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HYPERGRAPHS DO NOT JUMP 

P. F R A N K L  and V. R O D L  

Receiced 3 Noz~ember 1983 

The number ~, 0<:t<= I, is a jump for r if for any positive ~ and any integer m. m -~-r, any 

with ,,, ~ e r t i c ~  and a, ,eos,  ~ +<~ (',")edges, ~ h e r e  < =<<~> <,o~s not de~end o n < a n d  ,,, ,, , ' o , o ~ s  

fiom a theorem of Erd6s, Stone and Simonovits that for r = 2  every ~ is a junap. Erd6s asked whether 
the same is true ['or r~-3. He offered $ l(X)0 for answering this question. In this paper we give a 

1 
negative answer by showing that l l ~  is not a j ump i f  r ~3, l>2r. 

I. Introduction 

F o r  a finite set V and a pos i t ive  in teger  r we d e n o t e  by ( ~ ) t h e f a m i l y o f a l l  

r - e l e m e n t  subse t s  o f  V. We  call  G=(V. E) an r - u n i f o r m  h y p e r g r a p h  o r  shor t ly  an 

by 

Defini t ion 1. 1. A s e q u e n c e  ~ =  {G,},T=I, G,,=(V~,, E,,) o f  r -g raphs  is admissible if  the  
f o l l o w i n g  two  c o n d i t i o n s  are  v e r i f e d  

(i) IV,,l~r and  ] V , , I ~  as n ~  
(ii) the  l imi t  lira d(G,,)=d(~) exists. 

We  call  d('~) the  density o f  the  admiss ib le  s equence  fg. F o r  k ~ r  we def ine  

~ k ( ( q )  = m a x  m a x  
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A simple averaging argument  yields (cf. Katona ,  Nemetz,  Simonovits  [7]): a~(~) 
,:7,._~, (.c~) ~ .... 

Therefore  lira ak((~) J(~N) exists, we call it the upper density o f ~ .  g-,_ 
P. Erd6s, A. H. Stone, M. Simonovits  [3] proved that  the only possible values 

I 
of /7 (~)  for r = 2  (i.e. for admissible sequences of  graphs) are I -  7 ( I =  I, 2, 3 ...) 

and 1. This result easily follows f lom the following 

°fheorem (Erd6s and Stone [4]). Sul~po.s'e g>0 ,  1, m are positive integers and G is a 
[ 

graph on n vertices with d (G)~1  - ~ + , : .  1/  n>no(/ ,  m, c) then G contains a conqdete 

( l+  I)-partite sttbgraph with partition classes o f  size m (i.e. there exist l+  1 pairwise 
disjoint subsets V 1 . . . .  , I,"l+ 1 such that (.vi, x i) is all edge o /  G whenever ,vi6 Vi, 
_vi< V i and i,-.] hold). | 

P. Erd6s asked whether for r-_--3 the set o f  possible values o f3 (~ ' )  For admis-  
s i ne  sequences of  r-uniform hypergraphs forms a well-ordered sequence. We eive 
a negative answer:  

Theorem i. 2. Suppose r - -3 ,  /---2r Then ,[br an arbitrary posilivc ~: there e.vi,,ts an 
aehnissible sequence o /  r-grapl~s, satis/i~'ing 

1 1 
(1) 1 -  lr_~ --- ~/(~#) < 1 /" ~ + ~:" 

In the next section we introduce the Langrange function, ,;,(G), which proves 
to be a helpful tool in calculating the upper density of  certain admissible sequences. 
In Section 3 we prove a necessary and sufficient condition t o r :  to be a jump.  The 
proof  of-l-heorem 1.2 is given in Section 4. 

2. The Lagrange function of  hypergraphs 

For  an r-graph G with vertex set {1,2, ...,,*t}, edge set E(G) and a vector 
.~ =(-vl . . . . .  " "~ R" .~,,~. denote  by ,;.(G, YO the Lagrange function of  G defined as 

). (G, :'.:) = Z -viz xi.,_ . . . . v i , . .  
{ i .  i~ . . . . .  it} ~ E(G) 

{ , } Set S ,~=(xl .  x., . . . . . .  %): Z & =  1, .ri--~0 , 
i = I  

;. ( a )  = m~,x {;. (G, X): ~ c S}. 

For J < { l , 2  . . . . .  n}, J ~ 0 ,  set S~={.~=(.vL . . . . .  x , ) :  ~_S ,  .v~>0 if]" i~J}.  
we write supp ,~=J.  Clearly, we have 

2(G) = max {2(G, ~) : ~C co j}. 

The next theorem follows from the theory of  kagrange  multipfiers (cf. [4]). 

Then 
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Theorem 2.1. There exists a non-empO, set J c { l , 2 , . . . , n }  and a vector fi 
= (Y:, Y,-, . . . .  , y,)C Sj so that the following three conditions are satisfied: 

(i) 2(G) = 2(G, y) 

0 YqYlz "'" Y'ir (ii) ~ 2 ( G ,  y) = Z - r),(G), .JCJ. 
• . i  ~ {it, i2  . . . . .  iv} ~ E(G) Yj  

is Jwgative semide- (iii) The Jacobian ~1atrix o f  second derivatives (G, Y) i: 

finite on the hyperplane ~ y~=0. | 
l ~ i g n  

This theorem gives necessary conditions for a vector j:5 S to fulfill (i). Unfor- 
tunately we do not know any satisfactory (i.e. easily verifiable) sufficient condition. 
In the case of  graphs, i.e. if r = 2 ,  the situation is much simpler. The next theorem 
can be deduced from Tur:in's theorem [7]. We give an alternative proof  later, using 
Theorem 2.3. 

Theorem 2.2. Let G be a graph in which the largest clique has size t. Then we have 

(2) ;L(G)=~-  1-- . II 

Theorem 2.3. Suppose £(G)=2(G, p) for ~E,S'j and IJI is minimal sub/ect to this con- 
dition. Then.for any a, bGJ there exists eEE(G) with {a, b } C e C J .  

Proof. Suppose the contrary. Then we have 

(3) Ox, Oxb 2(G, .~) = 0. 

Suppose by symmetry ~ . ( G , . ~ ) ~ 2 ( G ,  ~) holds and define 6 

=rain {y,.1--Yb}. Set : = ( q  . . . .  , q )  with z , = y , , - &  Zb=),h+6 and z;=.ve 
otherwise. Then (3) and the fact that 2(G, 2) is linear in each variable imply 

~.(6, e) = ¢~(a, 2) + 6 ~ (a,  ~) - ~(a ,  : )  ~ ,~ (a,  ~). 

Howerever, ~GS, q = 0  if i~J and either z , = 0  or .,%=0 holds in addition, a con- 
tradiction. | 

Proof of Theorem 2.2. Let 2(G)=;t(G, 2), .pGSj and IJj minimal subject to this 
condition. Then Theorem 2.3 implies that J is a clique in G, consequently [Jt =j-<t.  

Suppose for simplicity J =  {1, 2 . . . . . .  /}. Then (ii) of  Theorem 2.1 implies 

X Yv=2)-(G) for i =  1 . . . . . .  /. 
v:i 

l ~ ' ~ j  

Taking the difference of  the first and i ' th equation we obtain ys-y~ = 0, i.e., v~ =y~. 
1 

This means ),:=y~ . . . .  =.vj. Now ) ' t+Ye+. . .  +Y.i= I implies y~=- :  and con- 
./ 



1 5 2  P. F R A N K L ,  V. R O D L  

sequently j -  1 =2)_(6)  i.e., ) .(G)=-~- 1 - . Since ).(G) is a max inmm,  we must 
J 

have j = t  and thus ) , ( G ) = ~ - { I - + ) .  II 
/ 

For  r ~ 3  the situation is much more  complicated,  the equations in (ii) o f  
Theorem 2.1 are not linear any more.  However ,  for  our purposes  it will be sufficient 
to investigate the kagrange  function of  a special class of  r-graphs.  

Definition 2.4. Denote  by K(r,  l, t) the complete  l-partite r-graph with each color 
class o fca rd ina l i t y  t. More  explicitly V(K(r, l, t ) )=VIU. . . ! , JVt ,  IV, l=t, gO,~/,.=ri 

Theorem 2.5. 

' [(':] /;)/ (4) 2 ( K ( r , / .  t)) = ~ - I  . 

Wc need a lemma. We call two vertices i , j  of G equivalent i f  for all 
( v -  {LiB 

t / /  ~ . 
e~[ , .  I J" e U { j l < E ( G )  if and only if e L I t ~ E ( G ) .  

Lemma 2.6. Supl)ose G is an r-graph on {1, 2 . . . . .  n} in which i and j are cquirah'nt. 
Then there exists ~c.S.1 with 2 ( G ) = 2 ( G , . p )  and y i = y j .  Moreover, v i = y i  holds" 

for  an.v vector .~ satisJ)'ing 2(G) =~.(G, .i;) and such that for  some e. c_ E(G}, {i. /} ~ e 
supp (f)U {i} /;o/ds. 

) '~ + .I "j 
Proof. Suppose Y~=Y.i. Define 5 by z s = z j -  2 , :,.=.v,. otherwise. It is easy to 

see that  )~(G, ~)- -2(G,  ~). Moreover ,  for an edge of  the form {i,./, i~ . . . . .  i,._e}, we 
r -- 2 i o ( , , + n )  - ' -~  

17 .ri,. which is strictly bieeer  if vi,....vi,_ ~:0. II replaced YiYi,.=l ~[ Yi,. by [ 2 } ,:.1 ~ " 

Proof of Theorem 2.5. We may assume without loss of  generalily that I,~ 
= { ( i - I ) t + l  . . . . .  it} for  i = 1 , 2  . . . . .  /. Let ,13 be an op t imum vector, i.e. so that  
2 ( G ) - 2 ( G ,  y) holds. Suppose y,,,.vb~ V~ for  some I ~ i ~ 1 .  We want  to show that  
Y,=Yh holds. Suppose for  contradict ion ) ' ,>J 'b- Since 35 is an op t imum vector,  there 
is an e'<E(G) satisfying . r S e ' ~ s u p p  0n). Define c=e" if b~e. If  not,  set e = ( e ' -  {b']) 
U{b} where b'~e', b ' ~ a  and such that  e ~ l / ,  .. This is always possible because 
e ' ~  l/~ and r ~ 3 .  Now the second statement  of  k e m m a  2.6 implies Y,=Yb. 

Define o~ as the c o m m o n  value of yj for ./~ V/. With this notat ion 

) .(G,. ,)  = 2(K(r ,  1 , / / ) , _ f ) -  ~ ' ( : 1 ( 2 : .  
i = l  \ / ]  

Using Lemma 2.6 we infer 

; . (K0-,  l ,  It) ,  .i') - )~U{(", l , / , ) )  = ~ . 

On the other  hand _,Y~= l/t, 0 i - 0  and the Jensen inequality yield 
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Combin ing  these we obtain 

2(G,.?)  -- (It)" ( t r  ! 
and thus 

[ (1 l~,,t 771)1 ,:t)'l f['[" ] (;)1 , ~ ( G )  = ~. G ,  . . . . .  = ,~.,.. t t , . ,~- /  holds. | 

3. Jumps and thresh~dds 

Definition 3.1. Let f~=(G,.);/~=~ be an admissible sequence o f  r-graphs. We say' that 
~F=(H,)F,=~ is a sub.~x'quence of~Y ifH,,is a subgraph ofG,, foral l  n ~  I and ]I..'(H,) I 
~ o c ,  ~.IS 11 ~ co. 

Definition 3.2. For  0-=:~<: I define 

Ar(~)=sup {6,: d(.~¢)>~ implies 3 ( ~ ) ~ + 6  for all 
admissible sequences o f  r-graphs}. 

We call ~. a jump if zl~(~)>0. 

It is not  hard to see that one may replace sup by max in Definition 3.2. More- 
over. the definition is equivalent to '  any admissible sequence (¢ v~itla d ( f¢)>~ con- 
tains a subsequence with lira sup d(H,,)--:~ + A,(,y.). 

n 

Erd6s '  problem stated in the Introduction can be reformulated as fol lows: is  it 
true that g~(c0>0 holds for all r---2 and 0 ~ < 1 7  

Definition 3.3. For  0 ~ <  1 and a family ~ o f  r-graphs, we say that ~. is a thru.@ohl 
for J if in any admissible sequence ~g={G,,}~=l with d(~Y)>~ all but finitely 
many G,, contain some member  of  .7  as a subgraph. We denote this fact by : ~ . N .  

Note that ~ + . f  is equivalent to the following: for every e. there exists an 
n,=no(e, ~, r , .~)  such that  d(G)i---~+e and ]V(G)[>n0 imply that G has some 
member  o t ' ~  as a subgraph. 

Theorem 3.4. (Erd6s [I]) Let f~ be an admissible sequence oJ'r-graphs" with d(~Y)>0. 
Then f4 contains an admissible sttbsc,quenc'e .~{: o f  com/ffc ' le  r-/)arl/lc' ,graphs' n'it/1 c'ctc'/z 

r !  
color c/ass o/'the same cardinalio', d ( ~ )  = 7 "  | 

In our terminology we have : 
r !  

Corollary 3.5. For any r ~ 2 ,  0 is u jump and aX0)-- 7 .  I 

Now we will define the blow-up of  an r-graph which will play' a ccntral role in 
the rest o f  this section. 

Definit ion3.6.  Let G be an r-graph with V ( G ) = { I ,  2 . . . . .  tl} and )~=(p: . . . . .  p,,) 
a non-negative integer vector. Define the p blow-up of" G, 1~ @ G as an n-partite r-graph 
with vertex set I'~ I j . .  U V,,, [~'i] =lh, 1 ~ i - -n ,  and edge set 

E(,OeG) = Jq" ,:,, }: v,6V~, {i~ &, i,}6E(G)}. 

3* 
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Note that 

(5) ])®(q®G) -- (P,q, . . . . .  p,,q,,)®G where [~ = (p, . . . . .  p,). q = (q, . . . . .  q,,). 

We omit the proof of the following easy but important proposition. 

Proposit ion 3.7.  Set i = ( i  . . . . .  i),  i =  >- I .  Then 

(6) J({I®G}~'~,) = r! ).(G) 

hohls for any r-graph G. n 

The main purpose of this section is to prove the following. 

Theorem 3.8. The.following are equivalent. 

(i) :~ is ajtmTpfor r. 

(if) 7. -~ .'7.~q." some.finite family ~ o f  r-graphs satisfrin,¢ 2 (F) > ~.  a][ F6 

Proof.  (i)-*(ii): Let us set A=A,(~) (cf. Definition .~._). Then A>0. Let us fix k 
=ko(A, :0 so that 

(7) k,--~ ~ + ~-- > ~?-  

Let,yv be the family of all r-graphs on k vertices and at least [:~+@)[:' .) 

for al l  FC-,~ edges. Then (7) implies 2(F)>r- T 

Let ~ be an adnlissible sequence with d(N)>a. Then by definition O(.~)~- 
> ~ + A  holds. Therefore we may choose J/={H,},~=x, a sequence of subhyper- 
graphs of members of  fg so that lira sup d(H,,)Ga+A and IH,,!~k for n>n.(k) .  

A A 
Thus we may choose/7,  to satisfy d(H,,) ~ ~ +-~-, ] V(H,)[ ~ k. Thus cr~ (H,,) ~-~ -k ~-  

A 
therefore H,, has a subgraph F with [ V(F) I = k  d(F) ~ ~ + ~- ,  i.e. FC.yT. as desired. 

( i i ) ~ ( i ) :  Let ._~= {Fj . . . .  , F,,) be the finite family with 2(F~)> ~-~T satisfying 
F'. 

~.T. Let us set ]l/(Fi)[ =t',-. 
Let -~={G,,},7=l be an admissible sequence with d(fg)=c~+e, e.>0. Let us 

choose n~ so that for n~-n:t, r ! n '>  e +2e/3 holds. Take n so that !G,,I--<n-~ 

=max {hi. n0 ( 4 ,  a, r, ,Y'-)} (c.f. Definition 3.3)and d(G,)>a+2-~ ho16. Then the 

average density of the lh-vertex spanned subhypergraphs of  G,, is at least a + ¢ .  

therefore there are at least @[Iv(G)l} n~-subsets. W c  V(G,) which span a subhy- 
4 1 ,  n2 ) 
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pergraph with density at least ~+-~-. As n~no[4 , [ "  ~, r , , N / ,  x all these Wconta in  
\ - -  / 

at copy of  some member of  <~ However, a given copy of  F~ is contained in at most 

{ Iv(a,,)l-~,,1 n~-v~ ! of  the n :subse ts  of  V(G,). Therefore, there exists a positive constant 

c such that,  if IV(G,,)!~n~=n3(n.,, c), then for some i, 1 ~ i ~ m ,  G, contains at least 

c f n /  copies of  g;. Let the vertices of  F; be .'q . . . . .  ",~ in an arbitrary but fixed order. 
t1"l ~ i 

For a random partition V(G)=)(1U ... tO X,,, and a given copy of  Fi. the probability 
I 

x,~X; for i = I  . . . . .  v~ is - - .  Therefore, there exists a partition, say V(G,,) 

=E.LJ...i .JV,,,  so that the corresponding u~-pal'tite vi-graph contains at least 

! ~_." / n ] > c , { n  ) cop iesof  Fi, a l l i n t h e s a m e  position. 
vf, m tvi! vi 

Thus, for any positive integer t and n=>no(c, vi), we may apply Theorem 3.4 
and obtain a vl-partite complete v :graph  of  copies of  Fi, i.e. 7® F; is a subgraph o f  
G,,, whenever ]V(G,,)[>no(c, vi). 

Consequently,  for some i, 1 ~i-_-:m, we can find a sequence 1 ~n~-~n..~:... 
so that  G,,j has ] ®  Fi as a subgraph. Hence 

d(~,~) ~ d({G,,,};=,) -: d({iOF,}7=, ) = ,'~ ;~(F,). 

Thus. settin~ A -  rain ( r ! ) . (F) -~ . ) ,  we have d ( N ) - ~ + A ,  i.e. 7. is a jump. | 

4. The proof of Theorem 1.2 

Consider first the sequence i f ( t ) =  {G,,}2,21 where G,, =(n,  n, . . . ,  n ) ~  K(r . / .  t). 
Theorem 2.5 and Proposition 3.7 imply 

Proposition 4.1. 

"[(':) t;)} d(~'(:)) - ~ 0 ~ ( 0 )  = ,~ : , (Kt, ' ,  :, ,~) ~ ,  - : • I 

Thus we have 

' ' { " t { ~  ' ) {~)  ( s )  ~ ( m t 0 ) = l  r - '  : 2 / , _ :  + o  . , 

i.e., tlae if(t) ,  t =  1,2 . . . .  form a sequence of  admissible sequences with monotone 
1 

increasing upper density tending to 1 F_--- T .  

We shall prove Theorem 1.2 by showing that one can add ct "-~ edges to one of  
the color classes of  K(r, l, t ) - - in  order to obtain a new graph K +' ( t )=  K*(r, [, t) such 

I 

that  2 ( K * ( t ) ) = d ( f i ® K * ( t ) )  is slightly greater than 1 - FJ--~_~. Doing this for e,,ery 

1 
t we obtain a decreasing infinite sequence of  densities--tending actually to 1 -/,.----7-. 

First we need a lemma. 
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Lemma 4.2. Suppose r, k and c are fixed. Then for every t>to(r, k, c) there exists an 
r-graph H sati.sf ring : 

(i) ]VfH)l=t  
(ii) [E(H)i~ct  ~-~ 

(iii) For all I, o c V ( H  ) r~lVo[-  k we have 

E(H)N(Vrr °) ~ , V . , - r + l .  

Proof. Consider a random r-graph, H* on V= V(H*)= {1,2, ..., t} whose edges 

are chosen h~dependently with probability 2c r !. Then the expected number of edges, 
t 

3 
M(IE(H~)[J=2c(t - l ) . . . ( t - r +  t) >~-  et ~-1 if t>to(,'). 

For 2~I~ k call VocV(H*), lV01=l, badif(iii) fi6ls for Vo, i.e., if G con- 

ta insat least  / - r - F 2 e d g e s ' T h e " e a r e / ( ! } + l  21 choices for 1 - r + 2  edges, andthe 

{ probability that these edges are in H ~ is r ! thus the expected number of 

bad Vi,'s satisfies 

~%:k I / - '  2 - -5 - -  < - -  
C 

2 {/~"~ [ r - I  if I ;-" 1o(.1" , I<, C). 

Thus. M(,E(H~) , ) -[ ; :JM(badVo)>ct  "-1. Consequent,y, for sonae wllue o f  H * 
% / 

the number of edges remahaing after removing all edges contained in a bad Vo is still 
at least cl ~-~, and the r-graph formed by these remaining edges show the validity of 
thelemma. II 

(;)(' ') Set now c = 2 +  l i,._ ~. . Let K(r, I, t) have color classes 1,[ . . . . .  g 

and let H be an r-graph on V~ satisfying the statement of Lemma 4.2, Define K*(r, l, t) 
as K(r, l, t) together with the edges ofH.  In view of(8) we have for l>t ,  

, .! I E ( K * ( , - ,  l ,  t ) ) l  ~ 1 - 1 . J 

(Ity 1 ~ - 1  ' 1 

thus, 

(9) 

a finite collection Y of  r-graphs with 

l [  J a} 
~.(K*(,., l, t)) ~ ~ 1 -77~+-  7 

1 
Suppose now that 1 -  F_-- ~ is a jump. In view of Theorem 3.8 there exists 

2(F)~7~ ( 1 -  +6  , ~5>0 forall  Fq~-, 
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1 ( 1 . ~ . ~ )  Let us set k = m a x  IV(F)] , such that  1 --7-;=T- is a threshold for .~  1 - l ,_  t . v~a~ 

and consider the sequence {~®K*(r ,  l, t)}~'=l. Then (9) implies that for n>n0(k ,  6) 
some member  of,~" is a subhypergraph of  J~@K*(r, l, t). 

We shall establish the contradict ion by proving 

Lemma 4.3. Suppose H is a subhypergraph o f  K*(r,  l, t), ]V(H)]-~k, t>to(k) .  Then 

Proof. Let us define U~= V(It)NV~. Let ~ = ( ~ ,  ~ . . . . .  ~,,) be an optimal vector. 

In view o f  kemma 2.6. ~ is a constant  on U~ for i = 2 ,  3, . . . , / .  Let ~o~ be the corre- 
sponding value, set ~--[U~! ~ ,  ~.1= 1 - ~ '  cq. Define I lo=(U~,  E ( H ) r ~ [ U d  ~) i.e. 

2 ~ i < I  

the subhypergraph of  H, induced on Ua. I f  E ( H 0 ) = 0  then H is a complete / -par t i te  
r-graph and Theorem 2.5 yields the statement. Thus we may assume 1V(Ho)I 
= r -  I + d  with d a positive integer. In view of  Lemma 4.2, H o has at most  d edges. 

' ~ and suppose x 1, x.,, are the cor- Assume V(HII)= { t ' l ,  /)'2 . . . . .  C r - t + d l  . • . . . .  Y r - l + d  

responding values o f  ~ with xz=~x , ,~ . . .~x ,_~+a .  

Claim 4.4. I t b  sufficient to prove L e m m a  4 .3 for  the case 

u ( n , , )  = { { < ,  . . . .  , ,. =< i < , +  a }  

Proof  of  the claim, Let us order the edges o f  H0 in a decreasing order e~, e.,, ..., G, 
i.e. 17 xl ~= 17 xl for v < p .  In view of  the construction, s ~ d ,  moreover,  

u i < e  v I; Qep_ 

le~ I I e,2 L! . . . .  % ~ r -  1 + p  for p - -  1,2, ..., s. Consequently,  at least one o f  the edges 
out o f  el, e.: . . . . .  % contains some vi with i ~ r -  1 + p  and thus satisfies 

/ /  X i  : ~  X 1 X  2 . . .  X r - l X r _ l +  p . 
x i E e  

Thus,  by monotonici ty  the same holds for % and 

1 ~ .<_-.s x i 6 e~ 1 ~ . i  ~ d  

follows. Consequently,  replacing the "o ld"  H0 by the "new" one does not decrease 
). (h ') .  II 

We go on with the p roo f  o f  Lemma 4.3. In view o f  Lemma 2.6, -¥t=-v2 . . . .  
d c f  d e f  

=.v,_~ = O,,, x,=.v,+~ . . . . . .  ,v , -~+d= ~Ol holds. Observing that each term in 2 (H)  
appears r! times in the expansion of  ( ~  + ~ +  ... +~,,,}" but this expansion contains 
lots o f  terms not appearing in 2 (H)  as well, we infer 

(10) r I 2 ( H )  ~ 1 ~ " ' - -  / - -  - -  ~ 1 )  - + , .  Z v , v ,  . . . .  Z . . . .  
i = 1  l ~ j ' < d  l ~ j ~ r - - l - + . . d  

1 
It will be sufficient to show that  the RHS of  (10) is less than or equal to 1 - l , _ ~ .  
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. 

Let us set : q = T + ( / -  I)~. Then 

lies 

(11) 

For r =  3 

02)  

Note that 
(13) 

/--1 
1 - % - -  l ( l - 1 ) s = ~ e + . . .  +:q imp- 

: ~ + ~ i + . . . + ~ . ~ ' ~  7 + ( l - l ) e  + ( 1 - 1  --g 

we deduce 

~ c ~  --> +3(I -1)g"+l( l - I ) ( I -  2)e a. 
i=1 

,'! Z .¥lx., . . . .  , , - , . , ~ - 1 ÷ ~  = r! , , ~ - l ( : q _ ( , . _  1)oo),  

Thus, for r=3 ,  it is sufficient to show by (10), (11), (12), (13) and (14), that 

3(l-1)C+1(l-1)(1-2)~ a - 6 0 ~ ) ( l + ( / - l ) e - 2 0 0 1 + 6 e ~ ) ( l - / 1  ( / - l ) e )  > 0 .  

or. equivalently, 
( (151 3 ( / -  1)C- 4-l( /--  1 ) ( l - 2 ) g  3 ~ 60~1,2( /-  1 ) g - 2 0 . - -  . 

Using the inequality between the arithmetic and geometric means we gel that the 
RHS can be botmded from above by 

6 3 :~6 

using a-~-l/l. Now (15) follows fl'om 

l (1-1)( l -2)ea~ /aea, i.e. ( / - 1 ) ( / - 2 )  ~ - ~ / -  for l ~  3, 

and from 
6 .8  

• = > _ _ ~ a  for 1 = 2 .  3(l--l)~'e 3ca ~- 27 

Consider now the case r>3,  l>2r.  By the inequality between arithmetic 
and geometric means for (I 3), we have 

(16) 1., OD_l(0q- ( r _  l ) o o ) ~  r [ l  'r = r,7 ( 1  ,a- ( l -  l)8)r. 

1 2 
Suppose first that e-----~- r . Then ( / -  1)e_ -> , thus, for (16) we obtain 

7 T + ( l - l ) e  ~ - 7  ( l - l ) e  ~ -  

, 
as - -  ~ holds ]'or r ~ 4 .  

Fr 2"- 
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On the other hand from (I 1) we have 

l 1 1 1 )'a'. 
(17) 7_,7i ~ l , ._t } - ( l - l ) " e " - - ( l - l ) e " ~  /,_~ 

i = 1  

From (16) and (17) we infer adding (11)+(14)-(13) that  

as desired. 

' ( )  
i ='~'~l 2 1-  j -_ , - l + ,t ~ .-4 j ~ a 

~ F -~1 ~-Y1 (l_l)re,. + ( r - I ) o . - ~  ( / - 1 ) ~ t : Z - - F _  ~ ,  

I 
Suppose last ~ <~-r" We settle this case by showing (13)~(14),  equivalently, 

(18) tq ~ f f , - : 3 ( ~ l - ( r -  l)o~o) :-; ( ;  ) ( r - - 1 ) ( l  - ~ . O  ' - ' .  

/ ' - -3  ] ' -~  

We increase the LHS by writin~ r -  1 ~ cq r! r - 3  I, t-7--Z_ ~- substituting the value 

o f  ~ and noticing that the LHS increases and RHS decreases with :q, i.e. it is sufl]- 
1 1 1-1  

cient to check the inequality for e=--ff-r, i.e. ~ t - ~ - + - f f - -  r . For / ~ - r - 1  we have 

9 2 
~ -  and 1 - : ~  1 - - - .  Thus. it is sufficient to have 

t" /" 

2 ( r -  3) I ~--° r 
r ' r - I  ~ ( 2 1 ( r _ l )  e 2, 

which holds for r ~ 4  as t h e L H S  is < 1  and t h e R H S i s  > 1 .  II II 

References  

[I] P.ERDOS, Oil exH'emal problems of graphs and generalized graphs, Israel J. Math. 2 11965), 
183--190. 

[2] P. ERD6S, Problems and Results oil Graph and Hypergraphs, Similarities and Differences. 
[3] P. ERO6S and M. St'MONOVITS, A limit theorem in graph theory, Stttdia Sci. Mat. Hung. Acad. 1 

(1966),5l 57. 
[4] P. ERD6S and A. H. S-toNi& On the structure of linear graphs, Ball. Atner. Math. Soc. 52 (1946), 

1087--1091. 
[5] V. JA~.NtK, D~ff'erentiah'echmmg, Prague 1956. 
[6] G. KArONA, T. NEME'rZ and M. SIMONOVlTS, On a graph-problem of Turan, Mat. Lapok 15 

(1964), 228--238. 
[7] P. TURA.N, On an extremal problem in graph theory (in Hungarian), Mat. Fiz. Lapok 48 (1941), 

436~52.  

Peter Frankl  

CNRS,15 Qt~ai Anatole France 
75 007 Paris, France 

Vojt6ch R6dl 

Dept. Math., FJFI CI/UT 
1100 Praha 1, CSSR 


