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HYPERGRAPHS DO NOT JUMP

P. FRANKL and V. RODL

Received 3 November 1983

The number o, 0=a=1, isa jump for r if for any positive ¢ and any integer m, m=r, any

r-uniform hypergraph with #=n,(e, m) vertices and at least (z--¢) ["I'] edges contains a subgraph

with m vertices and at least (z-+¢) [':,’] edges, where ¢=¢(2) does not depend on ¢ and m. It follows

from a theorem of Erdds, Stone and Simonovits that for r=2 every « is a jump. Erdds asked whether
the same is true for r=3. He offered $ 1000 for answering this question. In this paper we give a

! . .
negative answer by showing that l—lr—_l isnotajumpif r=3, > 2r

1. Introduction

For a finite set ¥ and a positive integer r we denote by [l’/) the family of all
r-clement subsets of V. We call G=(V. E) an r-uniform hypergraph or shortly an

r-graph if £C (II/] . The density d(G) of G is defined by d(G)=E/ (’,/J

Definition 1. 1. A sequence ¥=1{G,}:=,, G,=(V,. E,) of r-graphs is admissible if the
following two conditions are verified

() [V, =r and |V,|—~= as n—>o
(i) the limit lim d(G,)=d(%) exists.

We call d(%) the density of the admissible sequence %. For kzr we define

|4
’E" g ( F ]’
0, (%) = max max .

()
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A simple averaging argument vields (cf. Katona, Nemetz, Simonovits [7]): ¢,(%)
Zo. (D= ~ . '

Therefore A!im 0. (9)=d(¥%) exists, we call it the upper density of %.

P. Erdgs, A. H. Stone, M. Simonovits [3] proved that the only possible values

- . . 1
of d(%) for r=2 (i.e. for admissible sequences of graphs) are | -7 (I=1.2.3..)

and 1. This result casily follows from the following
Theorem (ErdGs and Stone [4]). Suppose £=0, I.m are positive integers and G is a

. . - [ . )
graph on n vertices with d(G) =1 —T-l-a. If n=ny(l,m, ) then G contains a complete
(I V)-partite subgraph with partition classes of size m (i.e. there exist [+ pairwise
disjoint subsets Vi, ... V. such that (x;, x;) is an edge of G whenever x, €V,
x;EV and i=j hold). |}

P. Erdds asked whether for r=3 the set of possible values of d(%) for admis-
sible sequences of r-uniform hypergraphs forms a well-ordered sequence. We give
4 negative answer:

Theorem 1. 2. Suppose r=3, | -2r Then for an arbitrary positive € there exists an
admissible sequence of r-graphs, satisfyving

I
/r—l

() 1;—1—,/?{((9’)/\1—

G L&

In the next section we introduce the Langrange function. £(G). which proves
to be a helpful tool in calculating the upper density of certain admissible sequences.
In Section 3 we prove a necessary and sufficient condition for z to be a jump. The
proof of Theorem 1.2 is given in Section 4.

2. The Lagrange function of hypergraphs

For an r-graph G with vertex set {1, 2, ..., n}, edge set £(G) and a vector
¥=(xy. ..., v, )R denote by A(G, X) the Lagrange function of G defined as

J(G.X) = 2 T R
TN T & {1}

Set S:{X':{.\‘l. Xoy con )0 2Ty =1, .x‘f:‘O},
i=1
/(Gy = max {4(C, X): X£S5}.
For Jo{l,2, ....n}. J=0, set S;={I=(x....,x,): 3¢S, x>0 iff icJ}. Then
we write supp ¥=J. Clearly, we have

(G) = max , {A(G,%): €Sy},

[ ASTS W R

The next theorem follows from the theory of Lagrange multipliers (cf. [4]).
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Theorem 2.1. There exists a non-empty set Jc{l,2,..,n} and a vector §
=(11, Vay ..., P)ES; so that the following three conditions are satisfied:

() 2(G) = 4G, ))
(ii) ?L_J.(G, §) = s Aden e G, e
[¢ '\j

F€lin iy ) CEG) Yi

0* .
(iily The Jacobian marrix of second derivatives {—m (G, _V)) is negative semide-
XiOX; ij
finite on the hyperplane 2 v,=0. |}
1=iz=n

This theorem gives necessary conditions for a vector €S to fulfill (i). Unfor-
tunately we do not know any satisfactory (i.e. easily verifiable) sufficient condition.
In the case of graphs, i.e. if r=2, the situation is much simpler. The next theorem
can be deduced from Turan’s theorem [7]. We give an alternative proof later, using
Theorem 2.3.

Theorem 2.2. Let G be a graph in which the largest clique has size t. Then we have

) A(G) = %[1—17] |

Theorem 2.3. Suppose A(GY=A(G, ) for €S, and |J| is minimal subject to this con-
dition. Then for any a.b€J there exists e€ E(G) with {a,b}SeSJ.

Proof. Suppose the contrary. Then we have
3‘)

3) Traw (G D=0

J J ..
Suppose by symmetry é)(_x)'(G’ y);%ﬁ(c, ¥) holds and define &
ta b

=min {)‘n. 1 _)"b}- Set Z :(Zl DIEERE Zn) with Za:.ra-5~ Zp :Jb+5 and 2=y
otherwise. Then (3) and the fact that A(G, ) is linear in each variable imply

(6, D) = 4G, ).

0
MG, ) = MG, y)+5[ AG, ) —
Howerever, 3¢S, z;=0 if i¢J and either z,=0 or z,=0 holds in addition, a con-
tradiction. |
Proof of Theorem 2.2. Let A(G)=A(G, ), j€S, and [J| minimal subject to this
condition. Then Theorem 2.3 implies that J is a clique in G, consequently |J{=j=1.
Suppose for simplicity J={1, 2, ..., j}. Then (ii) of Theorem 2.1 implies

2 y»=2i(G) ftor i=1,..,J
veii
1=vsEj
Taking the difference of the first and /'th equation we obtain 1, —1, =0, i.e., y,=);.
. . . [
This means ¥y, =y,=...=);. Now Jyi+1.+...+y;=1 1implies 1;=— and con-

N
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— 1 o ] . ] . .
sequently '/—_:2),(6") le., 2(G)== [l ——] Smce /Z(G) 1s a maximum, we must
J
have j=¢ and thus 2(G)=—= (l 47] [ |

For rz=3 the situation is much more complicated, the equations in (ii) of
Theorem 2.1 are not linear any more. However, for our purposes it will be sufficient
to investigate the Lagrange function of a special class of r-graphs.

Definition 2.4. Denote by K(r, [, 1) the complete /-partite r-graph with each color
class of cardinality 7. More explicitly V(K(r,l, 0))=V,U...U¥,. K=t V.(V,=0
Vv v
for I=i=j=], E(K(Ar./.r)):[r}— J (r')’
]

=

Theorem 2.5.

) A(K(r 1 n) = (/rl) “/’] /[”]J

We need a lemma. We call two vertices i,/ of G equivalent if for all

eé(V {. ”], eULJYEE(G) if and only if eU{i}e E(G).

=

Lemma 2.6. Suppose G is an r-graph on {1,2, ... n} in which i and j are equivalent.
Then there exists ¥€ S, with A(G)Y=2(G, §) (md yi=y;. Morcover, y,=y; holds
Sfor any vector ¥ satisfying (G)=7(G, ¥) and such l/zat f()l some <Cb(G) { J1ce
Ssupp (FU i} holds.

Vit . .
Proof. Suppose 1;=1;. Define Z by z;=z,= ;54, z,=1, otherwise. [t 15 casy to
see that A(G. 7)=A(0, 2). Moreo»el f01 an edge of the form {i, /. i, ....4,_.). we

replaced y;1; .]]:’1',-" by ( it J ]7 v;, which ts strictly bigger if v;...1; =0, [}

v=il

Proof of Theorem 2.5. We may assuime without loss of generality that };
={(i—De+1,...,it} for i=1,2, ...,/ Let y be an optimum vector, i.e. so that
H{G)Y=4(G, D) holds. Suppose y,. )ti for some 1=/=]. We want to show that
V.= holds. Suppose for contradiction y,>1,. Since j is an optimum vector, there
is an ¢’€ E(G) satisfying y,£e’ S supp (7). Define e=¢" if b€e. Ifnot,set e=(c"—{b'})
U{b} where b'€e’, b'=a and such that eE V. This is always possible because
¢’ TV and r=3. Now the second statement of Lemma 2.6 implies y,=J,.
Define g; as the common value of y; for jeV.. With this notation

l
NG, F) = MK LI, B = 2 (It]()f
i=1
Using Lemma 2.6 we infer

Nt
MK 1, 10, 7) = A(K(r 1, 10) = (h),[f].

On the other hand >'¢;=1/r, 0;=0 and the Jensen inequality yield

(0= (W22 - (1)

VR
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Combining these we obtain

o= (1))
and thus

oo (bt )= )] e

3. Jumps and thresholds

Definition 3.1. Let ¥ =(G,);~,; be an admissible sequence of r-graphs. We say that
H =(H)- is a subscquence of G 1f H, is a subgraph of G, forall n=1 and

— o (S fl > oo,

Definition 3.2, For Q=u«-1 define

A () =sup {3: d(%)=x implies d(%)=u+ for all
admissible sequences of r-graphs}.
We call o a jump if A,(2)=0.

It is not hard to sce that one may replace sup by max in Definition 3.2. More-
over, the definition is equivalent to: any admissible sequence ¥ with /(%)= con-
tains a subsequence with lim sup d{H ) z=a+ A (2).

Erd§s’ problem stated in the Introduction can be reformulated as follows: is it
true that 4,(x)=0 holds for all r=2 and 0=u=<1?

Definition 3.3. For 0= x= 1 and a family # of r-graphs, we say that % is a threshold
for 7 if in any admissible sequence 9={G,};2; with d(¥%)=u all but finitely
many G, contain some member of # as a subgraph. We denote this fact by z—.#.

Note that o -—+F is equivalent to the following: for every ¢ there exists an
ne=mny (e, o, r, F) such that d(G)zo+e and ]V(G)[/n(, imply that G has some
member of .7 as a subgraph.

Theorem 3.4. (Erdds [1]) Lot 9 be an admissible sequence of v-graphs with d(4)=0.
Then 4 contains an admissible subsequence # of complete r-partite graphs with cach

. C L or!
color class of the same cardinality, J(#) =—. |
) =7
Tn our terminology we have:
o r!
Corollary 3.5, For any r=2, 0 is a jump and 4,(0)=—. |
I

Now we will define the blow-up of an r-graph which will play a central role in
the rest of this section.

Definition 3.6. Let G be un rgraph with V(GY={1,2, ....n} and p=(py, .... py)
a non-negative integer vector. Define the j blow-up 0[ G, p® G as an n-partite r-graph
with vertex set V1. UK, [V]=p;, 1=izn, and edge set

E(P®G) = {{u‘-l, Bigs s Ui 1 i€V, {0y, By, oo, i,}EE(G)}.

3%
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Note that
(5) ﬁ®(ZI®G) = (plqls ~"7pn[ln)®G Where i) = (I)lv “'~pn)‘ q = (C/n “'ﬁqn)'

We omit the proof of the following easy but important proposition.
Proposition 3.7. Ser i=(i,....{), i=1. Then
(6) d({i® G}iy) = r! 2(G)
holds for any r-graph G. |}

The main purpose of this section is to prove the following.

Theorem 3.8. The following ure equivalent.
(1) = is a jump forr.

(il) x—.F for some finite family F of r-graphs satisfying )(F)\— Sor all FEF.

Proof. (i}~ (ii): Let us set 4=4,(2) (cf. Definition 3.2). Then 4=0. Let us fix A
=ky(4, %) so that

1 (k& l_A o
™ rd VS 1SEs Rl

Let .# be the family of all r-graphs on k vertices and at least (J+4) [I(J
F4 r

edges. Then (7) implies /([’)>~ for all Fe#.

Let % be an admissible sequence with (f((‘”)>ut Then by definition d(%)=
=544 holds. Therefore we may choose # ={H,}=,. a sequence of subhyper-
graphs of members of % so that limsup t/(H,,)§a+A and |H,(=k for n=n,k).

. . Y| .
Thus we may choose H,, to satisfy a’(H,,)zfx—l—7. WV(H,)|=k. Thus o,(H,) =« —l—é

therefore A, has a subgraph F with [V (F)l=k (/(F);a+%, ie. FeZ. as desived.

(i)~ (i): Let F={F,, ... F,) be the finite family with ).(1»*«3)\/'5‘_y satisfying
i

a—~F Letusset |[V(F)|=v;. _
Let ¥={G,)>.; be an admissible sequence with d(¥)=a+s, e=>0. Let us

' 2
choose n, so that for n=n,. r!(ﬁ]/n'> a+2e//3 holds. Take n so that |G,|=n,

=max {nl. o [% o, F, ]} (c.f. Definition 3.3) and d(G, )>a+27 hold. Then the

. - &
average density of the m,-vertex spanned subhypergraphs of G, 1s at least o+,

therefore there are at least vy [l " ")IJ n,-subsets, W ¥V (G,) which span a subhy-



HYPERGRAPHS DO NOT JUMP 155

&

4

a copy of some member of %. However, a given copy of F;is contained in at most

l V(Gn)l — U
Ho— 0

¢ such that, if V(G =n,=n,(ns, ¢), then for some i, | =i=m, G, contains at least

¢ (n . . . .
—( ] copies of F;. Let the vertices of F;be x,, ..., x,, in an arbitrary but fixed order.
v; i

. . € _ .
pergraph with density at least a+—. As n,=n, (Z’ q.r, 5’*] all these W contain

of the ny-subsets of V(G,). Therefore, there exists a positive constant

m
For a random partition ¥(G)=X;U...UUX, and a given copy of F,. the probability
.1 . ..
xiEX; for i=1...,u Is —. Therefore, there exists a partition, say ¥{(G,)
B3

=) U...lUV,,, so that the corresponding v;-partite v;-graph contains at least

vée m \v;

Thus, for any positive integer t and n=ng(c, v), we may apply Theorem 3.4
and obtain a v;-partite complete v;-graph of copies of Fj 1.e. i® F; is a subgraph of
G, whenever |[V(G,)]|=n(c, v).

Consequently, for some /, | =/=m, we can find a sequence |=pm=n,= ..
so that G, has j® F; as a subgraph. Hence

d(9) = d({G, }iz) = d{J® F)i) = r! 2(F).

Thus. setting 4= min (r12(F)—2), we have d(9)=a+4, je zis a jump. [

=iEm

1 ¢ (n , (1 . . ..
——( ]>c [;] copies of F;, all in the same position.
v;

4. The proof of Theorem 1.2

Consider first the sequence 4(t)=1{G,}o., where G,=(1. n ...,MSK(r. [ 1).
Theorem 2.5 and Proposition 3.7 imply

Proposition 4.1.

o . 1 ([
d(5)) = A1) = rAKEL1D) = (7o [(I’)—/[’)J 1

Thus we have

o I tir ] (I i ] [1 ]
8 G1) = 1 —————| - |+ - = |+ 0l )
) d(s) =1 et s[z [ A +0 r?
i.e., the %), t=1,2, ... form a sequence of admissible sequences with monotone
1

increasing upper density tending to 1 —T

We shall prove Theorem 1.2 by showing that one can add ¢~ ' edges to one of
the color classes of K(r, I, 1)—in order to obtain a new graph K*(r)=K*(r,/, 1) such

1 . .
——. Doing this for every

that Z(K*(1))=d(i®@K"(r)) is slightly greater than 1 - G

¢ we obtain a decreasing infinite sequence of densities—tending actually to 1 N

First we need a lemma.
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Lemma 4.2. Suppose r, k and ¢ are fixed. Then for every t=t,(r, k, c) there exists an
r-graph H satisfving.
() [V(H)|=t
(i) [E(H)|=ct™ !
(it For all VyCV(H) r=|V, =k we have

ool

= Vol —r+ 1.

Proof. Consider a random r-graph, H* on V=¥F(H*)={1,2,....t} whose edges

e
are chosen independently with probability % r!. Then the expected number of edges,
A 3 .
/W(\E(H*‘)f):;('(_l‘— D..(r—r+ l)>5(31'~1 if t=1,(r).
For 2=/=k call VycV(H*), |Vy|=] bad if (ili) fails for V4, i.e., if ¥, con-

tains at least /—r+2 edges. There are [ v choices for /—r+2 edges, und the

[—r+2

- . s 2¢\-r+2
probability that these edges are in A% is [1- ! T] . thus the expected number of

(")

[—r+2

bad Vs satisfies

/'.’2(')1!'}";2 ¢ .
(_ < ——— "Vl (e ko).
;
‘ k
Thus. M(IE(_H‘)‘)—[;] M (bad V) =ct""1. Consequently, for some value of H*,

the number of edges remaining after removing all edges contained in a bad V) is still
at least ¢ =Y, and the r-graph formed by these remaining edges show the validity of
the lemma. ||

M (bad V) = ?[q
r(‘l_::-k {

. 1 .
Set now (~:2+(’2] (%——Ij] Let K(r,/ t) have color classes J}{,.... Y

and let H be an r-graph on ¥ satisfying the statement of Lemma 4.2. Define K*(r. /. 1)
as K(r, 1, 1) together with the edges of H. In view of (8) we have for /=1,

Bl 1
' (ly -ty
thus,
N 1 1 1
© M) = (1 )
Suppose now that l———lrl_l is a jump. In view of Theorem 3.8 there exists

a finite collection & of r-graphs with ).(F);%[i —TI_T-HS], 8=0 for all FEF,

{
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T is a threshold for # |1 — =

and consider the sequence {i® K*(r, /, 1)};=,. Then (9) implies that for n=n,(k, )
some member of .# is a subhypergraph of F® K*(r, [, t).

such that 1

—F|. Let us set k=max [F(F)|,
FiF

We shall estabiish the contradiction by proving

Lemma 4.3. Suppose H is a subhypergraph of K*(r, 1, 1),

V(H)|=k. t =1,(k). Then

MH) = L(l ——/rlfl] .

r!
Proof. Let us define U;=V(H)NV},. Let E:(é,, &y, ..., E,) be an optimal vector.

In view of Lemma 2.6. € is a constant on U, for i=2, 3, .... 1. Let g, be the corre-
sponding value, set %,=|U;] ¢;, 0;,=1— > «;. Define H,=(U,, ECH)N[U\J") i.e.

2Ei=]
the subhypergraph of H, mduced on U,. If E(H,) =0 then H is a complete /-partite
r-graph and Theorem 2.5 yields the statement. Thus we may assume [V{(H)]
=r—1+4d with d a positive integer. In view of Lemma 4.2, H, has at most 4 edges.
Assume V(H)={r;, Uy, ..., 0oy og) and suppose Xy, Xa, ..., N, 4, are the cor-
responding values of ¢ with x;=x,= ... =x,_4,44.

Claim 4.4. It is sufficient to prove Lemma 4.3 for the case
E(HO) = {{Ul? Uay voey Up1s U,‘}; r = I = I‘+d}-

Proof of the claim. Let us order the edges of H in a decreasing order ¢, e,, ..., e,
re. [l xy= J] x; for v<p. In view of the construction, s=d, moreover,

'—‘;{C‘v I:iGeu
leylde, U e, =r—1 4 for p=1.2, ..., 5. Consequently, at least one of the edges
out of ¢, ¢,. ..., e, contains some v; with i=r—1+u and thus satisfies

Il xi = X1X2 o X1 Ny

x;€e

Thus, by monotonicity the same holds for e, and

2 Il xi= 2 NiNe o NeoaNeoay

l=pu=s .\',Ee“ 1=j=d

follows. Consequently, replacing the “old” H; by the “new” one does not decrease

. 1

We go on with the proof of Lemima 4.3. In view of Lemma 2.6, x,=x,=...
def def . .
=X, = 0y, X, =N, =...=X,_,34—= 0, holds. Observing that each term in A(H)
appears r! times in the expansion of (&, +&+...+&,} but this expansion contains
lots of terms not appearing in AZ(H) as well, we infer

1

(10)y rtA(H) = 1= Doi+r! > xpx, ... .\‘,_1.\',_1+j—[’.} > x(l—ay)y*

i=1 1=j=d 2 1v=j=r—144d

It will be sufficient to show that the RHS of (10) is less than or equal to 1—

1
[r—l :
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Let us set 112%4,—('!— tye. Then l—r.xl:#—(!— De=ay+ ... + o imp-
lies
1 g 1 .
11) oc§+oz§+...—|—ot,’f—:‘[7+(l—l)a] —{—(1—])(—1——6).
For r=3 we deduce
!
(12) of ?;%+3(/—])82+/(1—l)(/--2)s3.
i=1
Note that
(13) D A R R T CRE R DTS
1= j=d
r ! 2= 3
04 (3)..2, 1= ()e-na

Thus, for r=3, itis sufficient to show by (10), (11), (12}, (13) and (14), that

3(— e+ (- 1)(/—2)53—693(i/+(1— 1)8—290] +6g§[17 Lo 1)5] =0,

or, equivalently,
_9

(15) 3= +I(I—1)(-2)€® = 60§ [2(/— 1)1:—2@0—/—I—J.

Using the inequality between the arithmetic and geometric means we get that the
RHS can be bounded from above by
/_2 3
2(/—1)e—

/ B /8}3

using ¢z=1/1. Now (15) follows from
l(I—I)(/—2)s32£l3£3 Le (l—l)(l—2)2—2—f
27 o -9
and from

3(/—-1De* =3 = %83 for /=2

Consider now the case r>3, /=2 By the inequality between arithmetic
and geometric means for (13), we have

r! (1 r
(16) rloy oy —(r—1)g,) = 70'-3 = ’T(TJ.—(Z— 1)8] .

Suppose first that a;v/}— Then (l—l)s;%, thus, for (16) we obtain
(1 ol (3 ]’ 1 .

] r
as L(EJ = l— holds for r = 4.
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On the other hand from (11) we have

! 1 L . 11
(17) Dot = b (=) E (= 1)E = ey ()

= - /r41

From (16) and (17) we infer adding (11)+(14) —(13) that

L=

- F >
2 —l—(z) D Ty o B S R G P VI G

i r=jzr—14d 1=j=d

1

1 . F 1
= —/‘_Tl"*‘?([—])'? +[

9 I Foar
2](/'-1)95—?(/—-1)8 =g

as desired.

1 . L . .
Suppose last g We settle this case by showing (13)=(14), equivalently,

(18) r e oy — (r—1)0y) = []2 ](r— U

r—-3 T2
r—1]r—1 %
r—3 F—2
of «, and noticing that the LHS increases and RHS decreases with %, i.e. it is suffi-

[

. . o .
cient to check the inequality for e=_-, le a1:7+—/—. For /z=r—1 we have
; =

2 - .
oy =— and 1—o;=1—-—=. Thus. it is sufficient to have
r ]

We increase the LHS by writing r!

substituting the value

s ::; (r(;'z—(’l‘)_(fi 2) )'-2 = [;)(r— e,

which holds for r=4 asthe LHSis <=1 andthe RHSis =1. R
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