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Given a directed graph G, a coverbrg is a subset B of edges which meets all directed cuts 
of G. Equivalently, the contraction of the elements of/3 makes G strongly connected. An O(nb 
primal-dual algorithm is presented for finding a minimum weight covering of an edge-weighted 
digraph. The algorithm also provides a constructive proof for a rain-max theorem due to Lucchesi 
and Younger and for its weighted version. 

1. Introduction 

The purpose o f  this paper is to present a polynomia l -bounded algori thm 
for making a directed graph strongly connected by contracting a min imum number  
o f  edges, or  more  generally a set o f  edges o f  min imum total cost. At  the same time 
the algori thm proves an impor tant  theorem of  Lucchesi and Younger  [8] and  also 
its extension due to Edmonds  and Giles [1]. 

We are given a connected digraph G=(V, E) with a non-negative integer 
cost function d on the edge set E. We say G is strongly connected if, for arbitrary 
vertices x and y o f  V, there exists a directed path f rom x to y. As is well known,  
G is no t  strongly connected if and only if there is no  edge leaving X, for some non-  
empty proper subset X of  V. Such a set X is said to be a kernel and  the non-empty  
set D(X) of  edges entering X is called a directed cut, or dicut (determined by X). 

An  edge set B ~  E is called a covering if every dicut uses at least one element 
o f  B. The cost d(B) of  B is ~ (d(e): e~B). Obviously, B is a covering if and only 
if by contract ing its elements G becomes strongly connected. So we want to find 
a min imum cost covering. The Lucches i - -Younger  theorem concerns this mini- 
m u m  when d(e)=-l" 

Theorem A. The minimum cardinality of a covering is equal to the maximum number 
of (edge) disjoint directed cuts. 

For  a brief proof,  see Lov£sz [7]. For  the general case we need a definition. 

AMS (1980) subject classification: 05 C 20, 90 C 10, 05 C 40; 68 C 25, 68 E 10 



146 ANDRAS FRANK 

A family K of  not necessarily distinct dicuts is called d-independent if no 
edge e occurs in more than d(e) members of K. 

Theorem B. The minimum cost Zd of a covering is equal to the maximum cardi- 
nality vd of  a d-independent family of  directed cuts. 

This result has been obtained by Edmonds and Giles from a much more 
general minimax relation concerning submodular functions, but it can also be 
derived from Theorem A by elementary construction. In another paper [3] I shall 
show the method described here can be extended to get an algorithmic proof of 
this general theorem of Edmonds and Giles. So we shall have an algorithm having 
specializations (besides the present one) as the weighted matroid intersection algo- 
ritlun, the minimum cost circulation algorithm, the so called independent flow 
problem [4] and so on. 

The previously used methods for proving the Lucchesi--Younger theorem 
were based on the same fundamental principles and were not algorithmic in character. 
The present approach is quite different. 

2. Optimality criteria for coverings 

We say that an edge e=(xy)  enters a subset Arc V if its head y is in A" 
but the tail x is not. An edge leaves X if it enters V - X .  

For FC=E, the indegree or(X) (outdegree fir(X)) means the number of 
edges in F entering (leaving) X. A simple counting shows that: 

(2.1) or(X)+~F(Y) = o~(XUY)+~F(X?qY), for kernels X, Y. 

Let F*={(xy): (yx)EF}. It will be convenient to consider V to be a kernel. Two 
kernels X and Y are intersecting if XN Y#0.  If, in addition, XU Y #  V then they 
are crossing. 

We shall be referring to a covering B throughout the algorithm. The edges 
of the current B will be called blue edges, the remaining edges of G white edges. 

For the quantities in Theorem B, obviously vn<_-zd. To prove the equality 
we shall construct a covering B and a family K of dicuts such that: 

(2.2) (a) Every blue edge e is in exactly d(e) dicuts from K. 
(b) Every white edge e is in at most d(e) dicuts from K. 
(c) oB(X)=I  for XEK. 

Our method will yield a B and a K satisfying (b), (c) and the following condition: 

(a') Every blue edge e is in at least d(e) dicuts from K. 

However, in this case we can immediately achieve (a); namely, whenever eCB and 
e is in k>d(e) dicuts from K, we omit k - d ( e )  of  these dicuts. The family K will 
be produced by potentials, which we shall define after presenting some simple 
notions and propositions. 

Denote by c(X) (X~  V) the number of weak components of G - X .  

(2.3) Lemina. For any kernels X, Y we have c (X)+e(Y)<=e(XNY)+c(XUY) .  
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Proof. Let us consider G as an undirected graph. Denote the set of edges with both 
end-vertices in V - X  by B(X). For the rank of B(X) in the cycle matroid of G, 
we have r ( B ( X ) ) = I V - X I - c ( X  ). Furthermore, B ( X U Y ) = B ( X ) N B ( Y )  and 
B(XN Y)=B(X)UB(Y) .  (The fact that X and Y are kernels and thus there is no 
edge between X -  Y and Y - X  is exploited in the second equality.) Now the lemma 
follows since r is submodular. I 

It can be seen that, for a kernel X, the dicut D(X) is the union of c(X) dis- 
joint dicuts, the kernels of  which are the complements (concerning V) of the com- 
ponents of G - X .  We say these dicuts belong to X and denote their set by L(X). 
Trivially, 

(2.4) For a kernel X and covering B, QB(X)~c(X). 

A kernel X (and the dicut D(X)) is said to be strict (with respect to B) if 
QB(X)=e(X). If, furthermore, c ( X ) = I  then X is 1-strict (with respect to B). 

Note that V is always strict and: 

(2.5) For a strict X, L(X) consists of l-strict dicuts which partition D(X). 

(2.6) Lemma. For intersecting strict kernels )2, Y, both XN Y and XU Y are strict. 

Proof. From (2.1), (2.3) and (2.4) we have c(X) +c(Y) = on(X) + OB (Y) = O~ (XN I7) + 
+oB(XU Y)~c (XN Y)+c(XU Y)>=c(X)+c(Y) which implies on(XO Y)=c(XN Y) 
aria  .(xu Y)=c(XU r). I 

Repeated applications of (2.4) yields: 

(2.7) I f  a set of strict kernels forms a connected hypergraph then their zmion is 
strict again. 

Let P(x) denote the intersection of all strict kernels containing a fixed vertex 
xE V. (Since V is strict, P(x) is well-defined). 

From (2.4) we can see that: 

(2.8) P(x) is the (unique) least strict set containing x, and yEP(x) for any 
edge (xy) E E. 

In § 5 we shall show how P(x) can be effectively determined. 
A kernel X is called closed (with respect to B) if xEX implies P(x)C=X. 

(2.9) Lemma. A kernel X is closed if  and only if it is the union of disjoint strict kernels. 

Proof. The " i f "  part is trivial. Conversely, consider the hypergraph H on X formed 
by the sets P(x) (xEX). The union of these sets is X and, by (2.7), the components 
of H provide the required partition of X. ] 

The (unique) partition X~, X 2 . . . .  , Xk obtained in the proof  is called the 
strict partition of X. 

Let K(X)=U{L(~) :  i - 1 , 2 ,  . . . ,k}.  Since the dicuts D(X,) are disjoint 
and partition D(X) we get by (2.5): 

4* 
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(2.10) For a closed kernel X, K(X)  consists of  disjoint 1-strict dicuts, the union of  
which is D(X).  

(2.11) Lemma. Let B" be another covering. I f  X is closed with respect to B and 
OB'(X)=~oB(X) then X is also closed with respect to B'. 

Proof. For the strict partition of X we have ~B(X)=SO~(Xi)=Zc(Xi)<=QB,(Xi) = 
= 0B" (X), therefore the ~Vi are strict with respect to B' .  By (2.9) the lemma follows. 1 

3. Dicuts and potentials 

By a potential p we mean an integer valued function on V. 
For an edge (xy)EE let d ( x y ) = d ( x y ) - p ( y ) + p ( x ) .  Suppose that we have 

a covering B and a potential p for which the following optimality criteria hold: 

(3.1) (a) For every bhw edge (xy), d(_?cy) <- O. 
(b) For every white edge (xy), ,t(xy) ~ O. 
(c) For every yL~ P(a'), p(y) >= p(x). 

In this case we can produce a family K of dicuts which, together with B, 
satisfy (2.2) (a'), (b) and (c). For a dicut D, )co will denote the number of its copies 
occuring in K. 

Since any constant can be added to p without destroying the optimality 
criteria, we can assume that the minimum value of p is zero. Denote by 0=p0 < 
< p l < . . .  <p,,, the different values of  p. Define Vi= {x: p(x)>=pi} for i =  1, 2, . . . ,  m. 
Then O~-Vic V and one can see by (2.8), 

(3.2) Criterion (3.1)(c) is equivalent to the fact that each V t is a closed kernel. 

Let xo=S(pi-p~_O where the summation is taken over those indices i for 
which DEK(VI). (The empty sum is zero). 

We assert that K and B satisfy the requirements. By (2.10) K consists of  
1-strict kernels, thus (2.2)(c) holds. If  e is a blue (or white) edge then, by the optimal- 
ity criterion (a) ((b), resp.), e occurs in at least (at most, resp.) d(e) dicuts among 
the D(Vi), whence, by (2.10), (2.2)(a) ((b), resp.) holds. 

4. Improving a covering - potential pair 

The above argument shows that to prove Theorem B all that is necessary 
is to construct a covering B and a potential p satisfying the optimality criteria. 

The core of  our procedure is the following. 

(4.1) Algorithm. 
b~put: A covering B, a potential p, and a blue edge (ab) such that (3.1)(b) and (c) 
hoM but (ab) violates (a). 
Output: A covering B" and a potential p" such that (3.1) (b) and (c) hoM again, (ab) 
does not violate (a) and i f  an edge violates (3.1)(a) then it violated (3.1)(a) with 
respect to B and p. 
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Assume this algorithm is available. Repeat it successively until there exists 
no blue edge violating (3.1)(a). At the beginning B may be the edge set of a spanning 
tree and p=0 .  Then after no more than [B]<=n-1 applications of algorithm 
(4.1) (where n =  1VI), we get a covering B and a potential p which satisfy all three 
optimality criteria. 

We define an auxiliary digraph H=(V, A) (depending on G, B and p) as 
follows. Let A consist of the following three not necessarily disjoint parts An, Aw 
and A R . (H may contain multiple edges.) 

(4.2) A B - { ( x y ) :  (xy) c B, a (xy) >= 0 }  

Aw = {(yx): (xy)EE-B, a(xy) <= 0} 

AR = {(xy): yEP(x), p(y) = p(x)}. 

We refer to the elements of An, Aw and AR as blue, white and red edges, respectively. 
Let us try to find a directed path from b to a in H. There may be two cases. 

Case I. There is no directed path from b to a in H. That is, a t  T= {y: y 
can be reached from b in H}. Change p as follows. 

Ip(x ) if x~ T 
(4.3) p'(x) = [p(x)+cS /f  xET, 

where &=rain {&e, &in, &w, &R} and 6e=8(ab), &~=min {-3(xy):  (xy)EB, (xy) 
leaves T}, aw=min {a(xy): (xy)EE-B,(xy) enters T}, (SR=min {p(y)-p(x): 
xET, yEP(x)-T}. 

(The minimum is defined to be o~ when it is taken over the empty set.) 
Note that the definition of T implies that: 

(4.4) In H there is no edge leaving T. 
(4.5) Claim. & >0. 
Proof. &e>0 is equivalent to the fact that (ab) violates (3.1)(a) (with respect to 
B and p). 6B>0. Otherwise gl(xy)>=O for some edge (xy)EB leaving T. Then 
(xy)EAB, contradicting (4.4). 6w>O. Otherwise a(xy)<=o for some edge 
(xy)EE--B entering T. Then (yx)EAw, contradicting (4.4). 6g>0. By (3.1)(c) 
p(y)>=p(x). Thus fR~0  would imply p(y)=p(x), i.e. (xy) would be a red edge 
leaving T, contradicting (4.4). | 

For the new a'(xy)=d(xy)-p'(y)+p'(x) we have 

(4.6) 

[a(x~)+a 
a'(xy) a 

[d(xy) 

if (xy) leaves T, 
if (xy) enters T, 
otherwise. 

Claim. If, for a blue edge, (3.1)(a) was true then it continues to hold. 
Proof. Let (xy)EB and d(xy)~0.  If, indirectly, a ' ( x y ) > 0  then because of (4.5) 
and (4.6), (xy) leaves T and thus --d(xy)>--_&B>=6, i.e., by (4.6), ~l'(xy)<=O, a con- 
tradiction. 1 
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Claim. (3.1)(b) remains valid. 
Proof. I f (xy)~E-B then a(xy)>-O and the indirect assumption ~ ' ( x y ) < 0  imply, 
by (4.5) and (4.6), that (xy) enters T. Then d(xy)>=3w>=fi, i.e., by (4.6), d'(xy)>-O, 
a contradiction. 1 

Claim. (3.1)(c) remains valid. 
Proof. Let y~P(x) (P(x) does not depend on the potential change) and assume, on 
the contrary, p'(y)<p'(x). Then xET and yEP(x)-T. Therefore p'(y)=p(y) 
and p'(x)=p(x)+6, whence p(y)-p(x)<b. On the other hand, p(y)-p(x) 
>----fiR---->3, a contradiction. 1 

If  3=3e then (ab) satisfies (3.1)(a) and thus algorithm (4.1) ends. 
If 6 >3  e then repeat algorithm (4.1) with the input B, p '  and (ab). We observe 

that in the new auxiliary graph H" the edge set spanned by T is the same as in H. 
Moreover, the definition of 6 assures that H '  contains at least one edge leaving 
T (which is in As, Aw or AR according as 3 is equal to fin, fw or fig). Consequently 
the set T" of vertices which can be reached by a directed path from b in H '  properly 
includes T. Thus, after at most n - 1  iterations, either 6 = f e  or aET (case 2) is 
achieved. 

Case 2. In Ha can be reached from b. Let Ube a ba-path of minimum number 
of edges. (We shall use only that U:(xo=b, x!, ..., xk:a) does not span a red 
"cut off"  edge, i.e. (xixi+j) (j=>2) is not a red edge.) 

Since (ab)CAB, U and (ab) form a directed circuit C in H. Let CB and Cw 
denote the set of blue and white edges of  C respectively. Now the elements of Cn 
(C~v) correspond to blue (white) edges of  G (where C~v denotes C w with orientation 
reversed). 

Let B'=B--C, UC~v. In other words, change the colors of  those edges 
of G which correspond to the blue and white edges of  C. 

(4.7) Lemma. B" is a covering. 
Proof. For a kernel X, denote o,(X) (fir(X)) the number of  red edges of U entering 
(leaving) X. Then we have 
(4.8) QB" (X) = eB(X) + e,(X) -- 6,(X). 

This is quite clear when Qr(X)=fr(X)=O, and hence the general case 
can also be proved by a simple induction on or(X)+fr(X ). 

Let e (X) :~s (X) -c (X  ). Then e(X)>=O and the equality holds just if X 
is strict with respect to B. From (2.1) and (2.3) we get 

(4.9) ~(X)+e(Y) >-e(XfqY)+e(XUY) for intersecting kernels X, Y. 

To prove the lemma we have to verify that 08, (X)>=c(X) for each kernel X. 
This follows from (4.8) and the inequality e(X)>=6,(X). Before proving the latter, 
let us consider a kernel X with f , ( X ) > 0 .  

Let (xy) be a red edge of U leaving X such that p(y) (=p(x) )  is as great as 
possible and if there is more than one edge of this type then (xy) is the first one 
of U (starting from b). Let X'=XUP(x) (P(x) concerns B). 

(4.1o) Claim. ~,(:c')= ~,(x)-l. 
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Proof. Because no red edge leaves P(x) and (xy) does not  leave X', we have fi,(X') 
---6,(X)-1.  On the other hand, if (st) is another red edge of U leaving X then 
t([ P(x) (i.e. (st) leaves X', too): in the contrary case, by (3.1)(c), p(t)>=p(x) and 
thus, because of the maximality of p(y),  p(t)=p(x). Consequently, (xt) would be 
a red (cut off) edge spanned by U, which contradicts the minimal property of  U. 1 

Claim. e(X) ~6r(X).  
Proof. We use induction on cS,(X). Since e(X)_->0 we can assume 6 , (X)>0.  From 
(4.9), e(X)=e(X)+e(P(x))>=e(XfqP(x))+e(X')>eO;'). By (4.10) we can apply 
the induction hypothesis for X'  and get e(X)>e(X')>-6,(X')=6,(X)-I, that is, 
e(X)>-6,(X) which proves the claim. I 

This completes the proof  of  Lenmaa (4.7). I 

Let us consider what has happened to the optimality criteria. 

Claim. (3.1)(a) is valid for the new blue edges. 
Proof. If (xy) is a new blue edge of G then (yx) was a white edge of H and thus 
a(xy)<-O, as required (see (4.2)). II 

Claim. (3.1) (b) remains valid. 
Proof. If (xy) is a new white edge of  G then (xy) was a blue edge of H and thus 
a(xy)=>0, as required. II 

Claim. (3.1)(c) remains valid. 
Proof. We suppose again that the minimum of p is zero. By (3.2) it suffices to prove 
that Vi= {x: p(x)>=i} is a closed kernel with respect to B', for each positive value 
i of  p. By the definition of AR and V~, o,(Vi)=6,(V~)=O. From these and (4.8) 
we obtain ~B(Vi)=OB,(Vi). Apply Lemma (2.11). I 

We have now completed the correctness proof  of algorithm (4.1) and con- 
sequently the proof  of Theorem B. | 

5. Complexity 

At this point we examine how P(x) can effectively be determined. We are 
given an arbitrary covering B. Using (2.6), it can easily be checked that: 

(5.1) A kernel X is strict if  and only if X is the non-empty intersection of some 
1-strict kernels. 

Let B={e~=(x,yi): i=1 ,  2 . . . . .  l}. Let Gi denote the graph obtained from 
G by adding a set (B-e~)* of new edges (i.e. the new edges are the reversed elements 
of  B-ei). Let Pi(x)={y: y can be reached from x in G,}. Therefore, using the 
well-known labeling technique [2], P,(x) can be produced in at most cn 2 steps. 

Let R ( x ) =  21 {P~(x): i =  1, 2 . . . . .  l}. 

(5.2) Lemma. P(x)=R(x). 
Proof. Pi(x) is either V or a l-strict set. Because of  (5.1), P(x) is the intersection 
of 1-strict kernels containing x and thus P(x)C= R(x). On the other hand, if  there 
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exists a vertex y in R(x)--P(x), then xEX, y¢ X for some 1-strict kernel X. If e i 
is the only edge of  B entering X then P~(x)~ 2", i.e. y~ P~(x), a contradiction. II 

Lemma (5.2) enables us to construct P(x) in O(n 3) steps for a fixed x. So 
determining all P(x) ' s  requires at most O(n 4) steps. 

It is conceivable that there may be a better way to find all P(x)'s. It would 
be very useful to have a procedure of complexity f(n)<-n 3 (or perhaps ~ n  2) since, 
as we shall see, computationally this is the crucial part of  the algorithm. 

The other part of the algorithm (4.1) finds a ba-path in H. To this end we 
can again apply the labeling technique. In Case 1 the set T is just the set of vertices 
having received a label during the labeling algorithm. In Case 2 the ba-path U 
produced by the labeling algorithm is automatically free of cut off edges. 

The labeling algorithm uses at most cn z steps. Moreover, if 6>6e occurs 
in the course of the algorithm and we apply (4.1) again with the modified potential, 
then the labels calculated previously can be used (T=  T'). (Note that, in this case 
the new auxiliary graph arises simply from the old one by joining some new edges 
leaving T and deleting some old ones entering T.) 

Therefore the whole algorithm (4.1) needs at most cn2+f(n) steps. Since 
(4.1) is applied at most ( n - 1 )  times, the complexity of the algorithm developed 
here is estimated to be n(cn2+f(n))<=cn ~. 

Finally, given an optimal pair B, p, we have to construct the corresponding 
optimal family of dicuts (cf. § 3). This can be done in O(n 4) steps as follows. The 
parts of the strict partition of  each V~ are precisely the components of the graph 
Gi=(Vi, El) where E~={(xy): yEP(x), x, yEVi}. Therefore these parts can be 
determined in O(n 2) steps, hence D(V~) can be partitioned into 1-strict dicuts in 
O(n 3) steps. The O(n 4) bound follows by observing that there are no more than 
n sets V~. 

6. Formal description of the algorithm 

Step O. (Start) Let B be a covering and p be a potential which satisfy (3.1)(b) and 
(c). At the beginning, B may be the edge set of  a spanning tree and p =0.  
We call the elements of  B and E - - B  blue and white, respectively. 

Determine P(x) for all xE V. 
I f  every blue edge satisfies (3.1)(a): Halt. The current covering B is 
optimal. 

1.2 Select a blue edge e=(ab) violating (3.1)(a). 
1.3 Construct the auxiliary graph H and try to find a ba-path in H by the 

labeling technique (using the labels defined but not yet removed pre- 
viously). If  this path U exists, go to Step 3. 

Step 2. (potential change) 
2.0 Let T be the set of  labeled vertices. Calculate 6 and let p(x):=p(x)÷6 

for xC T. 
2.1 If  6=6e remove all the labels and go to 1.1. 
2.2 Go to 1.3. 

Step 1. 
1.0 
1.1 
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Step 3. (covering change) 
Let C =  U + e  and denote Ca and C w the set of  blue and white edges of  
C, respectively. Let B: = B--  Ca U C~. Go to 1.0. 

Remark. We note that the algorithm works without regard to the integrality of  
the cost function d. The only difference is that p may assume non-integral values 
as well. In this case Theorem B must slightly be modified as follows. 

Theorem C. [1] The minimum weight of  a covering is equal to the maximum sum 
2~xo where the non-negative variables xo are associated with the directed cuts 
D so that the cost d(e) of any edge e is at least the sum of variables associated with 
dicuts containing e. 

Remark. Recently I have learnt that C. L. Lucchesi [9] and A. V. Karzanov [5] 
gave polynomial algorithms for Theorem A. 
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