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ON DIGRAPHS WITH NO TWO DISJOINT DIRECTED 
CYCLES 

C. T H O M A S S E N  

Received 11 February 1986 

We obtain a result on configurations in 2-connected digraphs with no two disjoint dicycles. 
We derive w~rious consequences, for example a short proof of the characterization of the minhnal 
digraphs having no vertex meeting all dicycles and a polynomially bounded algorithm for finding a 
dicycle throqgh any pair of prescribed arcs in a digraph with no two disjoint dicycles, a problem 
which is NP-complete for digraphs in general. 

1. Introduction 

Dirac [3] characterized the 3-connected graphs having no two disjoint cycles 
and Lov~isz [9] extended Dirac's result to all graphs. "lhe corresponding problem for 
digraphs (directed graphs) with no two disjoint dicycles (directed cycles) is unsolved. 
A well-known conjecture of  Gallai [6] (extended by Younger, see [2]) asserts that there 
exists a natural  number m such that every digraph D with no two disjoint dicycles 
contains a set S of  at most m vertices such that D -  S is acyctic. Combined with the 
solntion of Fortune, Hopcrof t  and Wyllie [5] of  the k-dipath problem for acyclic 
digraphs this would provide a so-called good characterization of  the digraphs having 
11o two disjoint dicycles although it might be difficult to apply since m might be large 
and since the characterization by Fortune et al. is (though elegant and significant) 
not very precise. A precise characterization of  the acyclic digraphs having no k 
disjoint dipaths with prescribed ends is known only tbr k =  1, 2 [11] and a natural 
consequence of  that result is the characterization of  the minimal digraphs having no 
vertex rneeting all dicycles. A short independent proof  of  that was also given in [1 I] 
and it was pointed out how this implies results of  Allender [1] and Kosaraju [7]. 
In this note we obtain another short proof  based on a result on configurations in 2- 
connected digraphs with no two disjoint dicycles. As further consequences of  that 
result we obtain a result of  12sik on dicycles of  different lengths, a result of  Kostocka 
[8] on dicycles through a given vertex and arc, and finally a result on dicycles through 
prescribed arcs e~, e2 in a digraph D with no two disjoint dicycles : Such a digraph D 
contains a dicycle through e~ and e~ if and only if, for each vertex v of  D, D - - v  
has a dipath from the head of e~ to the tail of  e3-i for i=  1 or 2. ~lhe problem of  
finding a dicycle through two prescribed arcs in a general digraph is NP-complete 
[5]. 
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2. Terminology 

We use the same terminology as in [2]. Splitting a vertex v of a digraph D 
means that we delete v and add two new vertices Vl and ~,~ such that va is dominated 
by all those vertices of  D -  v which dominate v and v2 dominates all those vertices 
of  D - v  which are dominated by v and furthermore v, dominates v2. A split of  a 
digraph D is any digraph obtained from D by successively splitting vertices of in- 
degree and outdegree at least 2. The three splits of  the complete symmetric digraph 
K~ in Figure 1 (a) are shown in Figure 1 (b), (c), (d). The digraph T 5 of  Figure 1 (e) 
is the unique tournament in which each vertex has indegree 2 and outdegree 2. 

(a) (b) (c) (d) [e) 

Fig. 1 

A subdivision of  a digraph D is any digraph obtained fi'om D by successively 
inserting vertices ofindegree and outdegree 1 on arcs. If  S is a dipath or dicycle and 
u and v are vertices of  S, then S[u, v] denotes the dipath in S fiom u to r. If  P is a 
dipath, then t(P) and h(P) denote the first vertex (tail) and the last vertex (head) 
of P, respectively. 

3. Dicycles and subdivisions in digraphs with no two disjoint dicycles 

Lemma 1. Let v and e be a vertex and an arc, resepctively, of a digraph D which has no 
two disjoint dicycles, l f  D -  v has a dicycle C through e and D has two dicycles C~, Co~ 
having precisely v in common, then D contains a subdivision D" of a split of K~ or T 5 
(of  Figure 1 (a) and (e), respectively) such that D' contains e and v and such that v 
has indegree 2 and outdegree 2 in D'. 

Proof. Without loss of generality we can assume that number of  segments in 
(CIUC2)(?C is minimum. I f e  is in C1LJC2, then we let P denote any shortest di- 
path in C from C1 to C2. I f e  is not in C, UC2, we denote by P the shortest dipath 
in C such that P contains e and {t(P), h(P)}c=CIUC2, say t(P)CC~. The minima- 
lity property of  C, C,,  C2 and the assumption that D has no two disjoint dicycles 
then imply that h(P)EC2. Following C from h(P) we denote by P1 the first (shortest) 
dipath with no arc ill C I U C  2 and with t(P1)~C2 and h(P,)-(CaUC2. Again, the 
minimality property of C, C,,  C2 implies that h(P~)~C,. Going backwards along C 
from t (P) we define analogously P~ as the first (shortest) dipath with 11o arc in C, U C~. 
such that h(P..,)~Cx and t(P~)CC2. If h(P1)(-CI[v,t(P)], then C1UC2UPUPI 
is a subdivision of  one of the digraphs of  Figure 1 (a), (b), (c), so assume h(P1)~ 
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£CI[t(P), v]-  t(P). Similarly, we can assume that t(P2)CC2[v, h(P)]-h (P). Follow- 
ing C from h(PO we obtain P3 in the same way as we obtained/ '1 and following C 
backwards from t(P2) we obtain P4 in the same way as we obtained P2. The mini- 
reality property of C, Cx, C2 implies that h(P3)£Q[v, h(P)] (for otherwise we can 
modify C and obtain a contradiction). If  h(P3)£C2[v, t(P2)], then C~UC2UPU 
U P1 U P2 U P3 is a subdivision of  a split of  T~ (of Figure 1 (e)). So we can assume 
that h(P3)CC2[t(P2),h(P)]-t(P2). By a similar argument t(P~)CCa[t(P),h(P1)]- 
-h (P1) .  But then CIUC2UPIUP~UP~UPa contains two disjoint dicycles, l-his 
contradiction completes the proof. | 

Theorem 1. I f  D is a strongly 2-connected digraph with no two disjoint dicycles and v 
and e are a vertex and arc of D, then D has a subdivision D' of a spft of one of the 
digraphs of Figure 1 (a), (e) such that D" contains v and e and v has indegree 
and outdegree 2 in D'. Also, D has a subdivision D" of a split of K~ containing both v 
and e such that v has outdegree 2 or indegree 2 in D". 

Proof. If e is not incident with v we apply Lemma 1 and if e is incident with v we 
apply the proof  of  Lemma 1 by letting e be in one of  C~, C~. The last assertion follows 
from the observation that deleting any two consecutive arcs of  the "outer" dicycle 
of  Figure 1 (e) leaves a subdivision of  the digraph of  Figure 1 (b). II 

Theorem 2. ([11]). A digraph D contains a vertex meeting all dicycles of D i f  and only 
i f  D has no two disjoint dicycles and no subdivision of any digraph in Figure 1 (a), (b), 
(c), (d). 

Proof. The "only if" part is trivial and we prove the "if"  part by contradiction assum- 
ng that D is a counterexample of  minimum order. Clearly D is strong and has at 
least four vertices. By ~heorem 1 D cannot be strongly 2-connected. Hence D has a 
vertex x such that D - x  is not strong. Let D~ and D2 be strong components of D--x 
such that no arc enters DI and no arc leaves D~ in D--x. Since D has no two dis- 
joint dicycles, one of  D~, D2 (say D~) is a single ver texy ofindegree 1 in D. Let / )3  
be obtained from D by contracting the arc xy. Since D has no vertex meeting all di- 
cycles, D~ has no vertex meeting all dicycles and, by the minimality of  D, D3 has 
either two disjoint dicycles or a subdivision of  a digraph in Figure 1 (a), (b), (c), (d). 
But then D has the same property. This contradiction proves the theorem. | 

I f  we prove the weakened version of  Lemma 1 where D' does not contain e, 
we get an even shorter proof  of  ~heorem 1 (see [12]). We now recall two consequences 
of  Theorem 2 given in [11]. 

Corollary 1. (Allender [1]). I f  D is a digraph with p vertices such that no vertex of D 
meets all dicycles, then D has a dicycle of length at most 2p/3. 

Proof. By Theorem 2, D contains a subdivision of one of  the digraphs of  Figure 1 
(a), (b), (c), (d) or two disjoint dicycles. In any case D has the desired dicycle. | 

Corollary 1 is best possible and it is also easy to characterize the extremal 
digraphs (see [11]). 

Corollary 2. (Kosaraju [7]). I f  any three dicycles in the digraph D have nonempty 
intersection, lhen all dicyctes of  D have nonempty intersection. 
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Proofl I f  no vertex of D meets all dicycles, then D has either two disjoint dicycles 
or a subdivision of  one of  the digraphs of  Figure 1 (a), (b), (c), (d). In any case D has 
three dicycles with empty intersection. | 

It would be interesting to establish a connection between Corollary 2 and 
Helly's theorem for compact convex sets in R ~. One possibility would be to consider 
plane digraphs in which all cycles are convex polygons. But such digraphs are rare. 
For example, if a digraph of minimum degree at least 3 has a Hamiltonian cycle, 
then that cannot be convex in any plane representation. In order to avoid this 
obstacle one might consider only a subclass of  all dicycles. But then Corollary 2 
fails as shown by the cycles of  length n - 1  in the complete symmetric digraph of 
order n. 

The following result of  Esik was drawn to the author 's  attention by A. ~dfim 
and P. Erd6s. 

Corollary 3. (l~sik). l i D  is a digraph with no two di.~joint dicycles and with ~o vertex 
meeti/N all dicycles, then D has two dieycles of  difJerent loNths. 

Proof. It is easy to see that each digraph of  Figure 1 (a), (b), (c), (d) has two dicycle.a 
of  different lengths. Hence Corollary 3 follows fi'om "Iheorem 2. | 

Corollary 4. (Kostochka [8]). I f  D is a strong digraph with no two disjoint dicycles, 
then D has a rertex v such that, for each arc e of D, there is a c#cycle thro~(gh v and e. 

Proof. By induction on the order of  D. I f  D is 2-connected, then any vertex can play 
the role of  v by Theorem 1. If  D is not 2-connected, then we conclude as in the proof  
of  Theorem 2 that D has an arc xy such that x has outdegree 1 or y has indegree 1. 
l h e n  we contract xy and apply the induction hypothesis. | 

Theorem 3, I f  ex and eo are arcs in a digraph D with no two disjoint (Hcycles, then D 
has a dicycle through el and e2 i f  at:d only ([~ .~:r each rertex ~: in D, D- -v  has a 
dipath from h(ei) to t(e3_i) for i= 1 or 2. 

Proof. The "only if" part  is trivial and we prove the if part  by induction on the 
order of  D. Since D has a dipath from h(e~) to t(e,~_~) for i = I ,  2, e~ and e~ are in 
the same strong component of  D and we can assume that D equals that component.  
I f  v is a vertex incident with both e~ and e.~, then a dipath in D - v  from h(e~) to 
t(ea-~) together with v, e~ and e2 form the desired dicycle. So we can assume that 
e, and e2 have no end in common. 

We consider first the case where D has no two internally disjoint dipaths from 
h(e~) to t(e~). Then, by Menger's theorem, D has a vertex u such that the vertex set 
of D - u  can be partitioned into sets A, B such that ej goes from A to B and there is 
no arc from B to A. Since D has no two disjoint dicycles we can assume that the 
subdigraph induced by A or B (say B) has no dicycle. Let P be a maximal dipath in 
B such that t(P)=h(e~). Then h(P) dominates u only. I f  e2=h(P)u, then a dipath 
from u to t(eO together with P and e~, e2 is the desired dicycle. So we can assume 
that e~¢h(P)u.  Contracting h(P)u into a single vertex yields a digraph satisfying 
the condition of the theorem and we complete the proof  by induction. 
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We can therefore assume that D contains two internally disjoint dipaths 
Pi,1, P/,2 from h(ei) to t(ei) for i=  i, 2. I f  e2 joins two vertices of P~,~UP~,,,, then 
it is easy to find a dicycle through ex and e., using the facts that D has no two disjoint 
dicycles and e~ and e.~ have no common end. So assume that Pa,~ contains no end of  
e~. Now we delete all arcs which have an end in common with e2 except those in 
P2,1UP2,2 and we then contract e2 into a single vertex v. The resulting digraph 
satisfies the assumption of  Lemma 1 with e~, P2,~, P2,2, P~,I© {el} instead of  e, 
C~, Cz, C, respectively, q-he conclusion of  Lemma 1 gives the desired dicycle. II 

Corollary 5. In a strongly 2-connected digraph with no two disjoint dicycles any two 
non-adjacent arcs are on a common dicycle. | 

Fortune et al [5] showed that the problem of  finding a dicycle through two pres- 
cribed arcs in a digraph is NP-complete. q-heorem 3 shows that this problem can be 
solved in polynomial time when it is restricted to the class of  digraphs having no 
two disjoint dicycles. The conditions for such a dicycle through two arcs el, e2 given 
in q-heorem 3 and Corollary 5 are not sufficient in the class of  digraphs containing 
two vertices whose deletion leaves an acyclic digraph. This is shown by the type of 
digraph in Figure 2. Note that such a digraph contains no three pairwise disjoint 
dicycles. 

Fig. 2 

We conclude with an arc version of  Theorem 2. 

Theorem 4. A digraph D contains an arc meeting all dio,cles of  D i f  and only i f  D 
has no two dicycles with at most one vertex in common and no subdirision of  the digraph 
o f  Figure 1 (d) and no subdivision of  the directed multigraph obtained from a dicycle 
o f  length at least 2 by replacing each arc by two parallel arcs. 

Proof. The "only if" part is trivial so assume D has no arc meeting all dicycles. If  
D has no vertex meeting all dicycles we apply Theorem 2. On the other hand, if  
D - x  is acyclic, then Menger's theorem implies two arc-disjoint dicycles Ca, C~ 
each containing x and now C1UC2 is one of  the configurations described in the 
theorem. | 
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Theorem 4 implies in particular that any planar digraph has either two arc- 
disjoint dicycles or an arc meeting all dicycles. This also follows as a special case of  
a theorem of Lucchesi and Younger [10]. 
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