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Sleator and Tarjan have invented a form of self-adjusting binary search tree called the splay 
tree. On any sufficiently long access sequence, splay trees are as efficient, to within a constant factor, 
as both dynamically balanced and static optimum search trees. Sleator and Tarjan have made a much 
stronger conjecture; namely, that on any sufficiently long access sequence and to within a constant 
factor, splay trees are as efficient as any form of dynamically updated search tree. This dynamic 
optimality conjecture implies as a special case that accessing the items in a splay tree in sequential 
order takes linear time, i.e. O(1) time per access. In this paper we prove this special case of the con- 
jecture, generalizing an unpublished result of Wegman. Our sequential access theorem not only 
supports belief in the dynamic optimality conjecture but provides additional insight into the workings 
of splay trees. As a corollary of our result, we show that splay trees can be used to simulate output- 
restricted deques (double-ended queues) in linear time. We pose several open problems related to our 
result. 

1. Introduction 

The objects of our study are bhmo' search trees. A binary search tree is a bi- 
nary tree whose nodes contain distinct items selected from a totally ordered universe, 
such that the items are arranged in symmetric order: if x is any node, all items in the 
left subtree of  x are less than the item in x and all items in the right subtree of  x are 
greater. (See Figure 1 .) We can access any item e in such a tree by searching down 
from the root, using the following recursive procedure: ]f  e is in the root, stop; 
the item has been found. If e is less than the item in the root, search recursively in 
the left subtree of the root. If  e is greater than the item in the root, search reeursively 
in the right subtree. If the tree is represented so that each node contains pointers to 
its left and right children, then the time to access an item is proportional to the depth 
of  the node containing it. (In this paper we define the depth of  a node x to be the 
number of nodes on the path from the tree root to x.) 

If  a binary search tree is to support a sequence of  accesses efficiently, then the 
depths of the accessed nodes must be small, at least when averaged over the sequence. 
Sleator and Tar jan [5, 6] proposed a way of guaranteeing this by changing the struc- 
ture of the tree after every access. Their restructuring operation, called splaying, 
consists of  a sequence of rotations. A single rotation takes O(1) time and preserves the 
symmetric order of  the items. (See Figure 2.) To splay a tree at a node x we walk up 
the path from x to the tree root, performing rotations along the path. The rotations 
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are performed in pairs, in an order that depends upon the structure of  the path. To be. 
precise, we splay at x by repeating the following step until x is the root of  the tree : 

Splaying Step. Apply the appropriate one of the following cases. (See Figure 3.) 

Zig Case. If  the parent p(x) of x is the tree root, rotate the edge joining x to p(x). 
(This makes x the root and terminates the splaying.) 

Zig-zig Case. l fp (x )  is not the root and x and p(x) are both left children or both right 
children, rotate the edge joining p(x) to its parent and then rotate the edge joining _v 
to p(x). 

Zig-zag Case. l f p (x )  is not the root and x is a left child and p(x)  a right child or vice- 
versa, rotate the edge joining x to its parent and then rotate the edge joining x to its 
new parent. 

In addition to moving the node x to the root of  the tree, splaying roughly halves 
the depths of  the other nodes on the splaying path, while increasing the depth of  any 
node in the tree by at most two. (See Figure 4.) A binary search tree in which we splay 
after every access at the node containing the accessed item is called a splay tree. 

It is easy to use splaying to implement such search tree update operations as 
insertion and deletion of  items and joining and splitting [5, 6]. For  the moment  we 
shall restrict our attention to a sequence of access operations. Since the set of  items 
is fixed and in one-to-one correspondence with the tree nodes, we shall regard the 
nodes themselves as the items. We shall identify the nodes by their symmetric-order 
numbers, from 1 to n. As a measure of  the time required by a sequence of m splayings, 
we shall use the sum of the depths of  the nodes at which the splayings occur, i.e. the 
total number of  nodes on splaying paths. 
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Fig. 4. Splayin,~, at node a 

The main known complexi ty  result for splaying is Sleator and Tar jan ' s  access 
l e m m a .  Suppose we assign arbi t rary positive weights wl to the nodes i, 1 ~i_-<n. Let 

FV= ~ w; be the total  weight o f  all the nodes. Consider  a sequence of  171 splaying 
i = 1  

opera t ions  start ing with an arb i t ra ry  initial tree. Let s ( j )  be the node at which t h e j  tt' 
splaying takes place. 

Access Lemma [S, 6]. The total spla),ing ti,,,e is 0 I o , .  _ +  - - l o ~  . II 
~ . j= ]  ~ ~ . W s ( j J ]  i = 1  

I f  we set all the weights equal  to one, the access lemma gives a total  t ime for m 
accesses o f  O ( ( m  + n )  log n), implying that  splay trees are as efficient, on long enough 
access sequences and to within a constant  factor, as any of  the many  forms of  balan- 
ced trees. A m o n g  other  results, the access l emma also implies that  on any sufficiently 
long access sequence and to within a constant  factor,  a splay tree is as efficient as an 
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optimum static search tree for the sequence. Sleator and Taijan made an even stronger 
conjecture. Consider any sequence of  accesses. Suppose we carry out the accesses by 
beginning with an arbitrary binary search tree and searching it from the root for the 
desired items in the desired order, with the proviso that between accesses we can 
change the tree by performing arbitrary rotations. The total cost of the access sequen- 
ce is the total number of nodes on access paths plus the total number of  rotations. Let 
T(s) be the minimum total cost of access sequence s for any such binary search tree 
algorithm. Note that the algorithm is allowed to choose the initial tree. 

Dynamic Optimality Conjecture. I f s is any access sequence, then the cost o f  performh~g 
s by ush~g splayh~g is 0 (T(s )+n) ,  for any hdtial tree. 

Remark. The additive term of n in the conjecture accounts for the fact that the opti- 
mum algorithm is allowed to choose its initial tree, whereas the splaying algorithm 
is given the worst possible initial tree. Any tree can be converted into any other in 
at most 2 n - 2  rotations [1]; thus allowing the optimal algorilhm to choose its initial 
tree saves it only O(n) time. 

If  this conjecture is true, splay trees are a form of universally efficient search 
tree. In this paper we prove the following special case of  the conjecture: 

Sequential Access Theorem. I f  we access each o f  the nodes o f  an arbitrary hdtial tree 
once, in symmetric order, the total thne spent is 0 (n). 

To see that this theorem is a special case of the conjecture, observe that we 
can access n nodes in symmetric order in O(n) time by beginning with a tree consist- 
ing of  only a right path*, accessing the root, and repeating the following pair of steps 
n -  1 times : rotate the edge joining the root to its right child ; access the root. (See 
Figure 5.) 

%% n-1% ~-]°% 

°oo°'* n_]oC~ 

S / 
F~e. 5. EflTcie#tt .~vquent&l access 

* By the right path of a bina~ tree we mean the path from ti~e root through right children to 
lbe largesi node in the tree. We define the le/ipath symmetrically. 



S E Q U E N T I A L  A C C E S S  I N  S P L A Y  T R E E S  371 

Our proof  of  the sequential access theorem is contained in Section 2. The proof  
is somewhat complicated and uses induction and averaging rather than the "poten- 
tial" technique used by Sleator and Tarjan to prove the access lemma. As a corollary, 
we show in Section 3 that splay trees can be used to simulate output-restricted deques 
(double-ended queues) in linear time. This result confirms our belief that the splay 
tree, although it is a general-purpose data structure, is as efficient in special cases as 
customized special-purpose structures. In Section 4 we mention two open problems 
related to the sequential access theorem. 

2. Proof  of  the sequential access  theorem 

Our goal is to analyze the time taken to successively splay at nodes 1, 2 . . . .  , n 
in an arbitrary n-node tree. Let us restate the problem slightly. Figure 6 illustrates the 
effect of  the i '~' splaying for i~2 .  Just before the splaying, the tree consists of  the left 
path, containing the nodes 1, 2 . . . . .  i -  l, and the right subtree of  i -  1, which con- 
tains i as its least node. Splaying at i restructures the right subtree, removing i and 
adding it to the left path. 

°° ~'¢, 

x 2 

A~ 

: - ]  k 

i 

oO °o 

,6? A 3 

. , °  _.-" Xk-2~._)~A~_ 1 A~ 

d ~ ~-~ -~ 

A2 A 3 

Fig. 6. The effi, ct of the i"  splaying. The splaying path contains nodes 
X 1 = i ,  ?¢~,  . . . ,  Xs¢ 

In our analysis we shall ignore the left path entirely and only keep track of the 
right subtree. Figure 7 illustrates the resulting reinterpretation of splaying, which we 
call pseudo splaying, or p-splaying for short:  the least node is removed and the rest of  
the left path is halved. There are two cases, depending on whether the number of  nodes 
on the left path is odd or even. We use the number  of  nodes on the left path as a mea- 
sure of  the p-splaying cost. The second and each successive p-splaying costs one less 
than the corresponding splaying. Thus the upper bound we shall derive on total 
p-splaying cost can be converted into a bound on total splaying cost by adding 
n - 1 .  

We need several observations that follow immediately from an inspection of 
Figure 7. Let x be any node. A node y is a right ancestor o f x  if), is an ancestor o f x  
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and y ~ x. (Any node is an ancestor of  itself; thus it is also a right ancestor of  itself.) 
We denote the set of  right ancestors o f x  by A (x) and its cardinality by a(x).  We define 
I(x) to be the number of  nodes in A (x) on the left path. 

Lemma 1. The subtree rooted at .v is unaffected by successive p-splayings tmtil .v becomes 
a node on the lef t  path. | 

Lemma 2. As  p-aplayings occur, A (x) decreases as a set, i.e. the relation y (  A (x), once 
false,  remains false.  The cost o f  the p-splaying at x is at most a(x),  where a(x) is compu- 
led at any time before the p-splaying. | 

Lemma 3. Let  a and a', I and l" denote the a and l funct ions just  be/bre and./ust after the 
p-splaying o f  some node 3,< x. Then a '(x)  ~ a(x) - [l(x)/2l + 1 and l ' (x)  ~_ [l(x)/2]. | 

A p-splaying of cost k knocks at least [k/21- l nodes off the left path. I f  it 
were true that every node could return to the left path only a constant number  of  
times, then it would be easy to derive the sequential access theorem. Unfortunately, 
individual nodes can return arbitrarly often to the left path. To overcome this diffic- 
ulty, we shall show that on the average a node returns to the left path only a constant 
n umber of times. We average only over certain nodes in the tree. 

For  any node x, let f ( x )  be the depth o f x  when it first moves to the left path. 
( l f x  starts on the left p a t h , f  (x) is its initial depth.) For k an arbitrary positive integer, 
let the k shallowest nodes on the left path be x~, x_o . . . . .  xk, fi'om lowest to highest in 
symmetric order, and let Yl for 1 < i ~ k  be the ri~at child ofx~, if it exists. Let F(k)  

be the maximum possible wdue of ~ '  .f(Yi) for any tree that actually has nodes 
i = 1  

.vt . . . . . .  vk and j'~ . . . . . .  l'~_~. ( l f y  k is missing, we define f ( y k ) = 0 . )  
We shall prove by induction that F ( k ) = O ( k ) ,  i,e. the average depth of  the 

nodes y~ when they first reach the left path is a constant independent of  k. Instead of  
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bounding F(k) directly, we shall bound G ( k ) = m a x  {F(i)II <=i~_k}, which is non- 
decreasing in k. The crucial result, stated in the next lemma, is a recursive bound on 
G(k). 

Lemma 4. For k~3,  G(k)<=5 G([k/2l+l)+5([k/2]+l). 

Proof. Let k ->_3. Consider the first p-splaying. Its most important effect is to pair up 
all but at most two of the nodes y~; for roughly half  the values of  i in the range 1 ~ i =  < _ 
<-k, node x~ leaves the left path, getting 3,~_~ as its new left child and retaining y~ 
as its right child. Consider the effect of  later p-splayings on the triple Yi-~, x~, Yi. 
Eventually x~ moves to the left path. When it does, Y;-a and Yi are still its left and 
right children by Lemma 1. Furthermore y~_~ moves to the left path simultaneously 
with x~. Thus fO'i-~) =f(xi) + 1. 

~rk- 2 Y~ 

x2 ~ 3 , ~ z  "~]~, Ak. ., A~..~ 

N Y~N A~ ~i 

Fig. 8. The e/]'ect o f  p-splayhlg on the nodes x~ and y~. 
There are actually six cases, dependit(~ on whether k is 
even or odd and on whether the length o f  the p-splaying 
path is' k,  greater than k and even, or greater than k attd 
odd. The case shown is k even with a p-splaying path o f  
let~gth greater than k and evem Sabtree Ao is transformed 

into region A'o by the p-xplayit(~, 

When x i reaches the left path, a(y~)=.f(xl) and l (y i )=f(x~)- l ,  At least 
two more p-splayings (of y~_l and :q ) occur before ),'~ moves to the left path. The first 
two of these reduce a(y~) to at most f (x , )  - [ ( f (x~)- -1) /2]  +1 - [ ( f (x~ )  - 1)/2J/2] + 
+ 1 ~f(x~)/4 + 3 by Lemma 3 (applied twice). By Lemma 2, f(Yi) ~f ( :q ) /4  +3. 

Combining our bounds we have .f(y,_ ~) ~f(Yl) ~-~f(x~) +4. Thus we can 

estimate the cost of  the paired y~'s using the cost of  the y~'s knocked off the left path by 
the first p-splaying, which we can in turn estimate using G. 

The two nodes y~ that may not be paired up by the first p-splaying arey~ andy  k. 
This p-splaying reduces a(yx) to at most [k/21 + 1 by Lemma 3, implying that f (Yl)  ~- 
<_-[k/2] + I. Node Yt~, if not  paired up, remains a right child of xk, which remains the 
root ,  

Let z~, z o, ..., z.i be the nodes among x~, x2 . . . . .  xk and )'k that are right 
children of nodes on the left path after the first p-splaying. We have .i~[k[2] +1. 
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The discussion above implies 

k j 

~'J(Yk) --~ lk/2j+ l +5 ~ ' . l (z , )+4 j  < 5 • = ~- O ([k/21 + I )  + 5 ( [k /2 l  + I ) ,  
i = a  I = l  

which gives us the recurrence 

5 
G(k) ~ ~l G([k/2l+ l ) + 5 ( l k / 2 l + l ) ,  

since the initial tree was arbitrary. II 

L e m m a  5. G (k)  :< 8k. 
k 

Proof. We use induction on k. Obviously G ( k ) ~ '  i = k ( k + l ) / 2 .  An easy calcu- 
i = 1  

lation shows G ( k ) ~ 8 k  for k~30 .  Let k > 3 0  and suppose G ( i ) ~ 8 i  for l<=i<k. 
Lemma 4 and the induction hypothesis imply G(k) ~ 10([k/21 + 1) +5  ([/(/21 + 1)~ 8k. 
By induction G ( k ) ~ 8 k  fo ra l lk .  II 

R e m a r k .  A more complicated analysis will reduce the constant in Lemma 5, but this 
constant affects the constant we derive for the sequential access theorem only loga- 
rithmically. 

Our proof  of the sequential access theorem, though not as simple as possible, 
is designed to yield a small constant factor. We consider p-splaying at each of the 
nodes of  an arbitrary n-node tree in symmetric order. Partition the nodes into bands 
by assigning node x to band 0 if l ~ a ( x ) ~ 2  and to band i f o r  i ~ l  if 2 ; - 1 + 2 ~  
~ a ( x ) ~ 2 ~ + l .  The bands are chosen so that if a band i node with i > l  is on a 
splaying path, its band after the splaying is at most i -  1. This follows from Lemma 3 ; 
any band zero node remains in band zero. We call a node deep if its band is five or 
greater and shallow otherwise. 

We shall charge for certain events that occur during the p-splaying process. 
Specifically, we charge two units each time a p-splaying occurs, one unit each time the 
band of a shallow node changes, and 3.8 units each time a deep node becomes 
shallow. The total charge is 2n tor the p-splayings plus 4n :for the shallow band 
transitions plus 3.8n for the deep-shallow transitions, for a grand total of 9.8n. 

L e m m a  6. The total charge is an upper bound on the cost o/all  the p-~pko,ings. 

ProoL Consider a p-splaying path containing k ~- 33 nodes. The two units charged to 
the p-splaying pay for the at most two band zero nodes. Each node in bands one 
through four changes band because of the p-splaying and is charged one unit. Each 
node in band five changes from deep to shallow and is charged 3.8 units. Since every 
node on the path is in bands zero through five, the cost of the p-splaying is no greater 
than the charge for events that occur during the p-splaying. 

Consider a p-splaying path containing k > 3 3  nodes. Consider the situation 
just after the p-splaying. Let xa, x.,, . . . ,  xj be those nodes that were knocked off the 
left path by the splaying. We have a(xi)<=[k/21 + 1, which implies by Lemma 5 that 
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J 
.~ G(x~) ~4k +8. Suppose there are I nodes :v~ that eventually return to the left path 
i = 1  

2 k + 4 "  as deep nodes, i.e. have .[(x~):~ 18. Then 18 l~4k+8 ,  which implies / ~ -  

There are k - 3 3  nodes on the p-splaying path in bands six and higher, of 
which at least ( k - 3 3 ) / 2 - 1 : k / 2 - 3 5 / 2  are among the nodes x~. Thus at least 

k / 2 -  35/2 l>  l~k 18 nodes in bands six and higher return to the left path only as 

shallow nodes. The charge for the corresponding deep-to-shallow transitions is at least 
f ~  1 

3 81@k-181=>k-64.4. There isan additional charge of  3.8(16)=60.8 for the 16 

band five nodes that become shallow because of the p-splaying, plus 15 for the 15 
nodes in bands one through four that change band because of the p-splaying, 
plus 2 for the p-splaying itself. The total charge associated with the p-splaying is 
thus at least k -64 .4+60 .8+15+2=k+13 .4~k .  I 

Theorem 1. The total cost o/all n p-splaying operations is at mos't 9.8n. 

Proof. Immediate flora Lemma 6. II 

As noted at the beginning of this section, the bound in Theorem 1 underesti- 
mates the cost of n sequential splayings in an n-node tree by n -  I. Thus we obtain 
a bound for the sequential access theorem of 10.8n. 

3. Splay trees as deques 

A deque (double-ended queue) is an abstract data structure consisting of a list 
of items, on which the following operations can be performed" 

push (e) : Add item e to the front of the deque. 

pop. Remove the flont item from the deque and return it. If the deque is empty, this 
operation returns a special null node. 

in/ect (e): Add item e to the rear of the deque. 

e/ect: Remove the rear item from the deque and return it. If the deque is empty, this 
operation returns null. 

If only push and pop operations are performed, the deque is a stack. If only 
inject and pop operations are performed, the deque is a queue. If only push, pop. and 
inject operations are performed, the deqne is output-restricted. 

We can implement a deque using a splay tree whose nodes are the deque items, 
with symmetric order in the tree corresponding to front-to-rear order in the deque. 
To carTy out push(e), we make the current tree the right subtree of item e, which 
becomes the new root. To carry outpop, we follow left child pointers from the tree root 
until reaching a node x with no left child, perform a p-splaying at node x (thereby 
removing it from the tree), and return x. The implementations of h~./ect and eject are 
symmetric. 
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We wish to study the efficiency of this implementation of  deques. The seque- 
tial access theorem suggests that the time per deque operation should be O(1) when 
anaortized over a sufficiently long sequence of operations. Thus we make the follow- 
ing conjecture" 

Deque Conjecture. I f  we perjbrm a sequence o/" m deque operations on an arbitrary 
n-node tree, the total thne is O(n-Fln). 

We shall prove this conjecture for output-restricted deques, i.e. no eiect ope- 
rations are allowed. We need two preliminary lemmas. Consider an n-node tree in 
which the first k nodes in symmetric order are colored white and the last n - k  nodes 
are colored black. We shall study the cost of  p-splaying at each of  the white nodes in 
symmetric order. To bound the cost, we count white nodes and black nodes on 
p-splaying paths separately. 

Lemma 7. Suppose the p-splaying path .for node I contahzs k black nodes. After the 
p-splaying, at least t(k - 1)/2J o f  these black nodes are right ancestors o/'no white nodes. 

Proof. Let x~ . . . . .  .vk be the black nodes on the p-splaying path, in increasing sym- 
metric order. These are the k shallowest nodes on the left path. Let x~ for i->2 be 
knocked off the left path by the p-splaying. The new left subtree of  x~ is the old right 
subtree of  x;_~ which can contain no white nodes since all white nodes are tess than 
x~_~. Thus x~ satisfies the requirements of the lemma. There are at least [ ( k - I ) / 2  l 
such nodes. II 

Lemma 7 gives us a way to count black nodes on splaying paths. For purposes 
of  counting white nodes, black nodes are irrelevant, as the next lemma shows. Let 
T be the original tree, and let W(T),  the white tree of  T, be the tree formed from T 
consisting of  the k white nodes, with y the parent o f x  in W ( T )  if), is the nearest white 
ancestor of  x in T. (If  the parent of  x in T is white, y is that parent;  otherwise y is found 
by walking up from x until reaching a node less than x in symmetric order. In the lat- 
ter case node x is the shallowest white node on the left path of  the right subtree ofy.)  
W(T) is indeed a tree, because the nearest common ancestor of  any two white nodes 
is white. The parenthetical remark implies that W(T)  is binary. 

Lemma 8. Let T" be formed fi'om T by doing a single right rotation anywhere in the tree. 
/./'at least one o f  the nodes involved in the rotation is black, then W ( T ' )  = W ( T). Other- 
wise, let W(T)" be formed from W(T)  by performhTg the same rotation as h~ T. Then 
W(T')  = W ( T)'. 

Proof. Referring to Figure 2, we see that  the possible colors of  nodes x and y are 
black-black, white-black, or white-white. (Since x<); ,  the black-white case is impos- 
sible). In the black-black case, the rotation in T doesn't  affect the white tree: any white 
node in subtrees A, B, or Cwlmse nearest white ancestor in T is an ancestor of  y re- 
tains the same nearest white ancestor in T' .  The same is true in the white-black case: 
all of  subtree C must be black; any white node in A or B whose nearest white ancestor 
in Tis  x has x as its nearest white ancestor in T ' ;  the removal  of) ,  as an ancestor of  x 
doesn' t  affect the nearest white ancestor o f  x. In the white-white case, all of  subtrees 
A and B are white; the right child o f y  in W ( T )  is the shallowest white node on the 
left path of  C. It is immediate that W(T ' )  = W(T) ' .  II 
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Corollary 1. Let 7"" be formed from T byp-splaying at node 1 and let W(T)"  be formed 
from W ( T) similarly. Then the number of  white nodes on the p-splayhTg paths is the same 
hz both T and W ( T), and W ( T')--- W ( T)' .  | 

Now consider an n-node arbitrary initial tree. Suppose we perform a sequence 
of  m push, pop, and h~ject operations, with the proviso that none of  the newly injected 
nodes is popped. 

Lemma 9. The deque operations take a total o f  O(n +m) time. 

Proof. Color white all the original nodes in the tree as well as all pushed nodes, and 
color all injected nodes black. All the black nodes follow all the white nodes in sym- 
metric order. Eachpush or inject operation takes O(1) time. Thus we need only bound 
the total time ofthepop operations, i.e. the total number of  nodes on p-splaying paths. 
When a new node x is pushed, its set of right ancestors is {x}, and it becomes a right 
ancestor of no other nodes. It follows from Corollary 1 that all the results of  Section 
2 hold for the white tree as it changes because of deque operations. The number of  
white nodes on the p-splaying paths of  nodes in the original tree is at most 9.8n. 
(When a push occurs, what is left of  the original tree is unaffected until the pushed 
node is removed by a pop.) If  a pop causes a p-splaying along a path containing 
k black nodes, then by Lemma 7 at least [ ( k -  1) /21~k/2-1  of these black nodes 
are on no later splaying path. It follows that the number of  black nodes on p-splaying 
paths is at most two per black node plus two per p-splaying, tbr a total of  at most 
2(n+m).  Combining estimates, we find that the total number of nodes on all p- 
splaying paths is at most l l .Sn+3m.  The theorem follows. I 

Theorem 2. Consider a sequence of  m output-restricted deque operations performed on an 
arbitrary n-node tree. The deque operations require a total o f  0 (n +m) time. 

Proof. We divide the deque operations into epochs such that the restriction of  Lemma 
9 holds for each epoch. The first epoch ends when the last node in the original tree 
is popped. The i +  1 "~t epoch ends when the last node in the original tree o f  epoch i is 
popped. Nodes that are white during one epoch are gone during the next epoch, and 
nodes that are black during one epoch are white during the next epoch. The theorem 
follows from Lemma 9 by summing over epochs. 1 

4. Remarks and open problems 

Theorems 1 and 2 strengthen our belief that the splay tree, even though it is 
a general-purpose data structure, adapts sufficiently well to the usage pattern that it 
can be competitive with special-purpose structures customized to fit their usage. There 
are several open problems related to our work. The first is to prove the deque con- 
jecture. If true, this conjecture implies that implementing a deque using a splay tree is 
as efficient, in an amortized sense and ignoring constant factors, as the standard ar- 
ray and doubly-linked list representations [3, 7]. In situations where insertions and 
deletions in the interior of  the deque are occasionally necessary, as in discrete event 
simulation [2, 4], the splay tree representation may be a good one, since it supports 
more powerful operations apparently without degrading the efficiency of  simple 
ones. 
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Proving the deque conjecture requires studying the effect of intermixed splay- 
ings on both ends of  the tree. As an aid to this study, it would be nice to understand 
the sequential access theorem better. In particular, it would be useful to have a poten- 
tial-based proof. (See [8] for a discussion of the idea of potential.) Such a proof might 
be more easily extendible to a proof of the deque conjecture than the present one 
seems to be. 

Another related question was suggested by Danny Sleator (private communi- 
cation.) Call the pair of rotations perfonned during the zig-zig case of a splaying step 
a turn .  (See Figure 9.) 

ke'rl 1urn 

A O c D 

F&. 9. A tttrn. The tree shown can be a st¢btree 
of  a larger tree 

Turn Conjecture (Sleator). I f  we beght with an arbitrao, n-node tree and perform an 
arbitrary sequence o f  hTtermixed right turns and right shlgle rotations, then the total 

( (")) number o f  turns is O(n). The mm~ber o f  single rotations can be as high as 2 " 
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