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LARGEST RANDOM COMPONENT OF A k-CUBE 
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Let C ~ denote the graph with vertices (el . . . . .  eu), e~ =0,1 and vertices adjacent if they differ in 
exactly one coordinate. We call C k the k-cube. 

Let G=Gk, p denote the random subgraph of C k defined by letting 

Prob ({i, j}) C G) = p 

for all i, j E C k and letting these probabilities be mutually independent. 
We show that for p=2/k, 2>1, Gk, p almost surely contains a connected component of 

size c2 k, c = c(2). It is also true that the second largest component is of size o(22). 

Introduction 

In [2] E rd6s  and  Spencer  p roved  tha t  Gk, p is connected  with p robab i l i ty  
N 0  for p < l / 2 ,  ~ e  -1 for  p = l / 2 ,  ,,-1 for  p>l / 2 .  They  ment ioned  that  in Gk.p, 

p=  2/k, 2 <  1, the size o f  the largest  c o m p o n e n t  is o(2 k) (a lmost  surely),  and  suggested 
tha t  there  might  be a j u m p  at  2 = 1 ,  i.e. for  2 > 1 ,  Gk, z/k conta ins  a c o m p o n e n t  o f  
size c2 k. W e  are  going to p rove  this la t ter  conjecture.  

Notation 

C k denotes  the  k-cube,  somet imes  the  graph,  most ly  its vertex-set ;  we wri te  edges for  
those  o f  Gk.p and Edges for  those o f  the skeleton C k (i.e. Edges  are  poss ible  edges);  
Gk(2) denotes  the  r andom graph  Gk,~/k; 
a vertex vECk is even or  odd according  to the n u m b e r  o f  ones" in v; 
i f  two vertices x, y differ in exact ly i coord ina tes ,  we say tha t  their  Hamming 
distance d(x, y ) = i ;  
x and  y are neighbours if d(x, y) = 1, fu r the rmore  x is the up-neighbour (y is the  down- 
neighbour) if x conta ins  more  ones; 
for  two sets A, B c C k  the  H a m m i n g  dis tance  is 

d (A, B) = inf d (a, b), 
sEA 
bCB 

A and  B are neighbours i f  d(A, B)  <- 1 ; 
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the set of  vertices of  a connected subgraph is called a cell (i.e. components are maxi- 
mal cells); 
for a set A c C  k we define the neighbourhood 

F(A) : {xECk; ~)'EA: d ( x , y )  <: 1}, 

and the exact neighbourhood y ( A ) = F ( A ) - - A :  
e0 is the vertex with all zero coordinates, el, . . . ,  ek are the unit vectors; 
n = 2  k is the cardinality of  Ck; 
P (  • ) and E stand for probability and expectation; 
o (1) is understood as k - - -~ ;  
all constants appearing in the paper depend on 2 of  the Theorem, furthermore 
Co, cl . . . .  are assumed to be positive and small enough in terms of  all previously defined 
c, K1, K2 are large constants. 

Theorem. In Gk(2), )t > 1, there is a connected component o f  size >con with proba- 
bility 1 - o ( 1 ) .  

About  the value co see Remark  2 at the end of the paper. 
The theorem will be established using a blowing-up (or shrinking) argument, 

this is expressed in the following series of  lemmas. 

Lemma 1. The probability that in Gk(2), 2 :> 1, the vertex eo belongs to a component 
o f  size :>clk, is at least c2. 

Lemma 2. In Gk(2), 2 >  1, with probability 1 - o ( 1 ) ,  all vertices v except for at most 
n 1-c3, have thefollowingproperty: 

Property 2. There are c~k disjoint cells neighbouring v, each o f  size c~k. 

Lemma 2, In, Gk (2), 2 > 1, with probability t - o(1), all vertices v except for at most 
n 1-~3, have the following property: 

Property 2. The vertices o f  an), neighbouring cell o f  size c~k have Property 2. 

Lenuna 3. In Gk(2), 2 >  1, with probability 1 - o ( 1 ) ,  all vertices v except for at most 
n1-% have the following property: 

Property 3. There are cvk neighbours of  v belonging to components o f  size > 
>csk  ~. 

Proof of Lemma 1. When we refer to the Laws o f  Large Numbers, we always apply 
the following very weak statement: I f  A~ . . . .  , A~ are independent events, P(A~) 
~=p, 1 ~-i~=m, rap=E, and X denotes the number of  events occurred, then 

P ( X  < E/10) < e -~/~ 

if only E > E 0  (an absolute constant). 
Indeed, 

P ( X < E / I O )  <- Z [ m ] p J ( 1 - P )  m - i <  Z (mpeOie-~/J ' 
j<E[IO ~,J] J<EIIO 

< 2 (rape) E~1° e -  ~/(E/1 O) [ < e -  E/~. 
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We will also use Markov 's  inequality 

e ( x  > t) ~ (EX)/t  

for any non-negative random variable X and positive number t. 
The proof  of  Lemma 1 is based on the following result of  the theory of branch- 

ing processes (for notations and the quoted result see e.g. [4])" 
Given a Gal ton-Watson  process with distribution p~=P(number  of  off- 

sets=i) ,  i=0 ,  1 . . . .  set f ( x )=  ~ pix ~ (the generating function). I f  the expectation 

~, ip~>l, then with probability q = l - p  the process does not stop, where p is the 

root of  the equation 
f ( p ) = p ,  0 < = p <  1 

(s incefis  convex and f ( l ) =  1, p is unique unless pl  = 1 in which case we take p = 0 ) .  
Now it is easy to see ([I], p roof  of  Claim 3) that the quoted result implies: (,;) . I f  the distribution of the nmnber of  offsets is binomial pz= c d ( l - c  t) m-' , 

and the expectation m ~  1 +e,  then q_->& where /5>0 depends only on e > 0  and 
no t  o n  m and e. 

Now we take q = ( 2 - 1 ) / ( 3 ) 0  and apply the above result with m = k ( 1 - 2 q ) ,  
:~=21k. 

Pick m out of  the k neighbours of  eo and randomize the edges going to them 
from e 0. The number )(1 of  neighbours that  get connected to e0 follows a binomial 
distribution B(m, ~). I f  X~ >qk,  we are home. Otherwise denote these neighbours 
(if any) by dl, ..., dx,. 

Pick m out of the k -  1 up-neighbours of  d~. The number X~,a of those con- 
nected to ct~ is again a B(m, ~). Then pick m up-neighbours of  d2, different from 
those X~.I connected to d~ and randomize to get .¥2,2 of them connected to d~, etc. 
Then we go one level further, etc. 

We can always choose m up-neighbours of the current vertex, which are diffe- 
rent from those obtained earlier as long as the total number of  vertices on the tree up 
to this point  is not more than qk. I f  it is more than that, we stop the process. 

Now the probability that our process gets stuck (dies out) before we get qk  
points and stop it, is at least some c2>0, since 

m,~/k = ( 1 - 2 c l ) 2  > I. | 

Note that for reason of symmetry, the vertex e0 can be replaced by any other 
vertex v(C k. 

Remark 1. In the proof  of  this "'Shrinking lemma" we have not used any special 
structural property of  C r', only the fact that  

Property A. All valencies are at least k. 

The further lemmas, however, must use something more, tbr if the skeleton 
is not C k but the Turfin-graph (n/(k+ 1) disjoint cliques of  size k +  1) then Lemma 
I holds but Lemmas 2, 2, 3 and the theorem itself do not. In the proof  of Lemma 2 
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we will use the property that C k can be split to k disjoint "smaller copies", but it can 
be easily seen that the following property would suffice: 

Property B. For every e > 0  there is a 6 >0  such that for i=6k the following 
condition holds: 

any i vertices have altogether at least i(1 - s ) k  neighbours. 

For  finishing the proof  we will need the additional property that the skeleton 
graph does not contain large isolated subsets of  vertices: 

Property C. For every d l > 0  there is a d.,>0 such that every vertex-set of  
size between din and (1 -dl)n has a boundary of size at least ddT/k 112. 
(Here 1/2 might be changed to larger exponent, but the boundary would still have to 
be fairly large. This is thus the strong condition, and it fails to hold for the lattice 
of  small dimensions.) Properties A, B, C can substitute the special structure of  the 
k-cube. 

Proof of Lemma 2. Let us fix a vertex v. For  reason of symmetry, we can assume it 
is e0. Consider its neighbours e~, 1 ~i~:cgk. For  given i we fix the first i -  1 coordi- 
nates to 0, the i-th to 1, and vary only the remaining k - i .  We actually have a cube 
C ~-i. Note that k--i~(1 -cg)k, and these cubes are disjoint for different i. 

Thus Lemma 1 implies that each e; belongs to a component  of  size >c.sk 
in its own cube with probability ~>ca0 each, if only (1--cg)~.>l. By the Laws of 
Large Numbers" 

P (less than ('4 k of these events occur) <e -q~k=n-q -%Thus  every (fixed) 
vertex has Property 2 with probability > 1 - n - q ~ - .  Hence the expected value of the 
number  N of vertices not having Property 2 is less than n~-q~, whence by Markov 's  
inequality N<nl-~3 with probability > 1 -n~*-q"- = 1 - o ( 1 ) .  

(For later purposes, we assume that cak <n~dZ" If  this would not hold, throw out 

points from the above neighbouring cells to make c' 5 smaller.) It 

Proof of  Lemma 2. I f  N denotes the set of  vertices not having Property 2, then the 
vertices v not having Property 2 are in N or have a neighbouring cell of  size c~,k with 
a vertex in N. 

Thus these vertices v are in a distance less than ('~k from N. But the number of  
such vertices is not more than 

,N,[k)c~k <nt-~3"~d2=n'-C:'/2="l-~" ' 

;Proof of  Lemma 3. Choose a 2', l < ) / < 2 .  We construct Gk()d by first randomizing 
with p=)o'/k (i.e. producing a Gk(2")), and then make an additional randomization 
with p=d/k, 

We assume (Lemma 2) that in the starting graph Gk(2") all vertices, except for 
at most n~-G, have Property 2 (with parameters " (4, c'). We fix to every one of those 
vertices ,v a system S~ of c~k disjoint cells of  size c;k. such that all their vertices have 
Property 2. Denote the set of  exceptional vertices by N (IN! < n t - G ) .  

Now we perform the second randomization. We show that with probability 
1 - o ( 1 )  all the above fixed cells, except for at most n ~ - ~ ,  melt into components of  
size >csk 2. This will obviously imply Lemma 3. 
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Let S = C k -  N be an arbitrary cell of Gk(2') of  size c14 k, and let T =  {fi, t2 .... } 
be the set of even resp. odd vertices of  S, whichever are more. I.e. I TI >-c14 k]2 = L 

q (as any other vertex of S) has Property 2, and in the second randomization 
it gets connected with a random number of  its c~ k disjoint neighbouring cells of  
G~(2'); the probability that with at least one of  them, is at least 

1 - ( 1 - d / k ) c ;  k > c15. 

Denote by A1 the (possibly empty) union if those connected with q.  Now the 
same holds for t~. (and the Edges starting from t2 are different from those starting 
from q since t~ and t2 are of the same parity). Out of the c'4k disjoint cells of Gk(2') 
neighbouring t2 at least c~k/2 intersect in less than half with A1 if only [Al[-<clsk ~. 
Randomize the edges (p=d/k)  from t2 to these c'~k/2 cells. The probability that t2 
gets connected with at least one of them, is at least 

1 -- (1 - d/k)c; kl~- > cxd2 = c~5. 

Denote by A,z the union of those connected with t2, and set B2=A1UAz.  Now we 
1 

pass to t:~, etc. Using the notation B i=  U Ai, we have, as before, that out of  the 
i = l  

c'4k disjoint cells neighbouring t~. at least c'4k/2 intersect in less than half with By_ t if 
only IBj_l l<clsk  z. Randomizing the edges (p=d /k )  from tj to these cells, the 
probability that tj gets connected with at least one of them, is at least c~5. Thus the 
expected size of Bz is at least 

E Ia, I > c~5, l (cU ~) = c16 k 2 

(if only c16 < c~8, otherwise c~6 is replaced by min (c~6, c~s)). 
Hence, by the Laws of Large Numbers 

P(IB/  < csk e) < e - q ' k  = n-q~ 

(if only cs was chosen small enough), since the c19 kz randomizations involved were 
independent. 

We have shown that if S c C  k - N  is any cell of Gk(it') of  size c~4k, then S will 
melt into a component of size >csk  ~- with probability > 1 -n-q.% Now apply this to 
the cells of the system So fixed at the beginning of this proof. Since their number is 
less than nk, the expected number of those not melting into components of  size 
>csk", is less than nkn-q,<n-C"-o. I 

Proof of  the Theorem. Choose a ).', 1 <2"<2 ,  and consider Gk(2') first, and add 
new edges afterwards with p =d/k.  We will write Pz( . )  for the probability of events 
in this latter randomization. 

We assume (Lemma 3) that in GkO.') all vertices except those in a set N of size 
t C t <n~-~;, have Property 3 (with parameters c7, s). The components of Gk(2") of  size 

>c~k "z will be called atoms (even after the second randomization atom will mean that 
in Gk(2')). 

INI<<n implies, in particular, that at least c'n/2=c21n points belong to 
atoms. 

Set co:c.,1/3. 
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Now we make the second randomization. We claim that, with probability 
1 - o ( 1 ) ,  there will be a component of size >con, such that even the union of atoms 
within this component will be larger than con. 

Indeed, assume that the union of  atoms within every component is of  size 
~con. Then there would be a union A of  atoms that would be separated (even in 
Gk (2)) from the union B of  the remaining atoms, and 

con~ JAJ<2c0n, consequently IB[ ==c0n. 

We show that this event has a negligible probability. Since there are at most 
n/(c~k 2) atoms, the number of possibilities forA is at most 2"/(c~ ~). Thus, it is enough 
to show that the probability that A and B are separated, for a particular pair A, B, is 
less than 

e -Kl'/kz (1(1 large). 

Consider the neighbourhoods F(A), F(B), and define 

D = F =  c k - r ( A ) - r ( B ) .  

Note that FcN,  and thus lF[<na-C,~'. 
There are two possibilities: 

(I) IDI >K~n/k 
(IX) 1Ol <-K2n/k 

In case (I) set D ' = D - N .  We have ID']>(K~/2)n/k points x such tha tbo th  
A and B are neighbouring x, and at least one of them contains >(c'/2)k neighbours 
of  x. Choose (KJ4)n/k points x of the same parity. Thus, 

P•(x connects A and B ) >  c~3/k 

and these events are independent for different x. Hence 

P2 (no x~D" connects A and B)<(1 --Co~/k)(K~J2)"lk<e-Xq "/k~ 

if only /£2 was large enough. 
In case (II) note that [F(A)l>--[AI>=con and !F(A)l<-n--!Bl<=(l--co)n. It 

is well-known [3] that such a set F(A) has a boundary >c24n/(-k, and this obviously 
implies that there are co sn/l/k disjoint Edges going out from F(A) (to its complement) 
If we drop those which have an endpoint in D or N, we still have at least 
(c~.J2)n/J/k=c2~n/l/k disjoint Edges from y(A) to ),(B). 

For  such an Edge e=(x,y),  xE~/(A), y~v(B), there are c~k neighbours of 
x in A and c~k neighbours of 3' in B, thus 

Pz(A and B get connected through (x, y ) ) >  c27/k. 

Now these events are independent tbr different e, hence 
P2 (A and B are not connected) <(1 -c~/k)c2~"/fL<e-K~ "/k~. 

Remark 2. A slight modification of the proof  given above shows that the obtained giant 
component is actually everywhere dense in the following strong sense: all vertices v, 
except for at most n ~-~8, have the following property: 

There are co gk neighbours o fv  belonging to the giant component. 



LARGEST RANDOM COMPONENT OF A k-CUBE 

This however does not automatically imply (though makes it very likely) that 
the second largest component is of size o(n) (as conjectured by Erd6s). This is true 
though, for a close inspection of the proof shows that q ,  and thus c0 too, can be 
chosen arbitrarily close to the constant q=q(2) ,  where q is the probability that a 
branching process with Poisson distribution of parameter 2 does not die out. I.e. 
q =  l - p ,  where p is the solution of the equation f(p)=p, 0 < p < l ,  and f ( x ) =  
= e  z(x-~) is the generator function of the Poisson distribution. In other words, 
p =x/2, where x (the conjugate of 2) is the solution of 

x e  --~ = ) . e - ; ,  0 < x - <  1. 

Thus the giant component is as large as possible (for (p+o(l))n vertices 
belong to bounded components), and there is no room for another component of 
size cn. (Actually, the proof in [5] can be adapted to C k and that shows that the second 
largest component is only of size O (k).) 
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