (2) and (3) as simultaneous linear equations in unknowns 
a 1 and e~. Let F, G and H denote the following determinants: 

[ k ( r - 1 )  - ( b - 1 ) l  
F =  ( k - 1 ) ( 2 , - 1 ) + ( r - 1 )  ( r - l )  

k ( k -  1)(,t~- 1 ) + k ( r -  1) - ( b - l )  

C = ( k -  l ) ( k -2 ) ( , ~ -  l) 
+ 3 ( k - 1 ) ( 2  2-1)+(1. -1)  - ( r - l )  

6* 
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and 
k ( r -  l) k ( k -  1)(22-1)+ k ( r -  l) 

H =  ( k - 1 ) ( A 2 - 1 ) + ( r - 1 )  (k -1 )  (k - 2) (23 -1 )  • 
+ 3 ( k -  1) (2~- 1 ) + ( r -  l) 

It is then clear by Cramer's rule that if F # 0  then cq=G/F and ~2=H/F. 
Hence the theorem is proved if F, G and H are simplified to a suitable form. To that 
end, note the following recursion relation which will be used throughout this paper. 

Lemma 3.3. In a t - ( v ,  k, 2) design, let 21 be the number of  blocks containing any 
given i-tuple, i=0, I . . . . .  t with 2t=2 , 20=b and 2z=r. Then: 

(v-i) 
(4) 2,-- )(k-i-----r2~+t" i = 0 ,  t . . . . .  t - 1 .  II 

Returning to our proof, the use of (4) and straightforward but tedious calcu- 
lations simplify F,G and H to F=OA, G = - O B  and H=OC, where: 

O= 2(v-k)2(v-2)  
k ( k -  1)~'(k-2) 2 

and A, B, C are as given in the statement of Theorem 3.2. Observe that F=0  implies 
A=0,  which on simplification gives 2 3 ( v - 1 ) ( v - 2 ) = k ( k - 1 ) ( k - 2 ) .  Using (4) 
two times, gives r=k, a contradiction since D is not symmetric. Hence F#0,  
o q = x + y = G / F = - B / A  and ~2=xy=H/F=C/A.  Thus x , y  are roots of 
Ae2+B~+C=O as desired. | 

The following theorem is a special case of a theorem due to Ray--Chaudhuri 
and Wilson [12]. 

/ % 

3.4. A 4-design in quasi-symmetric if  and on@ if b : [ ~ J .  1 Theorem 

Application of Theorem 3.2 yields the following corollary given in Ray-- 
Chaudhuri and Wilson [12, Theorem 5]. 

Corollary 3.5. Let D be a quasi-symmetric 4-design. Then x and y are roots of the 
( Delsarte ) quadratic 

f(cO = , ~ -  [.2(k-v_31)(k-2) t-11 ~+ 2 [ 2 + - - ~ 4  3 }. 

Proof. First note that if x=0,  then by (Cameron's) Theorem 3.1, the design is an 
extension of a symmetric design E which must be simultaneously a 3-design, a contra- 

J ~ 

So x#0.  By Theorem 3.4, b = | g ] .  Using lemma 3.3, diction. 
\ - - 1  

;~ = k ( k -  l ) ( k - 2 )  
2(v-2) 

Substitution of this value in Theorem 3.2 yields the assertion. | 
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4. The Case x = l  

We begin this section by noting the following simple consequences of Theo- 
rem 3.2. 

Proposition. 4.1 Let D be a 3 - ( v ,  k, 2) quasi-symmetric design. Then the following 
assertions hold. 

(i) v - 2  divides k ( k - 1 ) ~ ( k - 2 ) .  
(ii) Let x ¢ O  and suppose c~ is x or y. Then the following equation holds: 

(5) 2a [(k - 1) 2 (v - 2) {k 2 - 2~ (v - 1)} + ,  ( ,  - 1) (v - I) (v - 2)21 = 

= k ( k -  1 ) ( k - 2 ) ( k -  ~) [ (k -  1) 2 -  ~ ( v -  2)]. 

Proof. (i): If  x = 0 ,  then use Theorem 3.1 and verify the assertion. If x # 0 ,  then by 
Theorem 3.2, x + y =  - B / A ,  where A, B are as in the statement of Theorem 3.2. 
Since v - 2  divides A, it nmst also divide B. This yields the assertion. 

(ii) By Theorem 3.2, x + y =  - B / A  and xy=C/A.  Use the values of A, B, C 
and eliminate one of the variables to get equation (5) in the other variable. Since 
f ( a ) = A a Z + B a + C  is symmetric in x or y the proof is obvious. I 

We also need the following result whose proof can be found in [13]. 

Theorem 4.2. For a fixed value of 2 >=2, the number of proper quasi-symmetric designs 
with x = 0  (and arbitrary y)  is finite. I 

Proposition 4.3. Let D be a quasi-symmetric 3-design with x =  1. Then the following 
equations are satisfied: 

~ ( v - 2 )  ( k -  1 ) 2 - ( v - 2 )  
(6) k ( k -  2) = k "z- 2 ( v -  l) 

(7) (k - 2)(2 - 1) = (2z - 1)(y - 2). 

(k-2)(k-y) 
(8) 2 = 23 = ( k _ 2 ) 2 _ ( v _ 2 ) ( v _ 2 )  • 

(9) yv z -- y (k = - k + 3) v + k ( k -  1) = (k - 2) + 2y (k 2 -  k + 1) = 0. 

Proof. Substitute a = x = l  in (5) to get 2 ( v - 2 ) [ k ~ - 2 ( v - 1 ) ] = k ( k - 2 ) [ ( k - 1 )  =- 
- ( v - 2 ) ] .  In this equation, k 2 - 2 ( v - 1 ) = 0  if and only if ( k -  1 ) 2 - ( v - 2 ) = 0 .  This 
is impossible since k_->3 and the proof of (6) is clear. (7) follows by simple two-way 
counting (see e.g. [13]). 

For (8), obtain the values of 2~ from (7) and Lemma 3.3 and equate them. 
Finally for (9), substitute the value of 23 from (8) into (6) to get the required quadratic 
i n v .  | 

The following result appears in [13, Theorem 4.1]. 

I.emma 4.4. Let  E be a proper quasi-symmetric 2-design with x=0 .  Let k = m y .  
Then the integer m divides y { X 2 - ( y + l ) 2 + y } .  | 
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Theorem 4.5. Let D be a quasi-symmetric 3 - ( %  k, ).) design with x=  l. Then 
(i) v--2 divides k ( k - 1 ) 2 ( k - 2 ) ,  

(ii) The larger intersection number y>=3 with equality i f  and only i f  D is the 
(unique) Witt--Li~neburg 4--(23, 7, 1) design or its residual a 3--(22, 7, 4) design. 

(iii) 2=>y. 
(iv)).a >=4 with equality i f  and only i f  D is the 3--(22, 7, 4) design. 
(v) ) .a=5 i f  and only i f  D is the Witt--Li~neburg design on 23points. 

(vi) 2a<=k-2 with equality i f  and only i f  D is the Witt--Liineburg dexign 
on 23 poh~ts. 

(vii)).2=<v-2 with equality i f  and only i f  D is the Witt--Li¢neburg design on 
23 points. 

(viii) v is bounded below and above as follows: 

(10) (k - 2)2(y - 1) ( k - 2 )  ( k -  2)(k - 3 )  
y ( y - 2 )  t 1 =< v - 3  =< 

Y 0 ' - 2 )  

Further, in (10) the upper bound is sharp with equality i f  and only i f  D is the Wi t t - -  
Li~nebw'g 4-design on 23 points. 

Proof. For (i) consider a cross multiplication in (6). 

(ii) The discriminant A (y) of the quadratic (9) is given by 

A (y) = ),2(k2-k +3) 2 -  Sy2(k 2 - k  + l) - 4 y k ( k  - 1)=(k -2) .  

It is easy to see that A(2) is negative lbr all k ~ 2 .  Hence y ~ 2 .  Let y = 3 .  Then 
A (3) = - 3k 4 + 30k a -  69k"- +42k + 9 which is negative for all k-> 9. Since (by Lemma 
2.1) y - 1  divides k - l ,  k = 5  or 7 and for k = 5 ,  A(3) is not a perfect square. So 
k = 7 ,  substitute this value in (9) with y = 3  to get v = 2 2  or 23. Substitute these 
values in (6) to get 2 = 4  or 5. Hence D is either a 3 - (22 ,  7, 4) or a 3 - (23 ,  7, 5) 
design. In the latter case one can exactly calculate the occurrences of 4-tuples on 
blocks to arrive at the required conclusion. The former parameter set is clearly the 
residual of the latter 4-design. Hence (ii) is proved. 

(iii) Contract D to get a 2-design E in which any point is on 22 blocks and the 
block size is k - 1 .  Also E is not symmetric, for otherwise, x = 0  by Cameron's 
theorem. Hence by Fisher's inequality, k=<22. Using this in (7) we get 2~y .  This 
proves (iii). 

Consider (iv). If 2=<3, then by (iii) and (ii), y = 3 .  This implies 2a=4 or 5, 
a contradiction. So 2a=>4. If 23=4, then by (iii), y<-4. If  y = 3 ,  then use (ii) to 
complete the proof. Otherwise y =4.  Let E be a point-contraction of D. Then E has 
y ' = 3 ,  2 ' = 4  and k ' = k - 1 .  Using Lemma 4.4, m divides 9. So m = 3  or m=9.  
If m=3 ,  then k - l = 9  i.e., k = 1 0  and using (7) ,) .2=13,  which, by Lemma 3.3 
implies that v - 2 = 2 6 .  This contradicts (i). Let m=9.  Then k - 1 = 2 7  i.e., k = 2 8  
and using (7),) .==40, which by Lemma 3.3 implies v - 2 = 2 6 0 ,  again a contradiction 
to Proposition 4.1 (i). This proves (iv). 

(v) Let )~a=5. Then y=<5 and by (ii), y->3. If y=3,  then we are done by 
(ii). Let, for the sake of contradiction, y=>4. Then y = 4  or y = 5 .  If y = 4 ,  then 
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application of Lemma 4.4 to a contraction of D implies that m divides 24. So 
m = 2 ,  3, 4, 6, 8, 12 or 24. This gives k - 1  =m(y-1)=3m and hence k. From this we 
calculate 2a - 1 and hence L~ using (7). Finally using Lemma 3.3 (standard recursion), 
we get v - 2 .  These values are tabulated in the table below: 

m 2 3 4 6 8 12 24 

k - 1  6 9 12 18 24 36 72 

k - 2  5 8 11 17 23 35 71 

22 11 17 23 35 47 71 143 

v - 2  11 f f 119 f 4 9 7  ¢ 

In this table, f denotes a non-integer and the corresponding case is ruled out. Finally 
using (i), v - 2  divides k(k-1)~(k-2). This rules out all the remaining cases. 

Now let y = 5 .  Again using Lemma 4.4, m divides 16 and hence m=2 ,  4, 8 
or 16. Following the same approach as before (use (7), and then Lemma 3.3) to get 
the following table: 

rn 2 4 8 16 

k - 1  8 16 32 64 

k - 2  7 15 31 63 

).2 f 20 f 84 

v - 2  - 60 -- f 

The second column is finally ruled out 2~(v- 1) =r(k- 1) which forces r to be a non- 
integer, a contradiction. 

(vi) and (vii). Contract D two times to get a I-design E with block intersection 
number y - 2 ,  which is positive by (ii). Hence E is the dual of a 2-design. Application 
of Fisher's inequality yields 22<=z,-2 or equivalently 2a<=k-2. Also, in the case 
of equality, E is a symmetric design i.e. D is a double extension of a symmetric design. 
Using standard rationality conditions or using results in Cameron--Van Lint [4], 
E is the Witt--Ltineburg 4-design on 23 points. 

Consider (viii). Use (8) and the bound 2 3 ~ k - 2  proved in (vi) to yield the 
desired upper bound in (10). Also in case of equality, 2 3 = k - 2  which can be handled 
in (vi) again. Now use (8) again and the inequality 23 ~ y  obtained in (iii) to get the 
lower bound. This proves (viii) and the proof of Theorem 4.5 is now complete. II 

One can make use of various equations proved in this paper (this is already 
indicated in the proof of Theorem 4.5 (iv), (vi) to rule out many values of k and 2 =).z. 
This leads us to make the following two conjectures: 

Conjecture 4.6. Let D be a quasi-symmetric 3-design with x =  1. Then D is either the 
Witt--Ltineburg 4-design on 23 points or its residual a 3-(22,  7, 4) design. 
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Conjecture 4.7. Let  D be a quas i -symmetr ic  3-design. Then one o f  the following 
cases occurs:  

(i) x = 0  and D is a design in C a m e r o n ' s  family  (see Theorem 3.1). 
(ii) x =  1 and  D is the Wi t t - -L t i nebu rg  design on 23 points or  its residual. 

(iii) D is the complement  of  some design in (i) or  (ii) above.  

Observe tha t  Conjecture  4.7 implies the wel l -known result of  N. I to on tight 
4-designs [8]. Also we note  an open question of  Hedaya t  and K a g e y a m a  [9, Question 
5] in the fight o f  our  results. While it seems difficult to prove  Conjecture  4.7 using our  
(quadratic)  po lynomia l  in Section 3, we believe tha t  Conjecture  4.6 is p rovable  using 
the var ious equat ions in Section 4 and some number  theory. To  that  end, we offer 
the following observat ion:  

Theorem 4.8. Let  s be a f i x ed  positive integer and S be the class o f  all quasi-symmetric 
3 - ( v ,  k, 2) design with 2 = s  and smaller intersection number x<- l. Then S is finite. 

Proof.  The  case x = 0  is shown in Theorem 3.1. Fo r  x = l ,  contract  D to a 2-design 
E with block intersection numbers  0 and y - 1 .  Since 23#1 (by Theorem 4.5, (iv)), 
using Theo rem 4.2, there are finitely many  such designs E. Hence  k - 1  has finitely 
m a n y  possibilities. For  each such value of  k -  1 and  hence k, v is bounded  by k S 
(use Propos i t ion  2.2). Therefore  S is a finite union of  finite sets. | 
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