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We give an explicit construction of regular graphs of degree 2r with a vertices and girth 
_~c log n/log r. We use Cayley graphs of factor groups of free subgroups of the modular group. 
An application to low density codes is given. 

1. Introduction 

In this paper  we consider graphs whose vertices have bounded degree (~3) .  
We study the girth of  such graphs, that is the length of  their shortest cycle. One can 
easily show that this quantity grows at most at the rate of  the logarithm of the number 
of  vertices. It  isn't difficult either to prove the existence of such graphs whose girth 
is a logarithmic function of  the number of  vertices. An explicit construction, however, 
presents difficulties. In fact, to the author 's  knowledge none of the known proofs of  
the existence of such graphs is constructive. (For literature, see [8], pp. 108--125.) 
The basic aim of this paper is to give an explicit construction. As an application, we 
give an explicit construction of a sequence of low density codes for which the proba- 
bility of errors of decoding tends to zero. 

2. Preliminaries 

For  a graph X, we shall denote by n(X)  the number of  vertices and by c(X)  
the girth of  X. By a walk of length k we mean a sequence of steps along adjacent 
vertices Xo, X~, . . . , x k  such that x ~ - l ~ x i + l .  

Let us consider regular graphs of degree 4 (without loops and multiple edges). 
For  any vertex x, the number of  walks of length at most  k beginning at x is 

4(I  + 3 + . . . + 3  k-l) = 2(3 k - l ) .  

AMS subject classification (1980): 05C35, 94B05,05C38; 05C25,20E05, 30F40 



72 G. A. MARGULIS 

On the other hand it is clear that if c(X)>2k then all walks counted above 
end at different vertices. From this it follows that 

and consequently 

(1) 

2 (3 (~ (x)- 1)/2 _ 1 ) <= n (X) 

( n (X) 4-1 c(X) ~: 2 log3 [ - - -5- - -_  ) + 1 .  

From this inequality we see that c(X) grows at most  at the rate of  the logarithm 
of  n(X). With the aim of  providing an explicit construction of  a sequence of  graphs 
for which c(X) does grow logarithmically as a function of n(X), we first describe 
a common way of constructing a graph from a group and a set of  its generators. 

3. Cayley graphs 

Let G be a group and A a subset of  G. Let us define the graph X(G, A) in the 
tbllowing way. The vertices of  X(G, A) are the elements of  the group G. Two elements 
gl, g2EG are adjacent if and only if g{~g2~A, i.e. gz=gxa for some aCA. I f  we want 
to get an undirected graph, we have to assume A=A -~, i.e. that a~A implies 
a-tEA. The graph X(G, A) is sometimes called the Cayley graph of the group G 
with respect to the subset A. The graph X(G, A) is homogeneous (vertex-transitive) 
since left multiplication by any element of  G preserves the adjacency relation in 
this graph. I f  cp: G-+G' is a group homomorphism then there is a natural map of 
x(a, A) to X(G', ,p(A)). 

4. Notation 

For  any commutative ring K with identity, we denote by SL2(K) the group 
of  unimodular two-by-two matrices over K (i.e. those having determinant 1). Z and 
Zp denote the ring of integers and the field of residues mod p for any prime p, respec- 
tively. 

I f  A is a subset of  the group G then a word W over A is a finite sequence 
f l ,  .--,fn such that for each i, l<=iNn, either f~ o r ~  - I  belongs to A. The word W 
is reduced if f i + l ¢ f i  -1 for any i=1 . . . .  , n - 1 .  

5. The construction 

Let us consider the integral matrices A =  and B =  2 1 " It  is known 

that there is no nontrivial multiplicative relation between A and B, that is any two 
reduced words over {A, B} define different elements of  SLy(Z) (see e.g. [7, Chapter 
2.3, Exercise 13 (h)]). 

ml For any prime p, we denote the group SL2(Zv) by G v. There is a homomor-  
phism ~pg of  SL2(Z) onto Gp which associates with each matrix XESL~(Z) the matrix 
q~p(X) obtained by reducing each element of  X mod p. Let us set Ap=rpp(A), Bp= 
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=~0v(B), A~-~=q0p(A-~), B~-l=~%(B-1). Fur thermore,  let us consider the set 
9.Ip= {Ap, B v, A'~ 1, B i  ~} and the Cayley graph Xp=X(Gp, 9.Ip). 

We estimate c(Xp) f rom below. To this end, we estimate the quanti ty d(Xp), 
defined as the largest integer such that  any two walks in Xp of  lengths ~d(Xv) start- 

ingat E=(101)endatdifferentvertices. Bythehomogeneity of Xp, we have c(X~)~= 

>=2d(X~)- 1. (In fact, either c(Xp)=2d(Xp) or c(X~)=2d(X~)- 1.) 

6. The lower bound for d(Xp) 

Assume we are given two walks P=(Po,Pl . . . . .  P,) and S=(so, sl . . . .  ,st) 
in Xp, both  starting at E=po=so and having a c o m m o n  end p,=s~. By the defini- 
tion o f  the graph X r, we find that pi=pi_lvl and sj=sj_lwj, l<-_i<-r, l~j<-t, 
where vi, wj~9.1p. The walks P and S correspond to the words V=(Vl,  ...,vr) 
and W=(wl . . . . .  wt) over ~lp. Clearly p~=vl . . . . .v  i and s j = w l . . . . - w j .  Hence, 
since pr=st, we have 

(2) v~.. . . .v ,  = w~.. . . .wt.  

Let  us define the word 17=(~,  .-., ~)  by 

A if vi = Ap 
B if vl = Bp 

vi = A_I  if v i = A ; ~  
B -1 if v i = B ; l  

and l~-=(#a, . . . ,  ~t) analogously.  B y o u r  definition o f  a walk (cf. Section 2), the 
words V and W and hence the words V and I'P are reduced. Since the walks P and S 
are different and po=so:E, the words V and W and thus the words I 7 and I~ are 
different. As V and W are different reduced words over {A, B}, we infer that  

(3) vl" ... " v~ ¢ r?l" .-. " #t 

since there is no multiplicative relation between A and B. 
On the other hand,  by (2) we have 

(4) ~0,(~t- ... • ~,) = ~0 e (ff, t . . . . ,  fit). 

Therefore all elements o f  the matrix V l ' " ' ' ~ r - - # ~ ' ' " ' ~ t  are divisible by p and 
at  least one o f  them is different f rom zero by (3). We conclude that  

where the no rm of  a matrix L is defined by IILI1--sup [ILxll/llxl[ and the norm of  
x#:0 

x =  is Ilxll = I/x~+x~. F r o m  (5)  w e  i n f e r  
X2 

(6) max {llOl- ... • ~,ll, I1~" ... • ~,[I} -> p/2. 
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Let us now calculate the norms of  the matrices A, B, A -1, B -1. I t  is known 
that  IIAI]2=[]A*AII where A* is the conjugate-transpose of  A. The norm of the her- 
mitian matrix A*A coincides with its largest eigen,value. Now, a simple calculation 

shows that c~d~rllA[I = 1 + t/2. Furthermore,  A, B, A -1 and B -~ are similar under 
orthogonal transformations and therefore 

(7) IIAII --I[Bll = IIA-~II = liB-all = c~ = 1+t ,~  = 2.4142 .... 

By the submultiplicativity of  the norm of  matrices, from (6) and (7) we deduce: 

(8) c~ m"~{~,*} => p/2. 

Recalling now the definition ofd(Xp), by (8) we obtain the inequality 

(9) d (Xp) => log~ (p/2) 

and consequently 
(10) c (Xp) -> 2 log~ (p/2) - 1. 

Let us remark, that the order of  the group Gp is n(Xp)=p(p"- 1). From this 

2 log~ n(X,)=0.756 log n(Xp) is an asymptotic lower and from (10) it follows that ~ ... 

estimate for c(Xp). 
For  comparison, let cOO denote the maximum girth of  regular graphs of degree 

4 and at most n vertices. The non-constructive lower bound of Erd t s  and Sachs [1] 
and of others (cf. [8, pp. 119--120]) yields c(n)~(1 +o(1))  log3n=0.91 ...log n. 

7. An application to low density codes 

First we describe a natural correspondence between binary codes and bipartite 
graphs. Let us be given a binary code, i.e. a matrix over the field Z2. Let C denote the 
set of  columns of this matrix and R the set of  rows. Let us consider the undirected 
graph having vertex set CUR such that x~C and ),ER are adjacent if and only if 
the matrix element in column x and row y is 1. q-here will be no edges within either 
C or R. Conversely, from any graph X whose vertices are partitioned as C 0 R with 
all edges going between C and R one can define the corresponding binary matrix 
with ]CI colums and IRI rows. 

Now we construct the graph Y,. To this end, we set Rp=Gp and Cp=GpU 
OGp=Gp×{O, 1}. We shall join g~Rp to the following six elements o fCp:  (gA~, 0), 
(gApBpA~l, 0), (gBp, O), (gA-~ z, 1), (gApB-~IA~ 1, 1), (gB7 ~, 1). From the fact 
that there are no multiplicati~e relations between A and B, we infer that there are no 
multiplicative relations between A °', ABA -~ and B either (@ [7, Chapter 2.3, Exercise 
10]). F rom this it follows by the same arguments as in Section 6 that the quantity 
d(Yp) tends to infinity at the rate of  log p, where d(Yp) is defined as the maximum of 
those k for which the following holds: any two walks in Yp of lengths at most k, 
starting at the same vertex which belongs to Cp end at different vertices. Now, d(Yp) 
is twice the number  of iterations needed in decoding the code Yp corresponding to the 
graph Yp (see [2, Ch. 4]). qherefore the probability of  an error in decoding the code 
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Yp using the method proposed in [2, Ch. 4] tends to zero while p ~ ~.  (We note that 
the results of [2] apply here because in the code Yp each symbol occurs in three parity 
check relations and each parity check relation involves six elements.) 

Remarks. (a) It is to be noted that the upper bound on the error probability of 
decoding obtained by the method of [2, Ch. 4] tends to zero very slowly as a function 
ofp .  (b) In Appendix C of [2], an algorithm is given to construct a low density code 
with a logarithmic number of  independent iterations. This algorithm, however, is less 
"explicit" in comparison with the one described above in the following sense: (i) 
in order to deternfine any particular element of  the parity-check matrix of  [2], one 
has to perform n ~ operations, where n is the order of the parity-check matrix and 
b > 3  whereas in our construction O (log n log log n) operations suffice; (ii) the deter- 
mination of any particular matrix element in [2] costs O(n'-') storage space while in 
our construction O (log n) space suffices. 

8. Arbitrary even degrees 

Now we generalize the construction given in Section 5 to the case of  regular 
graphs of  arbitrary even degree 2r_->4. Again, we use Cayley graphs of the groups 
Gp. In the place o f ~ p  we take a set of  the form ~op(sg,) where g2r = {gl, gi -1, g2, g~-~,'", 
• .., gr, g71} where gig SL2(Z) and there is no relation between the g~, that is g~ . . . . .  
..., g, are free generators of a free subgroup of SL2(Z). 

For  sake of an explicit construction, we use the following device. We take a 
sufficiently large positive integer n and select r +  1 distinct integral vectors (mi, q3, 
1 ~ i < - r + l ,  satisfying the following conditions: (a) mi and qi are relatively prime 
tbr every i; (b) O<=mi<n/2 and O<-qi<n/2. 

Note that no two of these vectors are proportional ; in particular, (0, 0) is not 
among them. 

Since m~ and q~ are relatively prime, there exists an integral unimodular matrix 

lni ai) 
Ci = tqi bi E SL2 (Z). 

By adding a suitable multiple of the first colunm to the second we may assume ]a;[ < 
<77/2 and Ibil<n/2. Now, we set 

and finally 

(I n~ 
C , [ o l J C c  1 ( i = l  . . . . .  ,.+l), 

~2 r = {gl, gf l ,  g.~, go21 . . . .  , g,, g21}. 

(Observe that the element gr+l has been omitted.) 

Let  SL2(nZ)denote the s e t o f  those integral matrices [e a ~1 where a - l - b -  
/ 

\ -  

= c - d - l = - 0  mod n. Clearly, SL2(nZ) is a normal subgroup of SLz(Z). Since 

1 ESL2(nZ) and C~<SL2(Z), we infer that giESL2(nZ). The matrices gl are 

unipotent, i.e. all their eigenvalues are equal to 1. 
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Lemma 1. For i ¢ j .  hE SL2(nZ), and u and t arbitrary nonzelv integers, we have 
g'[ := h g~ h -1. 

u t - -1  Proof. Assume by contradiction that gi=hgflz . One can easily verify that 

[mt)=(nh)  " " fm' / From thisand gt kqt ) Kqt )' and any vector invariant under g~ is propomonal  t o ,  ,qt" 

the unipotency of the matrix gz it follows that for any nonzero integer s, the vectors 

(m~] On the other hand, invariant under gf are again precisely those proportional to I,q~ )" 

the vector x is invariant under g~=hg~h -~ if and only if h-~x is invariant under 
, (,n,] (,n,i=b(., q gj. Hence, h (,nil is proportional to tqi ) '  i.e. h i, qi ) tqi ) for some integer b. 

tqj 1 
Since both h and h -1 are integral matrices, we infer that b=__+l. As hESL2(nZ), 

the components of the vector h f " " / - f ' n ' ]  t q j )  t q j )  are divisible by n. But 0<_mj<n/2, 

O~qi-<n/2. Therefore either h I, qj ) q~ = kqj )" or the absolute value of  at least 

one of  the components of the vector h 9nq--bfmq is o~reater than n/2. The first case I, qj ) I,q~ ) 

(mi] and ( ng] contradicts the fact that tq~ ! tqi ) are not proportional. The second case cont- 

radicts condition (b). II 

The group SL~(nZ) is a discrete subgroup of SL2(R). The factor space 
SL2(R)/SL2(nZ) is not compact and has finite volume with respect to Haar measure. 
For n ~ 3 ,  the group SL2(nZ) is torsion free (cf. [3, Ch. 1]). Therefore, by Lemma 1, 
the nonexistence of relations between gt . . . .  , g, will follow from 

Lemma 2. Let F be a discrete subgroup of  SLy(R) and hi . . . .  , h~+a a finite set of  
unipotent nonidenti O, elements o fF .  Assume that the following conditions hoM: 

(i) The factor space SL2(R)/F is not compact and has finite volume with re- 
spect to Haar measure. 

(ii) F does not contain any nonidentity elements of  finite order. 
(iii) For any i;~j, hE F and arbitrary nonzero integers t, u we have h~¢hh)h-L  
Then there is no nontrivial multiplicative relation between hx . . . .  , h,,  i.e. they 

generate a free group q f  rank r. 

Proof. The group SL2(R) acts in a natural way on the upper half plane X =  {x+iy] 
x, yER, y>0}.  The action is given by the formula 

(a blE SL,(R). az + b where z~ X, g = tc d) g z -  c z + d  ' 

Condition (ii) implies that F acts freely on X (no nonidenfity member of F 
has any fixed points). Therefore we can naturally identify F with the fundamental 
group rq(X/F) of the factor space X/F. In view of condition (i), X/T is a punctured 
compact Riemann surface, that is there exists a compact Riemann surface S contain- 
ing X/F such that S- - (X/F)  consists of a finite set of points. Furthermore, the points 
in S - ( X / F )  are in a natural one-to-one correspondence with the conjugacy classes 
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of maximal unipotent subgroups of F (cE [6, Chapter II, §2]). Hence for each i =  1 . . . . .  
..., r + l  there exist x~ES-(X/I-) and d~EZ, d ; ¢ 0  such that the curves representing 
hiE F=rq(X/F) are homotopic (in the free homotopy class) and thus homological 
to the d~-fold walk around x~. In addition, x~C-x i for i¢-j by condition (iii). Now, 
the intersection index of  a curve joining x~ to x~+~ and of  the curve representing 
hj is equal to dz6~ i where 6o" is the Kronecker symbol (1 ~-i,j:~r). Consequently, the 
homology classes ~o(h~)EHa(X/F,Z) are linearly independent for i=1  . . . . .  r, 
where cp: rq(X/F)-+Ht(X/F,Z) denotes the natural homomorphism to the 
one-dimensional homology group of  X/F. Since there is a natural isomorphism be- 
tween H~(X/F, Z) and the quotient of F=Tr~(X/F) by its commutator subgroup 
N(F), we have the following 

Proposition. Let O: F+F/~(F)  denote the natural homomorphism. Then Co(hi), 
1 ~i~_r, are finearly independent (over Z). ! 

Let H denote the subgroup generated by the elements h+, i=1 ,  ...+ r. As F 
is the fundamental group of the noncompact two-dimensional surface X/F, the group 
F is free and therefore H is free as well. On the other hand, by the Proposition, the 
factor of H by its commutator subgroup is a tTee abelian group of rank r. Hence H 
is a free group of rank r. Any r-set of generators of  a free group of  rank 1" being free 
(cE [4, Thin. 4.2.3]) we conclude that there is no relation between ht, ..., h+. II 

9. Concluding remarks 

The norms of the matrices g, are IIg;ll <n  ~. Therefore the girth of the corre- 
2 

sponding Cayley graph X(Gp, ~0(f2,)) is greater than ~ log, ( p / 2 ) -1  (cf. inequality 

(10) in Section 6). For  n + + ,  the total number of vectors satisfying (a) and (b) 
is (3/2rc~+ o (l))n 2 (cf. [5, Ch. 18.5]). So, for infinitely many values of r we can choose 
n to be less than t /~.  The number of  vertices of the resulting Cayley-graph is n (X )=  
= IGpl =P(P~--1). To sum up, for any ~ >0 we have infinitely many values ri and for 
each rl an infinity of  regular graphs Xii of  degree 2r~ with girth 

(9 ) c (Xij) > - e log rl 

For  comparison, the non-constructive bound of Erd6s and Sachs [1] can be 
written essentially as 

c ( X ) >  logn(X)  ~-2 
log(d- - l )  

where d is the degree of the graph X. Note, that the upper bound, analogous to (1) 
says 

,,ogt.-lj(t°gn(X) } c ( X ) <  + . , - - T r - ~ ,  ,~ 1-I . 
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