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Let . ~  be a family of r-subsets of a finite set X. Set D (~(f) = max] {E: xE EE a¢C}[, (maximum 
x £ X  

degree). We say that ~ '  is intersecting if for any H, H'ESet a we have HAH' ,~O.  In this case, ob- 
viously, D(,3/t~)~-l~°l/r. According to a well-known conjecture D(9~a)~_l~l / ( r - l+l / r ) .  We 
prove a slightly stronger result. Let ~ be an r-uniform, intersecting hypergraph. Then either it is a pro- 
jective plane of order r -  I, consequently D(9~)=l~Itall(r - 1 + I/r), or D(jJt~)~_[~l/(r - 1). This 
is a corollary to a more general theorem on not necessarily intersecting hypergraphs. 

1. Introduction, definitions 

1.1 S o m e  wel l -known definitions 

We list the basic defini t ions and  no t a t i on  to be used t h roughou t :  
hypergraph W - -  a finite col lect ion o f  non -empty  finite sets (edges);  
ver tex  set o f  ~ - -  V(Of~)= U {E: EEYg'}; 
rank  o f - ~ - - r ( J f ) = m a x  {[E[: E E J f } ,  
. ~  is r-uni form i f  the ca rd ina l i ty  o f  every E E ~  is r ;  
degree of  a vertex x (in 3 ¢ ~ ) - - d ~ e ( x ) = [ { E :  xEEE3(f}[; 
D ( o ~ ) = m a x  {d~(x) :  xE V ( ~ ) } ;  

is D-regular  i f  the degree o f  every vertex x is D; 
part ia l  hypergraph - -  ~ "  ~ 9V ; 
match ing  - -  par t ia l  hype rg raph  o f  ~¢t ° whose edges are  pairwise  d is jo in t ;  
v(,o~) - -  match ing  number  - -  m a x i m u m  number  o f  edges in a ma tch ing ;  
intersecting hyperg raph  - -  v(J¢') = 1 ; 
transversal (or cover) - -  a set T c  V(,2/~) which meets  all the edges ;  
z ( ~ )  - -  transversal number  - -  m i n i m u m  card ina l i ty  o f  a t ransversal .  

AMS subject classification (1980): 05 C 65, 05 C 35; 05 B 25 
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1.2 Fractional transversals and matchings 

A survey with applications on fractional hypergraph theory can be found 
e.g. in Berge [1] or LovAsz [12], [16]. Here we shall define only the most important 
concepts of this theory which appeared in first papers published on this topic. 
(Berge and Simonovits [2], LovAsz [11].) 

A fractional transversal of a hypergraph W is a weight function t: V(W)-~R 
satisfying 

t(x) >= 0 for every xEV(.~), 
and 

t(x)->_ 1 for every edge EEW. 
x E E  

The value of a fractional transversal t is 

Itl-- Z t(x). 
x E v(~e) 

The minimum of It] when t ranges over all fractional transversals is called the 
fractional transversal number and is denoted by 

z*(Jcg)=min {It[: t is a fractional transversal of #to}. 

Similarly the fractional matching number is the maximum value of the fractional 
matchings of 3¢t °, i.e. 

v*(W) = max {E? w(E)lw: W - - R ,  w(E) >- O, VxEV(W) we have E~xZ' w(E)} ~ 1. 

Clearly, to determine the fractional transversal number and the fractional matching 
number is a problem of linear programming. This is a dual pair so by the duality 
principle of linear programming we have ¢ ( W ) = v * ( W )  for every hypergraph 
W. Thus 

In view of the fact that w(E) =_- 1/D and t(x) =- l/rain ]El are a fractional matching 
resp. fractional transversal we have 

IWl  = ~ ,  _ I V ( W ) l  

(1) D(W) (W) -~ n~n {IE[: EEW}" 

1.3 An important example 

If ,~, is D-regular and r-uniform then (1) yields 

(2) I~I/D = [V(W)llr = z*(W). 

For r ~ 3  write N, for the hypergraph consisting of the lines of the r-uniform finite 
projective plane (if there exists) further let N2 consist of the 2-tuples of a 3-element 
set (i.e. N2 is a triangle) and let ~1 be the hypergraph having only 1 point. It is 
well-known that ~ r  exists provided r = P +  1, where P is a prime power. 

It is evident that every line of the projective plane ~r  is a minimal trans- 
versal of N,. For r =  1, 2, 3 there is no other minimal transversal. For the projective 
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plane ~ ,  with r>3,  J. PelikAn [18] proved that the only transversals of cardinality 
r are the edges, and 
(3) all other transversal sets have size ->_r+2. 

Summing up: l~',]=lv(~,)l=r2-r+l, ~, is r-uniform and r-regular, V(~r)=l ,  
z (~ , )=r ,  z*(~a,) = r  - 1 +l/r.  

2. Results 

Considering all the r-tuples of an underlying set with r v + r - 1  elements it 
can be seen that the inequality z<=rv cannot be improved in general. Nevertheless, 
as L. Lov&sz observed, the inequality z*<-rv is not  sharp. He showed (see [14], [15]), 
that, for any hypergraph .d4f, z*(aef)<r(Jf)v(.Cf), furthermore 

z*(r, v) = sup {z*(atd): r ( ~ )  =< r, v(~f) _~ v} < rv. 

For v = l  he proved that z*(r, 1)<=r- l+2/(r+l)  and he conjectured that 
z*(r, l )<=r- l+l / r .  In this paper we shall prove a bit more. 

Theorem. Let ~ be a hypergraph of  rank r_~3, v(.g')=v. Suppose further tha t 
does not contain a partial hypergraph which consists of  p + 1 copies of  pairwise 

disjoint r-uniform projective planes. Then 

z*(gf ~) ~ (r--1)v+ p/r. 

(The proof of the Theorem is in § 5.) We mention that the inequality of the Theorem 
is sharp. To see this consider the hypergraph ~" which we get from ~ ,  by omitting 
a line. ( r * ( ~ ' ) - r - 1 . )  

The case r = l  is of no importance. For r = 2  the Theorem does not hold 
true, because for the odd circuits C2,+1 one has v(C2,+l)=n, p = 0  but z*(C2,+0 
= n + l / 2 .  L. LovAsz [13] proved that for an ordinary graph G 

1 3 
T*(G) <_- ~- (~+v) <_- 7 v .  

The following corollaries are true even if r<3.  

Corollary 1. I f  ~ is the union of v pairwise disjoint copies of ~ , ,  then v*(9(f)= 
= (r - 1 + 1/r ) v otherwise z * (~gt °) <- (1"-- 1 + 1/r ) v - 1/r. 

Proof. The inequality z * ( ~ ) > ( r - I  + l / r ) v - 1 / r  implies that Of' has a partial 
hypergraph o~f'~ which is the disjoint union of v copies of ~ , .  That is ouf, co~f '. 
Then it follows from (3) that o~f',-= o~f. I 
(The case r = 2  is left to the reader). 

Corollary 2. Let r be a positive integer for which ~ ,  does exist. Then z*(r, v)= 
= ( r - l + l / r ) v .  l f  ~ ,  does not exist then z*(r, v)<=(r-1)v. I 

I think that for the time being the determination of the exact value of z* (r, v) 
for other r ' s  is hopelessly difficult, because to solve this problem one probably has 
to decide whether or not the projective plane N, does exist for a given r. 
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3. Applications 

3.1 The maximum degree of hypergraphs 

Let us consider an intersecting, r-uniform hypergraph ~¢¢'. Obviously D (9~) 
~l:,~]/r. It is a well-known conjecture [6, 7] that D>-_lYg'l/(r-l+l/r). From the 
Theorem and from (1) a slightly stronger result follows. 

Corollary 3. Let ~ be an r-uniform, intersecting hypergraph. Then either it is a 
projective plane of order r -  1 and consequently D ( ~ )  = ]a~('l/(r- 1 + l/r) or D ( ~ )  

I~l/(r- 1). I 
In general D ( ~ ) =  > tJf l /(r-1 + 1/r)v. This was proved for r = 2  by B. Bollob~is [4] 
in a slightly different form. This Corollary is sharp because D(~) - - l~ , ' I / ( r - -1 ) .  

3.2 The number of vertices of regular hypergraphs 

Using his result (z*(r, 1 ) ~ r - l + 2 ( r + l ) )  mentioned above L. Lov~.sz [14], 
[15] proved the following conjecture of P. Erd6s [6] and B. Bollob~.s [4]: 

If  ~t ° is an intersecting, r-uniform and regular hypergraph, then [V(~f)[ 
~ r 2 - r + l .  

By the Theorem and (2) we generalize this result as follows. (For r = 2  see 
Bollob~.s Eldridge [5]). 

Corollary 4. I f  ~ is r-uniform and regular then Iv(9~)l<-(r2-r+ l)v. Moreover 
equality holds if  and only if  ~ is the disjoint union of projective planes or order r -  1. 
Furthermore if  there is no such r-uniform plane then [V(o~P)[<=(r ~ -  r)v. II 

By omitting from ~ ,  a point together with all the lines containing it we get 
the hypergraph ~ "  which is ( r -  l)-regular, r-uniform and intersecting. It has r2-r  
points. This example shows that Corollary 4 is sharp, too. 

3.3 Fractional transversal number of r-partite hypergraphs 

The hypergraph W is said to be r-partite if V(~") is the disjoint union of 
X1 . . . . .  X,, and for each EEW: IEf3X~I=I holds ( i=I ,  2 . . . . .  r). 
A well-known conjecture of  H. J. Ryser states that for an r-partite hypergraph 
z ~ ( r - l ) v .  (In particular for r = 2  this is simply K6nig's Theorem (see [12]). For 
some small values of  r and v this conjecture has recently been proved by Zs. Tuza 
[19]). A. Gy~.rf~.s [10] proved an easier version of  Ryser's conjecture. His result 
follows from our Theorem because ~ ,  is not r-partite (r=>2). 

Corollary 5. I f  the hypergraph ~ is r-partite then z * ( ~ ) ~ ( r - 1 ) v ( ~ ) .  II 

This Corollary is sharp for ~ is r-partite and z * ( ~ ) = r - 1 .  
3.4 Some further applications of this Theorem to extremal graphs and 

to extremal set-systems can be found in J. Pach--L.  Sur~.nyi [17], Z. Ffiredi [9] 
and P. FranklwZ.  Ffiredi [8], respectively. 
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4. The reduction lemma 

We denote by (a/, bl, c, I) the following linear program with minimum 
value M. 

x ~ O  
(4) ~ aix ~ b i for all iEI. 

t rain cx = M(ai,  bi, e, I) 

Here ai, x and c are n-dimensional vectors, b{s are real numbers and lI[ is the number 
of  conditions of the program (111 < ~)- 
The following Proposition is well known in the theory of linear programming. For 
the sake of  completness we give its short proof  in the Appendix. 

Proposition. I f  the linear program (ai, b~, c, 1") with n variables has a finite optimum, 
then there exists a J c I  such that M(a~, hi, c, I )=M(a~,  bi, c, J) and lJ[<=n. 

In other words this Proposition states that the number of  conditions of  a linear 
program can be reduced to n without changing the optimum value. 

The proof  of  the Theorem is based on the following Lemma which may 
help to determine -c* in some other cases as well. 

Lemma. For any hypergraph ~ there exists a partial hypergraph ~ "  c ~ such that 
T*(3(f ')=~*(Jf) and l~'l----IV(~31- 

Proof. To determine z* one has to solve a linear program of dimension [V(J/f)I, 
with index s e t / ,  where l / I - - I~1,  o f  course, this program always has a finite op- 
timum. So by applying the Proposition (possibly several times) one can find a suitable 

5. Proof of  the Theorem 

Let 3¢' be an r-uniform hypergraph which does not  contain p + l  disjoint 
copies of the projective plane ~ ,  and v(3(f)=v. Suppose r->3. (Our proof can 
be applied for r= 2 ,  too, but the details are left to the reader.) 

It is sufficient to give a suitable fractional transversal t of  W. We shall give 
it by induction on v, while r is fixed. The proof  in the case v= 1 is similar to that 
one for v > 1 and that is why we do not  separate them, but sometimes we mention 
the differences. 

For 3 / f=0 put x*(~f')=0. By the Lemma we may suppose that ]3ell 
~ ] V(.g~)]. Consequently, 

(S) min d(x) <- • {d(x):  xEV(~'/f)} _ r P ~ l  ~ r. 
x ~ v ( ~  I V ( ~ ) 1  I V ( ~ ) 1  - 

Case 1. There exists x0E V(~f ) with d~(xo)=k<r .  Put ~ 0 = { E E ~ :  x0EE} 
={E1, . . . ,Ek},  and ~vfi={EE~¢': EAE~=0} for l<=i<_k. 

For the hypergraph ~ i  the induction hypothesis can be applied, because 
v (J¢'i) =< v -  1 and of course 5¢f i does not  contain more than p disjoint 9~r as partial 
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hypergraphs. Hence there exists a fractional transversal t~: V(W~)-*R of oee°i, 
such that ]t~l ~_( r -  1) ( v -  1) +p/r. (If here v = 1 then ~ = 0 ,  t~ ~_0.) 

Put 

t ( x ) =  do(x)+ Z, t~(x) if x~V(YC')-{xo}, 

where do(x) is the degree of  x in the hypergraph ~ o .  We claim that this is a frac- 
tional transversal of ~f~. Indeed, t(x)~=O, and for any E@;4" o we have 

1 

x E E  x £  Xo} 

If EE 3~ --.,vf o then 

Z t(x) = ~ a0(x)+ Z [ Z t,(x) 
x ~ E  i=I  x ~ E  

Finally 

k) 
i=1 i=1 

EAEI~ ENEI=e 

= 1 .  

1 ,to (x) + t, 

=-~- r - 1 ) k +  [tl[ <=(r-1)v+p/r. 
i= l  

(For v = l  we get ~ * ( ~ ) - < r - l . )  

Case 2. min d~e(x) ~r .  
x f= g{,~)  

Then, by (5), ~ is r-regular, so [ ~ l : ] V ( J f ) l .  w e  shall show that [.¢t~[ 
<=(r2-r)v+p from here, by (2), the Theorem follows. 

Suppose on the contrary that [A~'l>=(r2-r)v+p+l. Let Ex be an arbitrary 
edge of  Jg and put  , ; / t ° I :{EE~:  ENEI=O}. Applying the induction hypothesis 
to -~gl and using (1) we get that 

I~1 -- I{E: ENEt ~ 0}1+1~1 <= l +r ( r -  l)+ z*(.~fx)D(~efO <= (r2--r)v+ p+ l. 

Here the right side is at most (rZ-r)v+p if there is an edge E with ]ENE~]=>2. 
Consequently it is enough to consider the following case. 

(6) [~ l  = [V(~)I -- v(r2-r)+p+ 1 

1~-~11 -- rZ-r + 1 

(7) IEfqEI[ = 0 or 1, for any edges E, E 1. 

(If v=  1 and p = l  then (6) yields a contradiction, because in this case ~ x = 0 .  
Similarly, for v = 1, p = 0  we have by (6) and (7) that ~ is an r-uniform, r-regular, 
intersecting system of  sets on (r~-r+l) points with the same number of edges. 
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This in turn implies that ~ - : ~ r  contradicting to p=O From now on we suppose 
that v =>2.) 

Let El, E2, .,., Ev any fixed matching. We call an edge E6Yt ~ crossing if it 
intersects more than one El (l<----i<----v). We count the number of edges of 

~ - { E l , . .  E~} with multiplicities in the poins of ~J El. We get vr(r--1). From the 
t=1  

other hand 19~'-  {El . . . .  , E,}I = v (r 2_ r ) + p  + 1 - v ,  and so there are at most v -  I - p  
crossing edges. This means that there is an edge, say El, in the matching {EI...E~} 
which intersects at most one crossing edge. 

Case 2a. E~ is not intersected by a crosshTg edge. 

In other words, the system {E2 . . . .  , E~} has no common point with edges 
intersecting El. Since v ( f )  = v we get that ~ -9~al is an intersecting family. Further 
D ( ~ - - W O = r ,  and this together with (6) and (7) implies that o~¢t~-Wl=~r. 
Moreover, the underlying sets V(.~ 0 and V ( ~ - O ~ ' t )  are disjoint. Applying the 
induction hypothesis to , ~  with parameters v -  1 and p -  1 we get by (1) 

I~ -Jg ' l l  <= z * ( ~ - ~ O r  <-_ (r~-r)(v  - 1 ) + ( p -  1), 

contradicting to (6). 

Case  2b. There is a unique crossing edge E" intersecting E 1. 

It remains true that ,) ' t '- Yt'~- {E'} is an intersecting family, ]g f ' -  ~ a -  {E'}I = 
= r 2 - - r , D ( ~ - - ~ - { E ' } l = r .  We claim that in this case o~¢'--~"1--{E'}----~;. 
Indeed, by (7), every edge of  j/{,_ ,ug _ {E'} contains a point of degree r--1. There 
are exactly r points of this type, they form a set T. It is easy to check that 
(o~f'--,Xzt-{E'})U{T} is a finite projective plane. E ' ¢ T  for E '  is crossing. So 
there is an edge E " ~ . ~ - g e ' ~  such that E 'NE"=O ,  and 

(8) at least r - 1 edges E of  o~" - 9 f  x have the property that E n E" ¢ 0 and E n E"  ~ 0. 

Le t -~ f~={E~f~ :  E N E ' = O  and E"NE=O}  and ~'t°"=o~-~/gL Applying the 
induction hypothesis to ~/-t '1 with parameters v - 2  and p, and using that upper 
bound for [.;4z~-I which follows from (8), we get 

I~[  = [~Xl + I~eZl = ( v - Z ) ( r ~ - r ) + p + 2 ( r ~ - r ) + 2 - (  r -  1). 

This again contradicts to (6), provided r=>3. II 

6. Appendix: Proof of the Proposition 

Dropping some of the inequalities of (4) the minimal value of the program 
can only decrease. Hence we have to prove that there is a J c L  ]J ]=n such that 
M(ai, bi, c, J) >= M (ai, bi, c, I ) =  M. 

Suppose, on the contrary, that for every J c I ,  ]J[=n, we have 
M(a~, b,, c, J ) < M .  This means that any n of the halfspaces {y: a~y>=b~} have 
a point in common with the open convex polytope {x~R": c x < M ,  x=>0}. The 
system (4) has a solution, hence any n + 1 of the halfspaces {y: aiy :>b~} have a point 
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in common. Now Helly's Theorem in R ~ implies that the intersection of  the 
l I [+ l  convex sets {y: a~y_->bl} and {x: c x < M ,  x=>0} is not empty, i.e. it contains 
a point x0. This point x0 is feasible for the program (4) and c x 0 < M = M ( a l ,  b~, e, I). 
This contradiction proves the existence of the appropriate J. II 

Acknowledgment. I would like to express my thanks to P. Frankl and I. B~ir~.ny 
for their help. 
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